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Chiral fluid membranes with orientational order
and multiple edges

4 and Thomas R. Powers (2 @b<d

Lijie Ding, (*° Robert A. Pelcovits
We carry out Monte Carlo simulations on fluid membranes with orientational order and multiple edges
in the presence and absence of external forces. The membrane resists bending and has an edge tension,
the orientational order couples with the membrane surface normal through a cost for tilting, and there
is a chiral liquid crystalline interaction. In the absence of external forces, a membrane initialized as a
vesicle will form a disk at low chirality, with the directors forming a smectic-A phase with alignment
perpendicular to the membrane surface except near the edge. At large chirality a catenoid-like shape or
a trinoid-like shape is formed, depending on the number of edges in the initial vesicle. This shape
change is accompanied by cholesteric ordering of the directors and multiple © walls connecting the
membrane edges and wrapping around the membrane neck. If the membrane is initialized instead in a
cylindrical shape and stretched by an external force, it maintains a nearly cylindrical shape but additional
liquid crystalline phases appear. For large tilt coupling and low chirality, a smectic-A phase forms where
the directors are normal to the surface of the membrane. For lower values of the tilt coupling, a nematic
phase appears at zero chirality with the average director oriented perpendicular to the long axis of the
membrane, while for nonzero chirality a cholesteric phase appears. The n walls are tilt walls at low
chirality and transition to twist walls as chirality is increased. We construct a continuum model of the
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1 Introduction

Many structures formed by fluid membranes or thin films with
liquid crystalline degrees of freedom result from the interplay
of curvature and orientational order. For example, the ordering
of curved rod-like proteins in cell membranes can lead to the
formation of cylindrical membrane shapes." Tubules can also
be formed in lipid membranes due to the chirality of the lipid
molecules.”” Liquid crystalline shells* provide another exam-
ple, with nematic and cholesteric™® textures arising from the
interaction of the curvature of the shell and the liquid crystal-
line order.””® Other recent examples include colloidal mem-
branes made of chiral filaments, such as rod-like fd viruses*® or
DNA origami filaments."" A key distinction between the colloi-
dal membranes and the other examples is that colloidal mem-
branes tend to have free edges, which is the focus of this work.

Colloidal membranes are single layer liquid crystal struc-
tures of filaments assembled through a depletion force. These
filaments form a cholesteric phase when concentrated in
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director field to explain this behavior.

bulk'"'* which indicates they have chirality and tend to twist
about each other. Changing the concentration of the depletant
and the temperature leads to various structures of colloidal
membranes,'®*® including tactoids, disks, twisted ribbons,
stacked membranes, saddles, catenoids, trinoids, four-noids,
and higher order structures. When single layer colloidal mem-
branes are formed, the filaments that comprise the membrane
tend to align with the membrane surface normal, and the twist
of the filaments is expelled to the edge of the membrane.™
However, flat colloidal membranes can also sustain significant
twist at interior points. For example, coalescence of two disk-
shaped membranes™ can lead to the formation of n-walls
where the filaments rotate through 180°, making an angle of
90° with the surface normal at the midpoint of the wall.
Theoretical studies of the role of chirality in membrane
shape have long been of interest for membranes composed of
chiral lipid molecules.'® Helfrich and Prost'” introduced a term
linking molecular chirality to membrane bending, shown later
to be identical (up to a line integral) to the Frank elastic
term linear in director twist on a curved surface.'® Selinger
et al*>'®'® studied tubules with helically modulated tilting
states and helical ripples. Tu and Seifert*® considered a concise
theory of chiral membranes, deriving Euler-Lagrange equa-
tions assuming constant tilt of the molecules relative to the
layer normal. Their model was extended by Kaplan et al.>" to
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include variations in the tilt angle. All of these studies required
an a priori assumption of the shape of the membrane, e.g,
tubules (with uniform tilt or a helically modulated tilt state),
helical stripes, or twisted ribbons.

Previously,”>** we developed a Monte Carlo simulation
scheme that allows for arbitrary membrane shapes using a
discretized effective energy based on the continuum energy
used by Kaplan et al.>* The membrane surface was modeled by
a triangular mesh with beads on the vertices connected by
bonds, and the orientational order was modeled by unit vectors
decorating each bead on the mesh. The energy for the discrete
membrane included both the energy for the membrane shape
and the liquid-crystalline energy for the orientational order. We
used the Canham-Helfrich bending energy with an edge ten-
sion for the energy of membrane shape, a chiral Lebwohl-
Lasher model for the director-director interaction, and a tilt
coupling for the interaction between directors and membrane
surface normal. We found the formation of a cholesteric phase
at large chirality with the development of ripples in the surface
due to the coupling between surface shape and orientational
order. Although our simulations accounted for both the defor-
mation of the membrane surface and the full orientational
order of the constituent particles, they were limited to the
simulation of single-edge membranes.

In this paper, we extend our previous study of the chiral
membranes with one edge and explore the structure of chiral
membranes with multiple edges. We start by investigating the
role of chirality in the equilibrium shapes of multi-edge mem-
branes. When initialized as a vesicle, a membrane with two
edges can form a catenoid-like shape with cholesteric order if
the chirality is sufficiently large. A membrane with three edges
can undergo an additional transition at a higher value of
chirality to a trinoid-like shape again with cholesteric order.
Next, we apply a force to the edges of a membrane initialized in
a cylindrical shape and find that stretching the membrane
leads to the appearance of nematic and smectic-A phases in
addition to cholesteric as the membrane adopts a nearly
cylindrical shape. In both phases, as well as the cholesteric,
the membrane is a single layer of beads wrapping around the
cylinder and thus the two phases do not differ in terms of
positional order. The phases are distinguished by their orienta-
tional order: in the smectic-A phase the directors are aligned
with the normal to the membrane surface, while in the
nematic, they are aligned along a global direction. In the
cholesteric phase of both the unstretched catenoid and cylin-
der, n-walls appear in the director field joining the two edges. At
low chirality, the walls are tilt walls, while at higher chirality
they are twist walls. We present a continuum analytical model
that shows how the structure of the n-walls is determined by the
liquid crystalline parameters.

2 Model and method

As in our previous work,”>** we model the membrane using a

dynamical beads-and-bonds triangular mesh .#,>* with hard
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beads of diameter o, located at each vertex of the triangular mesh.
The beads are connected by bonds of maximum length /,. Each
vertex i of the mesh has a unit length director field ;.

The total energy E of the membrane is the sum of a surface
energy Es that depends on the geometric properties of the
triangular mesh and a liquid-crystalline energy E. that depends
on the director field and its coupling to the mesh. The surface
energy Es has contributions arising from the discretized Can-

ham-Helfrich bending energy***>*® and a line tension of
the edge:
Es = gZ(2H,-)20',- + A Z dSl', (1)
o ico

where « is the bending modulus, and H; and o; are the mean
curvature and the area of the cell on the virtual dual lattice at
bead i, respectively. Complete expressions for each of the terms
above can be found elsewhere.?***?” In the last term above, / is
the line tension of the edge and ds; is the differential edge
length at bead i. The first summation in eqn (1) is over all

o

interior beads .# of the mesh and the second summation is
over all beads 0.# on the edges. In the present study, we ignore
the Gaussian modulus, as experiments on colloidal membrane
indicate that the Gaussian curvature modulus is small com-
pared with the bending modulus.”® Preliminary results from
our model suggest that a small value of the Gaussian curvature
modulus has little effect on our results.>

The liquid-crystalline energy E). consists of three contribu-
tions: the director-director coupling, the chiral energy and the
director-surface coupling:

3. . 1
Ee = —eLL Z [5(“1"“.1')2 —5}
(ij)en

—eke Y (0 ) - By (i - ) (2)

(i)e#

+%CZ[1 — (- 1;)?].
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The first term on the right-hand side of eqn (2) is the Lebwohl-
Lasher interaction,”® which favors the alignment of neighbor-
ing directors on the triangular mesh. The second term is the
chiral Lebwohl-Lasher interaction,’® which favors a right-
handed twist between neighboring directors when k. > 0.
The separation f; is the direction from vertex 7 to vertex j, and
the product (@;%;) is included to satisfy the plus-minus sym-
metry of the director field. The final term represents the tilt
coupling of the director field to the local surface normal f; of
the triangular mesh at bead i, favoring alignment of the
director and the surface normal, a tendency’’ arising from
the depletion interaction.*® A detailed expression for the sur-
face normal can be found elsewhere.”** The summations in
the Lebwohl-Lasher and chiral interactions are over all bonds
in the mesh and the summation in the tilt energy is over all
beads, both in the interior and on the edges.

This journal is © The Royal Society of Chemistry 2023
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(a) (b) (c)
Fig. 1 Possible initial configurations of a triangular mesh with three edges
and N = 300 beads. The internal bonds on the mesh are represented by
thin gray segments and the edge bonds are represented by thick black
lines. (a) A flat membrane with two holes. (b) A cylindrical membrane with
one hole. (c) A vesicle with three holes.

Canonical ensemble Monte Carlo simulations are carried
out using this model by updating both the beads-and-bonds
triangular mesh and the director field. Both the shape update
and director update follow the same procedure as described in
our previous papers.”>** The new element in this paper is that
the membranes have more than one edge, meaning that there
can be holes in the membrane. Fig. 1 shows possible initial
configurations of a triangular mesh with three edges. In Fig. 1a,
a flat membrane has two small triangular holes representing
the second and third edges, and the cylinder in Fig. 1b has one
triangular hole for the third edge. A third possibility is a vesicle
with three holes on the mesh as shown in Fig. 1c. In principle
these holes should disappear by nucleation. However, because
we do not have an edge creation or edge removal update, we
insert the holes by hand in order to create multiple edges. The
membrane is simulated in free space, i.e., there is no simula-
tion box with boundary conditions. This approach is reason-
able given that the size of the membrane is limited by the
maximum length /, of the bonds connecting the beads. We also
found that the drift of the center of mass of the membrane is
small over the entire course of the simulation.

For a system of N beads, each Monte Carlo (MC) cycle is
composed of N/t* attempts to move a bead chosen at random,
2N/t* attempts to flip a bond chosen at random and v/N/¢
attempts to shrink or extend the edge of the membrane. The
parameter ¢ is defined by the bead move update which ran-
domly selects one bead from all the beads on the mesh with
equal probability and moves it to a random position in a cube
of side 2¢ centered at its current position. The bond flip update
selects a bond from all of the bonds in the interior of the
triangular mesh with equal probability, detaches it from the
beads at its endpoints and then flips it to connect the two
opposite beads on the adjacent triangle. The parameter ¢ is set
to 0.1, with all lengths measured in units of the bead diameter
0o. Energies are measured in units of kgT. The maximum length
of the bonds on the triangular mesh is set to be [y = 1.73 < v/3
to satisfy self-avoidance and ensure fluidity of the membrane.>*
During the simulation, 1.7 x 10* MC cycles were performed in
total. To help the system reach equilibrium, we first carry out a
simulated annealing for 2 x 10> MC cycles starting at infinite
temperature where = 1/kgT = 0 and lower the temperature
by increasing f in steps of 3 = 0.01 until reaching the final
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Fig. 2 Shapes and features of three-dimensional membrane structures
for varying chirality k.. The initial configuration for each value of chirality is
a vesicle with total number of edges N = 2 and N, = 3 for (a) and (b)
respectively. The edges bound small holes of size comparable to a triangle
on the mesh [see Fig. 1(c) for an example with N = 3]. Here, the number of
beads N = 300, the bending modulus k = 30, the edge tension /1 = 6, and
the Lebwohl-Lasher constant and tilt coupling ¢ = C = 4. (a) Asymmetry
of the length of the edges versus chirality for a two-edge membrane. The
membrane shapes in the top row show the triangular mesh without the
directors. The membrane shapes in the bottom row show the directors
which lie on the = walls that wind around the membrane and join the
edges. (b) Same as (a) except for a membrane with three edges labeled
with k = 0,1,2. (c) Average twist of the director field Ts = ((0; x G)-F;(0;-0))
as a function of chirality for the membranes shown in (a) and (b), where the
average (...)(, is over all bonds (i,).

temperature corresponding to f = 1. After the simulated
annealing, the system energy approaches a plateau in 1000-
2000 cycles when the system undergoes a shape change from
flat to a catenoid or trinoid (see Fig. 2) and almost immediately
for other cases, we then equilibrate the system for another
5 x 10> MC cycles. We record observables for the remaining 1 x
10" cycles.

3 Equilibrium shapes of membranes
with multiple edges

In our earlier work,”® we demonstrated that increasing the
magnitude of the chirality of the director field leads to a
rippling of a single-edge membrane coinciding with the appear-
ance of cholesteric order. Here we study whether a potentially
similar effect occurs in a multi-edge membrane. Fig. 2 shows
that a membrane with two or three edges can transform
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respectively into shapes reminiscent of a catenoid or trinoid as
chirality is increased. Below we will show quantitatively that
these shapes approximate catenoids and trinoids, and there-
fore we will refer to them as such from here on. The drastic
shape change of the membrane during these transformations
involves crossing a very large free energy barrier and leads to
strong hysteresis. We found that to consistently access these
shapes, we must initialize the membrane as a vesicle with as
many holes as edges, as in Fig. 1c for the case of three edges.
We obtain a vesicle by initializing the system as a flat
membrane as in Fig. 1a, then equilibrating for 2 x 10> MC
cycles with k = 10 and 4 = 20. The relatively low value of x and
large value of 4 leads to the formation of a vesicle. Initializing
the shape in one of the other configurations shown in Fig. 1 can
lead to very “noisy’’ shapes due to the large free energy barrier.
The topology of the triangular mesh is fixed by the number of
holes inserted into the vesicle due to the lack of an edge
creation or removal update in our MC algorithm. Thus, even
if one of the edges shrinks and its size becomes comparable to
the triangles on the mesh, there will always be a small hole
present.

For a membrane with two edges (Fig. 2a), one of the edges
shrinks to a small hole when the chirality k. is small, and the
membrane assumes a disk shape. The directors exhibit
smectic-A order, i.e., they are aligned normal to the membrane
except near the edges where they twist due to chirality.>* In our
previous work>® where we did not insert a hole into the interior
of the membrane, we found that as we increased chirality the
membrane deformed into a saddle shape accompanied by
the appearance of a cholesteric phase once k. = 1. With the
insertion of a hole in the initial membrane, a cholesteric phase
again forms at a similar value of k., but accompanied by a much
more dramatic shape change, namely, from a disk to a cate-
noid. The vertical axis in Fig. 2a is the asymmetry of the length
of the two edges, which is approximately 1 when one edge
dominates and approximately zero when both edges have
nearly the same length.

Fig. 2b shows the result for a membrane with three edges.
When the chirality is small, the membrane becomes a disk
shape with two small holes. At intermediate values of chirality
the membrane becomes a catenoid with one small hole in
its interior. Further increasing chirality leads to an expansion
of the small hole and the membrane become a trinoid
shape with three edges of similar length. Such changes of
shape are captured by the asymmetry of the length of the
three edges shown on the vertical axis of the figure.
When the membrane becomes a disk shape, one of the
edges has a length much greater than the other two, i.e., L,
» L; ~ L, Thus, the measure of asymmetry becomes
|3 Lie™23 )57 Ly| ~ |Lo/Lo| = 1. When the
forms a catenoid, we have L, ~ L; >» L,, and the asym-
metry becomes | Lie™2/3/ 3 Li| ~ |[Ly + Ly cos(2m/3)+
Lyisin(2n/3)]/(Ly + L;)| ~ 1/2. Finally, when all three edges
grow to have roughly the same perimeter, the asymmetry
become approximately 0.

membrane
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Fig. 2c shows the average twist of the director field T =
((t; x )-#;(0;0));, for the membranes with two and three
edges as a function of the chirality k., where the average (...)
is over all bonds (i;f). The twist is positive, indicating a right-
handed twist of the directors. Also, the © walls on the catenoid
and trinoid wind around the membrane in a right-handed
sense. There is little difference between the average twist of
the directors on the two structures, implying that the geometry
of the n walls is very similar on the two membranes.

Fig. 3 shows a plot of the probability distribution of the
mean curvature H; for the disk, catenoid and trinoid shapes
shown in Fig. 2 and the vesicle shape shown in Fig. 1c. The
widths of the distributions for all four shapes are comparable
and of the order of magnitude to be expected for thermal

fluctuations where
kT
H?) ~ | —5~0.2 3
Vi) = 25 = 02, ()

with kgT = 1 (the final temperature of our simulations), k = 30
and o; ~ 1, where og; is the area of the cell on the virtual dual
lattice at bead i (see eqn (1)). The peaks of the distributions for
the catenoid and trinoid are located at approximately equal
values of H; which are substantially smaller than the location of
the peak of the vesicle. While not mathematically minimal
surfaces, the catenoids and trinoids appearing in our simula-
tions are good approximations to ideal minimal surfaces.

Fig. 4 shows a sample configuration of a catenoid including
the directors. We note that there are three n-walls wrapping
around the membrane, joining the two edges. The n-walls are
characterized by a rotation of the director by 180° about an axis
which is perpendicular to the wall and lying in the local tangent
plane of the membrane, as expected in the presence of choles-
teric order. We saw similar lines in our previous study of the
saddle shapes. The force-free catenoid shape as well as the
tubule shapes we find when the catenoid is subject to external
force (see next section) appear to be achiral (Fig. 4a and 5), in
contrast to the helical ribbons and tubules studied by Selinger
et al.’®

10 — disk T

8 F vesicle 4
= = catenoid
i 6 4
— = trinoid
Ny

2

0 1 1 1 1 1 1 1

-0.3 -0.2 —-0.1 0.0 0.1 0.2 0.3 0.4 0.

H;

Fig. 3 Probability distribution of the mean curvature H; (see egn (1))
sampled over 200 MC configurations (50 MC cycles between consecutive
samples) for four membrane shapes: disk, vesicle, catenoid and trinoid.
The membrane parameters are the same as in Fig. 2, except for the vesicle
where 4 = 50. The chirality k. is zero for the disk and vesicle and 1.3 and 2.3
for the catenoid and trinoid, respectively.
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Fig. 4 A sample configuration of a catenoid membrane. (a) Triangular
mesh model of the membrane shape. (b) Hard beads decorated by
directors G on each vertex are shown in addition to the triangular mesh,
with the color indicating the angle arccos |G-A| between the director and
the local surface normal fA. (c) Membrane edges and directors with arccos
|G-A| > =/3, which are the directors approximately located in the t-walls.
There are three such m-walls wrapping around the membrane and they
begin and end on the membrane edges. For the sake of clarity the mesh
and other directors are not shown in part (c).
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Fig. 5 A sample configuration of an elongated membrane produced by
applying equal and opposite forces to the edges of a cylindrical
membrane. Here, the number of beads N = 300, bending modulus x =
50, edge tension 4 = 6, Lebwohl-Lasher constant and tilt coupling ¢ = C
=4, and chirality k. = 1. The edge beads are bounded by the condition z <
0 for the left edge and z > [ for the right edge, and black dashed lines

mark the position of z = 0 and z = . (a) Triangular mesh model of the
membrane shape. (b) Same as (a), but now including the directors attached
to the beads. The color coding of the director orientation relative to the
surface normal is the same as in Fig. 4.

4 Elongated membranes
4.1 Director field

We now focus on a two-edge membrane and study its response
to an external force applied to the edges of a membrane
initialized not as a vesicle as in the previous section, but rather
in a cylindrical shape (similar to Fig. 1b but without the small
hole on the surface). Initializing in a cylindrical shape allows us
to easily apply equal and opposite forces to the two edges which
would be very difficult to accomplish for the catenoids shown in
Fig. 4 where the edges are not planar. The force changes the
length of the membrane and preempts the formation of a
catenoid at large chirality, maintaining instead a nearly cylind-
rical shape except near the edges. The force is incorporated into
our simulation by demanding that the beads on the right edge
have z > I, and the beads on the left have z < 0, where the z
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axis is along the long axis of the cylinder and If is the elongated
length of the membrane under force. A sample configuration of
an elongated membrane is shown in Fig. 5. We specify [ in
terms of inequalities on the z coordinates of the edge beads to
allow beads to join or leave the edges in our simulations.
Constraining the edge beads to be exactly at z = [ or z = 0
would prevent a bead in the interior from joining the edge
unless it moves exactly to z = Iz or z = 0. By allowing the edge
beads to move slightly into the z > It or z < 0 regions, we
overcome this difficulty. The absence of sharp left and right
edges of the elongated membrane shown in Fig. 5 is a result of
this requirement.

While in the absence of an external force the catenoid
membrane exhibits only a cholesteric phase, stretching a
cylindrical membrane leads to the appearance of nematic and
smectic-A phases in addition to the cholesteric depending on
the values of the Lebwohl-Lasher coupling constant ¢, the tilt
coupling C and the chirality k.. For sufficiently large C com-
pared to &y, and with k. = 0, the directors align with the local
surface normal and form a smectic-A phase as shown in the top
row of Fig. 6a. For sufficiently large ¢;;, compared to C and k. =
0, the directors align along a common global direction
perpendicular to the z axis and form a nematic phase as shown
in middle row of Fig. 6a. Finally, when k. is nonzero and C is
not too large, the directors twist and form a cholesteric phase
as shown in the bottom row of Fig. 6a. Note that in all three
phases the positional order of the beads is essentially the same,
as shown, e.g., in Fig. 5a.

Fig. 6b shows a plot of the average nematic order parameter
(S), the largest eigenvalue of the nematic order parameter
tensor Q;; = %(u,-uj — %5,»,-), versus ¢y, for various values of the
tilt coupling C and fixed length of the membrane . As C
increases and k. remains zero, the critical value of ¢, for the
smectic-A-nematic transition increases, indicating that the
competition between C and ¢;; determines the equilibrium
phase. Similarly, the critical value of k. for the smectic-A-
cholesteric transition also increases with increasing C as shown
in Fig. 6d, where the average director-normal alignment ((é-fi)*)
is plotted versus k., confirming that the competition between &,
and C determines which of these two phases is preferred. On
the other hand, Fig. 6¢c and e show that increasing /; decreases
the critical values of ¢;, and k. at the smectic-A-nematic and
smectic-A-cholesteric transitions, respectively. As the length ¢
increases, the tubule narrows, increasing the energy penalty for
splay of the director field (which is present in the smectic-A
phase, see Fig. 6a) and leading to transitions to the nematic and
cholesteric phases at lower values of ¢;, and k. respectively.

Additional insight into the phases shown in Fig. 6 can be
obtained from illustrations of perfect nematic, cholesteric and
smectic-A ordering on a cylinder (see Fig. 7). The variation of tilt
in our model permits the continuous transformation of the
director field between these different phases. The smectic-A
phase shown in Fig. 7a is analogous to a +1 disclination in a
planar nematic, and can continuously transform into the
nematic phase with directors along z (Fig. 7d) by escaping into
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Fig. 6 Three phases of the director field (smectic-A, nematic, and cho-
lesteric) in a tubular membrane under force arise from the competition
between the Lebwohl-Lasher constant ¢, tilt coupling C, and chirality k.
Here, the number of beads N = 300, bending modulus k = 50, and edge
tension 4 = 6. (a) Top view of one end of a membrane of length s = 25 (left
column), front view of the same end (middle column, with the beads and
bonds in the back sides excluded for better visualization), and oblique view
of the tubule (right column). The parameters for all membrane images are
C = 6, with (e.1ko) = (2,0) (top row), (4,0) (middle row), and (2,1.5) (bottom
row), respectively. The color coding of the directors is the same as in Fig. 4.
From top to bottom, the three rows correspond to smectic-A, nematic and

cholesteric phases. (b) Average nematic order parameter (S), the largest

. ) 1
eigenvalue of the nematic order parameter tensor Q; =5\ _5()’7 ,

versus ¢ for various values of C with k. = 0. (c) Average director-normal
alignment ((O-ﬁ)z) versus ¢, for various values of l¢ with ke = 0. (d) (G-A)?
versus chirality k. for various values of C with ¢ = 2, (e) same axes as in
(d) but for various values ;. The discontinuities in (b) and (c) occur at the
smectic-A-nematic transition and in (d) and (e) at the smectic-A-
cholesteric transitions.

the third dimension.’**” Likewise, the cholesteric phase

(Fig. 7c) can transform continuously to the nematic phase with
directors along x (Fig. 7b) via a rotation of the directors by /2
about the radial direction followed by rotations about z. Finally,
the nematic configurations in Fig. 7b and d are related by a
rotation about y. Note that the nematic and cholesteric phases
shown in Fig. 7b and c, respectively, have identical tilt energies
and this common energy is lower than the tilt energy of the
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Fig. 7 Illustration of perfect (a) smectic-A, (b) and (d) nematic (zero
chirality) and (c) cholesteric order on a cylinder whose long axis is the z
axis. The directors are indicated by rods and we provide four views of each
phase from top to bottom, respectively: looking down the z axis, a view
from the side of the cylinder, and two views with the cylinder unwrapped:
one looking head-on [i.e., the (¢,z) plane] and another looking down the z
axis. In all figures the director fields have no z dependence. (a) A smectic-A
phase where all directors are aligned with the normal to the surface. (b) A
nematic phase where all directors point in the x direction. For nonzero but
small chirality, the directors will begin to twist. (c) A cholesteric phase
where the directors lie in the (p,z) plane and rotate about the d; axis. We use
a "nailnead” representation of the director, where the head of the nail is
tilted out of the plane of the figure. (d) A nematic phase with all directors
pointing in the z direction.

nematic phase shown in Fig. 7d. In the former two phases there
is some alignment of the directors with the local surface
normal, whereas in the latter phase all of the directors are
perpendicular to the normal.

4.2 Walls

We now take a closer look at the director field in the nematic
and cholesteric phases of the elongated membrane. In parti-
cular, we consider the n walls which form as a consequence of
the competition between k., C, and ¢ It is helpful to note that
n walls can appear with two different structures as shown by
Helfrich for nematic liquid crystals in a magnetic field.*® To
visualize Helfrich’s structures, consider directors with their
centers of mass confined to a plane and oriented perpendicular
to the plane except in a straight thin domain wall of infinite
length.

If the directors rotate by 180° about an axis perpendicular to
the domain wall, then the wall is a twist © wall. Such walls are
analogous to Bloch walls in ferromagnets. On a cylindrical
surface, twist m walls are lines of directors tangent to the
surface, with the directors in the wall oriented parallel to the

This journal is © The Royal Society of Chemistry 2023
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wall. An ideal case with twist © walls along the z axis is shown in
Fig. 7c. As one crosses a twist © wall, the directors rotate by 180°
about an axis perpendicular to the line (i.e., the </> direction in
7¢). In this example, the © walls are not thin because the
directors rotate at a uniform rate as the circumference is
traversed.

Returning to the case of molecules confined to a plane,
Helfrich noted that m walls can also be “splay-bend” walls with
no twist, analogous to Néel walls in ferromagnets. For directors
with centers of mass in a plane, and perpendicular to the
surface everywhere but in a thin domain wall, a splay-bend =
wall has the directors rotating by 180° about an axis parallel to
the wall. Wrapping this plane into a cylinder to make a straight
n wall analogous to the splay-bend & wall, we see that directors
in this © wall once again lie in the tangent plane of the surface
but are oriented perpendicular to the wall (see Fig. 7b). As one
crosses this © wall, the directors rotate relative to the surface
normal by 180° about an axis parallel to the line (the z axis in
the figure). Thus, on a cylinder, the analog of the splay-bend =
wall on a flat surface is a tilt = wall.

More generally, both types of © walls need not be parallel to
the z axis, and there is not a rigid distinction between the two
types of walls. For example, consider a cholesteric state (differ-
ent from the one shown in 7c) in which the directors on the
cylinder twist about the axis of the cylinder: & = %cos(qz) +
ysin(gz). This state has two domain walls of mixed type that
spiral around the cylinder. As we traverse the domain wall
along a circumference, the directors rotate about the z axis
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relative to the surface normal. Since the domain wall is not
along z, the axis of rotation makes an angle with the domain
wall, indicating it is of mixed type. And if we traverse the
domain wall along a path in the surface which is normal to
the domain wall, the directors rotate about z relative to a space-
fixed axis, again indicating that the wall is partly a twist wall
and partly a tilt wall.

Fig. 8 shows how a change in chirality transforms the tilt
walls into twist walls in the cholesteric phase. As shown in
Fig. 8a, the tilt walls start twisting and wrapping about the
membrane’s cylindrical neck, forming helical shapes as the
chirality k. increases. At the same time, the directors on the wall
become parallel to the direction of the wall, as expected for
twist walls. These observation are quantified in Fig. 8b and c.
The former figure shows the average twist of the director field
Ts = ((@; x @)-t,(4,0)) ). Here, the average (...);, is over all
bonds (i,j). The twist increases with the chirality as expected.
Fig. 8c displays G-z, the component of the director along the
elongation direction. This quantity also increases with increas-
ing chirality, indicating that as the directors twist about each
other, they also rotate more into the elongation direction and
the walls transition from tilt to twist. The discontinuities in
Fig. 8b and c for /¢ = 15 and I = 25 correspond to the formation
of an additional n-wall. This can be seen for the case of [z = 25
by comparing the upper left and lower left configurations
in Fig. 8a. Similar discontinuities are not found for the
longer membrane with /s = 35 whose configuration is shown
in the upper right of Fig. 8a. Due to the smaller diameter of the

0.0 05 1.0 1.5 2.0 25 3.0
ke

Fig. 8 = walls in the nematic (zero chirality) and cholesteric phases with number of beads N = 300, bending modulus x = 50, edge tension 1 = 6,
Lebwohl-Lasher constant ¢ | = 4, and tilt coupling C = 4. (a) Configurations of an elongated membrane with [ = 25, 35 (left to right) and k. = 0, 1, 2.5
(bottom to top, respectively). Only the triangular mesh and directors with tilt angle arccos |G-A| > n/3 are shown. The color bar is the same as in Fig. 4.
The n walls twist around the membrane in a right-handed sense for k. > 0. (b) Director field twist Ts = ((G; x G;)-F;(G;-0,)) ;. averaged over all bonds (i),
versus chirality k. for various values of the membrane length ;. The positive values of T indicate that the twist is right-handed. (c) Average projection of
the director along the direction of elongation ((ﬁ»i)z) versus k. for different .. The discontinuities in (b) and (c) correspond to the formation of an

additional © wall.

This journal is © The Royal Society of Chemistry 2023
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longer membrane there is insufficient space for an additional
n-wall.

Fig. 9 shows the average director field twist Ty = ((fi; x @)
t;(0;-0)) ;) for various values of chirality k. and tilt coupling
C. Consistent with the results shown in Fig. 8, there are three
phases: smectic-A, 2-wall (nematic or cholesteric) and 3-wall
cholesteric when the membrane is not too thin, the range of
chirality k. of 2-wall phase that separate smectic-A and 3-wall
phase get smaller as tilt coupling C increases.

We further study the structure of the n walls by slicing the
membrane perpendicular to the z direction, as indicated by the
horizontal dashed lines and colored vertical segments in
Fig. 10a-c. Fig. 10a and ¢ show a membrane with two n walls
for tilt couplings C = 2,10, respectively. Fig. 10b shows a
membrane with three © walls with C = 2, but at a higher value
of chirality. Fig. 10d-f show (&-f)?, the alighment between the
directors and the surface normal in each of the slices shown in
Fig. 10a-c, plotted against the polar angle ¢ = arctan(y/x), where
(x,y) is the location of a bead in the slice. The curves are fit to
the form (Gi-h)* = (/4 — eSiNMP= P20y (1% _ e~ 1/%) where m
is the number of n walls (m = 2 in (d) and (f) and m = 3 in (e)), 4,
in the factor eS™™(#~#9/* determines the angular width of the ©
walls, and the others terms normalize (i-A)> to the range [0,1].
In (d) and (e), 4, ~ 3, yields a good sinusoidal-like fit that
indicates that the n walls are not sharp; the tilt coupling is
relatively small and the directors twist to satisfy their chirality.
In (f) where the tilt coupling is larger, the curves are fit with
Ag = 0.5. The m walls here are narrower as the directors tend to
align with the surface normal in order to lower the cost of tilt.

Fig. 11b shows the angle 0 = o, — « as a function of chirality
k., where o, is the angle between z and directors in the vicinity

2

X
:t’» ? %

W

05 1.0 15 20 25 30
ke

Fig. 9 Heat map of the director field twist Ts = ((G; x )-F;(G;-0)) ;) for
various values of chirality k. and tilt coupling C with number of beads N =
300, bending modulus k = 50, edge tension 4 = 6, Lebwohl-Lasher
constant ¢ = 2 for a relative short membrane [ = 15. The sharp gradient
of the color indicates the transition from smectic-A phase (purple), to 2-
wall cholesteric (green) and 3-wall cholesteric (red) phases. Configurations
of the membrane are shown at the top with values of (k.,C) corresponding
to points indicated by arrows in the heat map.
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¢ = arctan(y/x)

Fig. 10 Structure of the n walls. Here the number of beads N = 300,
bending modulus k = 50, edge tension 1 = 6, Lebwohl-Lasher constant
&L = 4. (a) Configuration of a membrane with two r walls, tilt coupling C =
2, length [ = 25 and chirality k. = 0.5. The horizontal dashed lines and
vertical colored lines indicate slices of beads along the z direction. (b)
Same as (a) except k. = 2.5, and there are now three & walls. (c) Same as
(a) except C = 10. (d)—(f) The director—surface normal alignment ({-A)? as a
function of the polar coordinate ¢ for the configurations shown in (a)—(c),
respectively. The colors correspond to the slices of the membrane shown
in the figure directly above. Each dot corresponds to an individual bead.
The curves are fit to the form (G-A)% = lexp(1/2.4) — explsinim(¢p — ¢o))/igll/
lexp(1/44) — exp(—1/44)l, where m is the number of n walls [m = 2 in (d) and
(fland m = 3in (e)], 44 in the factor explsin(m(¢ — $o))/1,] determines the
angular width of the © walls, and the others terms normalize (G-R)? to the
range [0,1]. In (d) and (e), 44 ~ 3, yields a good sinusoidal-like fit that
indicates that the n walls are not sharp; the tilt coupling is relatively small
and the directors twist to satisfy their chirality. In (f), the curves are fit with
Ay ~ 0.5. The m walls here are narrower as the directors tend to align with
the surface normal in order to lower the cost of tilt. The location of the n
walls corresponds to values of ¢ where (G-A)? = 0.

of the © walls which have a tilt angle satisfying arccos (|a-fi]) >
n/3 and « is obtained from tan« in Fig. 11a. Thus, § measures
the orientation of these directors relative to the wall direction,
and 6 is zero for twist walls and /2 for tilt walls. As k. increases,
o, decreases, i.e., the directors near the wall rotate towards the z
axis. Simultaneously the walls rotate away from the z axis («
increases). The net result is that the angle 0 decreases, appears
to plateau around a value of 0.4 radians. The n walls thus
transition from tilt walls at low values of chirality to more twist-
like at higher chirality.

This journal is © The Royal Society of Chemistry 2023



Published on 19 October 2023. Downloaded by Brown University on 9/23/2024 8:07:52 PM.

Soft Matter

LR NLALELELE NN N JIRSY i i e
1.0F $C=2 @: - h
? Lok
3
3
Il [
< 0.5
0.0-||A||A||||||||
0 1 2 3

ke

Fig. 11 The angle o between the © walls and the z axis, and the angle 6
between the walls and directors in the vicinity of the walls. Here the
number of beads N = 300, bending modulus x = 50, edge tension /. = 6,
Lebwohl-Lasher constant ¢ | = 4. (a) Plot of tan « versus chirality k. for C =
2.6,10. The tana is obtained from results similar to Fig. 10d—f using the fit
¢o ~ tanu(z)/(R), where (z) is the average z position and (R) is the average
radius of each slice of the nearly cylindrical membrane. (b) Plot of 6 = o, —
o versus k. for tilt coupling C = 2,6 and 10, As 0 decreases, the directors on
and near the wall begin to align with the wall direction and the wall
becomes more twist-like in nature. For k. < 2 two m walls are present. The
discontinuities in the plots around k. = 2 are due to the appearance of a
third wall.

5 Continuum model for the director
field on a cylinder

To better understand the phase behavior seen in the simula-
tions of the previous section and the transformation of the tilt ©
walls at low chirality into twist walls at higher chirality, and to
assess the role of membrane flexibility, we use continuum
elasticity theory to study the deformation and director config-
urations of an infinite nearly cylindrical membrane. The total
energy of the membrane is*

E = JdA{g[(V~

£l Gay] +§(2H)2},

=>

P+ (@ (Vx ) +g)* + (0 x (V x d))?]

(4)

where K is the Frank modulus in the one coupling constant
approximation, @ is the unit vector representing the director
field, g is the preferred rate of twist, C is the tilt modulus, f is
the membrane unit normal vector, « is the bending modulus,
and H is the mean curvature of the membrane. We have chosen
the sign of the chiral term ¢ in eqn (4) to agree with the sign of
k. in our simulation model eqn (2), namely, positive values of g
and k. correspond to a right-handed twist of the director field.
Since we study nearly cylindrical shapes, cylindrical coordi-
nates ¢ and z are natural. The position of the point (¢,2) is
given by X(¢,2), and tangent vectors along the coordinate
directions are given by t, = 0,X, where u = ¢ or z. Distances
along the membrane are determined by the metric tensor g, =
t,-t,, with g the determinant of the matrix g,,,, g the inverse of
the metric tensor, d4 = ,/gd¢dz the area element, and n =
t; X t,/,/g the unit normal. Curvature of the membrane is

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper

determined by the curvature tensor K,,, = h-0,t,, with the mean
curvature given by H = g"’K,,/2. Since the membrane in our
continuum model is represented by a vanishingly thin mathe-
matical surface, the gradients in eqn (4) are gradients along the
surface of the membrane: V = g**t,0,. Thus

Vi =gt - 9
i (V x i) =i (g"t, x 0,0) )
i (V % 8) = x (8"t x 1),

Note that our use of the surface gradient V in the energy leads
to couplings between the directors and the membrane curva-
ture, which is characteristic of membrane models that account
for extrinsic (normal) components of derivatives of the director
field.** In the following we denote the angle between the
director and the surface normal by f.

5.1 Case of large Frank constant

We can use the continuum model to explain how the director
configuration influences membrane shape in the examples
shown in Fig. 6. In the smectic phase, symmetry implies the
membrane is a cylinder, with a radius R independent of ¢.
Observe that the cross section of the membrane in our simula-
tions flattens in the nematic phase (Fig. 6a, left column, middle
row), whereas it is nearly circular in the cholesteric phase
(Fig. 6a, left column, bottom row). Apparently, the Lebwohl-
Lasher modulus ¢4, is large enough compared to x to cause the
membrane in the nematic phase to deform so that the director
is nearly parallel to the normal over most of the circumference.
Therefore, we simplify our theoretical discussion by limiting
our analysis to the case that the Frank constant is large
compared to the bending stiffness in the continuum model,
K >» K, even though ¢y is not large compared to x in our
simulation. (Monte Carlo simulations indicate that K ~ 3¢ at
low temperature).*’ In this limit, the only parameter is the
dimensionless ratio of the tilt modulus to the bending stiffness,
% = CR?*/x. In the simulations, y =~ 1, but we will see that even
when y is of order unity, the deflection of the membrane cross-
section away from the circular shape is small. Thus, we assume
the Frank energy is zero, with @ = X cos(gz) + ysin(gz), and write
the energy to second order in y for the deformation X = p[R +
{($,2)] + z2. To enforce the constraint of fixed area,
[d¢./g = 2nR, we introduce a Lagrange multiplier 1 which we
expand to first order in y: n = no + y7,. Using the same approach
as Kaplan et al.,*" we derive the Euler-Lagrange equations. To
zeroth order in y, we find that 5, = x/(2R*), which is the tension
required to hold a membrane cylinder of radius R in
equilibrium.** Using this result in the Euler-Lagrange equa-
tions to first order in y yields

wlec 200 2 e 1o 1
974 R2022 T R10¢20:2 " RO RO .
6
31 L R
+ 7] cos(2gz — 2¢) +4 + P 0,

where #, is determined by the constraint of fixed area. Solving
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eqn (6) with the assumption that the minimum radius is at ¢ =
0 and z = 0 yields

¢ 3
L ~ 2z -2¢). (7
R~ 65 6GeRQ s Ry om0 0)

In the achiral nematic case, g = 0, the deformation is similar to
that of Fig. 6a, left column and middle row:
% = ,é cos 2¢. (8)

The extra bending required to make a helical deformation for a
chiral membrane greatly reduces the amplitude of the deforma-
tion relative to the achiral case. For example, the amplitude of
the deformation with gR = 1.5 is 0.056 times the amplitude
when g = 0, which is consistent with the fact that the cross-
section in the left column and bottom row of Fig. 6a is much
more circular than the achiral case in the left column and
middle row.

5.2 Case of infinite bending stiffness

Since the effect of flexibility is small for chiral membranes, we
will assume infinite stiffness in the rest of this section and take
the membrane shape to be an infinite cylinder of radius R (even
in the achiral limit of g = 0). First we compare the energy of two
simple configurations, the smectic-A phase and the cholesteric
phase. In the smectic-A phase, the directors point radially
outward, @i, = f, and the energy per unit length for a cylinder
of radius R is Eg/L = nK/R + tKq’R. In the cholesteric phase,
Uchol = X€OS g2 + ¥sin gz. Note that this configuration amounts to
a thin cylindrical shell of liquid crystal cut from a three-
dimensional cholesteric with the pitch axis aligned along the
cylinder axis. This configuration has two m walls that wind
around the surface of the cylinder, and the energy per unit
length is Echor = TCR/2. Comparing these two energies, we see
that the cholesteric phase is favored over the smectic phase
when CR*/K < 2(1 + ¢°R).

The directors in the configurations we just considered have
no z component, whereas our simulations show that the
directors have a nonzero z component when k. # 0 (Fig. 8a
and 10a-c). Therefore we construct a ansatz with an z compo-
nent that allows the directors to rotate toward the z axis:

(I =) (¢, 2) + (¢, 2)

N e TE S R (e
where the parameter y ranges from 0 to 1, and
i (9,2) = cosp(¢,2)p — sinf(,2)
(10)

(¢, 2) = cos f(¢,2)p — sin f(¢h, 2)(sin aep + cos 0z).
The directors make an angle f with the surface normal p with
B, z) = %[d) — (z/R) tana], m is the number of © walls, and «

(as defined in the last section) is the angle between the & walls
and Z. The location of the n walls corresponds to f§ = n/2.

Our model is constructed to describe the cholesteric,
nematic and smectic-A phases seen in the simulations
(Fig. 6a) and in the illustrations of the perfect forms of these
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phases (Fig. 7), and to allow for the two types of © walls, i.e., tilt
and twist. If m = 0, the director fields @, and 4, are equal and
describe a smectic-A phase, i.e., f = 0. With m = 2, @i; describes a
fully ordered nematic if « = 0 (Fig. 7b and the upper left corner
of Fig. 12), while for o # 0, 1; describes a cholesteric phase with
two 7 walls. If « is close to n/2, the walls are twist walls, while if
o is nearly zero, the walls are tilt walls. This can be seen from
the value of the angle 0 = «, — « = /2 — « and recalling that 0 is
zero for twist walls and n/2 for tilt walls. Turning to G,, we note
that unlike @, it has a z component and the factor sin ocqg +
cos aZ is a unit vector parallel to a n© wall. Thus, the director field
0, on a wall [(¢,2) = n/2] is parallel to the wall direction, and i,
describes a phase with perfect twist walls. Fig. 7c illustrates i,
for m = 2, « = 0. There are two 1 walls parallel to the z axis (i.e.,
perpendicular to the page), one passing through the point at
the top and the other through the point at the bottom of the
figure. We see from the figure that the directors rotate by 180°
as either wall is traversed, with a rotation axis parallel to .
Because our ansatz is the smectic-A state when m = 0, and is like
an interpolation between the nematic state and a cholesteric
state with two twist © walls only when m = 2, we restrict m to the
values 0 and 2.

Fig. 12 shows sample configurations of the m = 2 director
field for additional values of o and y. In summary, if m = 0 the
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Fig. 12 Illustration of the interpolated director field eqn (9) and (10) with
m = 2 for various values of the interpolation parameter y and tilt angle o of
the © walls with respect to the z axis. The left column illustrates sample
configurations of (¢.z), depending on the value of «, the angle between
the © walls and the z axis, while the right column illustrates Gx(¢.2).
Directors are shown as rods and the color bar is the same as Fig. 4. The
thin black lines near the blue directors indicate the location of © walls. The
angle 0 is the difference between o, and o, where oy, is the angle between
the directors on the wall and the z axis. When 6 = 0 (right column), the
directors on the wall are pointing along the direction of the wall.

This journal is © The Royal Society of Chemistry 2023



Published on 19 October 2023. Downloaded by Brown University on 9/23/2024 8:07:52 PM.

Soft Matter

8 T T I
L y.
TF / E
L Smectic-A Y. il 3
= /
6 I (m =0) Vs ol E
L s |
i 5 . o
= i 2p2y ]
% 4t 2(1+¢*R?) ¢ 4
(@) L P ]
3k 227 el ]
L o Cholesteric 1r 40.2
o - (m=2) u|s ] =
L 4+ \- 0.1
1F 4l 4
a C
S S L( )J ] 1% 0.0
0 1 20 1 2
qR qR

Fig. 13 Phase diagram obtained from the interpolated director field
egn (9) with m = 0 and 2. (a) Phase diagram obtained from the normalized
energy difference AE'R?/C = (E!,_, — E.,_,)R*/C for various values of gR
and CR?/K. The dashed line is a continuous transition from the smectic-A
to the cholesteric phase. At gR = 0 the cholesteric becomes a nematic
phase up until the critical value of CR?/K where it transitions to the
smectic-A phase. (b) tana of the m = 2 director field (at the minimum
value of energy) versus qR. The curves are labeled by the values of CR*/K
and begin at the critical value of gR for the m = 0 to m = 2 transition shown
in (a). (c) Similar to (b), the value of the interpolation parameter y of the m =
2 director field versus gR at the energy minimum.

model exhibits a smectic-A phase, and if m = 2 it exhibits a
nematic phase if « = 0 or a cholesteric phase otherwise. The
cholesteric phase can have either tilt or twist walls depending
on the values of o and 7.

We numerically minimize the energy eqn (4), as a function
of o and y for fixed values of gR, CR*/K, and m. Then, we

! —
m=2

compute the normalized energy difference AE'R?/C = (
' _o)R?/C and find the phase diagram shown in Fig. 13a.
Similar to the results from our Monte Carlo simulations in
Fig. 9, the critical gR for the transition from the smectic-A
phase to the nematic (g = 0) or cholesteric phase increases with
increasing CR?*/K. As shown in Fig. 13b, tana also increases
with chirality gR, indicating a twisting of the  walls as chirality
increases. Fig. 13c shows y as a function of gR and indicates
that the system accommodates the increase of chirality by
transitioning from nematic (pure @; with o = 0) to cholesteric
(m = 2) order. When C is very small (0.2), we see from Fig. 13c
that the cholesteric phase is described by a nearly pure i,
director field which is illustrated in the left column of Fig. 12.
Fig. 13b indicates that « grows and 0 decreases as gR increases
(see Fig. 12). As chirality increases, the © walls tilt, the directors
on the walls rotate towards the direction of the wall, and the tilt
walls transition to having a more twist-like character, as we saw
in the simulations (see Fig. 11c). The curves shown in Fig. 13b
and c begin at the critical value of gR for the smectic-A to
cholesteric transition shown in Fig. 13a. The peak in Fig. 13c
for C = 2.2 appears because of the flatness of the transition line.
Similar peaks for the larger values of C do not appear because
they would correspond to points in the smectic-A phase of
Fig. 13a.
We note that the value of y remains less than 0.3 and is
generally less than 0.1. Thus, the director field is nearly &, with
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a small &1, component, which is why the simple balance Es;,, =
Echol mentioned at the beginning of this subsection gives a
good approximation to the phase boundary shown in Fig. 13a,
and is also why the minimizing value of tan « is so close to gR
(Fig. 13b). These results are consistent with our simulations
(Fig. 11c) which showed that the & walls, while no longer purely
tilt in character, do not become pure twist walls as chirality
increases.

The tilt energy appearing in both eqn (2) and (4) has the
same mathematical form as the interaction of directors with a
magnetic field imagined to be normal to the surface of the
cylinder. For sufficiently large field, the cholesteric twist will be
unwound and the system will become a nematic. This problem
was studied in a flat geometry by de Gennes®® and Meyer** who
found a critical field proportional to chirality. In our case of a
cylindrical geometry, the cholesteric twist can unwind either
through the formation of a nematic phase (zero chirality) or a
smectic-A phase for sufficiently large C. The curvature of the
surface makes the nematic state of complete alignment differ-
ent from the smectic-A state of complete alignment with the
“external field” of the surface normal. Thus, the transition line
between the cholesteric and smectic-A phase does not go
through the origin of the phase diagram shown in Fig. 13a.

6 Conclusion

In this paper, we further developed a general model® of chiral

membranes with orientational order and edges and carried out
simulations of membranes with multiple edges. We found that
membranes can form disks, catenoids and trinoids as the
magnitude of chirality increases and when the number of edges
allows. The formation of catenoids and trinoids is accompa-
nied by the appearance of a cholesteric phase where n-walls
wrap around the membrane and connect different edges. For
the two-edge membranes, pulling on the opposite edges makes
the membrane thinner and leads to a cylindrical shape. The
directors on the elongated membrane can form additional
phases besides the cholesteric seen in the force-free case. When
there is no chirality, the directors can either align with the
surface normal and form a smectic-A phase or form a nematic
phase with all directors pointing along a single global direction,
depending on the strength of the tilt coupling. Once chirality is
nonzero, a cholesteric phase appears for sufficiently low tilt
coupling. At low chirality, the © walls are of the tilt variety. As
chirality increases, the walls transform to the twist variety
common to the cholesteric phase.

Our model provides a general framework for simulating not
only colloidal membrane made of chiral filaments but also the
general problem of liquid crystals on deformable surfaces. The
current formulation of our model has some limitations. First,
the model is restricted to membranes made of a single compo-
nents, and many shapes including high-order saddle, catenoid
and handles emerge when the membranes are made of mix-
tures of filaments of different lengths.'® A natural extension of
the current model to account for mixtures would be to use
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moduli in the energy that vary with position across the
membrane. Second, the current model does not allow topolo-
gical changes of the triangular mesh. Thus, the edges are only
able to shrink to a small triangle instead of fully disappearing.
A future development of the model could overcome this limita-
tion with the implementation of an edge removal and creation
update that allows a change in the number of edges during the
simulation and would also allow a nucleation of a hole in the
initial configuration.

Author contributions

L], RAP and TRP conceived the work; L] developed the simula-
tion codes, generated and analyzed the simulation data; L] and
TRP carried out the theoretical analyses; and L], RAP, and TRP
wrote and edited the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful to Timothy Atherton, Federico Cao, Zvonimir
Dogic, Chaitanya Joshi, and Zifei Liu for helpful conversations.
This work was supported by the National Science Foundation
through Grant No. CMMI-2020098.

References

1 A. Frost, V. M. Unger and P. De Camilli, Cell, 2009, 137,
191-196.

2 J. H. Georger, A. Singh, R. R. Price, J. M. Schnur, P. Yager
and P. E. Schoen, J. Am. Chem. Soc., 1987, 109, 6169-6175.

3 J. V. Selinger and J. M. Schnur, Phys. Rev. Lett., 1993,
71, 4091.

4 T. Lopez-Leon and A. Fernandez-Nieves, Colloid Polym. Sci.,
2011, 289, 345-359.

5 L. Tran, M. O. Lavrentovich, G. Durey, A. Darmon,
M. F. Haase, N. Li, D. Lee, K. J. Stebe, R. D. Kamien and
T. Lopez-Leon, Phys. Rev. X, 2017, 7, 041029.

6 L. N. Carenza, G. Gonnella, D. Marenduzzo, G. Negro and
E. Orlandini, Phys. Rev. Lett., 2022, 128, 027801.

7 G. Napoli, O. V. Pylypovskyi, D. D. Sheka and L. Vergori, Soft
Matter, 2021, 17, 10322-10333.

8 1. Nitschke, S. Reuther and A. Voigt, Proc. R. Soc. A, 2020,
476, 20200313.

9 G. Napoli and L. Vergori, Phys. Rev. Lett., 2012, 108, 207803.

10 T. Gibaud, J. Phys.: Condens. Matter, 2017, 29, 493003.

11 M. Siavashpouri, C. H. Wachauf, M. ]J. Zakhary,
F. Praetorius, H. Dietz and Z. Dogic, Nat. Mater., 2017, 16,
849-856.

12 E. Barry, D. Beller and Z. Dogic, Soft Matter, 2009, 5,
2563-2570.

8464 | Soft Matter, 2023,19, 8453-8464

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

View Article Online

Soft Matter

A. Khanra, L. L. Jia, N. P. Mitchell, A. Balchunas, R. A.
Pelcovits, T. R. Powers, Z. Dogic and P. Sharma, Proc. Natl.
Acad. Sci. U. S. A., 2022, 119, €2204453119.

T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward,
Y. Yang, C. Berciu, R. Oldenbourg, M. F. Hagan and
D. Nicastro, et al., Nature, 2012, 481, 348-351.

M. ]J. Zakhary, T. Gibaud, C. Nadir Kaplan, E. Barry,
R. Oldenbourg, R. B. Meyer and Z. Dogic, Nat. Commun.,
2014, 5, 1-9.

J. V. Selinger, M. S. Spector and J. M. Schnur, J. Phys. Chem.
B, 2001, 105, 7157-71609.

W. Helfrich and ]. Prost, Phys. Rev. A: At., Mol., Opt. Phys.,
1988, 38, 3065.

O.-Y. Zhong-Can and L. Jixing, Phys. Rev. A: At., Mol., Opt.
Phys., 1991, 43, 6826.

J. Selinger, F. MacKintosh and J. Schnur, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 1996, 53, 3804.

Z.Tu and U. Seifert, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2007, 76, 031603.

C. N. Kaplan, H. Tu, R. A. Pelcovits and R. B. Meyer, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2010, 82, 021701.
L. Ding, R. A. Pelcovits and T. R. Powers, Phys. Rev. E, 2020,
102, 032608.

L. Ding, R. A. Pelcovits and T. R. Powers, Soft Matter, 2021,
17, 6580-6588.

G. Gompper and D. M. Kroll, J. Phys.: Condens. Matter, 1997,
9, 8795.

P. B. Canham, J. Theor. Biol., 1970, 26, 61-81.

W. Helfrich, Z. Naturforsch., C: J. Biosci., 1973, 28, 693-703.
D. Espriu, Phys. Lett. B, 1987, 194, 271-276.

T. Gibaud, C. N. Kaplan, P. Sharma, M. J. Zakhary, A.
Ward, R. Oldenbourg, R. B. Meyer, R. D. Kamien,
T. R. Powers and Z. Dogic, Proc. Natl. Acad. Sci. U. S. A.,
2017, 114, E3376-E3384.

P. A. Lebwohl and G. Lasher, Phys. Rev. A: At., Mol, Opt.
Phys., 1972, 6, 426.

B. Van der Meer, G. Vertogen, A. Dekker and ]J. Ypma,
J. Chem. Phys., 1976, 65, 3935-3943.

E. Barry, Z. Dogic, R. B. Meyer, R. A. Pelcovits and
R. Oldenbourg, J. Phys. Chem. B, 2009, 113, 3910-3913.

S. Asakura and F. Oosawa, J. Chem. Phys., 1954, 22, 1255-1256.
K. Crane, F. de Goes, M. Desbrun and P. Schréder, ACM
SIGGRAPH 2013 courses, New York, NY, USA, 2013.

G. Gompper and D. Kroll, Eur. Phys. J. E: Soft Matter Biol.
Phys., 2000, 1, 153-157.

P. De Gennes, Solid State Commun., 1968, 6, 163-165.

R. B. Meyer, Philos. Mag., 1973, 27, 405-424.

P. Cladis and M. Kléman, J. Phys., 1972, 33, 591-598.

W. Helfrich, Phys. Rev. Lett., 1968, 1518-1521.

T.-S. Nguyen, J. Geng, R. L. Selinger and ]. V. Selinger, Soft
Matter, 2013, 9, 8314-8326.

D. J. Cleaver and M. P. Allen, Phys. Rev. A: At., Mol., Opt.
Phys., 1991, 43, 1918.

T. R. Powers, G. Huber and R. E. Goldstein, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2002, 65, 041901.

R. Meyer, Appl. Phys. Lett., 1969, 14, 208.

This journal is © The Royal Society of Chemistry 2023



