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Chiral fluid membranes with orientational order
and multiple edges

Lijie Ding, *a Robert A. Pelcovits ab and Thomas R. Powers abcd

We carry out Monte Carlo simulations on fluid membranes with orientational order and multiple edges

in the presence and absence of external forces. The membrane resists bending and has an edge tension,

the orientational order couples with the membrane surface normal through a cost for tilting, and there

is a chiral liquid crystalline interaction. In the absence of external forces, a membrane initialized as a

vesicle will form a disk at low chirality, with the directors forming a smectic-A phase with alignment

perpendicular to the membrane surface except near the edge. At large chirality a catenoid-like shape or

a trinoid-like shape is formed, depending on the number of edges in the initial vesicle. This shape

change is accompanied by cholesteric ordering of the directors and multiple p walls connecting the

membrane edges and wrapping around the membrane neck. If the membrane is initialized instead in a

cylindrical shape and stretched by an external force, it maintains a nearly cylindrical shape but additional

liquid crystalline phases appear. For large tilt coupling and low chirality, a smectic-A phase forms where

the directors are normal to the surface of the membrane. For lower values of the tilt coupling, a nematic

phase appears at zero chirality with the average director oriented perpendicular to the long axis of the

membrane, while for nonzero chirality a cholesteric phase appears. The p walls are tilt walls at low

chirality and transition to twist walls as chirality is increased. We construct a continuum model of the

director field to explain this behavior.

1 Introduction

Many structures formed by fluid membranes or thin films with

liquid crystalline degrees of freedom result from the interplay

of curvature and orientational order. For example, the ordering

of curved rod-like proteins in cell membranes can lead to the

formation of cylindrical membrane shapes.1 Tubules can also

be formed in lipid membranes due to the chirality of the lipid

molecules.2,3 Liquid crystalline shells4 provide another exam-

ple, with nematic and cholesteric5,6 textures arising from the

interaction of the curvature of the shell and the liquid crystal-

line order.7–9 Other recent examples include colloidal mem-

branes made of chiral filaments, such as rod-like fd viruses10 or

DNA origami filaments.11 A key distinction between the colloi-

dal membranes and the other examples is that colloidal mem-

branes tend to have free edges, which is the focus of this work.

Colloidal membranes are single layer liquid crystal struc-

tures of filaments assembled through a depletion force. These

filaments form a cholesteric phase when concentrated in

bulk11,12 which indicates they have chirality and tend to twist

about each other. Changing the concentration of the depletant

and the temperature leads to various structures of colloidal

membranes,10,13 including tactoids, disks, twisted ribbons,

stacked membranes, saddles, catenoids, trinoids, four-noids,

and higher order structures. When single layer colloidal mem-

branes are formed, the filaments that comprise the membrane

tend to align with the membrane surface normal, and the twist

of the filaments is expelled to the edge of the membrane.14

However, flat colloidal membranes can also sustain significant

twist at interior points. For example, coalescence of two disk-

shaped membranes15 can lead to the formation of p-walls

where the filaments rotate through 1801, making an angle of

901 with the surface normal at the midpoint of the wall.

Theoretical studies of the role of chirality in membrane

shape have long been of interest for membranes composed of

chiral lipid molecules.16 Helfrich and Prost17 introduced a term

linking molecular chirality to membrane bending, shown later

to be identical (up to a line integral) to the Frank elastic

term linear in director twist on a curved surface.18 Selinger

et al.3,16,19 studied tubules with helically modulated tilting

states and helical ripples. Tu and Seifert20 considered a concise

theory of chiral membranes, deriving Euler–Lagrange equa-

tions assuming constant tilt of the molecules relative to the

layer normal. Their model was extended by Kaplan et al.21 to
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include variations in the tilt angle. All of these studies required

an a priori assumption of the shape of the membrane, e.g.,

tubules (with uniform tilt or a helically modulated tilt state),

helical stripes, or twisted ribbons.

Previously,22,23 we developed a Monte Carlo simulation

scheme that allows for arbitrary membrane shapes using a

discretized effective energy based on the continuum energy

used by Kaplan et al.21 The membrane surface was modeled by

a triangular mesh with beads on the vertices connected by

bonds, and the orientational order was modeled by unit vectors

decorating each bead on the mesh. The energy for the discrete

membrane included both the energy for the membrane shape

and the liquid-crystalline energy for the orientational order. We

used the Canham–Helfrich bending energy with an edge ten-

sion for the energy of membrane shape, a chiral Lebwohl–

Lasher model for the director–director interaction, and a tilt

coupling for the interaction between directors and membrane

surface normal. We found the formation of a cholesteric phase

at large chirality with the development of ripples in the surface

due to the coupling between surface shape and orientational

order. Although our simulations accounted for both the defor-

mation of the membrane surface and the full orientational

order of the constituent particles, they were limited to the

simulation of single-edge membranes.

In this paper, we extend our previous study of the chiral

membranes with one edge and explore the structure of chiral

membranes with multiple edges. We start by investigating the

role of chirality in the equilibrium shapes of multi-edge mem-

branes. When initialized as a vesicle, a membrane with two

edges can form a catenoid-like shape with cholesteric order if

the chirality is sufficiently large. A membrane with three edges

can undergo an additional transition at a higher value of

chirality to a trinoid-like shape again with cholesteric order.

Next, we apply a force to the edges of a membrane initialized in

a cylindrical shape and find that stretching the membrane

leads to the appearance of nematic and smectic-A phases in

addition to cholesteric as the membrane adopts a nearly

cylindrical shape. In both phases, as well as the cholesteric,

the membrane is a single layer of beads wrapping around the

cylinder and thus the two phases do not differ in terms of

positional order. The phases are distinguished by their orienta-

tional order: in the smectic-A phase the directors are aligned

with the normal to the membrane surface, while in the

nematic, they are aligned along a global direction. In the

cholesteric phase of both the unstretched catenoid and cylin-

der, p-walls appear in the director field joining the two edges. At

low chirality, the walls are tilt walls, while at higher chirality

they are twist walls. We present a continuum analytical model

that shows how the structure of the p-walls is determined by the

liquid crystalline parameters.

2 Model and method

As in our previous work,22,23 we model the membrane using a

dynamical beads-and-bonds triangular mesh M,24 with hard

beads of diameter s0 located at each vertex of the triangular mesh.

The beads are connected by bonds of maximum length l0. Each

vertex i of the mesh has a unit length director field ûi.

The total energy E of the membrane is the sum of a surface

energy Es that depends on the geometric properties of the

triangular mesh and a liquid-crystalline energy Elc that depends

on the director field and its coupling to the mesh. The surface

energy Es has contributions arising from the discretized Can-

ham–Helfrich bending energy22,25,26 and a line tension of

the edge:

Es ¼
k

2

X

i2M
�
ð2HiÞ2si þ l

X

i2@M
dsi; (1)

where k is the bending modulus, and Hi and si are the mean

curvature and the area of the cell on the virtual dual lattice at

bead i, respectively. Complete expressions for each of the terms

above can be found elsewhere.22,24,27 In the last term above, l is

the line tension of the edge and dsi is the differential edge

length at bead i. The first summation in eqn (1) is over all

interior beads M

�

of the mesh and the second summation is

over all beads qM on the edges. In the present study, we ignore

the Gaussian modulus, as experiments on colloidal membrane

indicate that the Gaussian curvature modulus is small com-

pared with the bending modulus.28 Preliminary results from

our model suggest that a small value of the Gaussian curvature

modulus has little effect on our results.22

The liquid-crystalline energy Elc consists of three contribu-

tions: the director–director coupling, the chiral energy and the

director–surface coupling:

Elc ¼ � eLL
X

ði;jÞ2B

3

2
ðûi � ûjÞ2 �

1

2

� �

� eLLkc
X

ði;jÞ2B
ðûi � ûjÞ � r̂ijðûi � ûjÞ

þ 1

2
C
X

i2M
1� ðûi � n̂iÞ2
� �

:

(2)

The first term on the right-hand side of eqn (2) is the Lebwohl–

Lasher interaction,29 which favors the alignment of neighbor-

ing directors on the triangular mesh. The second term is the

chiral Lebwohl–Lasher interaction,30 which favors a right-

handed twist between neighboring directors when kc 4 0.

The separation r̂ij is the direction from vertex i to vertex j, and

the product (ûi�ûj) is included to satisfy the plus-minus sym-

metry of the director field. The final term represents the tilt

coupling of the director field to the local surface normal n̂i of

the triangular mesh at bead i, favoring alignment of the

director and the surface normal, a tendency31 arising from

the depletion interaction.32 A detailed expression for the sur-

face normal can be found elsewhere.22,33 The summations in

the Lebwohl–Lasher and chiral interactions are over all bonds

in the mesh and the summation in the tilt energy is over all

beads, both in the interior and on the edges.
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Canonical ensemble Monte Carlo simulations are carried

out using this model by updating both the beads-and-bonds

triangular mesh and the director field. Both the shape update

and director update follow the same procedure as described in

our previous papers.22,23 The new element in this paper is that

the membranes have more than one edge, meaning that there

can be holes in the membrane. Fig. 1 shows possible initial

configurations of a triangular mesh with three edges. In Fig. 1a,

a flat membrane has two small triangular holes representing

the second and third edges, and the cylinder in Fig. 1b has one

triangular hole for the third edge. A third possibility is a vesicle

with three holes on the mesh as shown in Fig. 1c. In principle

these holes should disappear by nucleation. However, because

we do not have an edge creation or edge removal update, we

insert the holes by hand in order to create multiple edges. The

membrane is simulated in free space, i.e., there is no simula-

tion box with boundary conditions. This approach is reason-

able given that the size of the membrane is limited by the

maximum length c0 of the bonds connecting the beads. We also

found that the drift of the center of mass of the membrane is

small over the entire course of the simulation.

For a system of N beads, each Monte Carlo (MC) cycle is

composed of N/t2 attempts to move a bead chosen at random,

2N/t2 attempts to flip a bond chosen at random and
ffiffiffiffi

N
p

=t2

attempts to shrink or extend the edge of the membrane. The

parameter t is defined by the bead move update which ran-

domly selects one bead from all the beads on the mesh with

equal probability and moves it to a random position in a cube

of side 2t centered at its current position. The bond flip update

selects a bond from all of the bonds in the interior of the

triangular mesh with equal probability, detaches it from the

beads at its endpoints and then flips it to connect the two

opposite beads on the adjacent triangle. The parameter t is set

to 0.1, with all lengths measured in units of the bead diameter

s0. Energies are measured in units of kBT. The maximum length

of the bonds on the triangular mesh is set to be l0 ¼ 1:73o
ffiffiffi

3
p

to satisfy self-avoidance and ensure fluidity of the membrane.34

During the simulation, 1.7 � 104 MC cycles were performed in

total. To help the system reach equilibrium, we first carry out a

simulated annealing for 2 � 103 MC cycles starting at infinite

temperature where b � 1/kBT = 0 and lower the temperature

by increasing b in steps of db = 0.01 until reaching the final

temperature corresponding to b = 1. After the simulated

annealing, the system energy approaches a plateau in 1000–

2000 cycles when the system undergoes a shape change from

flat to a catenoid or trinoid (see Fig. 2) and almost immediately

for other cases, we then equilibrate the system for another

5 � 103 MC cycles. We record observables for the remaining 1 �
104 cycles.

3 Equilibrium shapes of membranes
with multiple edges

In our earlier work,23 we demonstrated that increasing the

magnitude of the chirality of the director field leads to a

rippling of a single-edge membrane coinciding with the appear-

ance of cholesteric order. Here we study whether a potentially

similar effect occurs in a multi-edge membrane. Fig. 2 shows

that a membrane with two or three edges can transform

Fig. 1 Possible initial configurations of a triangular mesh with three edges

and N = 300 beads. The internal bonds on the mesh are represented by

thin gray segments and the edge bonds are represented by thick black

lines. (a) A flat membrane with two holes. (b) A cylindrical membrane with

one hole. (c) A vesicle with three holes.

Fig. 2 Shapes and features of three-dimensional membrane structures

for varying chirality kc. The initial configuration for each value of chirality is

a vesicle with total number of edges Ne = 2 and Ne = 3 for (a) and (b)

respectively. The edges bound small holes of size comparable to a triangle

on the mesh [see Fig. 1(c) for an example with Ne = 3]. Here, the number of

beads N = 300, the bending modulus k = 30, the edge tension l = 6, and

the Lebwohl–Lasher constant and tilt coupling eLL = C = 4. (a) Asymmetry

of the length of the edges versus chirality for a two-edge membrane. The

membrane shapes in the top row show the triangular mesh without the

directors. The membrane shapes in the bottom row show the directors

which lie on the p walls that wind around the membrane and join the

edges. (b) Same as (a) except for a membrane with three edges labeled

with k = 0,1,2. (c) Average twist of the director field Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j)
as a function of chirality for the membranes shown in (a) and (b), where the

average h. . .i(i,j) is over all bonds (i,j).
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respectively into shapes reminiscent of a catenoid or trinoid as

chirality is increased. Below we will show quantitatively that

these shapes approximate catenoids and trinoids, and there-

fore we will refer to them as such from here on. The drastic

shape change of the membrane during these transformations

involves crossing a very large free energy barrier and leads to

strong hysteresis. We found that to consistently access these

shapes, we must initialize the membrane as a vesicle with as

many holes as edges, as in Fig. 1c for the case of three edges.

We obtain a vesicle by initializing the system as a flat

membrane as in Fig. 1a, then equilibrating for 2 � 103 MC

cycles with k = 10 and l = 20. The relatively low value of k and

large value of l leads to the formation of a vesicle. Initializing

the shape in one of the other configurations shown in Fig. 1 can

lead to very ‘‘noisy’’ shapes due to the large free energy barrier.

The topology of the triangular mesh is fixed by the number of

holes inserted into the vesicle due to the lack of an edge

creation or removal update in our MC algorithm. Thus, even

if one of the edges shrinks and its size becomes comparable to

the triangles on the mesh, there will always be a small hole

present.

For a membrane with two edges (Fig. 2a), one of the edges

shrinks to a small hole when the chirality kc is small, and the

membrane assumes a disk shape. The directors exhibit

smectic-A order, i.e., they are aligned normal to the membrane

except near the edges where they twist due to chirality.35 In our

previous work23 where we did not insert a hole into the interior

of the membrane, we found that as we increased chirality the

membrane deformed into a saddle shape accompanied by

the appearance of a cholesteric phase once kc \ 1. With the

insertion of a hole in the initial membrane, a cholesteric phase

again forms at a similar value of kc, but accompanied by a much

more dramatic shape change, namely, from a disk to a cate-

noid. The vertical axis in Fig. 2a is the asymmetry of the length

of the two edges, which is approximately 1 when one edge

dominates and approximately zero when both edges have

nearly the same length.

Fig. 2b shows the result for a membrane with three edges.

When the chirality is small, the membrane becomes a disk

shape with two small holes. At intermediate values of chirality

the membrane becomes a catenoid with one small hole in

its interior. Further increasing chirality leads to an expansion

of the small hole and the membrane become a trinoid

shape with three edges of similar length. Such changes of

shape are captured by the asymmetry of the length of the

three edges shown on the vertical axis of the figure.

When the membrane becomes a disk shape, one of the

edges has a length much greater than the other two, i.e., L0
c L1 C L2. Thus, the measure of asymmetry becomes
P

Lke
ipk2=3=

P

Lkj ’ jL0=L0

�

�

�

� ¼ 1. When the membrane

forms a catenoid, we have L0 C L1 c L2, and the asym-

metry becomes
P

Lke
ipk2=3=

P

Lkj ’ j½L0 þ L1 cosð2p=3Þþ
�

�

L1i sinð2p=3Þ�=ðL0 þ L1Þj ’ 1=2. Finally, when all three edges

grow to have roughly the same perimeter, the asymmetry

become approximately 0.

Fig. 2c shows the average twist of the director field Ts =

h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j) for the membranes with two and three

edges as a function of the chirality kc, where the average h. . .i(i,j)
is over all bonds (i,j). The twist is positive, indicating a right-

handed twist of the directors. Also, the p walls on the catenoid

and trinoid wind around the membrane in a right-handed

sense. There is little difference between the average twist of

the directors on the two structures, implying that the geometry

of the p walls is very similar on the two membranes.

Fig. 3 shows a plot of the probability distribution of the

mean curvature Hi for the disk, catenoid and trinoid shapes

shown in Fig. 2 and the vesicle shape shown in Fig. 1c. The

widths of the distributions for all four shapes are comparable

and of the order of magnitude to be expected for thermal

fluctuations where

ffiffiffiffiffiffiffiffiffiffiffi

hHi
2i

q

’
ffiffiffiffiffiffiffiffiffi

kBT

ksi2

s

’ 0:2; (3)

with kBT = 1 (the final temperature of our simulations), k = 30

and si C 1, where si is the area of the cell on the virtual dual

lattice at bead i (see eqn (1)). The peaks of the distributions for

the catenoid and trinoid are located at approximately equal

values of Hi which are substantially smaller than the location of

the peak of the vesicle. While not mathematically minimal

surfaces, the catenoids and trinoids appearing in our simula-

tions are good approximations to ideal minimal surfaces.

Fig. 4 shows a sample configuration of a catenoid including

the directors. We note that there are three p-walls wrapping

around the membrane, joining the two edges. The p-walls are

characterized by a rotation of the director by 1801 about an axis

which is perpendicular to the wall and lying in the local tangent

plane of the membrane, as expected in the presence of choles-

teric order. We saw similar lines in our previous study of the

saddle shapes. The force-free catenoid shape as well as the

tubule shapes we find when the catenoid is subject to external

force (see next section) appear to be achiral (Fig. 4a and 5), in

contrast to the helical ribbons and tubules studied by Selinger

et al.19

Fig. 3 Probability distribution of the mean curvature Hi (see eqn (1))

sampled over 200 MC configurations (50 MC cycles between consecutive

samples) for four membrane shapes: disk, vesicle, catenoid and trinoid.

The membrane parameters are the same as in Fig. 2, except for the vesicle

where l = 50. The chirality kc is zero for the disk and vesicle and 1.3 and 2.3

for the catenoid and trinoid, respectively.
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4 Elongated membranes
4.1 Director field

We now focus on a two-edge membrane and study its response

to an external force applied to the edges of a membrane

initialized not as a vesicle as in the previous section, but rather

in a cylindrical shape (similar to Fig. 1b but without the small

hole on the surface). Initializing in a cylindrical shape allows us

to easily apply equal and opposite forces to the two edges which

would be very difficult to accomplish for the catenoids shown in

Fig. 4 where the edges are not planar. The force changes the

length of the membrane and preempts the formation of a

catenoid at large chirality, maintaining instead a nearly cylind-

rical shape except near the edges. The force is incorporated into

our simulation by demanding that the beads on the right edge

have z Z lf, and the beads on the left have z r 0, where the z

axis is along the long axis of the cylinder and lf is the elongated

length of the membrane under force. A sample configuration of

an elongated membrane is shown in Fig. 5. We specify lf in

terms of inequalities on the z coordinates of the edge beads to

allow beads to join or leave the edges in our simulations.

Constraining the edge beads to be exactly at z = lf or z = 0

would prevent a bead in the interior from joining the edge

unless it moves exactly to z = lf or z = 0. By allowing the edge

beads to move slightly into the z Z lf or z r 0 regions, we

overcome this difficulty. The absence of sharp left and right

edges of the elongated membrane shown in Fig. 5 is a result of

this requirement.

While in the absence of an external force the catenoid

membrane exhibits only a cholesteric phase, stretching a

cylindrical membrane leads to the appearance of nematic and

smectic-A phases in addition to the cholesteric depending on

the values of the Lebwohl–Lasher coupling constant eLL, the tilt

coupling C and the chirality kc. For sufficiently large C com-

pared to eLL and with kc = 0, the directors align with the local

surface normal and form a smectic-A phase as shown in the top

row of Fig. 6a. For sufficiently large eLL compared to C and kc =

0, the directors align along a common global direction

perpendicular to the z axis and form a nematic phase as shown

in middle row of Fig. 6a. Finally, when kc is nonzero and C is

not too large, the directors twist and form a cholesteric phase

as shown in the bottom row of Fig. 6a. Note that in all three

phases the positional order of the beads is essentially the same,

as shown, e.g., in Fig. 5a.

Fig. 6b shows a plot of the average nematic order parameter

hSi, the largest eigenvalue of the nematic order parameter

tensor Qij ¼
3

2
uiuj �

1

3
dij

� 	

, versus eLL for various values of the

tilt coupling C and fixed length of the membrane lf. As C

increases and kc remains zero, the critical value of eLL for the

smectic-A-nematic transition increases, indicating that the

competition between C and eLL determines the equilibrium

phase. Similarly, the critical value of kc for the smectic-A-

cholesteric transition also increases with increasing C as shown

in Fig. 6d, where the average director-normal alignment h(û�n̂)2i
is plotted versus kc, confirming that the competition between kc
and C determines which of these two phases is preferred. On

the other hand, Fig. 6c and e show that increasing lf decreases

the critical values of eLL and kc at the smectic-A-nematic and

smectic-A-cholesteric transitions, respectively. As the length lf
increases, the tubule narrows, increasing the energy penalty for

splay of the director field (which is present in the smectic-A

phase, see Fig. 6a) and leading to transitions to the nematic and

cholesteric phases at lower values of eLL and kc respectively.

Additional insight into the phases shown in Fig. 6 can be

obtained from illustrations of perfect nematic, cholesteric and

smectic-A ordering on a cylinder (see Fig. 7). The variation of tilt

in our model permits the continuous transformation of the

director field between these different phases. The smectic-A

phase shown in Fig. 7a is analogous to a +1 disclination in a

planar nematic, and can continuously transform into the

nematic phase with directors along z (Fig. 7d) by escaping into

Fig. 4 A sample configuration of a catenoid membrane. (a) Triangular

mesh model of the membrane shape. (b) Hard beads decorated by

directors û on each vertex are shown in addition to the triangular mesh,

with the color indicating the angle arccos |û�n̂| between the director and

the local surface normal n̂. (c) Membrane edges and directors with arccos

|û�n̂| 4 p/3, which are the directors approximately located in the p-walls.

There are three such p-walls wrapping around the membrane and they

begin and end on the membrane edges. For the sake of clarity the mesh

and other directors are not shown in part (c).

Fig. 5 A sample configuration of an elongated membrane produced by

applying equal and opposite forces to the edges of a cylindrical

membrane. Here, the number of beads N = 300, bending modulus k =

50, edge tension l = 6, Lebwohl–Lasher constant and tilt coupling eLL = C

= 4, and chirality kc = 1. The edge beads are bounded by the condition zr

0 for the left edge and z Z lf for the right edge, and black dashed lines

mark the position of z = 0 and z = lf. (a) Triangular mesh model of the

membrane shape. (b) Same as (a), but now including the directors attached

to the beads. The color coding of the director orientation relative to the

surface normal is the same as in Fig. 4.
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the third dimension.36,37 Likewise, the cholesteric phase

(Fig. 7c) can transform continuously to the nematic phase with

directors along x (Fig. 7b) via a rotation of the directors by p/2

about the radial direction followed by rotations about z. Finally,

the nematic configurations in Fig. 7b and d are related by a

rotation about y. Note that the nematic and cholesteric phases

shown in Fig. 7b and c, respectively, have identical tilt energies

and this common energy is lower than the tilt energy of the

nematic phase shown in Fig. 7d. In the former two phases there

is some alignment of the directors with the local surface

normal, whereas in the latter phase all of the directors are

perpendicular to the normal.

4.2 Walls

We now take a closer look at the director field in the nematic

and cholesteric phases of the elongated membrane. In parti-

cular, we consider the p walls which form as a consequence of

the competition between kc, C, and eLL. It is helpful to note that

p walls can appear with two different structures as shown by

Helfrich for nematic liquid crystals in a magnetic field.38 To

visualize Helfrich’s structures, consider directors with their

centers of mass confined to a plane and oriented perpendicular

to the plane except in a straight thin domain wall of infinite

length.

If the directors rotate by 1801 about an axis perpendicular to

the domain wall, then the wall is a twist p wall. Such walls are

analogous to Bloch walls in ferromagnets. On a cylindrical

surface, twist p walls are lines of directors tangent to the

surface, with the directors in the wall oriented parallel to the

Fig. 6 Three phases of the director field (smectic-A, nematic, and cho-

lesteric) in a tubular membrane under force arise from the competition

between the Lebwohl–Lasher constant eLL, tilt coupling C, and chirality kc.

Here, the number of beads N = 300, bending modulus k = 50, and edge

tension l = 6. (a) Top view of one end of a membrane of length lf = 25 (left

column), front view of the same end (middle column, with the beads and

bonds in the back sides excluded for better visualization), and oblique view

of the tubule (right column). The parameters for all membrane images are

C = 6, with (eLL,kc) = (2,0) (top row), (4,0) (middle row), and (2,1.5) (bottom

row), respectively. The color coding of the directors is the same as in Fig. 4.

From top to bottom, the three rows correspond to smectic-A, nematic and

cholesteric phases. (b) Average nematic order parameter hSi, the largest

eigenvalue of the nematic order parameter tensor Qij ¼
3

2
uiuj �

1

3
dij

� 	

,

versus eLL for various values of C with kc = 0. (c) Average director-normal

alignment h(û�n̂)2i versus eLL for various values of lf with kc = 0. (d) (û�n̂)2
versus chirality kc for various values of C with eLL = 2, (e) same axes as in

(d) but for various values lf. The discontinuities in (b) and (c) occur at the

smectic-A-nematic transition and in (d) and (e) at the smectic-A-

cholesteric transitions.

Fig. 7 Illustration of perfect (a) smectic-A, (b) and (d) nematic (zero

chirality) and (c) cholesteric order on a cylinder whose long axis is the z

axis. The directors are indicated by rods and we provide four views of each

phase from top to bottom, respectively: looking down the z axis, a view

from the side of the cylinder, and two views with the cylinder unwrapped:

one looking head-on [i.e., the (f,z) plane] and another looking down the z

axis. In all figures the director fields have no z dependence. (a) A smectic-A

phase where all directors are aligned with the normal to the surface. (b) A

nematic phase where all directors point in the x direction. For nonzero but

small chirality, the directors will begin to twist. (c) A cholesteric phase

where the directors lie in the (r,z) plane and rotate about the f̂ axis. We use

a ‘‘nailhead’’ representation of the director, where the head of the nail is

tilted out of the plane of the figure. (d) A nematic phase with all directors

pointing in the z direction.
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wall. An ideal case with twist p walls along the z axis is shown in

Fig. 7c. As one crosses a twist p wall, the directors rotate by 1801

about an axis perpendicular to the line (i.e., the f̂ direction in

7c). In this example, the p walls are not thin because the

directors rotate at a uniform rate as the circumference is

traversed.

Returning to the case of molecules confined to a plane,

Helfrich noted that p walls can also be ‘‘splay-bend’’ walls with

no twist, analogous to Néel walls in ferromagnets. For directors

with centers of mass in a plane, and perpendicular to the

surface everywhere but in a thin domain wall, a splay-bend p

wall has the directors rotating by 1801 about an axis parallel to

the wall. Wrapping this plane into a cylinder to make a straight

p wall analogous to the splay-bend p wall, we see that directors

in this p wall once again lie in the tangent plane of the surface

but are oriented perpendicular to the wall (see Fig. 7b). As one

crosses this p wall, the directors rotate relative to the surface

normal by 1801 about an axis parallel to the line (the z axis in

the figure). Thus, on a cylinder, the analog of the splay-bend p

wall on a flat surface is a tilt p wall.

More generally, both types of p walls need not be parallel to

the z axis, and there is not a rigid distinction between the two

types of walls. For example, consider a cholesteric state (differ-

ent from the one shown in 7c) in which the directors on the

cylinder twist about the axis of the cylinder: û = x̂ cos(qz) +

ŷsin(qz). This state has two domain walls of mixed type that

spiral around the cylinder. As we traverse the domain wall

along a circumference, the directors rotate about the z axis

relative to the surface normal. Since the domain wall is not

along z, the axis of rotation makes an angle with the domain

wall, indicating it is of mixed type. And if we traverse the

domain wall along a path in the surface which is normal to

the domain wall, the directors rotate about z relative to a space-

fixed axis, again indicating that the wall is partly a twist wall

and partly a tilt wall.

Fig. 8 shows how a change in chirality transforms the tilt

walls into twist walls in the cholesteric phase. As shown in

Fig. 8a, the tilt walls start twisting and wrapping about the

membrane’s cylindrical neck, forming helical shapes as the

chirality kc increases. At the same time, the directors on the wall

become parallel to the direction of the wall, as expected for

twist walls. These observation are quantified in Fig. 8b and c.

The former figure shows the average twist of the director field

Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j). Here, the average h. . .i(i,j) is over all

bonds (i,j). The twist increases with the chirality as expected.

Fig. 8c displays û�ẑ, the component of the director along the

elongation direction. This quantity also increases with increas-

ing chirality, indicating that as the directors twist about each

other, they also rotate more into the elongation direction and

the walls transition from tilt to twist. The discontinuities in

Fig. 8b and c for lf = 15 and lf = 25 correspond to the formation

of an additional p-wall. This can be seen for the case of lf = 25

by comparing the upper left and lower left configurations

in Fig. 8a. Similar discontinuities are not found for the

longer membrane with lf = 35 whose configuration is shown

in the upper right of Fig. 8a. Due to the smaller diameter of the

Fig. 8 p walls in the nematic (zero chirality) and cholesteric phases with number of beads N = 300, bending modulus k = 50, edge tension l = 6,

Lebwohl–Lasher constant eLL = 4, and tilt coupling C = 4. (a) Configurations of an elongated membrane with lf = 25, 35 (left to right) and kc = 0, 1, 2.5

(bottom to top, respectively). Only the triangular mesh and directors with tilt angle arccos |û�n̂| 4 p/3 are shown. The color bar is the same as in Fig. 4.

The p walls twist around the membrane in a right-handed sense for kc 4 0. (b) Director field twist Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j), averaged over all bonds (i,j),

versus chirality kc for various values of the membrane length lf. The positive values of Ts indicate that the twist is right-handed. (c) Average projection of

the director along the direction of elongation h(û�ẑ)2i versus kc for different lf. The discontinuities in (b) and (c) correspond to the formation of an

additional p wall.
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longer membrane there is insufficient space for an additional

p-wall.

Fig. 9 shows the average director field twist Ts = h(ûi � ûj)�
r̂ij(ûi�ûj)i(i,j) for various values of chirality kc and tilt coupling

C. Consistent with the results shown in Fig. 8, there are three

phases: smectic-A, 2-wall (nematic or cholesteric) and 3-wall

cholesteric when the membrane is not too thin, the range of

chirality kc of 2-wall phase that separate smectic-A and 3-wall

phase get smaller as tilt coupling C increases.

We further study the structure of the p walls by slicing the

membrane perpendicular to the z direction, as indicated by the

horizontal dashed lines and colored vertical segments in

Fig. 10a–c. Fig. 10a and c show a membrane with two p walls

for tilt couplings C = 2,10, respectively. Fig. 10b shows a

membrane with three p walls with C = 2, but at a higher value

of chirality. Fig. 10d–f show (û�n̂)2, the alignment between the

directors and the surface normal in each of the slices shown in

Fig. 10a–c, plotted against the polar angle f = arctan(y/x), where

(x,y) is the location of a bead in the slice. The curves are fit to

the form (û�n̂)2 = (e1/lf � esinm(f�f0)/lf)/(e1/lf � e�1/lf), where m

is the number of p walls (m = 2 in (d) and (f) andm = 3 in (e)), lf
in the factor esinm(f�f0)/lf determines the angular width of the p

walls, and the others terms normalize (û�n̂)2 to the range [0,1].

In (d) and (e), lf C 3, yields a good sinusoidal-like fit that

indicates that the p walls are not sharp; the tilt coupling is

relatively small and the directors twist to satisfy their chirality.

In (f) where the tilt coupling is larger, the curves are fit with

lf C 0.5. The p walls here are narrower as the directors tend to

align with the surface normal in order to lower the cost of tilt.

Fig. 11b shows the angle y � au � a as a function of chirality

kc, where au is the angle between z and directors in the vicinity

of the p walls which have a tilt angle satisfying arccos (|û�n̂|) 4
p/3 and a is obtained from tan a in Fig. 11a. Thus, y measures

the orientation of these directors relative to the wall direction,

and y is zero for twist walls and p/2 for tilt walls. As kc increases,

au decreases, i.e., the directors near the wall rotate towards the z

axis. Simultaneously the walls rotate away from the z axis (a

increases). The net result is that the angle y decreases, appears

to plateau around a value of 0.4 radians. The p walls thus

transition from tilt walls at low values of chirality to more twist-

like at higher chirality.

Fig. 9 Heat map of the director field twist Ts = h(ûi � ûj)�r̂ij(ûi�ûj)i(i,j) for
various values of chirality kc and tilt coupling C with number of beads N =

300, bending modulus k = 50, edge tension l = 6, Lebwohl–Lasher

constant eLL = 2 for a relative short membrane lf = 15. The sharp gradient

of the color indicates the transition from smectic-A phase (purple), to 2-

wall cholesteric (green) and 3-wall cholesteric (red) phases. Configurations

of the membrane are shown at the top with values of (kc,C) corresponding

to points indicated by arrows in the heat map.

Fig. 10 Structure of the p walls. Here the number of beads N = 300,

bending modulus k = 50, edge tension l = 6, Lebwohl–Lasher constant

eLL = 4. (a) Configuration of a membrane with two p walls, tilt coupling C =

2, length lf = 25 and chirality kc = 0.5. The horizontal dashed lines and

vertical colored lines indicate slices of beads along the z direction. (b)

Same as (a) except kc = 2.5, and there are now three p walls. (c) Same as

(a) except C = 10. (d)–(f) The director–surface normal alignment (û�n̂)2 as a
function of the polar coordinate f̂ for the configurations shown in (a)–(c),

respectively. The colors correspond to the slices of the membrane shown

in the figure directly above. Each dot corresponds to an individual bead.

The curves are fit to the form (û�n̂)2 = [exp(1/lf) � exp[sin(m(f � f0))/lf]]/

[exp(1/lf) � exp(�1/lf)], wherem is the number of pwalls [m = 2 in (d) and

(f) and m = 3 in (e)], lf in the factor exp[sin(m(f � f0))/lf] determines the

angular width of the p walls, and the others terms normalize (û�n̂)2 to the

range [0,1]. In (d) and (e), lf C 3, yields a good sinusoidal-like fit that

indicates that the p walls are not sharp; the tilt coupling is relatively small

and the directors twist to satisfy their chirality. In (f), the curves are fit with

lf C 0.5. The p walls here are narrower as the directors tend to align with

the surface normal in order to lower the cost of tilt. The location of the p

walls corresponds to values of f where (û�n̂)2 = 0.
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5 Continuum model for the director
field on a cylinder

To better understand the phase behavior seen in the simula-

tions of the previous section and the transformation of the tilt p

walls at low chirality into twist walls at higher chirality, and to

assess the role of membrane flexibility, we use continuum

elasticity theory to study the deformation and director config-

urations of an infinite nearly cylindrical membrane. The total

energy of the membrane is21

E ¼
ð

dA
K

2
ðr � ûÞ2 þ ðû � ðr � ûÞ þ qÞ2 þ ðû� ðr � ûÞÞ2
� �




þ C

2
1� ðû � n̂Þ2
� �

þ k

2
ð2HÞ2

�

;

(4)

where K is the Frank modulus in the one coupling constant

approximation, û is the unit vector representing the director

field, q is the preferred rate of twist, C is the tilt modulus, n̂ is

the membrane unit normal vector, k is the bending modulus,

and H is the mean curvature of the membrane. We have chosen

the sign of the chiral term q in eqn (4) to agree with the sign of

kc in our simulation model eqn (2), namely, positive values of q

and kc correspond to a right-handed twist of the director field.

Since we study nearly cylindrical shapes, cylindrical coordi-

nates f and z are natural. The position of the point (f,z) is

given by X(f,z), and tangent vectors along the coordinate

directions are given by tm = qmX, where m = f or z. Distances

along the membrane are determined by the metric tensor gmn =

tm�tn, with g the determinant of the matrix gmn, g
mn the inverse of

the metric tensor, dA ¼ ffiffiffi

g
p

dfdz the area element, and n̂ ¼
t1 � t2

�

ffiffiffi

g
p

the unit normal. Curvature of the membrane is

determined by the curvature tensor Kmn = n̂�qmtn, with the mean

curvature given by H = gmnKmn/2. Since the membrane in our

continuum model is represented by a vanishingly thin mathe-

matical surface, the gradients in eqn (4) are gradients along the

surface of the membrane: r = gmntmqn. Thus

r � û ¼ gmntm � @n û

û � ðr � ûÞ ¼ û � ðgmntm � @n ûÞ

û� ðr � ûÞ ¼ û� ðgmntm � @n ûÞ:

(5)

Note that our use of the surface gradient r in the energy leads

to couplings between the directors and the membrane curva-

ture, which is characteristic of membrane models that account

for extrinsic (normal) components of derivatives of the director

field.39 In the following we denote the angle between the

director and the surface normal by b.

5.1 Case of large Frank constant

We can use the continuum model to explain how the director

configuration influences membrane shape in the examples

shown in Fig. 6. In the smectic phase, symmetry implies the

membrane is a cylinder, with a radius R independent of f.

Observe that the cross section of the membrane in our simula-

tions flattens in the nematic phase (Fig. 6a, left column, middle

row), whereas it is nearly circular in the cholesteric phase

(Fig. 6a, left column, bottom row). Apparently, the Lebwohl–

Lasher modulus eLL is large enough compared to k to cause the

membrane in the nematic phase to deform so that the director

is nearly parallel to the normal over most of the circumference.

Therefore, we simplify our theoretical discussion by limiting

our analysis to the case that the Frank constant is large

compared to the bending stiffness in the continuum model,

K c k, even though eLL is not large compared to k in our

simulation. (Monte Carlo simulations indicate that K E 3eLL at

low temperature).40 In this limit, the only parameter is the

dimensionless ratio of the tilt modulus to the bending stiffness,

w = CR2/k. In the simulations, w E 1, but we will see that even

when w is of order unity, the deflection of the membrane cross-

section away from the circular shape is small. Thus, we assume

the Frank energy is zero, with û = x̂ cos(qz) + ŷsin(qz), and write

the energy to second order in w for the deformation X = r[R +

z(f,z)] + zẑ. To enforce the constraint of fixed area,
Ð

df
ffiffiffi

g
p ¼ 2pR, we introduce a Lagrange multiplier Z which we

expand to first order in w: Z = Z0 + wZ1. Using the same approach

as Kaplan et al.,21 we derive the Euler–Lagrange equations. To

zeroth order in w, we find that Z0 = k/(2R2), which is the tension

required to hold a membrane cylinder of radius R in

equilibrium.41 Using this result in the Euler–Lagrange equa-

tions to first order in w yields

R3
@4z

@z4
þ 2

R2

@2z

@z2
þ 2

R2

@2z

@f2@z2
þ 1

R4

@4z

@f4
þ 1

R4
z

� �

þ 3w

4
cosð2qz� 2fÞ þ w

4
þ wZ1R

2

k
¼ 0;

(6)

where Z1 is determined by the constraint of fixed area. Solving

Fig. 11 The angle a between the p walls and the z axis, and the angle y

between the walls and directors in the vicinity of the walls. Here the

number of beads N = 300, bending modulus k = 50, edge tension l = 6,

Lebwohl–Lasher constant eLL = 4. (a) Plot of tan a versus chirality kc for C =

2,6,10. The tan a is obtained from results similar to Fig. 10d–f using the fit

f0 B tan ahzi/hRi, where hzi is the average z position and hRi is the average

radius of each slice of the nearly cylindrical membrane. (b) Plot of y = au �
a versus kc for tilt coupling C = 2,6 and 10, As y decreases, the directors on

and near the wall begin to align with the wall direction and the wall

becomes more twist-like in nature. For kc t 2 two p walls are present. The

discontinuities in the plots around kc = 2 are due to the appearance of a

third wall.
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eqn (6) with the assumption that the minimum radius is at f =

0 and z = 0 yields

z

R
¼ � 3w

36þ 64q2R2ð2þ q2R2Þ cosð2qz� 2fÞ: (7)

In the achiral nematic case, q = 0, the deformation is similar to

that of Fig. 6a, left column and middle row:

z

R
¼ � w

12
cos 2f: (8)

The extra bending required to make a helical deformation for a

chiral membrane greatly reduces the amplitude of the deforma-

tion relative to the achiral case. For example, the amplitude of

the deformation with qR = 1.5 is 0.056 times the amplitude

when q = 0, which is consistent with the fact that the cross-

section in the left column and bottom row of Fig. 6a is much

more circular than the achiral case in the left column and

middle row.

5.2 Case of infinite bending stiffness

Since the effect of flexibility is small for chiral membranes, we

will assume infinite stiffness in the rest of this section and take

the membrane shape to be an infinite cylinder of radius R (even

in the achiral limit of q = 0). First we compare the energy of two

simple configurations, the smectic-A phase and the cholesteric

phase. In the smectic-A phase, the directors point radially

outward, ûSm = r̂, and the energy per unit length for a cylinder

of radius R is ESm/L = pK/R + pKq2R. In the cholesteric phase,

ûChol = x̂cos qz + ŷsin qz. Note that this configuration amounts to

a thin cylindrical shell of liquid crystal cut from a three-

dimensional cholesteric with the pitch axis aligned along the

cylinder axis. This configuration has two p walls that wind

around the surface of the cylinder, and the energy per unit

length is EChol = pCR/2. Comparing these two energies, we see

that the cholesteric phase is favored over the smectic phase

when CR2/K o 2(1 + q2R2).

The directors in the configurations we just considered have

no z component, whereas our simulations show that the

directors have a nonzero z component when kc a 0 (Fig. 8a

and 10a–c). Therefore we construct a ansatz with an z compo-

nent that allows the directors to rotate toward the z axis:

ûðf; zÞ ¼ ð1� gÞû1ðf; zÞ þ gû2ðf; zÞ
jð1� gÞû1ðf; zÞ þ gû2ðf; zÞj

; (9)

where the parameter g ranges from 0 to 1, and

û1ðf; zÞ ¼ cosbðf; zÞr̂� sinbðf; zÞf̂

û2ðf; zÞ ¼ cosbðf; zÞr̂� sinbðf; zÞðsin af̂þ cos aẑÞ:
(10)

The directors make an angle b with the surface normal r̂ with

bðf; zÞ ¼ m

2
½f� ðz=RÞ tan a�, m is the number of p walls, and a

(as defined in the last section) is the angle between the p walls

and ẑ. The location of the p walls corresponds to b = p/2.

Our model is constructed to describe the cholesteric,

nematic and smectic-A phases seen in the simulations

(Fig. 6a) and in the illustrations of the perfect forms of these

phases (Fig. 7), and to allow for the two types of p walls, i.e., tilt

and twist. If m = 0, the director fields û1 and û2 are equal and

describe a smectic-A phase, i.e., b = 0. Withm = 2, û1 describes a

fully ordered nematic if a = 0 (Fig. 7b and the upper left corner

of Fig. 12), while for aa 0, û1 describes a cholesteric phase with

two p walls. If a is close to p/2, the walls are twist walls, while if

a is nearly zero, the walls are tilt walls. This can be seen from

the value of the angle y � au � a = p/2 � a and recalling that y is

zero for twist walls and p/2 for tilt walls. Turning to û2, we note

that unlike û1 it has a z component and the factor sin af̂ +

cos aẑ is a unit vector parallel to a p wall. Thus, the director field

û2 on a wall [b(f,z) = p/2] is parallel to the wall direction, and û2
describes a phase with perfect twist walls. Fig. 7c illustrates û2
for m = 2, a = 0. There are two p walls parallel to the z axis (i.e.,

perpendicular to the page), one passing through the point at

the top and the other through the point at the bottom of the

figure. We see from the figure that the directors rotate by 1801

as either wall is traversed, with a rotation axis parallel to f̂.

Because our ansatz is the smectic-A state whenm = 0, and is like

an interpolation between the nematic state and a cholesteric

state with two twist p walls only when m = 2, we restrict m to the

values 0 and 2.

Fig. 12 shows sample configurations of the m = 2 director

field for additional values of a and g. In summary, if m = 0 the

Fig. 12 Illustration of the interpolated director field eqn (9) and (10) with

m = 2 for various values of the interpolation parameter g and tilt angle a of

the p walls with respect to the z axis. The left column illustrates sample

configurations of û1(f,z), depending on the value of a, the angle between

the p walls and the z axis, while the right column illustrates û2(f,z).

Directors are shown as rods and the color bar is the same as Fig. 4. The

thin black lines near the blue directors indicate the location of p walls. The

angle y is the difference between au and a, where au is the angle between

the directors on the wall and the z axis. When y = 0 (right column), the

directors on the wall are pointing along the direction of the wall.
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model exhibits a smectic-A phase, and if m = 2 it exhibits a

nematic phase if a = 0 or a cholesteric phase otherwise. The

cholesteric phase can have either tilt or twist walls depending

on the values of a and g.

We numerically minimize the energy eqn (4), as a function

of a and g for fixed values of qR, CR2/K, and m. Then, we

compute the normalized energy difference DE0R2=C ¼ ðE0
m¼2

�
E0
m¼0

ÞR2=C and find the phase diagram shown in Fig. 13a.

Similar to the results from our Monte Carlo simulations in

Fig. 9, the critical qR for the transition from the smectic-A

phase to the nematic (q = 0) or cholesteric phase increases with

increasing CR2/K. As shown in Fig. 13b, tan a also increases

with chirality qR, indicating a twisting of the p walls as chirality

increases. Fig. 13c shows g as a function of qR and indicates

that the system accommodates the increase of chirality by

transitioning from nematic (pure û1 with a = 0) to cholesteric

(m = 2) order. When C is very small (0.2), we see from Fig. 13c

that the cholesteric phase is described by a nearly pure û1
director field which is illustrated in the left column of Fig. 12.

Fig. 13b indicates that a grows and y decreases as qR increases

(see Fig. 12). As chirality increases, the p walls tilt, the directors

on the walls rotate towards the direction of the wall, and the tilt

walls transition to having a more twist-like character, as we saw

in the simulations (see Fig. 11c). The curves shown in Fig. 13b

and c begin at the critical value of qR for the smectic-A to

cholesteric transition shown in Fig. 13a. The peak in Fig. 13c

for C = 2.2 appears because of the flatness of the transition line.

Similar peaks for the larger values of C do not appear because

they would correspond to points in the smectic-A phase of

Fig. 13a.

We note that the value of g remains less than 0.3 and is

generally less than 0.1. Thus, the director field is nearly û1 with

a small û2 component, which is why the simple balance ESm =

EChol mentioned at the beginning of this subsection gives a

good approximation to the phase boundary shown in Fig. 13a,

and is also why the minimizing value of tan a is so close to qR

(Fig. 13b). These results are consistent with our simulations

(Fig. 11c) which showed that the p walls, while no longer purely

tilt in character, do not become pure twist walls as chirality

increases.

The tilt energy appearing in both eqn (2) and (4) has the

same mathematical form as the interaction of directors with a

magnetic field imagined to be normal to the surface of the

cylinder. For sufficiently large field, the cholesteric twist will be

unwound and the system will become a nematic. This problem

was studied in a flat geometry by de Gennes35 and Meyer42 who

found a critical field proportional to chirality. In our case of a

cylindrical geometry, the cholesteric twist can unwind either

through the formation of a nematic phase (zero chirality) or a

smectic-A phase for sufficiently large C. The curvature of the

surface makes the nematic state of complete alignment differ-

ent from the smectic-A state of complete alignment with the

‘‘external field’’ of the surface normal. Thus, the transition line

between the cholesteric and smectic-A phase does not go

through the origin of the phase diagram shown in Fig. 13a.

6 Conclusion

In this paper, we further developed a general model23 of chiral

membranes with orientational order and edges and carried out

simulations of membranes with multiple edges. We found that

membranes can form disks, catenoids and trinoids as the

magnitude of chirality increases and when the number of edges

allows. The formation of catenoids and trinoids is accompa-

nied by the appearance of a cholesteric phase where p-walls

wrap around the membrane and connect different edges. For

the two-edge membranes, pulling on the opposite edges makes

the membrane thinner and leads to a cylindrical shape. The

directors on the elongated membrane can form additional

phases besides the cholesteric seen in the force-free case. When

there is no chirality, the directors can either align with the

surface normal and form a smectic-A phase or form a nematic

phase with all directors pointing along a single global direction,

depending on the strength of the tilt coupling. Once chirality is

nonzero, a cholesteric phase appears for sufficiently low tilt

coupling. At low chirality, the p walls are of the tilt variety. As

chirality increases, the walls transform to the twist variety

common to the cholesteric phase.

Our model provides a general framework for simulating not

only colloidal membrane made of chiral filaments but also the

general problem of liquid crystals on deformable surfaces. The

current formulation of our model has some limitations. First,

the model is restricted to membranes made of a single compo-

nents, and many shapes including high-order saddle, catenoid

and handles emerge when the membranes are made of mix-

tures of filaments of different lengths.13 A natural extension of

the current model to account for mixtures would be to use

Fig. 13 Phase diagram obtained from the interpolated director field

eqn (9) with m = 0 and 2. (a) Phase diagram obtained from the normalized

energy difference DE0R2=C ¼ ðE0
m¼2

� E0
m¼0

ÞR2=C for various values of qR

and CR2/K. The dashed line is a continuous transition from the smectic-A

to the cholesteric phase. At qR = 0 the cholesteric becomes a nematic

phase up until the critical value of CR2/K where it transitions to the

smectic-A phase. (b) tan a of the m = 2 director field (at the minimum

value of energy) versus qR. The curves are labeled by the values of CR2/K

and begin at the critical value of qR for them = 0 tom = 2 transition shown

in (a). (c) Similar to (b), the value of the interpolation parameter g of them =

2 director field versus qR at the energy minimum.
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moduli in the energy that vary with position across the

membrane. Second, the current model does not allow topolo-

gical changes of the triangular mesh. Thus, the edges are only

able to shrink to a small triangle instead of fully disappearing.

A future development of the model could overcome this limita-

tion with the implementation of an edge removal and creation

update that allows a change in the number of edges during the

simulation and would also allow a nucleation of a hole in the

initial configuration.
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