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Abstract

Conventional physical and chemical treatment technologies for 1,4-dioxane can be ineffective
and consequently attention has focused on bioremediation. Towards this, the current research
investigated the impact of basal salts medium (BSM) and yeast extract on 1,4-dioxane
biodegradation rates in microcosms with different soil or sediment (agricultural soil, wetland
sediment, sediment from an impacted site). Phylotypes responsible for carbon uptake from 1,4-
dioxane were determined using stable isotope probing (SIP), both with and without BSM and
yeast extract. Further, putative functional genes were investigated using 1) soluble di-iron
monooxygenase (SDIMO) based amplicon sequencing, 2) qPCR targeting propane
monooxygenase (large subunit, prmA) and 3) a predictive approach (PICRUSt2). The addition of
BSM and yeast extract significantly enhanced 1,4-dioxane removal rates the agricultural soil and
impacted site sediment microcosms. The phylotypes associated with carbon uptake varied across
treatments and inocula. Gemmatimonas was important in the heavy SIP fractions of the wetland
sediment microcosms. Unclassified Solirubacteraceae, Solirubrobacter, Pseudonocardia and
RB4 were dominant in the heavy SIP fractions of the agricultural soil microcosms. The heavy
SIP fractions of the impacted site microcosms were dominated by only two phylotypes,
unclassified Burkholderiaceae and 0c3299. SDIMO based amplicon sequencing detected three
genes previously associated with 1,4-dioxane. The predicted functional gene analysis suggested
the importance of propane monooxygenases associated with Solirubrobacter and
Pseudonocardia. Overall, more microorganisms were involved in carbon uptake from 1,4-
dioxane in both the wetland and agricultural soil microcosms compared to the impacted site
sediment microcosms. Many of these microorganisms have not previously been associated with

1,4-dioxane removal.

Keywords: 1,4-Dioxane, stable isotope probing, Gemmatimonas, Solirubrobacter,

Pseudonocardia, propane monooxygenase

1. Introduction
1,4-Dioxane, a probable human carcinogen, commonly used as a solvent and stabilizer for the

chlorinated solvents, has been detected in both surface water and groundwater (Adamson et al.,
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2017; Dang et al., 2018; Derosa et al., 1996; ITRC; Karges et al., 2018; USEPA, 2013). The
characteristics of 1,4-dioxane (high water solubility and low Henry’s Law constant) pose
challenges for remediation using conventional treatment techniques, such as air stripping or
activated carbon (Godri Pollitt et al., 2019; Kikani et al., 2022; Steffan et al., 2007; Zenker et al.,
2003; Zhang et al., 2017). In the past decade, biologically-mediated 1,4-dioxane removal has
been used as alternative approach to clean up 1,4-dioxane contaminated sites (Bell et al., 2022;

Divine et al., 2024; Horst et al., 2019; Lippincott et al., 2015).

Numerous microorganisms have been associated with metabolic or co-metabolic 1,4-dioxane
biodegradation. Pseudonocardia dioxanivorans CB1190 (Mahendra and Alvarez-Cohen, 2006;
Parales et al., 1994), Pseudonocardia sp. D17 (Sei et al., 2013), Pseudonocardia sp. N23
(Yamamoto et al., 2018), Pseudonocardia benzenivorans B5 (Mahendra and Alvarez-Cohen,
2006), Xanthobacter flavus DTS (Chen et al., 2016), Mycobacterium sp. PH-06 (Kim et al.,
2009), Acinetobacter baumannii DD1 (Huang et al. 2014) and Rhodanobacter AYS5
(Pugazhendi et al., 2015) utilize 1,4-dioxane as a sole carbon source. Others degrade 1,4-dioxane
co-metabolically, including: Pseudonocardia sp. ENV478 (Vainberg et al., 2006),
Pseudonocardia tetrahydrofuranoxydans sp. K1 (Kohlweyer et al., 2000) and Rhodococcus sp.
YYL (Yao et al., 2009b) induced by tetrahydrofuran; Rhodococcus sp. RR1, Burkholderia
cepacia G4, Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 (Mahendra and
Alvarez-Cohen, 2006) induced by toluene; and Rhodococcus ruber ENV425 (Lippincott et al.,
2015), Mycobacterium vaccae JOB5 (Mahendra and Alvarez-Cohen, 2006) and Rhodococcus
jostii RHA1 (Hand et al., 2015) induced by propane. A full list of pure culture species and strains

capable of degrading 1,4-dioxane was recently generated (Divine et al., 2024).

The biochemical pathway for 1,4-dioxane biodegradation is initiated by soluble di-iron
monooxygenases (SDIMOs). In general, SDIMOs have been classified into seven groups based
on their substrate specificity and function (Coleman et al., 2006; Notomista et al., 2003; Yang et
al., 2024). SDIMOs associated with the co-metabolic and metabolic biodegradation of 1,4-
dioxane were previously summarized, being primarily in SDIMO groups 1, 2, 3, 5 and 6 (He et
al., 2017). To date, the majority of 1,4-dioxane focused research has involved groups 5 and 6

SDIMOs, such as propane monooxygenase from Mycobacterium dioxanotrophicus PH-06 (group
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6) (Deng et al., 2018) and tetrahydrofuran monooxygenase from Pseudonocardia dioxanivorans
CB1190 (group 5) (Sales et al., 2013; Sales et al., 2011), Pseudonocardia sp. strain ENV478
(group 5) (Masuda et al., 2012) and Pseudonocardia tetrahydrofuranoxydans K1 (group 5)
(Sales et al., 2013). Propane monooxygenase subunit sequences similar to Rhodococcus sp. RR1
prmA (group 5) were also linked to 1,4-dioxane biodegradation in mixed microbial communities

(Eshghdoostkhatami and Cupples, 2024).

Although much is known about the enzymes, genes and microorganisms associated with 1,4-
dioxane biodegradation in pure culture, less is known about removal mechanisms in mixed
microbial cultures. A valuable approach for examining contaminant biodegradation in mixed
communities is known as stable isotope probing (SIP). SIP is a cultivation-independent method,
tracking the incorporation of a stable isotope from a labeled chemical into DNA or RNA
(Cupples, 2016; Kim et al., 2023; Radajewski et al., 2000). This approach has been applied to
characterize active degraders for various chemicals, such as ethane and propane (Farhan Ul
Haque et al., 2022), n-hexadecane (Liu et al., 2019), phenanthrene (Bao et al., 2022; Thomas et
al., 2019), vinyl chloride (Paes et al., 2015), hexahydro-1,3,5-trinitro-1,3,5-triazine (Cho et al.,
2013; Jayamani and Cupples, 2015), methyl fert-butyl ether (Sun et al., 2012) and cis-
dichloroethene (Dang and Cupples, 2021). Previous studies used this approach to identify 1,4-
dioxane degraders in sludge (Aoyagi et al., 2018), groundwater (Bell et al., 2016) and soils
(Dang and Cupples, 2021).

Optimizing bioremediation at contaminated sites often involves the addition of carbon sources to
support in situ microbial communities. Various carbon sources have been evaluated as substrates
to enhance 1,4-dioxane biodegradation, including tetrahydrofuran, 1,3,5-trioxane, ethylene
glycol, diethylene glycol, 1,4-butanediol, butanone, acetone, 1-butanol, 2-butanol, phenol,
propanol, acetate, ethane, propane, methane and lactate (Dang and Cupples, 2021; Hatzinger et
al., 2017; Inoue et al., 2022; Inoue et al., 2020; Miao et al., 2021; Sei et al., 2010; Tawfik et al.,
2022; Xiong et al., 2020; Xiong et al., 2019). The current study examined the impact of adding
yeast extract and basal salts medium (BSM) on 1,4-dioxane biodegradation rates. As yeast
extract contains multiple growth factors, it has the potential to be beneficial to numerous

microorganisms potentially linked to 1,4-dioxane biodegradation. Although yeast extract has
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previously been shown to enhance 1,4-dioxane biodegradation in pure cultures (Chen et al.,
2016; Pugazhendi et al., 2015), little is known about the impact in mixed communities. Also, in
those studies, high yeast extract concentrations were used (20 mg/L and 100 mg/L) (Chen et al.,
2016; Pugazhendi et al., 2015), which is unlikely to be suitable at contaminated sites because of
biofouling. Therefore, the current research examined the impact of lower yeast extract
concentrations (60 ug/L) on 1,4-dioxane biodegradation rates. The objectives were to 1) examine
the impact of BSM and yeast extract on 1,4-dioxane degradation rates in microcosms amended
with different inocula (agricultural soil, wetland sediment and impacted site sediments), 2)
identify the phylotypes involved in carbon uptake from 1,4-dioxane using SIP, and 3) determine

the functional genes putatively associated with 1,4-dioxane biodegradation.

2. Methods

2.1. Chemicals, Inocula and Microcosm Setup

Unlabeled 1,4-dioxane (299.5%) and 1,4-dioxane-ds (=99% isotopic purity) were purchased from
Sigma-Aldrich (MO, USA). Labeled '*C-1,4-dioxane (('*C)sHsO2, 99% isotopic purity) was
purchased from Santa Cruz Biotechnology (TX, USA). The biodegradation of 1,4-dioxane was
examined using three inocula, including wetland sediment (Lake Lansing, MI), sediment from an
impacted site in California (West Coast Naval Station) and agricultural soil. Three microbial
communities from diverse environments were selected to provide a potentially wide range of
functional genes and active microorganisms. The basic soil characteristics are shown in
Supplementary Table 1. The agricultural soil was collected from six replicate plots of the Main
Cropping System Experiment at the Kellogg Biological Station Long-Term Ecological Research,
in southwest Michigan. This treatment receives no chemical inputs, compost or manure. More

details of this treatment can be found at https://Iter.kbs.msu.edu/research/long-term-

experiments/main-cropping-system-experiment/. All soils and sediments were stored at 4 °C in

the dark before use. Laboratory microcosms were established with soil or sediment (10 g wet
weight) and 30 mL of liquid (reverse osmosis purified, non-sterile water or BSM with yeast
extract) in 160 mL serum bottles. The BSM was modified from a previous recipe (Pugazhendi et
al., 2015) and contained NH4ClI (1.0 g/L), KoHPO4 (3.24 g/L), NaH2PO4 (1.0 g/L), MgSO4 (0.20
g/L), FeSO4 (0.012 g/L), MnSO4 (0.003 g/L), ZnSO4 (0.003 g/L) and CoCl> (0.001 g/L). The
final pH of the BSM was adjusted to 7.4 with 0.1N NaOH. The media also contained 60 pg/L
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yeast extract (Sigma-Aldrich, USA). For each inocula type and treatment, the experimental
design included triplicate live microcosms amended with °C labeled 1,4-dioxane, triplicate live
microcosms amended with '2C 1,4-dioxane and triplicate abiotic microcosms (abiotic controls)
amended with '>C 1,4-dioxane. For each inocula type, the nine microcosms were either amended
with water or were amended with BSM and yeast extract (eighteen microcosms for each in total).
For each inocula type, six abiotic controls were included (three with water and three with BSM
with yeast extract) and were amended with unlabeled 1,4-dioxane. For all treatments, the abiotic
controls were autoclaved daily for three consecutive days. All microcosms, sealed with a rubber
stopper and aluminum crimp, were incubated at room temperature on a rotary bench-top shaker.
The microcosms were opened for 0.5 hr every five days for aeration. The initial concentrations of
1,4-dioxane were ~2 mg/L in the live sample microcosms and abiotic controls. This initial
concentration was used to ensure a sufficient level of label uptake for SIP. 1,4-Dioxane

concentrations were measured over 50 days (due to cost limitations associated with the analysis).

2.2. 1,4-Dioxane Analysis

A triple quadrupole Agilent 7010B GC/MS system (Agilent Technologies, CA, USA) equipped
with a VF-5ms column (length 30 m, inner diameter 0.25 mm, film thickness 0.25 pm) and solid
phase micro extraction (SPME) (Sigma-Aldrich, MO, USA) was used to measure 1,4-dioxane
concentrations in the liquid phase of the microcosms. The SPME fiber was assembled with 30
pm carboxen/polydimethylsiloxane layer, 50 um divinylbenzene layer and a 24 Ga needle. At
each sampling time-point, 1 mL of each sample was collected using a sterile syringe (3 mL) and
needle (22 Ga 1.5 in.) and then filtered (0.22 pm nylon filter) (Biomed Scientific). An aliquot
(500 pL) of the filtered samples or series of diluted external standards were added into amber
glass vials (40 mL). Also, 500 uL of 200 pg/L 1,4-dioxane-dg was added into each vial as an
internal standard. The vials were maintained at 40°C before the measurement. The SPME fiber
was conditioned at 270 °C for 30 mins before each sequence run. For each sample, the fiber was
inserted into the vials and exposed to the analytes for 2 mins. The analytes in the headspace
adsorbed onto the fiber and then the fiber was exposed to the inlet. The initial oven temperature
time was 40 °C and this was maintained for 4 mins. The oven temperature was then programmed
to increase to 250 °C at a rate of 40 °C/min. The flow rate of carrier gas (helium) was 1.2

mL/min in constant flow mode. The limit of detection was 1.72 pg/L and the limit of
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quantification was 5.21 pg/L. R squared values for standard curves were typically greater than
0.98. Although recovery rates were not measured, all initial values were within approximately
15% of that expected. Triplicate samples (or controls) generally produced similar concentrations

(as can be seen from the resulting graphs).”

2.3. DNA Extraction, Fractioning and MiSeq Illumina Sequencing

DNA was extracted, in triplicate, from the live '2C 1,4-dioxane and '3C labeled 1,4-dioxane
amendment microcosms using the DNA extraction kit (DNeasy PowerLyzer PowerSoil Kit, Mo
Bio, USA) according to the manual protocol. The concentration of DNA in each extract was
quantified using the Quant-iT™ dsDNA High-Sensitivity Assay Kit. Ultracentrifugation and
fractioning were performed as previously described (Dang and Cupples, 2021; Li et al., 2024).
For each of the labeled and unlabeled 1,4-dioxane DNA extracts, twelve tubes were
ultracentrifuged, including DNA from duplicate microcosms for both the H>O treatment and the
BSM with yeast extract treatment, for impacted site, agricultural soil, and wetland sediment. In
total, twenty-four tubes were ultracentrifuged (2 isotopes ['2C and *C] x 2 microcosms
replicates x 2 treatments x 3 soil/sediment types). Two of the three triplicates were randomly
selected for SIP due to limitations on sequencing costs. For each of the twenty-four
ultracentrifugation runs, three heavy fractions (buoyant density ~1.73 to ~1.75 g/mL) and one
light fraction (buoyant density ~1.7 g/mL) were selected. Although fractions of heavier buoyant
density were collected, they did not meet the minimum DNA concentration required for 16S
rRNA gene amplicon sequencing. In total, three 96-well plates (4 fractions, 3 replicates for each
fraction, 2 isotopes, 2 microcosms replicates, 2 treatments, 3 soil types) were submitted to the
Genomic Cores at the Research Technology Support Facility (RTSF) at Michigan State
University (MSU).

The V4 region of 16S rRNA gene was targeted for amplification using primers 515f (5°-
GTGCCAGCMGCCGCGGTAA-3’) and 806r (5’-GGACTACHVGGGTWTCTAAT-3’)
following a previously described protocol (Kozich et al., 2013). PCR products were batch
normalized using Invitrogen SequalPrep DNA Normalization plates and the products recovered
from the plates pooled. The pool was cleaned and concentrated using AmpureXP magnetic

beads; then QC'd and quantified using a combination of Qubit dsDNA HS, Agilent 4200
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TapeStation HS DNA1000, and Kapa Illumina Library Quantification qPCR assays. The pool
was loaded onto an Illumina MiSeq v2 standard flow cell and sequencing was performed in a 2 x
250 bp paired end format using a MiSeq v2 500 cycle reagent cartridge. Custom sequencing and
index primers were added to appropriate wells of the reagent cartridge. Base calling was
performed by Illumina Real Time Analysis (RTA) v1.18.54 and RTA output demultiplexed and
converted to FastQ format with Illumina Bcl2fastq v2.19.1. The raw sequences were summitted
to NCBI under Bioproject PRINA1073031 (accession numbers SAMN39784393 to
SAMN39784676).

2.4. Microbial Community Analyses & the Identification of Phylotypes Incorporating 3C
Raw amplicon sequences in the fastq format were combined, trimmed, aligned and quality
controlled using Mothur (Schloss et al., 2009) on the High Performance Computing Cluster
(HPCC) at MSU. The SILVA bacteria database (Release 138) for the V4 region (Pruesse et al.,
2007) was used for the alignments and the sequences were then classified into operational
taxonomic units (OTUs) at 97% similarity. The classification of OTUs into taxonomic levels and
downstream analysis were conducted with two Mothur files (shared file and taxonomy file) with
R (Version 4.2.1) (R Core Team, 2018) in RStudio (Version 2022.12.0) (RStudio_Team, 2020).
The packages phyloseq (version 1.34.0) (McMurdie and Holmes, 2013) and microbiome (version
1.12.0) (Lahti and Shetty, 2012-2019) were used to 1) determine the relative abundance at the
phyla level in the fractions, 2) generate barcharts for the most abundant families in the three soil
samples, 3) perform the alpha diversity analysis (Chaol, ACE, Shannon's values, Simpson,
Inverse of Simpson, and Fisher indices), and 4) conduct the Principal Coordinate Analysis

(PCoA).

The statistically enriched phylotypes in the heavy fractions of the 1*C 1,4-dioxane amended
samples (those responsible for carbon uptake from 1,4-dioxane) were determined using the R
packages dplyr (version 1.1.3) (Wickham et al., 2023a), tidyr (version 1.3.0) (Wickham et al.,
2023b), ggpubr (version 0.6.0) (Kassambara, 2023a) and rstatix (version 0.7.2) (Kassambara,
2023b). For this, the Wilcoxon Test (function wilcox_test) (one sided, p < 0.05) was used to

determine which phylotypes exhibited a greater relative abundance in the '3C 1,4-dioxane
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amended heavy fractions compared to the corresponding '2C 1,4-dioxane amended heavy
fractions. Following this, phylotypes statistically enriched in the light '3C 1,4-dioxane amended
fractions compared to the corresponding '*C 1,4-dioxane amended light fractions were removed
from the list generated above to avoid possible false positives. The R packages ggplot2 (version
3.3.5) (Wickham, 2016a) and forcats (version 1.0.0) (Wickham, 2023) were used to generate the
boxplots for the top ten most abundant statistically enriched phylotypes. The packages dplyr
(version 1.1.3) (Wickham et al., 2023a) and ggplot2 (version 3.3.5) (Wickham, 2016a) were used

to illustrate the number of enriched OTUs and families in the three soil types.

2.5. PICRUSt2 Monooxygenase Gene Predictions

PICRUSt2 (Douglas et al., 2020) was utilized to analyze the Mothur generated files on the
HPCC at MSU. The inputs to PICRUSt2 involved a fasta file and a biom file. PICRUSt2 predicts
the functional potential of microbial communities based on marker gene (16S rRNA gene)
sequencing profiles. PICRUSt2 was applied with EPA-NG (Barbera et al., 2019) and gappa
(Czech et al., 2020) for phylogenetic placement of reads, castor (Louca and Doebeli, 2018) for
hidden state prediction and MinPath (Ye and Doak, 2009) for pathway inference. The PICRUSt2
generated files (pred_metagenome contrib.tsv and pred metagenome contrib.tsv) were
investigated (primarily using the R packages tidyr and dplyr) for the presence of genes associated
with monooxygenases (from the KEGG database (Kanehisa 2002)) as well as the phylotypes
associated with each monooxygenase. More information on the data within each file can be

found in the following tutorial (https://github.com/picrust/picrust2/wiki/PICRUSt2-Tutorial-

(v2.5.0)). Functional genes investigated (KEGG number in parenthesis) included: prmA propane
2-monooxygenase large subunit (K18223), prmB propane monooxygenase reductase component
(K18225), prmC propane 2-monooxygenase small subunit (K18224), prmD (K18226) propane
monooxygenase coupling protein, pmoA-amoA methane/ammonia monooxygenase subunit A
(K10944), pmoB-amoB methane/ammonia monooxygenase subunit B (K10945), pmoC-amoC
methane/ammonia monooxygenase subunit C (K10946), mmoX methane monooxygenase
component A alpha chain (K16157), mmoY methane monooxygenase component A beta chain
(K16158), mmoZ methane monooxygenase component A gamma chain (K16159), mmoB

methane monooxygenase regulatory protein B (K16160), mmoC methane monooxygenase


https://github.com/picrust/picrust2/wiki/PICRUSt2-Tutorial-(v2.5.0))
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component C (K16161), mmoD methane monooxygenase component D (K16162), tmoA, thuAl,
touA toluene monooxygenase system protein A (K15760), tmoB, thuU, touB toluene
monooxygenase system protein B (K15761), tmoC, tbuB, touC toluene monooxygenase system
ferredoxin subunit (K15762), tmoD, tbuV, touD toluene monooxygenase system protein D
(K15763), tmoE, thuA2, touE toluene monooxygenase system protein E (K15764), tmoF, tbuC,
touF’ toluene monooxygenase electron transfer component (K15765), dmpK/poxA/tomA0
phenol/toluene 2-monooxygenase (NADH) P0/A0 (K16249), dmpL/poxB/tomAI phenol/toluene
2-monooxygenase (NADH) P1/A1 (K16243), dmpM/ poxC/tomAZ2 phenol/toluene 2-
monooxygenase (NADH) P2/A2 (K16244), dmpN/poxD/tomA3 phenol/toluene 2-
monooxygenase (NADH) P3/A3 (K16242), dmpO/poxE/ tomA4 phenol/toluene 2-
monooxygenase (NADH) P4/A4 (K16245) and dmpP/poxF/tomAS5 phenol/toluene 2-
monooxygenase (NADH) P5/A5 (K16246).

RStudio on the HPCC at MSU was used to generate a file that contained which gene subunits
and phylotypes were present using the PICRUSt2 output file pred metagenome contrib.tsv
(unzipped). The approach involved combining this file with 1) a file containing gene numbers
and descriptions and 2) a taxonomy file (from Mothur), using the R packages data.table (version
1.14.8) (Dowle and Srinivasan, 2023), dplyr (version 1.1.3) (Wickham et al., 2023a), tidyr
(version 1.3.0) (Wickham et al., 2023b), ggplot2 (Wickham, 2016b) and patchwork (version
1.1.3) (Pedersen, 2023). Bar charts were generated for each monooxygenase, faceted by the

sample type and the gene subunits.

2.6. SDIMO Gene Amplicon Sequencing

A two-step library preparation was completed for sequencing, first involving PCR with target-
specific primers with tags on the 5 prime ends (Fluidigm common oligos CS1/CS2) to facilitate
the second PCR for barcoding. The target-specific primers included two degenerate primers
previously designed to target conserved regions in the SDIMO alpha subunit gene (called
NVCS57 and NVC66, target size 420 bp, Supplementary Table 2) (Coleman et al., 2006). The
following steps were performed by the Genomics Core at RTSF at MSU. PCR amplicons were
batch-normalized using Invitrogen SequalPrep DNA Normalization plates and the recovered

product was pooled. The pool was QC’d and quantified using a combination of Qubit dsDNA
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HS, Agilent 4200 TapeStation HS DNA 1000 and Invitrogen Collibri Library Quantification
gPCR assays. This pool was loaded onto one (1) Illumina MiSeq v2 Standard flow cell and
sequencing was carried out in a 2x250bp paired end format using a MiSeq v2 500 cycle reagent
cartridge. Custom sequencing and index primers complementary to the Fluidigm CS1 and CS2
oligomers were added to appropriate wells of the reagent cartridge. Base calling was done by
[llumina Real Time Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and
converted to FastQ format with Illumina Bcl2fastq v2.20.0. The raw sequences were summitted
to NCBI under Bioproject PRINA1073036 (accession numbers SAMN39784693 to
SAMN39784716).

2.7. SDIMO Sequences Processing and Analysis

The amplicon sequencing files were processed on the HPCC at MSU using usearchv11 (Edgar,
2010). The steps included an inspection of data quality and using the commands -fastx_info and
fastq_eestats2. Sequences were then pooled using -fastq mergepairs. Quality filtering was
achieved using -fastq_filter, with a maximum expected error threshold set to 1.0. Following this,
sequences were dereplicated using -fastx uniques. The command cluster otus was used to
complete 97% OTU clustering using the UPARSE-OTU (Edgar, 2013) algorithm and to filter

chimeras. The -otutab command was used to generate OTU tables with OTU abundance values.

To enable a comparison of the OTUs to genes previously associated with 1,4-dioxane
metabolism and co-metabolism, twelve gene sequences previously associated with 1,4-dioxane
biodegradation as summarized in (He et al., 2017) were obtained from NCBI. Each of the twelve
gene sequence were then uploaded for a nucleotide-nucleotide blastn search to find highly
similar sequences to create a blast database for each (Altschul et al., 1990). To ensure only highly
similar sequences were selected, the resulting databases were filtered using a percent identity and
query length threshold of greater than or equal to 95%. The occurrence of the gene sequences in
each database was investigated in the usearch files generated by using blastn (BLAST/2.10.0-
Linux_x86 64 on HPCC).

The results from the blastn search were downloaded from HPCC and were examined using R

(Version 4.2.1) (R Core Team, 2018) in RStudio (Version 2022.12.0) (RStudio_Team, 2020).
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Specifically, the results were filtered to include matches of > 90% sequence identity (the
sequence identity was reduced to capture a wide diversity of gene matches) and alignment length
of more than 400 bps. The numbers of OTUs aligning to each gene database for each sample
were determined and the datasets were used to construct phylogenetic trees (as described below).
As only three (Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA,
Pseudonocardia dioxanivorans CB1190 plasmid pPSEDO02 Psed 6976) of the twelve genes were
detected, only three trees were generated. Data manipulation, data analysis and the generation of
figures was completed with R (Version 4.2.1) (R Core Team, 2018) in RStudio (Version
2022.12.0) (RStudio Team, 2020). For this, the following R packages were utilized: tidyverse
(Version 1.3.1) (Wickham et al., 2019), ampir (Version 1.1.0) (Fingerhut L. and L., 2021),
writex] (Version 1.4.2) (Ooms, 2023), readxl (Version 1.4.2) (Wickham and Bryan, 2023),
writex] (Ooms, 2023), ggplot2 (Wickham, 2016b) and phylotools (Version 0.2.2) (Zhang, 2017).

2.8. Phylogenetic Trees
Sequences were first submitted for MAFFT (multiple alignment using fast Fourier transform)

alignment using an online server (https://mafft.cbrc.jp/alignment/server/) (Katoh et al., 2019)

(Version 7). The alignments generated (using the Neighbor-Joining method and Jukes-Cantor
model) were then exported in Newick format and uploaded to the Interactive Tree of Life

(https://itol.embl.de) (Letunic and Bork, 2021) (Version 6.7.2). The OTU abundance values for

each sample were added using the datasets function called multi value bar chart.

2.9. Quantitative PCR on SIP Fractions

Gene copies of Rhodococcus sp. RR1 prmA were determined the SIP fractions using a previously
developed qPCR assay (Eshghdoostkhatami and Cupples, 2024) (Supplementary Table 2).
Quantitative PCR was performed with the CFX96™ Real-Time PCR System (Bio-Rad,
Hercules, CA), using 20 pL total volume containing 10 pL PrimeTime™ Gene Expression
Master Mix, 0.3 uM of each primer (IDT Integrated DNA Technologies, Coralville, IA), 0.2
pg/mL bovine serum albumin (Thermo Fisher Scientific), 0.15 uM of the probe (IDT Integrated
Technologies), 6.4 uL of PCR grade water (IDT Integrated DNA Technologies), and 2 uL. DNA
extract or PCR grade water (for the negative controls). Bovine serum albumin was added as it

has been shown to limit inhibition in environmental samples (Gedalanga et al., 2014; Kreader,


https://mafft.cbrc.jp/alignment/server/
https://itol.embl.de)/
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1996; Wang et al., 2007). The thermal cycler program involved an initial activation at 95°C for
10 minutes, followed by 40 cycles of denaturation at 95°C for 15 seconds, and annealing at 60°C
for 1 minute. The target gene (prmA) was incorporated into a plasmid for use as qPCR standards
(GenScript Biotech Corporation). Each qPCR assay was performed in triplicate with DNA
templates, no template controls (NTCs), and 5-fold serial dilutions of the standards to create
calibration curves. DNA extract concentrations (Supplementary Table 3), as well as data
concerning the qPCR assays (as suggested by MIQE guidelines) (Bustin et al., 2009)

(Supplementary Table 4) has been summarized.

2.10. Statistical Analysis

Differences in the 1,4-dioxane degradation rates (determined via linear regression) and microbial
alpha diversity values between inocula and treatments were investigated using one-way analysis
of variance (ANOVA) and Welch’s two-sided #-tests. If the p-value from the one-way ANOVA
was smaller than 0.05, z-tests were used to compare the differences between inocula or

treatments. The results of ANOVA and #-tests are provided (Supplementary Tables 5-12).

3. Results

3.1. 1,4-Dioxane Biodegradation Rates

1,4-Dioxane concentrations in all live and control microcosms for all treatments were monitored
over 50 days (Figure 1). For all live microcosms, the 95% confidence intervals (CIs) for the
regression lines of '?C 1,4-dioxane and *C 1,4-dioxane amended live samples overlapped
entirely over the incubation, indicating the label did not impact removal rates. In contrast, the
95% Cls differed between the live samples and abiotic controls. The removal slopes were also
significantly different between the live samples and corresponding abiotic controls (p < 0.05)
(Supplementary Tables 5-8), indicating decreases in 1,4-dioxane concentrations were due to
biodegradation. The decrease in 1,4-dioxane concentration in the autoclaved controls may have

been a result of abiotic processes.

1,4-Dioxane removal rates were significantly different between the microcosms with the three
inocula types (one-way ANOVA, p <0.05) (Supplementary Table 5). Treatment (water vs. BSM

and yeast extract) differences between 1,4-dioxane removal rates also varied between the three
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inocula. Although the 1,4-dioxane removal rate was higher in the BSM and yeast extract
treatment compared to the water treatment in the wetland sediment microcosms, the difference
was not significant (t-tests, p > 0.05) (Supplementary Table 6). However, the addition of BSM
and yeast extract significantly increased 1,4-dioxane removal rates, compared to the water
treatments, in both the agricultural soil and impacted site sediment microcosms (t-tests, p <0.05)
(Supplementary Tables 7 & 8). The lack of effect of yeast extract on the wetland sediment
microcosms may be related to the high % organic matter (34.6 % and 38.1 %) in the wetland
sediments compared to the other two inocula types (site sediment: 0.3 %, 0.2%, agricultural soil:
1.6%, 1.5%) (Supplementary Table 1). It is important to note that all microcosms were well
aerated and removal rates may be lowered under reduced dissolved oxygen conditions (Lee et al.,

2014).

3.2. Microbial Community Analyses

PCoA analysis indicated the microbial communities differed between the agricultural soils,
wetland sediments and site sediments microcosms (Supplementary Figure 1). Greater
differentiations were observed between heavy and light fractions for the soil and wetland
sediments microcosms (Supplementary Figure 1B & 1C), compared to the site sediments
microcosms (Supplementary Figure 1D). The alpha diversity indices in the microcosms were
significantly different (one-way ANOVA and #-tests) between the three soil/sediment types
(Supplementary Tables 9-11). For both the water and BSM and yeast extract treatments, the soil
microcosms illustrated the highest alpha diversity and richness indices, followed by wetland
sediment microcosms, then the impacted site sediment microcosms (Figure 2). For the soil
microcosms, all the richness (Chaol, ACE) and diversity (Shannon, Simpson, Inverse of
Simpson and Fisher) indices were significantly higher in the no yeast (water only) compared to
the BSM and yeast extract treatment (p < 0.05; Supplementary Table 12). To speculate, the
reduced diversity and richness in the BSM and yeast extract treatment may be related to a
smaller group of microorganisms being favored compared to the water only treatment. Four
indices (Chaol, ACE, Inverse of Simpson and Fisher) and three indices (Chaol, ACE and Fisher)
were significantly higher in the treatments with water compared to those with BSM and yeast
extract for wetland and impacted site sediment microcosms, respectively (p < 0.05;

Supplementary Table 12).
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3.3. Phyla and Phylotypes Responsible for Carbon Uptake from 1,4-Dioxane

The relative abundance of phyla in the '2C and *C amended heavy and lights fractions were
identified and compared (Figure 3). As in all other SIP studies, it is important to note that carbon
uptake could be from the primary substrate or from degradation products. For the soil and
wetland sediment microcosms, different phyla dominated in the heavy fractions compared to the
light fractions. Specifically, Firmicutes and Bacteroides were dominant in the light fractions,
while Actinobacteria and Proteobacteria were dominant in the heavy fractions. For impacted site
sediment microcosms, the light and heavy fractions illustrated similar trends at the phylum level,

with both being dominated by Proteobacteria.

The ten most abundant phylotypes statistically enriched in the heavy fractions of 1*C 1,4-dioxane
amended samples compared to the 1>C 1,4-dioxane amended samples were determined using the
Wilcoxon Rank test (p < 0.05) (Figure 4). The phylotypes associated with carbon uptake from
1,4-dioxane varied both across treatments (water vs. BSM and yeast extract) and inocula types
(Figure 4). In the wetland microcosms with water only, the dominant phylotypes included an
uncultured strain, Gemmatimonas, Gemmata and an unclassified Alphaproteobacteria. In the
wetland microcosms with BSM and yeast extract, dominant phylotypes included Massilia,
unclassified Rhizobiales as well as two Gemmatimonas strains. In the soil microcosms with
water, the enriched phylotypes were dominated by RB4, Udaeobacter, Subgroup 6 and Ellin.
Whereas, in the soil microcosms with BSM and yeast extract, Solirubacteraceae,
Pseudonocardia, Solirubrobacter, Acidothermus and Gaiella were primarily associated with
label uptake. In contrast, the enriched phylotypes in the site microcosms were dominated by only
one phylotype in each treatment, an unclassified Burkholderiaceae (water treatment) and oc3299

(BSM and yeast extract treatment).

The datasets were also summarized to illustrate enrichment patterns for all statistically enriched
phylotypes across treatments and sample types (Figure 5). The largest number of OTUs and
families were enriched in the wetland communities, followed by the agricultural soil, then the
impacted site sediment (Figure SA & 5B). In the comparison between BSM and yeast extract and

water treatments, the number of statistically enriched OTUs and families were similar for the
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impacted site sediments. However, for both soil and wetland sediments, the numbers of enriched
families and OTUs were greater in the BSM and yeast extract treatment compared to the water

treatment.

3.4. SDIMO Amplicon Sequencing and prmA Quantitative PCR Assay

The BLAST analysis compared the SDIMO amplicon sequencing OTUs to genes previously
associated with 1,4-dioxane metabolism or co-metabolism. Three genes (Rhodococcus jostii
RHA1 prmA and Rhodococcus sp. RR1 prmA, Pseudonocardia dioxanivorans CB1190 plasmid
pPSEDO02 Psed 6976) were detected and aligned in the three soil/sediment types (Figure 6). The
majority of alignments to both Rhodococcus prmA databases involved methane monooxygenases
or propane monooxygenases from other Rhodococcus species. The numbers of alignments to
both databases were the greatest for the wetland sediments, followed by the soil, then the
impacted site sediments. The majority of the alignments to the Pseudonocardia dioxanivorans
CB1190 plasmid pPSEDO02 Psed 6976 database were from the impacted site sediment
microcosms (Figure 6C). The alignments were associated with genes encoding for
tetrahydrofuran monooxygenase alpha subunit (¢tAmA) from Pseudonocardia, Rhodococcus,

Arthrobacter and Acinetobacter.

Gene copies of Rhodococcus sp. RR1 prmA were further investigated using qPCR in the *C and
13C gradient fractions for the wetland sediments, soil and impacted site sediment microcosms.
Only the fractions from the wetland microcosms illustrated an increase in buoyant density in the
heavy fractions of the '*C amended samples compared to the heavy fractions of the '*C controls
(Figure 7). The trends were similar for both replicates of both treatments (with and without
yeast). In the no yeast treatment (Figure 7A), 1*C-labeled prmA genes peaked at heavier buoyant
densities (BDs) (1.7382 and 1.7371 g/mL) compared to those of '>C-labeled fractions (1.7360
and 1.7306 g/mL). In the yeast treatment (Figure 7B), *C-labeled prmA genes also peaked at
heavier BDs (1.7393 and 1.7349 g/mL) compared to those of 12C-labeled fractions (1.7328 and
1.7306 g/mL).

3.5. Prediction of *C Enriched Monooxygenase Genes
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PICRUSTt2 predicted the phylotypes associated with monooxygenase genes for the three
soil/sediment types (Figure 8, Supplementary Figures 2-5). A number of microorganisms were
associated with propane monooxygenase in the three sample types, however, only a small
number were linked to all four subunits (prmA, prmB, prmC and prmD) (Figure 8). Specifically,
in all three sample types, Pseudonocardia, unclassitied Pseudonocardiaceae, Solirubrobacter
and unclassified Solirubrobacteraceae were primarily associated with all four subunits. A
number of phylotypes were linked to all six subunits of phenol/toluene 2-monooxygenase in all
three samples types (Supplementary Figure 2). The most dominant for the impacted site samples
included unclassified Burkholderiaceae. The most dominant for the soil samples included 7S-44,
oc32 (Nitrosomonadaceae), Pseudomonas and SC-I_84. For the wetland samples, Acinetobacter
was associated with all six subunits (although the levels for three subunits were lower), as was

1S-44, MND1, oc32 and SC-1 §4.

Dominant patterns for the other functional genes included Labrys (Rhizobiales) for the six
subunits of toluene monooxygenase in the impacted site sediments (Supplementary Figure 3),
unclassified Rhizobiales for the three subunits of ammonia/particulate methane monooxygenase
for all three sample types (Supplementary Figure 4) and Mycobacterium for the five subunits of

soluble methane monooxygenase for all three sample types (Supplementary Figure 5).

4. Discussion

This study examined the phylotypes and functional genes associated with 1,4-dioxane
biodegradation in three mixed microbial communities. The impact of BSM and yeast extract on
1,4-dioxane biodegradation was also investigated as an easily available and non-hazardous
amendment to potentially enhance removal rates in situ. Multiple molecular methods were
utilized to ascertain the key biomarkers. The phylotypes responsible for the carbon uptake from
1,4-dioxane were identified using DNA-based SIP. The genes encoding for putative 1,4-dioxane
degradative enzymes were investigated using 1) SDIMO based amplicon sequencing, 2) qPCR
targeting Rhodococcus sp. RR1 prmA in the SIP fractions and 3) a predictive method
(PICRUSHt2) for the occurrence of oxygenase genes (Douglas et al., 2020).
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The impact of BSM and yeast extract on 1,4-dioxane biodegradation rates differed between the
three microbial communities. The addition of BSM and yeast extract enhanced removal rates in
all three inocula types, however, differences were only significant for the agricultural soil and
impacted site sediment microcosms. The lack of effect of yeast extract on the wetland sediment
microcosms may be related to the high % organic matter already present in these samples. A
number of previous studies have added yeast extract while examining 1,4-dioxane
biodegradation. One group added yeast extract to laboratory incubations with four river water
samples, however, no 1,4-dioxane biodegradation was observed within the study period (29
days) (Sei et al., 2010). Others have reported yeast extract accelerates 1,4-dioxane degradation
rates by pure cultures (Chen et al., 2016; Pugazhendi et al., 2015). Rhodanobacter AY S5
completely degraded 100 mg/L 1,4-dioxane in 4 days with 20 mg/L of yeast extract as an
additional substrate (Pugazhendi et al., 2015). Xanthobacter flavus DT8 degraded 100 mg/L 1,4-
dioxane in less than 25 h with 100 mg/L of yeast extract (Chen et al., 2016). The biodegradation
of tetrahydrofuran (a structural analog of 1,4-dioxane) by Rhodococcus strain YYL was also
improved by the addition of yeast extract (Yao et al., 2009a). Rhodococcus ruber 219 sustained
the degradation of low concentrations of 1,4-dioxane (<100 pg/L) to below health advisory
levels (0.35 pg/L) when supplied with thiamine (Simmer et al., 2021). The researchers suggest
that in situ biostimulation with growth supplements might result in efficient removal of 1,4-
dioxane (Simmer et al., 2021). In the current study, it is important to clarify we can only
conclude it was the combination of BSM and yeast extract that impacted removal rates (and not
yeast extract alone). It is possible that the differences noted between treatments may have been a

consequence of BSM modifying the alkalinity and pH of the microcosms.

In the current study, the different trends between the three microbial communities may be related
to the nutritional requirements of the degradative microorganisms involved and/or the nutritional
resources already present in the wetland sediment compared to the other two sample types.
Given the practical implications, the most important trend is the enhancement of 1,4-dioxane
biodegradation rates in the impacted site microcosms due to the addition of BSM and yeast
extract. It is notable the effect was significant at an order of magnitude lower yeast extract

concentration (60 pg/L) compared to the concentrations used in the pure culture studies.
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SIP revealed different phylotypes were responsible for carbon uptake from 1,4-dioxane between
the three mixed communities. Gemmatimonas was notably enriched in both wetland treatments.
This genus belongs to the phylum Gemmatimonadetes and members of this phylum are widely
distributed across various natural environments (DeBruyn et al., 2011; Hanada and Sekiguchi,
2014; Zhang et al., 2003). However, the physiology and environmental role of the members are
largely unknown due to the limited number of cultivated species (Zeng et al., 2015). To our
knowledge, members of this genus have not been previously associated with carbon uptake from
1,4-dioxane. However, Gemmatimonas was previously associated with benzoate biodegradation
(Zhang et al., 2003) and was dominant in hydrocarbon-polluted soil (Sampaio et al., 2017).
Gemmatimonas was also associated with pyrene (Wang et al., 2018) and phenanthrene

degradation in soil (Dou et al., 2021; Elyamine and Hu, 2020; Wang et al., 2021).

Xanthobacteraceae (Rhizobiales order) and unclassified Rhizobiales were also responsible for
carbon uptake from 1,4-dioxane in the wetland sediment microcosms. Xanthobacteraceae was
previously linked to carbon uptake from 1,4-dioxane in soil microcosms (Dang and Cupples,
2021). Xanthobacteraceae has also been associated with 1,4-dioxane biodegradation in activated
sludge (Chen et al., 2021; Samadi et al., 2023). Further, the 1,4-dioxane degraders Xanthobacter
flavus DT8 (Chen et al., 2016) and Xanthobacter sp. YN2 (Ma et al., 2021) classify within the
same family. Also consistent with the current study, genera classifying within the order
Rhizobiales (Hyphomicrobium and Chelativorans) were enriched following 1,4-dioxane
biodegradation compared to control microcosms (no 1,4-dioxane) in agricultural soil microcosms

(Ramalingam and Cupples, 2020).

In the agricultural soil microcosms amended with BSM and yeast extract, both the genus
Solirubrobacter and the family Solirubacteraceae were linked to carbon uptake from 1,4-
dioxane. Solirubrobacter (Solirubacteraceae family) commonly exists in agricultural soil
rhizospheres (Aguiar et al., 2020; Cordero Elvia et al., 2021; Lee et al., 2021). Members of this
genus are difficult to cultivate and isolate due to their slow growth and the lack of specific media
(Seki et al., 2015). Solirubrobacter has previously been associated with the degradation of
various substrates, such as 4-nonylphenol (Hung et al., 2022), coal (Wang et al., 2019), organic
matter (Bukin et al., 2016) and petroleum hydrocarbons (Peng et al., 2015). To date, no 1,4-
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dioxane degrading Solirubrobacter isolate has been reported. Pseudonocardia was also
associated with carbon uptake from 1,4-dioxane in the agricultural soil microcosms amended
with BSM and yeast extract. This genus contains many well-known 1,4-dioxane degraders. For
example, Pseudonocardia dioxanivorans CB1190 (Mahendra and Alvarez-Cohen, 2006; Parales
et al., 1994), Pseudonocardia sp. D17 (Sei et al., 2013), Pseudonocardia sp. N23 (Yamamoto et
al., 2018) and Pseudonocardia benzenivorans B5 (Mahendra and Alvarez-Cohen, 2006) can
degrade 1,4-dioxane metabolically. Pseudonocardia asaccharolytica JCM 14343 (Inoue et al.,
2016), Pseudonocardia sp. ENV478 (Vainberg et al., 2006) and Pseudonocardia
tetrahydrofuranoxydans sp. K1 (Kohlweyer et al., 2000) can degrade 1,4-dioxane co-

metabolically when induced with tetrahydrofuran.

RB4 (Pyrinomonadaceae family) was notably enriched in the water only treatment of the
agricultural soil microcosms. This is the first report of carbon uptake from 1,4-dioxane by this
phylotype. Members of the same family were linked to phenanthrene degradation in oil field soil
with ryegrass root exudates (Li et al., 2019), with the degradation of cellulose, starch and xylan

(Wiist et al., 2016) and with the degradation of benzo [a] pyrene in soil (Lu et al., 2022).

Carbon uptake in the impacted site microcosms was dominated by two phylotypes, 03299 in the
BSM and yeast extract treatment and Burkholderiacae in the water only treatment. 0c3299
classifies within a family (Nitrosomonadaceae) known to contain microorganisms with ammonia
monooxygenases (Clark et al., 2021; Cupples and Thelusmond, 2022). This enzyme has been
linked to the biodegradation of many environmental contaminants, such as 17 alpha-
ethinylestradiol (Wang and Li, 2023), 2-chlorophenol (Perez-Alfaro et al., 2023), micropollutants
(Yu et al., 2018) and trichloroethene (Alpaslan Kocamemi and Cecen, 2007). Similar to the
wetland sediment microcosms, Gemmatimonas was also responsible for carbon uptake in the
impacted site microcosms amended with BSM and yeast extract. The family Burkholderiacae
contains the genus Burkholderia which been associated with the biodegradation of many
chemicals (Morya et al., 2020), such as hexadecane (Wu, Dang et al. 2011), phenol (Huang, Shao
et al. 2022), naphthalene and phenanthrene (Kim, Lee et al. 2003), methyl parathion (Fernandez-

Lopez, Popoca-Ursino et al. 2017, Castrejon-Godinez, Tovar-Sanchez et al. 2022) and

polychlorinated biphenyls (Tillmann, Strémpl et al. 2005, Ponce, Latorre et al. 2011). Further,



619  Burkholderia cepacia G4 degrades 1,4-dioxane co-metabolically when induced by toluene

620 (Mahendra and Alvarez-Cohen, 2006).

621

622  The current work investigated SDIMOs via amplicon-based sequencing. When the OTUs

623  generated in the current work were compared to twelve genes previously associated with 1,4-
624  dioxane metabolism and co-metabolism (as summarized (He et al., 2017)), three genes

625  (Rhodococcus jostii RHA1 prmA and Rhodococcus sp. RR1 prmA, Pseudonocardia

626  dioxanivorans CB1190 plasmid pPSEDO02 Psed 6976) were detected in the three soil/sediment
627  types. A similar trend of the dominance of the two prmA sequences in mixed microbial

628 communities was also observed in previous work (Eshghdoostkhatami and Cupples, 2024).

629  Notably, in the current study, in all three mixed communities, the SIP results did not associate
630  Rhodococcus with carbon uptake from 1,4-dioxane. Carbon uptake from microorganisms

631  harboring Rhodococcus sp. RR1 prmA-like genes only occurred in the wetland sediments

632  microcosms. The lack of Rhodococcus in the wetland SIP results could suggest other

633  microorganisms may harbor similar genes.

634

635  The current study also revealed genes encoding for tetrahydrofuran monooxygenase alpha

636  subunit thmA from Pseudonocardia were present in the impacted site sediments. However, SIP
637  did not identify Pseudonocardia as a carbon consumer in the impacted site microcosms. The
638  pattern suggests either these genes were not active, or biodegradation was co-metabolic and did
639  not involve carbon uptake. The biomarker thmA has been associated with cometabolic 1,4-

640  dioxane degradation by Pseudonocardia tetrahydrofuran K1, Pseudonocardia sp. ENV478 and
641  Rhodococcus sp. Y YL (Mahendra and Alvarez-Cohen, 2006; Masuda et al., 2012; Thiemer et al.,
642  2003; Yao et al., 2009b). The current research suggests BSM and yeast extract could stimulate
643  the co-metabolism of 1,4-dioxane in the impacted site sediments via tetrahydrofuran

644  monooxygenase.

645

646  PICRUSTt2 predicted the phylotypes and the functional genes associated with the 1,4-dioxane
647  degradation. The identified degraders Solirubrobacter and Pseudonocardia (as discussed above)
648  were predicted to be associated with all four subunits of propane monooxygenase (prmA, prmB,

649  prmC and prmD) in all three soil types. Consistent with this, a NCBI search indicated
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Solirubrobacter pauli strain DSM 14954 contained the four propane monooxygenase subunits
(all located together and with the correct predicted length for each subunit). Labrys (Rhizobiales)
and unclassified Rhizobiales were predicted to be associated with toluene monooxygenase
(tmo/tbu/tou) and ammonia/particulate methane monooxygenase genes (pmo/amo) in all three
samples. This order was also predicted to be a major phylotype associated with pmo/amo KEGG
group in other soils (Cupples et al., 2022). PICRUSt2 predicted Mycobacterium was associated
with soluble methane monooxygenase genes in three soil types, however, this genus was not
associated with carbon uptake from 1,4-dioxane. The trend indicates either sMMO was not
involved in 1,4-dioxane degradation in the current study or the transformation did not result in

any carbon uptake.

5. Conclusion

This research provides insight into the impact of BSM and yeast extract on 1,4-dioxane
biodegradation rates as well as the microorganisms involved in carbon uptake during
biodegradation. The addition of BSM and yeast extract enhanced removal rates in all three
inocula types, however, differences were only significant for the agricultural soil and impacted
site sediment microcosms. Numerous phylotypes were associated with carbon uptake across the
three communities and two treatments. Gemmatimonas was particularly important in the heavy
fractions of both treatments of the wetland sediment microcosms. Unclassified
Solirubacteraceae, Solirubrobacter, Pseudonocardia and RB4 were the dominant enriched
phylotypes in the agricultural soil microcosms. The impacted site microcosms were dominated
by only two phylotypes, unclassified Burkholderiaceae (water treatment) and oc3299 (BSM and
yeast extract treatment). To our knowledge, Gemmatimonas, Solirubacteraceae, Solirubrobacter,
RB4 and 0c3299 have not previously been linked to carbon uptake from 1,4-dioxane.

The SDIMO based amplicon sequencing detected three genes (Rhodococcus jostii RHA1 prmA
and Rhodococcus sp. RR1 prmA, Pseudonocardia dioxanivorans CB1190 plasmid pPSED02
Psed 6976) in the mixed microbial communities. Although the genes were present, prmA4 was
only linked to 1,4-dioxane biodegradation in one set of samples. The predicted functional gene

analysis suggested the importance of propane monooxygenases associated with Solirubrobacter



681  and Pseudonocardia. Overall, it is likely that a community of microorganisms is involved in 1,4-
682  dioxane biodegradation in both the wetland and agricultural soil microcosms. In contrast, the
683  carbon from 1,4-dioxane in the impacted site microcosms was largely restricted to two

684  phylotypes. The results suggest that amending with BSM and yeast extract, even at low levels,
685  could be a promising approach for the enhancement of 1,4-dioxane biodegradation.However, it is
686  important to note that there may be challenges, not addressed here, associated with adding these
687 amendments to aquifers.
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