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Abstract

Parasites, including pathogens, can adapt to better exploit their hosts on many scales, rang-

ing from within an infection of a single individual to series of infections spanning multiple

host species. However, little is known about how the genomes of parasites in natural com-

munities evolve when they face diverse hosts. We investigated how Bartonella bacteria that

circulate in rodent communities in the dunes of the Negev Desert in Israel adapt to different

species of rodent hosts. We propagated 15 Bartonella populations through infections of

either a single host species (Gerbillus andersoni or Gerbillus pyramidum) or alternating

between the two. After 20 rodent passages, strains with de novo mutations replaced the

ancestor in most populations. Mutations in two mononucleotide simple sequence repeats

(SSRs) that caused frameshifts in the same adhesin gene dominated the evolutionary

dynamics. They appeared exclusively in populations that encountered G. andersoni and

altered the dynamics of infections of this host. Similar SSRs in other genes are conserved

and exhibit ON/OFF variation in Bartonella isolates from the Negev Desert dunes. Our

results suggest that SSR-based contingency loci could be important not only for rapidly and

reversibly generating antigenic variation to escape immune responses but that they may

also mediate the evolution of host specificity.
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Author summary

In nature, pathogens encounter a diverse range of host individuals and species. Under-

standing how pathogens respond to this high host diversity is essential for predicting and

controlling infectious diseases in humans and wildlife. Does host diversity slow down and

limit pathogen evolution or accelerate a pathogen’s ability to access and adapt to novel

hosts? Despite its importance, there are few experimental studies of how pathogens evolve

in response to host diversity. To address this gap, we conducted a year-long laboratory

evolution experiment to study how Bartonella bacteria from the Negev Desert dunes in

Israel adapted to different native rodent species under low and high host diversity scenar-

ios. Pathogen evolution did not proceed more slowly or quickly with the differences in

host diversity. Instead, the pathogen rapidly adapted to the more challenging host species

through mutations in mononucleotide repeats within an adhesion gene that is a virulence

factor. Analysis of the genomes of Bartonella isolates from wild gerbils suggests that

hypermutable repeats in this gene and others may have been selected and preserved by

evolution, potentially enabling rapid and reversible adaptation to changing host environ-

ments. Our findings highlight a possible role for these “contingency loci” in the evolution

of host specificity.

Introduction

Parasites, including pathogens, face constantly changing host environments. Individual hosts

change within their lifetimes, different host individuals exhibit variation, and some parasites

infect multiple host species. How parasites adapt to these dynamic environments is difficult to

observe directly. Models and experiments related to the evolution of specialist versus generalist

parasites find that the availability of different host species influences the trajectory of parasite

evolution, both in terms of the level of host specificity and the frequency of host shifts [1–5].

These dynamics, especially in vertebrate hosts, are often determined by an interplay between

host immune factors and parasite antigenic elements [6]. For example, parasites may respond

to changes in host availability by altering their surface features that are targeted by the host

immune system, i.e., through antigenic variation [7]. However, only limited information is

available about how parasites adapt to vertebrate host diversity in natural communities.

To begin addressing this gap, we studied Bartonella bacteria that are flea-borne pathogens

of rodents living in sand dunes in the northwestern Negev Desert in Israel. This system offers

the opportunity to investigate how parasites adapt in the context of a complex host commu-

nity. In this region, a diverse collection of Bartonella strains circulates in communities with

varying compositions of rodent host species including mainly Gerbillus andersoni and Gerbil-
lus pyramidum [8,9]. Bartonella are prevalent in these rodent populations despite high strain

turnover rates [10–12]. Infections with an individual strain are cleared by the host immune

system, and that strain is subsequently unable to reinfect the same host [10]. This strong selec-

tion pressure from immune responses, coupled with the availability of multiple hosts, may

favor Bartonella that have evolved the capacity to readily adapt to different host environments.

In line with this hypothesis, several genetic mechanisms that can facilitate rapid adaptation

by generating antigenic variation have been noted in Bartonella species. First, Bartonella have

high rates of intragenomic recombination events that copy, delete, and hybridize virulence

genes with other nearby copies [13,14]. Second, Bartonella share a domesticated prophage that

acts as a gene transfer agent, which can lead to recombination by exchanging DNA between
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co-infecting strains [15]. Finally, it has been reported that mononucleotide simple sequence

repeats (SSRs) of five or more bases are overrepresented in Bartonella genomes compared to

other prokaryotes [16]. In other pathogens, genes containing SSRs have been shown to func-

tion as so-called “contingency loci” [17]. SSRs mutate at unusually high rates as a result of

strand slippage during DNA replication, and these mutations often toggle expression of a gene

between ON and OFF states [18]. When and how each of these mechanisms contributes to

Bartonella adaptation is unclear.

To examine how Bartonella adapt to different host environments, we passaged a strain iso-

lated from the Negev Desert dunes (originally sampled from a G. andersoni individual)

through rodents of the two main host species. We passaged Bartonella through each host spe-

cies individually and, in a separate treatment, alternating between each host species. We

tracked Bartonella evolution by whole-genome sequencing and asked two main questions: (i)

Do the mutation rates and targets depend on the history of encounters with the different host

species? (ii) Do these mutations contribute to host adaptation? We found that mutations in

SSRs in an adhesin gene dominated adaptation, arising in multiple lines independently and

improving the ability of these Bartonella to exploit the more challenging (i.e., less favorable)

host species. By sequencing the genomes of 38 Bartonella strains isolated in this region from

wild gerbils, we found that similar SSRs are widespread and exhibit variation in their ON/OFF

states. These results suggest that SSR contingency loci play an important role in allowing Bar-
tonella to rapidly adapt to frequent host changes and thereby contribute to the remarkable

local and global diversity of this genus of pathogens.

Results

Bartonella evolution experiment in rodent hosts

We evolved populations of Bartonella krasnovii OE-11 A2 for 363 days in three different

rodent host scenarios: infecting G. andersoni only, infecting G. pyramidum only, or alternating

between the two hosts (Fig 1). We started all lines from the same single colony isolate. For

each of the three treatments, we started five independent lines and then passaged each line

through 20 individual rodents by isolating and injecting bacteria into a naïve host. At each pas-

sage, bacteria were isolated from blood after 15 days of infection, and we used this population

to inoculate the next rodent. Similar infection dynamics were observed across all passages and

host treatments, and bacterial loads in infected rodents at 15 days post-inoculation were com-

parable across all passages (S1a Fig). Moreover, what little variation there was in the number of

bacteria inoculated at different passages did not lead to major differences in final bacterial

loads in the recipient rodents (S1b Fig). The absence of any change in bacterial loads in the

alternating host environment across passages, compared to the single host environments, sug-

gests that trade-offs across host species did not play an important role in Bartonella evolution

during the experiment.

Rates of genome evolution in different host treatments

We used whole-genome sequencing of 162 population samples and 147 endpoint clonal iso-

lates to track new mutations that appeared during the evolution experiment (Fig 2). The over-

all genetic dynamics were consistent with selective sweeps by lineages that acquired new

beneficial mutations, including several instances of lineages with different mutations compet-

ing and displacing one another (Fig 2a). Across all lines, we identified 27 unique mutations (S1

File), which included 17 base substitutions, 7 small insertions or deletions of 18 or fewer bases,

1 three-base substitution, 1 gene conversion that changed three bases in a 44-bp stretch to a

homologous sequence found elsewhere in the chromosome, and 1 large deletion of 33,117
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bases. Of these mutations, 13 swept to high frequency and appeared to reach fixation in at least

one experimental line, 2 were polymorphic in a final population (occurring in 2 or 8 of the 10

clones sequenced), 11 were found in only one sequenced endpoint clone and not observed in

any population samples, and 1 was found only in population samples but not in a sequenced

endpoint clone.

We found up to four new mutations in each of the final clonal isolates (Fig 2b). There were

fewer mutations, on average, in an evolved Bartonella clone isolated from a population that

was passaged only through G. andersoni (1.44 per clone) or only G. pyramidum (1.10 per

clone) compared to a clone from a population passaged alternately through both rodent spe-

cies (1.89 per clone). However, these differences among treatments in the rate of genome evo-

lution were not statistically significant (repeated measures ANOVA: F2,12 = 1.1, p = 0.37).

Recurrent and parallel SSR mutations occur in an adhesin gene

Indels in mononucleotide SSRs were the only successful mutations that recurred (indepen-

dently arose in multiple lines) and exhibited genetic parallelism (with multiple distinct muta-

tions affecting the same gene). Specifically, we detected changes in the lengths of two separate

SSRs located within the first portion of the reading frame of the same trimeric autotransporter

adhesin (TAA) gene (Fig 2c), which we named badE for Bartonella adhesin that evolved. TAAs

that have been characterized in other Bartonella species are virulence factors that mediate

binding or adhesion to host cells [19–21]. Within the badE open reading frame, we observed

the deletion of a single A from a nine-base adenosine repeat in five populations, the deletion of

Fig 1. Bartonella evolution experiment in rodent hosts. (a) The design included 20 serial passages of Bartonella
krasnovii OE1-1 A2 through individuals of one of the two host species (G. andersoni in green or G. pyramidum in

purple) or alternating between them, with five independent rodent lines per treatment. (b) In each infection cycle,

captive Bartonella-negative rodents were inoculated intradermally with bacteria. Bacteria were cultured from red blood

cells sampled 15 days later to create the inocula for the next passage. A portion of each inoculum was archived for

further study. Yellow rods and shading indicate bacteria in animal infections or samples. Figures incorporate artwork

from Biorender.com.

https://doi.org/10.1371/journal.ppat.1012591.g001
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Fig 2. Bartonella evolution is dominated by mutations in mononucleotide simple sequence repeats (SSRs) in the badE trimeric autotransporter adhesin

(TAA) gene. (a) Dynamics of competition between bacteria with new mutations in each of 15 experimental populations (L1-L15) over 20 rodent infection cycles.

The relative abundance of each mutation was determined from metagenomic sequencing data. (b) Number of mutations in each of 10 clones isolated at the end

of the evolution experiment from each of 15 populations. Each panel shows results for the five populations that were passaged only in G. andersoni (L1, L4, L7,

L10, L13), the five passaged only in G. pyramidum (L2, L5, L8, L11, L14), or the five passaged alternately in the two rodent species (L3, L6, L9, L12, L15).
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a single G from a nine-base guanosine repeat in three populations, and the insertion of a single

G in the same repeat in four populations. All three mutations result in frameshifts in badE that

presumably inactivate its function.

These badE mutations occurred in 10 of the 15 lines, all of which experienced G. andersoni
hosts. The SSR mutations increased in frequency until they were present in all or nearly all

cells in these populations (Fig 2a), and they were found in all of the corresponding endpoint

clones (Fig 2b). No mutations in these SSRs or elsewhere in badE were observed in any sam-

ples from the five lines that were passaged only in G. pyramidum. In some lines (L1 and L3),

multiple mutations in the badE SSRs competed for dominance (Fig 2a). The genome of the

ancestor of the evolution experiment has 85 other A/T homopolymer repeats and 13 other G/

C homopolymer repeats of 9 or more bases, but no mutations in these other SSRs were

observed during the evolution experiment.

We also re-analyzed sequencing data from a prior experiment that passaged populations of

a closely related strain of B. krasnovii through 50 single-colony passages in vitro on agar plates

[22]. There were no changes in the lengths of the same two SSRs in the badE gene under the

conditions of relaxed selection in this experiment. Thus, hypermutability of these SSRs is

unlikely to be sufficient for explaining why they consistently mutated in our in vivo evolution

experiment. Taken together, the recurrence, temporal dynamics, and host-specificity of muta-

tions in the two badE SSRs suggest that they improved the fitness of Bartonella in the G. ander-
soni host under the infection conditions of our experiment.

Adhesin mutations affect infection dynamics

To test the effects of a badE SSR mutation under our experimental conditions, we compared

the dynamics of infections of each rodent host species with the B. krasnovii OE1-1 A2 ancestor

and an evolved clone in which the only observed mutation was a G insertion in the second

badE SSR (Fig 3). The duration of infections was significantly longer for both strains in G. pyr-
amidum than in G. andersoni (ANOVA results for infection duration: F1,21 = 14, p < 0.005),

indicating that the latter host presents a more challenging environment for the pathogen. We

found significant differences between the infection dynamics of the mutant and ancestor

strains, with a faster increase in bacterial loads earlier in infections of G. andersoni but not G.

pyramidum hosts (ANOVA, F1,20 = 4.2, p = 0.05 for host species × strain interaction and

p = 0.02 for a planned comparison between the ancestor and evolved strains in G. andersoni at

five days post-inoculation). This result confirms the expectation that this badE mutation is

beneficial to bacterial fitness during infections of G. andersoni. Additionally, this mutation

does not seem to negatively impact bacterial fitness during G. pyramidum infections.

Evidence that badE is an SSR-mediated contingency locus

Our results suggest that the SSRs in the badE gene that mutated in the evolution experiment

might have been selected and preserved by evolution so that this TAA gene can function as a

contingency locus, in which high rates of SSR-mediated mutations can rapidly toggle gene

expression OFF and ON within a population of cells through reversible frameshifts.

Sequencing data was insufficient to call mutations in the three clones marked ND (not determined). In a and b, mutations that altered the lengths of two

mononucleotide SSRs in badE are shown in color. All other mutations are displayed in grey. For full details see S1 File. (c) Effects of badE SSR mutations. Key

portions of the ancestral gene’s nucleotide and amino acid sequences are shown in the first two rows. SSR mutations and how they lead to frameshifts and

premature stop codons that inactivate the gene are shown in the three bottom rows. Stop codons are indicated by red bars above and below nucleotide sequences.

Dotted lines represent portions of the reading frames that are not displayed.

https://doi.org/10.1371/journal.ppat.1012591.g002
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Alternatively, it is possible that the SSRs in the badE gene mediate evolvability in our experi-

ment simply because they are mutational hotspots that happen to be there by chance. The

hypothesis that the badE gene evolved to act as a continency locus would be further supported

if: (1) the prevalence of hypermutable SSRs in its sequence was unusual and (2) the presence of

these SSRs was conserved in related strains and species.

To examine the first question, we performed randomization tests in which we preserved the

amino acid sequences of genes in the B. krasnovii OE1-1 A2 ancestor of the evolution experi-

ment but shuffled the codons used to encode them within each reading frame (see Methods).

Codon-shuffled versions of badE have 0.57 mononucleotide SSRs of nine or more bases, on

average, compared to the two in the actual gene. This overrepresentation is only marginally

significant (p = 0.080, one-tailed randomization test). However, this model does not take into

account that there are typically fewer long mononucleotide SSRs than expected by chance in

functionally important portions of microbial genomes [16,23–25], which has been attributed

to selection against the genetic load of having hypermutable sites in essential genes [17]. In

Fig 3. Evolved SSR mutation in badE alters infection dynamics. The B. krasnovii OE1-1 A2 ancestor strain or an

evolved strain, differing only by a mutation in badE SSR2, were inoculated into three pairs of female and three pairs of

male G. andersoni and G. pyramidum twins (one sibling was inoculated with the ancestor and the other with the

evolved strain). Bars show mean ± s.e. of the log-transformed bacterial titer in blood samples collected on the specified

days after inoculation. Points show values for individual hosts. *Significant difference between the mutant and

ancestor groups. See the main text for statistics.

https://doi.org/10.1371/journal.ppat.1012591.g003
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line with this expectation, the protein-coding genes of B. krasnovii OE1-1 A2 have just 50

mononucleotide SSRs of nine bases or more compared to the average of 206 that are present in

codon-shuffled gene sets, which is a significant depletion (p < 0.001, one-tailed randomization

test). If we re-evaluate the SSRs in badE relative to this depleted baseline, then two SSRs is sig-

nificantly more than one would expect (p = 0.006, one-tailed randomization test), and observ-

ing even one would be somewhat unusual (13.5% of codon-shuffled genes). In conclusion,

there is some evidence that the B. krasnovii OE1-1 A2 badE gene has more SSRs than expected

by chance.

To further examine the evolutionary conservation of badE and its SSRs, we sequenced and

assembled the genomes of 38 Bartonella isolates collected in the Negev Desert dunes from wild

gerbils. We identified and aligned the most closely related TAA gene sequences in each of

these genomes and from eight representative Bartonella species that are not from this environ-

ment (Fig 4 and S2 File). Protein clustering based on sequence homology revealed that the

badE TAA gene in B. krasnovii is more closely related to a different TAA gene in B. henselae
than it is to the highly characterized badA TAA gene [19,21]. The B. krasnovii badE gene also

does not exhibit close homology to the Vomp TAA genes of B. quintana [20].

The Negev Desert Bartonella are classified into four species groups that are closely related

to one another and to Bartonella from other locations that also infect rodents. Of the 38 Negev

Desert strains we sequenced, 18 are B. krasnovii, 14 are B. gerbillinarum, 3 are B. khokhlovae,
and 3 are B. negeviensis [8]. The A9 SSR that mutated in the evolution experiment encodes

three consecutive lysines immediately after the start codon in the reading frame of the B. kras-
novii ancestor’s badE gene (SSR1 in Figs 2c and 4). This SSR is conserved in the TAA genes

most similar to badE in all 18 B. krasnovii genomes. It is also present in the corresponding

TAA genes in three of the four Bartonella species that are most closely related to B. krasnovii.
By contrast, the G9 SSR is present in only two strains: the OE1-1 A2 ancestor and OE1-1 G

(SSR2 in Fig 2c). To put evolutionary conservation of the A9 SSR into perspective, we exam-

ined an alignment of the 18 B. krasnovii badE genes and the most closely related badE gene

from B. elizabethae. In this alignment, there are a total of 7762 nine-base windows, of which

3742 do not contain gaps. Only 358 of these (9.57%) have the same sequence in all 17 genes, as

is the case for the A9 SSR. In summary, we find that the A9 SSR in badE is conserved within B.

krasnovii and related species and that this is unusual but not exceedingly so compared to con-

servation of other sequences within this gene.

Other candidate SSR contingency loci in Negev Desert Bartonella
To examine whether SSRs that might promote the evolvability of contingency loci were more

widespread, we searched the 38 Negev Desert Bartonella genomes for protein-coding genes

containing mononucleotide repeats of nine bases or more (S3 File). As was the case for B. kras-
novii OE1-1 A2, each of these genomes contained roughly 50 such SSRs (Fig 5a). Adenosine

repeats predominated over repeats of other bases on the coding strand (Fig 5b). They com-

prised 62–79% of all SSRs, depending on the species. SSRs were also noticeably concentrated

at the 50 ends of reading frames. We observed that 20–35% of SSRs were within the first 5% of

the DNA sequence of the gene they overlapped (Fig 5c). This concentration of SSRs very early

in genes was significantly greater than expected by chance in all four species (p < 0.05, one-

tailed binomial tests). This trend also recapitulates what we observed in the B. krasnovii OE1-1

A2 badE gene where the A9 SSR was immediately after the start codon and the G9 SRR was

within the first 6% of its length (S2 File).

Of the 181 different gene families that contained a mononucleotide SSR in at least two

strains of the same Negev Desert Bartonella species, 41 were also found in at least two strains
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of one or more additional species (Fig 5d). Some of these conserved SSRs are in genes with

functions related to the bacterial cell surface and virulence, which suggests they could operate

as contingency loci for the evolution of antigenic variation or changes in host specificity

(Table 1 and S3 File). For example, one adenosine repeat shared by all four Negev Desert Bar-
tonella species is in a homolog of the lectin-like protein BA14k, which was first described as an

immunoreactive protein in Brucella infections of rodents [26]. We did not see variation in the

lengths of most conserved SSRs in the Negev Desert Bartonella that would lead to ON/OFF

variation in gene expression due to frameshifts.

Fig 4. Conservation of mononucleotide SSRs in TAA genes most similar to the mutated badE gene in Negev Desert Bartonella and their relatives. The maximum

likelihood phylogenetic tree of Bartonella strains on the left was constructed from a concatenated amino acid alignment of single-copy orthologs, with B. bovis 91–4 as the

outgroup. Portions of the tree with very similar strains are collapsed into triangles. Every node in the tree not collapsed into a triangle was supported in all 100 bootstrap

trees. The TAA gene in each Bartonella genome with the highest similarity to the first 200 amino acids of the B. krasnovii OE1-1 A2 badE gene that mutated during the

evolution experiment was identified, and this region was aligned. The columns from this alignment that include or are adjacent to the two simple sequence repeats that

mutated (SSR1 and SSR2) are shown on the right.

https://doi.org/10.1371/journal.ppat.1012591.g004
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Other genes, however, contained SSRs that did exhibit length variation within strains from

a single Negev Desert Bartonella species (Fig 5e, Table 1 and S3 File). These included a compo-

nent of the VirB/VirD4 Type-IV secretion system (T4SS) [27], a T4SS effector, and three fami-

lies of conserved Bartonella proteins of unknown function. We named one of these latter

proteins variable Bartonella membrane protein A (vbmA). It contains a domain of unknown

function (DUF6622), is predicted to have transmembrane helices, and has sequence similarity

to NAD(P)/FAD-dependent oxidoreductases. The other Bartonella specific proteins with SSRs

are from the same gene family. We named them variable Bartonella lipoproteins A and B

(vblA and vblB) because they are predicted to be secreted by the Sec-system via signal peptides

with cysteine at the cleavage site. Overall, these patterns of conservation and variation in SSRs

(which are similar to the two SSRs that mutated during the evolution experiment) suggest that

some could operate as contingency loci to rapidly and reversibly mutate to toggle gene expres-

sion between ON/OFF states.

Discussion

To assess how differences in host species availability would influence parasite evolution, we

passaged Bartonella populations through either a single rodent host species or alternating

between two host species. We found that new genotypes with de novo mutations arose and

Fig 5. Mononucleotide simple sequence repeats (SSRs) in the genomes of Negev Desert Bartonella. (a) Number of mononucleotide SSRs with lengths �9 bases in the

genomes of 38 strains of Bartonella belonging to four species that were isolated from rodents in the Negev Desert dunes (S3 File). Only SSRs overlapping protein-coding

genes are included. Points are values for individual strains. Bars are averages within each species. (b) Fraction of mononucleotide SSRs in each species that are repeats of

each base. Bases are specified on the coding strand of the gene containing the SSR. (c) Distribution of mononucleotide SSRs at different normalized positions within

protein-coding open reading frames in each species. (d) Venn diagram showing the number of SSRs that occurred in at least two genomes from each of the four

Bartonella species and how they are shared between these species. (e) Protein-coding genes exhibiting variation in the lengths of a mononucleotide SSR that result in

frameshifts within the Negev Desert Bartonella strains. Numbers in boxes are the lengths of SSRs, with their backgrounds shaded by the repeated base as in b. A red X

indicates a frameshift caused by the SSR in that gene. White boxes indicate that a gene was not identified in a genome. Black boxes indicate that the gene is present but

does not have a mononucleotide SSR of �6 bases at that location. Asterisks indicate conserved genes of unknown function that were named in this study.

https://doi.org/10.1371/journal.ppat.1012591.g005
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outcompeted the ancestor strain in most bacterial populations by the end of the experiment.

Mutations in two SSRs (simple sequence repeats) in the same badE TAA (trimeric autotran-

sporter adhesin) gene dominated in lines that encountered one of the two rodent hosts. Evolu-

tion in changing host environments may favor different adaptive outcomes depending on

mutation rates, bottleneck population sizes during infection, the strength of selection, the time

spent in each host, the predictability of host shifts, and other factors. Our results provide

insights into the evolutionary dynamics of Bartonella, specifically in the Negev Desert dunes,

where these bacteria circulate within complex rodent communities.

Theoretical and empirical studies have shown that host diversity can either accelerate

[28,29] or impede [30,31] the rate of parasite adaptation. Host diversity can also favor the evo-

lution of parasites that are specialists or generalists, depending on the rates of parasite muta-

tion and host switching and whether adaptation to one host results in trade-offs that reduce

fitness in another host [32,33]. When the dynamics with which new parasite mutants arise and

compete are slow compared to the rate of host switching, or when there are strong trade-offs,

the evolution of generalists is favored, because any new parasite genotype must succeed in

multiple host environments [34–36]. By contrast, when mutants that are more fit on one host

can arise and dominate parasite populations before they switch hosts, and these mutants are

less fit on other hosts, one expects parasites to evolve rapidly as they specialize on each succes-

sive host [32].

We found more mutations, on average, in the Bartonella lines that were passaged alternately

through two rodent species than in lines that experienced only one host species. However,

Table 1. Highlighted genes with mononucleotide SSRs in Negev Desert Bartonella genomes.

Orthogroup§ Gene# SSR† States‡ Species¶ Predicted function

OG0001164 – A9-10 ON Bh, Bk, Bg, Bn Lectin-like protein BA14k

OG0000503 lpxD T9 ON Bk, Bg, Bn UDP-3-O-acyl-glucosamine N-acyltransferase

OG0000315 clsC T9 ON Bk, Bn Cardiolipin synthase C

OG0000892 lolA A9, G9 ON Bk, Bn Outer membrane lipoprotein carrier protein

OG0000423 pssA A9 ON Bg, Bn Phosphatidylserine synthase

OG0000008 – C11 ON Bk, Bh Autotransporter outer membrane β-barrel protein

OG0000618 yhhT A9 ON Bg, Bn Autoinducer-2 exporter (AI-2E) family protein

OG0001448 pbuE G7-12 ON/OFF Bh, Bk Purine efflux pump

OG0001520 shlB T9 ON Bk, Bg Hemolysin secretion/activation protein

OG0000099 cdiA A7-9 ON/OFF Bk, Bg T4SS effector, HNH/ENDO VII family nuclease

OG0000011 vblA* G10-11 ON/OFF Bk, Bg Lipoprotein

OG0000011 vblB* G8-10 ON/OFF – Lipoprotein

OG0001151 acs A8-9 ON/OFF Bk Acetyl-coenzyme A synthetase

OG0001185 glnB A8-9 ON/OFF Bk Nitrogen regulatory protein P-II

OG0000437 gmk A8-9 ON/OFF Bh Guanylate kinase

OG0001369 virB9 A8-9 ON/OFF Bk T4SS system channel component

OG0000957 vbmA* C6-14 ON/OFF Bk Membrane-localized NAD(P)/FAD-dependent oxidoreductase

§OrthoFinder orthogroup into which Bartonella genes containing the specified SSR were categorized.
†SSR base and lengths observed in this gene.
‡Predicted state of gene function based on whether any examples of the SSR generate frameshifts.
¶Species in which the genomes of at least two strains contain the same SSR with a length of �9 bases. Abbreviations: Bh, B. khokhlovae Bk, B. krasnovii; Bg, B.

gerbillinarum; Bn, B. negeviensis.
*Conserved Bartonella gene of unknown function named in this study.

https://doi.org/10.1371/journal.ppat.1012591.t001
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these rate differences were not statistically significant because the rates were low and fairly uni-

form. More tellingly, we observed that multiple host passages were required for new mutations

to increase in frequency and approach fixation within the evolving bacterial populations. This

result indicates that the bacteria’s evolutionary dynamics could not keep pace with the rate of

host switching in the alternating host treatment. We did not detect strong trade-offs across the

host species in the effects of successful mutations. Such trade-offs would have been expected to

impede the spread of new beneficial mutations in the alternating host environment compared

to the single host environments, which we did not observe.

These evolutionary dynamics suggest that our alternating host treatment selected for Barto-
nella that were better generalists, which is expected to proceed with adaptation first and fore-

most to the host that is initially less favorable [34–36]. It is likely that G. andersoni is a more

challenging host for the B. krasnovii strain that we used as the ancestor. We found that G.

andersoni infections have a shorter duration than G. pyramidum infections, and the latter spe-

cies is the preferred host for fleas that transmit these Bartonella strains in nature [37]. This

model also agrees with how SSR mutations in badE evolved in all ten lines that included G.

andersoni hosts, either alone or as part of the alternating treatment, but in none of the five

lines that faced only G. pyramidum hosts. The badE mutant strain also reached a higher titer in

red blood cells than the ancestor early in G. andersoni infections. This difference in dynamics

is relevant to our experiment because we isolated bacteria to continue propagating a line from

each host 15 days after it was inoculated. Adaptation to G. andersoni apparently occurred with-

out a trade-off, as we did not see changes in bacterial loads in infected G. pyramidum hosts

during the evolution experiment, nor did we see a difference between the TAA mutant and

ancestor strain during infections of G. pyramidum.

The experimentally evolved SSR mutations in badE cause frameshifts, leading to truncated

products that are almost certainly nonfunctional. The badE TAA gene product in B. krasnovii
is homologous to key virulence factors in other Bartonella species. These homologs include

badA from B. henselae, which is necessary for infecting endothelial cells and inducing a

proangiogenic response [19], and Vomps from B. quintana, which mediate adhesion to colla-

gen and autoaggregation [20]. However, the TAA gene family that acquired the SSR muta-

tions in our evolution experiment is distinct from these characterized families. Though the

function of this badE TAA gene family is unknown, it is likely to mediate binding to the

mammalian extracellular matrix or otherwise affect interactions between bacterial and host

cells [38]. TAA genes can be immunodominant antigens, and loss of Vomp expression has

previously been observed during recurrent B. quintana bacteremia [20]. Loss of function

mutations in the mutated badE TAA gene may be adaptive in some rodent hosts because they

lead to different bacterial localization during infections or avoidance of the host’s immune

responses.

Future experiments are needed to determine the precise role of mutations in badE in

enhancing Bartonella fitness within G. andersoni hosts. Nonetheless, our results suggest that

SSRs acting as contingency loci could have a more prominent role in Bartonella adaptation

and, more generally, in the evolution of host specificity than previously appreciated. We

observed conservation of mononucleotide SSRs of nine or more bases in additional genes in

the genomes of Bartonella from the Negev Desert dunes. These SSRs are concentrated at the 50

ends of reading frames, as they are in other bacterial groups in which SSRs within genes func-

tion as contingency loci [25,39]. Furthermore, we detected length variation in some SSRs in

Bartonella isolates from the Negev Desert, supporting the hypothesis that they evolved to

mediate rapid ON/OFF switching of gene expression in nature. Some of the conserved and

varying SSRs are associated with known virulence factors (e.g., type IV secretion systems and

their effectors). Others are associated with conserved Bartonella genes of unknown function
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that are predicted to be membrane-localized or secreted, which could mediate interactions

with hosts and/or elicit immune responses. Additional experiments will be needed to under-

stand if the TAA SSRs and SSRs in other genes act as contingency loci and their significance

for pathogen evolution.

Our experiment reproduces some of the host complexity experienced by Bartonella in the

Negev Desert, but it does not reflect other aspects of the natural environment, including trans-

mission by fleas, co-infection of rodents with multiple Bartonella strains and species, and re-

infection of rodents with immune systems that have cleared prior infections [8,12,40,41]. For

example, mutations in the badE gene might be costly in the flea vectors or in some host species

(e.g., G. pyramidum), which could explain why these mutations are less commonly seen in

nature than in the evolution experiment. Fine-scale longitudinal sampling and genome

sequencing of Bartonella in multiple wild rodent species and fleas could provide insights into

the importance of SSR mutations under these conditions relative to other mechanisms that

can promote evolvability, such as gene transfer agent-mediated recombination between co-

infecting strains and species [15] and within-genome recombination in virulence gene arrays

[13,14]. Bartonella bacteria possess many evolvability mechanisms that may contribute to the

remarkable prevalence and diversity of these pathogens, underscoring the danger of zoonotic

disease through spillover into humans.

The fixation of SSR mutations in our experimental Bartonella populations contrasts with

the findings from an experiment that passaged Campylobacter jejuni in a mouse model [42]. In

that study, no single SSR mutation reached 100% frequency in the evolved bacterial popula-

tions. This difference suggests there were more extreme population bottlenecks, less within-

host replication, fewer beneficial pathways for SSR-based adaptation to follow, or some combi-

nation thereof during the Bartonella infections in our experiments. Overall, our findings

broaden the typical view of the importance of SSRs in pathogen adaptation. Even when the

rates of fixation of mutations at these loci cannot keep pace with host immune responses or

movement to new hosts, they may provide an advantage for pathogens. Importantly, they can

do so by generating focused genetic variation that allows for rapid adaptation to a challenging

host species in a way that also leaves open the possibility of restoring the inactivated gene if it

is needed for success in future host environments.

Methods

Ethics statement

Animal handling protocols were approved by the Committee for the Ethical Care and Use of

Animals in Experiments of Ben-Gurion University of the Negev (permit number IL-76-09-

2019B). Animal populations were held in the Hawlena laboratory with the permission of the

Israel Nature and Parks Authority (permit number H3871/2019).

Rodent hosts

All rodents used in the experiments were sourced from a laboratory colony managed by Hadas

Hawlena. This colony is derived from wild rodents that have been born and raised in the labo-

ratory under semi-natural conditions for approximately six years. These rodents have never

been exposed to ectoparasites or any Bartonella species, nor have they undergone any drug

treatments. The subjects of our study were all non-reproductive adults. They were housed indi-

vidually in plastic cages (34 × 24 × 13 = 10,608 cm3) on a 1-cm layer of autoclaved sand. The

cages were located in an animal facility with an ambient temperature of 24.5 ± 1˚C and a 12-h

light/dark cycle. The rodents had unlimited access to millet seeds and were provided alfalfa as

a source of water.
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Evolution experiment

We serially passaged B. krasnovii strain OE-11 A2 (originally isolated from a G. andersoni host

in the Negev Desert) either through 20 individuals of one of the two host species (G. andersoni
and G. pyramidum) or by alternating between them (10 individuals of each host species). Each

of the three treatments had five replicate lines. All lines were initiated from the same bacterial

colony pick to remove initial genetic diversity. We also included a negative control line that

was transmitted from one uninfected host to the next throughout the experiment and negative

control hosts that were inoculated in each passage with phosphate-buffered saline (PBS). Nei-

ther control showed any evidence of Bartonella infection at any point. A full description of the

protocol that explains the rationale for specific decisions (e.g., the ancestor strain, inoculation

procedure, bacterial quantification methods, inoculation source, and day of sampling) has

been published elsewhere [43]. Briefly, in each passage, Bartonella-negative rodents were intra-

dermally inoculated with 100 μl of a PBS suspension of bacteria isolated from the previously

infected rodent (5 × 106 ± 5 × 105 total cells/inoculum). Rodents were bled by cardiac puncture

15 days after inoculation to collect Bartonella at the approximate peak of bacteremia. Red

blood cells from each sample were spread on two chocolate agar (CA) plates. These plates were

incubated for 3 days at 37˚C and 5% CO2. Then, bacterial cells were harvested by scraping the

plates and resuspending the cells in PBS. This solution was homogenized by vortexing it with

glass beads and passing it through a 5-μm filter. These samples were used to inoculate rodents

in the next passage.

To assess bacterial loads in the rodent blood 15 days after each inoculation, we extracted

DNA from the blood samples using a QIAamp BiOstic Bacteremia DNA Kit (Qiagen), follow-

ing the manufacturer’s instructions. To assess bacterial titers in the PBS suspensions used for

inoculation, we extracted DNA using a thermal lysis procedure, as described previously [8]. In

each set of extractions, we included a negative control, in which all the reagents were added to

PBS but without adding the blood or bacterial suspension. We quantified bacterial loads by

real-time quantitative PCR (qPCR), following Eidelman et al. [44]. The standard curve was

created using DNA extracted from the ancestor strain and was calibrated to the count of col-

ony-forming units of this sample.

Genome sequencing

Bacterial populations isolated from rodents after passages 2, 4, 6, 7, 8, 10, 12, 14, 16, 18, and 20

were preserved from the PBS solution that remained after inoculating the next rodents by cen-

trifugation, resuspending them in 1 ml of 20% (w/v) glycerol in lysogeny broth (LB), and then

storing the samples at -80˚C. DNA was extracted from these samples using the DNeasy Blood

& Tissue Kit (Qiagen), following the protocol for gram-negative bacteria with slight modifica-

tions: centrifugation of the initial solution was at 5400 × g for 10 min, and DNA elution was

repeated twice in 50 μl of AE buffer that was preheated to 56˚C before adding it to the purifica-

tion column and incubating it for 5 min at room temperature. We also spread 100 μl of 10−5

and 10−6 dilutions of the bacterial solution that we cultivated from rodents after the last pas-

sage on CA plates. After 5 days of incubation at 37˚C and 5% CO2, we isolated 10 endpoint col-

onies for each experimental line. Each colony was propagated three times by streaking on a

new CA plate and regrowing to ensure a clonal isolate. Following the last regrowth, 15 colonies

were scraped from the plate for each clonal isolate and preserved in 500 μl of 20% (w/v) glyc-

erol in LB. DNA extractions from these clone samples were performed as described above for

the population samples.

In total, DNA was extracted from 318 samples: 165 populations (15 lines × 11 time points)

and 153 clones (15 lines × 10 clonal isolates per population plus three replicates of the
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ancestor). Up to 100 ng of purified gDNA from each sample was put into the 2S Turbo DNA

Library Kit (Swift Biosciences). All reactions were carried out at 20% of the manufacturer’s rec-

ommended volumes, with dual 6-bp indexes incorporated during the final 10-cycle PCR step.

The resulting libraries were pooled and sequenced on an Illumina HiSeq X Ten instrument by

Psomagen (Rockville, MD) to generate 151-base paired-end read data sets (S4 File). One popu-

lation sample that was contaminated with DNA from a different Bartonella species was dis-

carded before analysis.

Mutation identification

We removed adaptors from the Illumina reads using trimmomatic (v0.39) in paired-end mode

with the following settings: 4 allowed mismatches to the seed, a palindrome clip threshold of

30, a simple clip threshold of 10, and discarding trimmed reads � 30 bases. To improve muta-

tion calling, we assembled and annotated an updated version of the previously reported

genome sequence of Bartonella krasnovii strain OE-11 A2 [45]. We used Trycycler (v0.5.3)

[46] on nanopore long reads from a prior study (SRA:SRR6873507) [22] to generate a consen-

sus assembly from Flye [47], Miniasm+Minipolish [48,49], and Raven [50] assemblies. Then,

we polished the assembly by comparing it to our Illumina short reads for the ancestor strain

using breseq (v0.36.1) [51] in consensus mode. Discrepancies between reads and the assembly

were iteratively corrected by using the gdtools APPLY command and re-running breseq until

no further improvements were found. Lastly, we used Prokka (v1.14.6) [52] to annotate the

final assembly. The updated B. krasnovii OE-11 A2 reference sequence includes a chromosome

with 2,163,391 base pairs and a plasmid with 29,057 base pairs (S5 File).

To call mutations in evolved clones and populations, we compared trimmed Illumina reads

to the reference genome using breseq (v0.36.1) [51]. This pipeline identifies point mutations,

small insertions and deletions, and structural mutations that can be predicted from split-read

alignments, including insertion sequence (IS) element movements and large deletions. We

first ran breseq in polymorphism mode with default parameters separately on each sample.

Then, we combined the candidate mutations predicted by all breseq runs using gdtools

MERGE and ran breseq again on each sample with the merged file provided as user evidence,

so that it reported read counts supporting all candidate mutations in all samples. After this

point, we did not further analyze samples that did not have �18-fold average read-depth cov-

erage of the chromosome; one ancestor sample, two population samples, and three clone sam-

ples did not pass this cutoff.

Mismapping of reads to the reference genome, low coverage, and sequencing errors can

lead to spurious mutation predictions. We employed several strategies to detect and disregard

mutation predictions that are likely false-positives due to these or other biases. They rely on

the following assumptions. First, mutations are expected to appear in clonal isolates with fre-

quencies of either 0% or 100% and not at intermediate frequencies. Second, mutations should

exhibit a frequency trajectory in population samples that begins at 0% and changes gradually

over time in a correlated fashion, as subpopulations with the mutation outcompete others to

reach high frequency or are outcompeted and diminish in frequency during the evolution

experiment. Third, it is unlikely that the exact same mutation would be observed in all or most

of the independent lines of the evolution experiment.

To implement these criteria, we began by keeping all mutations that were predicted at

�90% frequency in any clone. Then, other predictions were examined for hallmarks of sys-

tematic errors of the types described above by analyzing all samples except for the ancestor

controls. First, we disregarded mutation predictions in clonal or population samples that

did not have at least 10 total reads supporting either the reference or mutated sequence

PLOS PATHOGENS Simple sequence repeats mediate Bartonella adaptation to a wild rodent host

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012591 September 30, 2024 15 / 23

https://doi.org/10.1371/journal.ppat.1012591


because estimates of their frequencies are subject to large errors. If >5% of all samples did

not meet this threshold, that mutation candidate was not considered further. Then, we

removed mutations that did not reach a frequency of 20% in at least one population sample.

Next, we filtered out mutations that were observed exclusively in the population samples

and were predicted to have a frequency of �5% in at least one population from 8 or more of

the 15 different experimental lines. Additionally, we required the summed frequency of a

mutation across all clone and population samples to be �100% for it to be considered

further.

Finally, we fit a null Poisson regression model with a uniform rate of generating reads sup-

porting the variant across all population samples. The offset in this model was the total number

of reads that were informative about whether that mutation was present or not. For mutations

supported by new sequence junctions the offset was corrected for the number of read start

position registers that would lead to reads that could be definitively assigned to the junction.

We compared this null model to a Poisson regression model that allowed for per-sample varia-

tion in the rate of generating reads with a mutation. If the likelihood ratio test comparing these

two models was rejected after performing the Benjamini-Hochberg correction for multiple

testing across all candidate mutations at a 10−6 false-discovery rate (indicating insufficient evi-

dence for a mutation), then it was removed from consideration.

Mutation candidates that remained after these steps were manually examined and merged

when they were linked by proximity and matching frequency time courses. For example, three

nearby base substitutions that all seem to have resulted from one gene conversion event in line

L11 were merged. The frequency of the merged mutation is reported as the average of the fre-

quencies predicted for each individual mutation in these cases. Two mutations that passed all

criteria peaked at frequencies of ~33% and ~25% in the population samples from lines L11 and

L13, respectively, and these mutations were also found at roughly the same frequencies in the

endpoint clonal isolates from these lines. These mutations may be in near-identical regions of

the genome that were not individually resolved during assembly of the reference sequence. We

corrected the frequencies of these mutations by dividing by the estimated peak value and cap-

ping the maximum frequency at 100%. For clarity, the frequencies of mutations were also

assigned to be 0% in all samples outside of lines in which they were clearly present because

they reached a frequency of >20% and did not exhibit sporadic jumps in frequency across

population and clone samples. One mutation in L8 appeared at 100% frequency in all of this

line’s population samples and clones, indicating that it was already present in the progenitor

cell that grew into the colony that was picked to initiate this population. Because this mutation

did not arise during the evolution experiment, it was not counted or analyzed. Of the 27 muta-

tions in the final list, 24 were at a >90% frequency in a clonal sample, 12 were predictions in

population samples that passed the filters that eliminated systematic errors, and 9 were in both

categories (S1 File).

Infection experiment with badE mutant and ancestor strains

We inoculated three male twins and three female twins from each rodent species with either

the ancestor or a mutant strain, and we compared their infection dynamics until the rodents

cleared the infections. The mutant strain was a colony isolated after passage 20 from the L1

line, which was passaged exclusively in G. andersoni rodents. It was genetically identical to the

ancestor except for a G9! G10 mutation in badE SSR2. We also had one control rodent of

each species that was inoculated with PBS. To assess the rodents’ bacterial loads, we bled them

(50 μl of blood per sample) on days 5 and 10 post-inoculation and then every 10 days until day

73 post-inoculation. Blood was taken from the retro-orbital sinus under general anesthesia,
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and a drop of local anesthesia (Localin, Fischer Pharmaceutical Labs, Tel Aviv, ISR) was placed

in the eye. We used the same DNA extraction and qPCR protocols described in the section on

the evolution experiment.

Negev Desert Bartonella genome assembly and annotation

We assessed conservation and diversity in SSRs that may function as contingency loci across

B. krasnovii OE-11 A2 and 37 additional Bartonella isolates classified into different genotypes.

These isolates were cultured from fleas and blood sampled from 33 wild G. andersoni and 33

wild G. pyramidum rodents that were captured during October 2016 in two different sites in

the northwestern Negev Desert sand dunes in Israel (34˚230E, 30˚580N and 34˚230E, 30˚550N)

[8]. We performed DNA extractions and Illumina sequencing of these clonal isolates as

described above for samples from the evolution experiment. Then, we assembled draft genome

sequences using Unicycler (v0.4.9b) [53] on read subsets downsampled to 90× nominal cover-

age. Contigs that matched the genome of Acinetobacter baylyi ADP1 (GenBank:

NC_005966.1) contaminated the initial 75C-4a isolate assembly due to barcode misassign-

ment. They were identified and removed based on BLAST matches in Bandage (v0.8.1) [54].

Prokka (v1.14.6) [52] was used with the option to include Rfam predictions of noncoding

RNAs to create the annotated assemblies that were analyzed. For all comparative analyses, we

used the B. krasnovii OE1-1 A2 sequence assembled in this same way, rather than the closed

assembly we used to analyze the evolution experiments.

Evolution of badE SSRs in prior colony passage experiment

We re-analyzed data from a study that passaged a B. krasnovii A2-type strain that was isolated

from a flea parasitizing a G. andersoni rodent in the Negev Desert through single-colony trans-

fers on agar [22]. Illumina sequencing reads were downloaded from the NCBI Sequence Read

Archive (SRP136159) and trimmed as described above. We assembled the genome of the

ancestor of this experiment using Unicycler, as described for the Negev Desert Bartonella.

Then, we identified the badE TAA homolog using a BLAST search and confirmed that it had

both ancestral SSRs that mutated during our evolution experiment with B. krasnovii OE1-1

A2. Finally, we used breseq to call mutations in all nine of the clonal isolates that were

sequenced at the end of the experiment after 50 colony passages. No mutations in either SSR

were found in any of these samples.

Codon randomization tests

Custom Python scripts relying on Biopython (v1.81) [55] were used to load protein-coding

gene sequences from our closed assembly of the B. krasnovii OE1-1 A2 genome (S4 File) and

perform randomization tests that kept the amino acid sequences of each protein in the genome

fixed while randomly shuffling codons within each gene. This approach is similar to how prior

studies have accounted for codon usage bias affecting SSR prevalence in microbial genomes

[24,25]. We report 95% confidence intervals and p-values estimated from the characteristics of

10,000 shuffled versions of the badE TAA gene and 1,000 shuffled sets of all proteins in the

genome. For comparing overrepresentation of SSRs in badE relative to the overall depletion of

SSRs genome-wide, we performed the same procedure but added a step where each SSR in a

shuffled gene had a 50/206 chance of surviving selection to make it into the final simulated

distribution.
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Orthogroup identification and phylogenetic tree construction

To identify orthologous gene groups, we used OrthoFinder (v.2.5.5) [56] on proteins predicted

in the genome assemblies of the 38 Negev Desert Bartonella isolates and representatives of 8

Bartonella species that infect other hosts. The phylogenetic tree was created by aligning the

amino acid sequences of the 808 predicted single-gene orthologs with MAFFT (v7.508) [57],

trimming these alignments with BMGE (v1.12) [58] using the BLOSUM62 substitution matrix,

and inferring a maximum likelihood tree with IQ-Tree (v2.2.3) [59] from the concatenated

alignment with 265,987 columns using a JTT+FO+R10 model and 100 bootstraps. We used B.

bovis 91–4 as the outgroup to root the resulting tree.

TAA gene family sequence analysis

We aligned the amino acid sequences of proteins assigned to the orthogroup containing both

the TAA gene PRJBM_RS00735 from B. henselae BM1374163 and the B. krasnovii OE-11A2

badE TAA gene using MUSCLE (v3.8.1) [60], with further manual refinement of the resulting

alignment in AliView [61]. To recover incomplete reading frames interrupted by contig

boundaries, we also added the best TBLASTN (v2.12.0+) [62] matches in each genome to the

first 200 amino acids of the B. krasnovii OE-11A2 TAA sequence. To further delineate TAA

families, we used InterProScan (v5.65–97.0) [63] to identify all proteins with matches to the

head, stalk, and membrane anchor domains of YadA-like trimeric autotransporter adhesins

(IPR008640, IPR008635, and IPR005594, respectively) in the 46 genomes that were analyzed.

We aligned and clustered the sequences of these proteins and examined their placement rela-

tive to B. henselae BadA and B. quintana Vomp TAAs [19,20]. For the analysis of conserved

amino acid triplets and nine-base subsequences, we used a custom Python script to examine a

MUSCLE amino acid alignment of just the 18 B. krasnovii badE genes, which all have the A9

SSR that mutated in the evolution experiment.

Mononucleotide SSR survey

Mononucleotide repeats of �9 bases in the 46 Bartonella genomes were identified and associ-

ated with orthogroups using custom Python scripts that used Biopython and pandas [64] func-

tions and R scripts that used tidyverse packages [65]. Orthogroups were assigned initial gene

names and descriptions based on annotations in the input genomes, with further refinement

through NCBI BLAST [62] and InterProScan [63] searches. We calculated overall statistics for

SSRs that overlap protein-coding genes in the Negev Desert Bartonella species. Then, we fur-

ther analyzed orthogroups with the SSRs found in at least two strains of any of the four Negev

Desert Bartonella species (S3 File). We manually examined SSRs in sequence alignments for

evidence of frameshifts caused by addition or deletion of the repeated bases using AliView

[61]. For the Bartonella gene families of unknown function that contained SSRs with length

variation, we predicted signal peptides using SignalP-6.0 (v0.0.56) [66] and transmembrane

helices using DeepTMHMM (v1.0.24) [67].

Supporting information

S1 Fig. Bartonella infection loads and inoculum sizes throughout the evolution experi-

ment. We propagated Bartonella krasnovii OE1-1 A2 populations through rodents in three

different host scenarios: infecting Gerbillus andersoni only (GA), infecting G. pyramidum only

(GP), or alternating between the two hosts (GA-GP). (a) Mean of the log-transformed final

Bartonella load in rodents from each host treatment at day 15 post infection, when blood was

collected to culture bacteria for the next passage. (b) Log-transformed Bartonella loads in all
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rodents from every passage plotted against the log-transformed size of the Bartonella inoculum

injected into that rodent.

(EPS)

S1 File. Evolution experiment mutations. Mutations identified in 162 population samples

and 147 endpoint clonal isolates from whole-genome sequencing data.

(XLSX)

S2 File. Bartonella badE gene sequences. Alignment of the B. krasnovii OE1-1 A2 badE TAA

gene and the most similar genes in 45 related Bartonella genomes.

(FASTA)

S3 File. Negev Desert Bartonella mononucleotide SSRs. Characteristics of conserved SSRs

found in 38 wild Bartonella isolates classified into four species.

(XLSX)

S4 File. Genome sequencing data summary. Characteristics of whole-genome sequencing

data sets for the ancestor, 162 population samples, and 147 endpoint clonal isolates.

(XLSX)

S5 File. Bartonella OE1-1 A2 reference genome. Assembled and annotated reference genome

used to predict mutations in evolved populations and clones.
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15. Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host

adaptation. Cell Microbiol. 2019; 21: e13068. https://doi.org/10.1111/cmi.13068 PMID: 31231937

16. Coenye T, Vandamme P. Characterization of mononucleotide repeats in sequenced prokaryotic

genomes. DNA Res. 2005; 12: 221–233. https://doi.org/10.1093/dnares/dsi009 PMID: 16769685

17. Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in patho-

genic bacteria. Curr Biol. 1994; 4: 24–33. https://doi.org/10.1016/s0960-9822(00)00005-1 PMID:

7922307

18. Moxon R, Bayliss C, Hood D. Bacterial contingency loci: The role of simple sequence DNA repeats in

bacterial adaptation. Annu Rev Genet. 2006; 40: 307–333. https://doi.org/10.1146/annurev.genet.40.

110405.090442 PMID: 17094739

19. Riess T, Andersson SGE, Lupas A, Schaller M, Schäfer A, Kyme P, et al. Bartonella adhesin A medi-
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46. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, et al. Trycycler: consensus long-read

assemblies for bacterial genomes. Genome Biol. 2021; 22: 266. https://doi.org/10.1186/s13059-021-

02483-z PMID: 34521459

47. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs.

Nat Biotechnol. 2019; 37: 540–546. https://doi.org/10.1038/s41587-019-0072-8 PMID: 30936562

48. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics. 2016; 32: 2103–2110. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

49. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequenc-

ing. F1000Research. 2019; 8: 2138. https://doi.org/10.12688/f1000research.21782.4 PMID:

31984131
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