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11 1. Abstract

12 Wetlands across North America are invaded by an introduced lineage of the common reed Phragmites
13 australis, and sea level rise has exacerbated the spread of this species. P. australis at tidal marsh-forest
14 ecotones has rapidly been expanding into deteriorating forest, colonizing understory environments ahead of
15 native marsh species. Early detection of P. australis at the ecotone will be critical to the management of this
16  invasive species in coming decades. In this study, we develop and validate a new method for early detection
17 of P. australis, using open access airborne LIDAR data that can uniquely penetrate the tree canopy and detect
18  P. australis within the forest understory. The method was designed for areas of sparse to moderate tree cover,
19 such as the forest edge where trees are dying and P. australis is expanding, where understory species mapping
20  was previously impossible with most spectral data. To differentiate P. australis from shrubs and other
21 understory herbaceous plants, we tested the effectiveness of several LIDAR-derived spatial metrics, including
22 Mean distance, Point density, Scatter, Omnivariance, and Eigentropy, as inputs to a Support Vector Machine

23 (SVM) classifier, followed by a smoothing algorithm to avoid occasional obstacles or disturbances. We
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compare among metrics and single- vs. multiple- metric-based classifications. The resulting best early
detection method of P. australis achieved a classification accuracy of 91.48% at the development site, and
between 56.16% and 80.65% accuracy at other test sites. This algorithm provides a cost-effective and high
accuracy method of detecting understory P. australis using public airborne LiDAR data. Larger-scale
application of this method will provide coastal resource managers and policy-makers with distribution maps
of P. australis through time in open environments and the forest understory. More generally, this approach
provides a framework for mapping understory species and plant functional groups using LiDAR-derived

metrics.

Keywords: Species invasion, Understory detection, Sea level rise, Coastal management, Support Vector

Machines (SVMs), Lidar-derived spatial metrics.

1. Introduction

An invasive lineage of the common reed, Phragmites australis, which originated in Europe and was
introduced to North America in the late 1800s, is now a widespread and notorious pest species in the United
States (Saltonstall 2002, Saltonstall and Meyerson 2016). The P. australis invasion has had strong effects in
North- and Mid-Atlantic tidal wetlands, where it forms monocultures that exclude native marsh plants,
provides lower quality habitat relative to native marsh species, alters biogeochemistry, and increases
sedimentation and accretion (Meyerson et al. 2000, Rooth and Stevenson 2000, Windham 2001). In coastal
forests retreating with sea level rise, P. australis colonization controls rates of soil elevation change
(Langston et al. 2022), and increasing the dissipation of wave energy (Cassalho et al., 2023).

Coastal land managers and property owners identify P. australis spread as a primary concern. To combat
its negative effects, P. australis control programs were developed by public and private conservation
organizations. In the USA, over $4 million per year was spent on P. australis management and control
between 2005 and 2009 (Martin and Blossey 2013). Control methods include application of herbicide,
mowing, burning, flooding etc. (Martin and Blossey 2013, Hazelton et al. 2014).

Early detection of P. australis is critical for successful control, because P. australis is a perennial,
rhizomatous, clonal species that quickly forms dense and expansive stands that are difficult to eradicate

(Thompson 2003). Throughout the Mid-Atlantic, P. australis has not only become dominant in migrating
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marshes, but has also spread into forests that are deteriorating in response to sea level rise and saltwater
intrusion (Kirwan and Gedan 2019). A study of the Delaware Bay Estuary found that P. australis
monocultures made up fully half of the historical area of forest retreat (Smith 2013). Field surveys of P.
australis at marsh-forest ecotones on the Chesapeake Bay Eastern Shore found P. australis to be present and
well-established underneath forest canopy cover of up to 87.4% (Shaw et al. 2022). Indeed, P. australis
dominates the biomass and soil properties of the marsh-forest ecotone, even in a system where it has been
established for less than 30 years (Langston et al. 2022).

However, it is difficult to detect invasion frontiers of P. australis in forest ecosystems. Most marsh plant
detections, including prior attempts to map P. australis distributions, are based on moderate or high resolution
spectral imagery, e.g. Landsat and Worldview (Tian et al. 2020, Zhang et al. 2020, Chen and Kirwan 2022,
Anderson et al. 2023, Chen and Shi 2023, Walter and Mondal 2023). Spectral imagery works well in open
marsh environments and within canopy gaps of forests (Tian et al 2020, Zhang et al 2020, Chen and Shi 2023)
where spectral features of marsh plants are visible. Even some understory vines can be detected using spectral
imagery, when they climb tree canopies and become visible to aerial crafts and satellites (Dai et al. 2020).
However, for understory species that have no chance to penetrate tree crowns, their spectral features are not
captured within traditional imagery, presenting a challenge for remote detection.

To meet this challenge, Light Detection and Ranging (LiDAR) has proved effective in detecting forest
canopy structure and identifying understory vegetation (Lines et al. 2022, Jucker et al. 2023, Kostensalo et
al. 2023). LiDAR is an active remote sensing method that uses light in the form of a pulsed laser to measure
variable distances to Earth. These light pulses, combined with other data recorded by the airborne system,
generate precise, 3D information about the shape of the Earth and its surface characteristics. In forests, laser
pulses can penetrate minute canopy gaps to reach understory layers and provide information on multiple
canopy layers (Sumnall et al. 2021).

In recent years, LIDAR data has been increasingly applied to detect subcanopy forest elements (Lines
et al. 2022). For example, presence or absence of understory vegetation was discriminated using a bimodal
canopy height profile or symmetrical structure of the trees from airborne LiDAR (Melo et al. 2021, Huo et
al. 2022). Leaf area index and forest productivity have been estimated using integrated laser energy,
backscattering coefficients, leaf scattering, and the light penetration index (Song et al. 2021, Sumnall et al.
2021). Combinations of terrestrial and airborne LiDAR, as well as unmanned aerial vehicle-born LiDAR and

3



80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

hyperspectral fusion have been employed to estimate understory biomass, using metrics such as mean canopy
height, diameter at breast height, wood density, canopy cover, vegetation volume, and cross-sectional area
of stems (Bazezew et al. 2021, de Almeida et al. 2021, Li et al. 2021). In another application, understory
vegetation density and cover was predicted by dividing the point cloud into multiple layers according to
different heights and calculated the metrics at different height ranges (Latifi et al. 2016, Campbell et al. 2018,
Venier et al. 2019).

Several studies have attempted to identify subcanopy functional groups or differentiate species. For
example, Latifi et al. (2017) tried to identify different understory plant functional groups (shrubs, herbs, and
mosses) using a thinning algorithm and achieved a coefficient of determination (R?) varying from 0.48 to
0.80. Gopalakrishnan et al. (2018) quantified understory layer canopy density, as the ratio of LIDAR returns
in the understory to those near the ground, and found that this was the most important predictor for understory
shrub detection, using this parameter to achieve 62% accuracy in detecting understory shrubs. Hakkenberg
et al. (2018) used a multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral
remotely sensed data to map vascular plant species turnover in a diverse and structurally complex forest.
Singh et al. (2015) applied LiDAR and spectral data to detect the spatial distribution of the exotic understory
plant Ligustrum sinense, a rapidly spreading invader in the urbanizing region of Charlotte, North Carolina,
USA, and achieved a maximum accuracy of 69.9% with the random forest model. Together, these works
demonstrate the potential to use LIDAR to map the distribution of invasive species in the understory of
coastal forests.

The objective of this study was to detect subcanopy P. australis in the climate change-sensitive marsh-
forest ecotone of Maryland and Virginia using airborne LiDAR. Unlike previous LiDAR-based studies that
extract understory information using variables, such as return number or intensity, that are only accessible
from full-waveform LiDAR data (Torralba et al. 2018), we propose to use the spatial distribution of LIDAR
points to construct species-specific metrics for our target species. A specialized method is warranted because
the 3D structure information within the point cloud can record a plant stands’ morphological characteristics,
determined by shape, size, and density of leaves, length, and thickness of branches etc. Therefore, a particular
species can be detected with carefully designed metrics that reflect their unique point cloud characteristics.
For P. australis, in particular, its upright and dense stems and leaves as well as spatially continuous canopy
height make it distinctive from other co-occurring plants. Secondly, although the return information from
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LiDAR is an important metric, not all LIDAR data are full-waveform, and public datasets often omit full-
waveform data. The spatial distribution information of the point cloud of LiDAR data is more widely
available and provides a high-quality source of information.

To detect subcanopy P. australis at the forest-marsh ecotone, we firstly identified key spatial features
of the LiDAR point cloud, namely point distance, point density, scatter, omnivariance, and eigentrophy, that
were sensitive to the morphological characteristics of plant stands within our study region. Then, we tested
and fine-tuned the SVM algorithm to detect P. australis, followed by a smoothing algorithm to optimize the
detection results. We hope that the classification framework we propose will not only pave an efficient avenue
for P. australis mapping where a forest canopy is present, but also provide a new application for LiDAR-
based understory vegetation monitoring at the species level and enhance our understanding of vegetation

dynamics in changing forest.

2. Material and methods

2.1.Study area

We selected nine sites on the Delmarva Peninsula, USA (Fig. 1) to ground truth the presence or absence
of P. australis for training and validation of the classification algorithm. In the region, P. australis is a key
species in the response of tidal marsh to accelerating sea level rise, and it has become dominant in migrating
marshes, spreading into dead and dying forests (Shaw et al. 2022). Co-occurring understory species in the
forest-marsh ecotone community include the shrubs Morella cerifera, Baccharis halimifolia, and Iva
frutescens, native marsh grasses Spartina patens and Distichlis spicata, and upland grasses such as Panicum
virgatum and Chasmanthium laxum (Gedan and Fernandez-Pascual 2019, Kearney et al. 2019, Kottler and
Gedan 2020, Sward et al. 2023). We selected The Nature Conservancy's Brownsville Preserve in Nassawadox,
Virginia as a site to train and validate the classifier, and we used data from the eight other sites to validate

the robustness of the classifier.
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Fig. 1. Nine study sites in coastal Maryland and Virginia, USA (green box in inset). (a) shows the field sites
where P. australis detection algorithm was trained and calibrated. Number in bracket showed the number of
positive samples (@) and negative samples (0) at each study site. (b) is a drone image of the marsh-forest
ecotone in Brownsville, typical of the region and invaded by P. australis (dashed green line), (c) photo of
open marsh where presence/absence of P. australis is easily detected within drone imagery, (d) and (e) show
the establishment of P. australis in thin and thick forest, respectively, where detection of P. australis is

obscured by the tree canopy in spectral imagery.

2.2.Data acquisition

Open access airborne LiDAR data (Fig. 2a) released by USGS

(https://apps.nationalmap.gov/downloader/#/) was used to detect P. australis. The LIDAR data for sites at

Virginia (i.e., Brownsville, Box Tree, Indiantown, Oyster Harbor and Cushman’s Landing sites) were
collected in April 2015, with a point spacing of 0.38~0.45 m and up to seven returns and intensity values for
each point. The LiDAR data for sites at Maryland (i.e., Button Neck, Chesapeake Forest, Howard, and Money
Stump) were collected between December 2013 and April 2014, with a point spacing of 0.47~0.50 m and up
to five returns and intensity values recorded for each point.

Tidal Marsh Vegetation Community Classification

(https://nalcc.databasin.org/datasets/6a64b843c61e41688091d75bd1718fc0/) is a map product developed by

North Atlantic Landscape Conservation Cooperative (NALCC) that provides a continuous classification of

tidal marsh cover types in the Northeast Atlantic coast at a resolution of three meters. This map is produced
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with remote sensing using 2014-2015 National Agriculture Imagery Program (NAIP) multispectral imagery
and National Elevation Dataset. Notably, compared with other tidal wetland mapping products, e.g., National

Wetland Inventory (Wilen and Bates 1995, https:/fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-

mapper/), this map stands as the sole large-scale mapping resource delineating the distribution of P. australis
on marshes with an overall classification accuracy of 75%. However, due to the limitation of NAIP data and
small amount of training data, the NALCC classification cannot accurately distinguish P. australis near the
forested, terrestrial border. In Fig. 2 (c), the NALCC map of Brownsville displays a conspicuous absence of
P. australis in the terrestrial area, starkly contrasting with our field survey results that reveal a significant
invasion within the same region. Consequently, to establish reliable ground truth data, we conducted both
field surveys and drone assessments.

Ground truth observations of P. australis presence and absence at Brownsville Preserve were collected
from ground surveys in August 2019 and from visual interpretation of drone images collected in September
2019 (Fig. 2b). Specifically, ground surveys were conducted in 24 plots (20 x 20 m each) spanning across a
gradient tree canopy openness. In each plot, a density category of P. australis (i.e., absence — 0 stem, low-
1~3 stem, medium - small group of stems, high - sparse stand, highest - fully developed stand) was recorded
in a 5 m grid (dots in Fig. 2b). A handheld Garmin eTrex 32X GPS was used to geolocate a corner of each
plot, and transect tapes and a compass were used to maintain grid spacing across each plot (dots in Fig. 2b).
At a slightly larger scale, the distribution of P. australis in open marsh and deteriorating forest was visually
interpreted within drone imagery, in which P. australis can be distinguished by its distinctive textural feature
(Appendix A: Table Al). Drone images were collected with a DJI Mavic flying at 120 m aboveground in
September 2019 when P. australis exhibits peak biomass and prior to fall senescence. The drone images had
a horizontal accuracy of around 4 m and a spatial resolution of 5.6 cm. Consequently, at Brownsville we
acquired a total of 2470 samples as ground truth value, of which 584 were positive samples with P. australis
present (54 in the marsh and the rest in the forest) and 1886 were negative samples with P. australis absent
(781 in the marsh and the remainder in the forest).

To validate the robustness of the classification algorithm, extra validation samples were collected (Fig.
1) at Box Tree (24 positive samples, 75 negative samples), Indiantown (62 positive, 110 negative), Oyster
Harbor (50 positive, 52 negative), Cushman’s Landing (83 positive, 161 negative), Button Neck (103 positive,
112 negative), Chesapeake Forest (103 positive, 95 negative), Howard (100 positive, 103 negative), and
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Moneystump (106 positive, 95 negative) in September 2022. Validation samples of sites in Maryland were
collected with ground surveys. Validation samples of sites in Virginia were collected using a combination of
drone and ground surveys. Ground surveys of these additional validation samples were conducted along trails
that cut across forest-marsh boundaries. Along the trail, density of P. australis was recorded every 10 meters
with a handheld Garmin eTrex 32X GPS. Drones images were collected with the same drone model and data

quality to that of Brownsville, and were visually interpreted following the same protocol as at Brownsville.
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Fig. 2. P. australis map of Brownsville Preserve area. (a) Airborne LiDAR with color coded by maximum
return height; (b) The distribution of ground truth samples of P. australis presence or absence. Polygons in
panel b represent aerial-based ground truth data (blue - P. australis absent, red - P. australis present). For
ground surveys (dots), blue represents P. australis absence; dots in dark green, light green, yellow, and red
represent P. australis presence at low (1~3 stem ), medium (small group of stems), high (sparse stand) and
highest (fully developed stand) density following Sward et al. (2023). (c) NALCC dataset with P. australis
mapped in yellow (detected in several pixels within marsh area in the bottom left corner of the scene); (d)

Side view of section 1 in (a), the red dots present P. australis.

2.3 Classification framework

The P. australis detection algorithms consist of three steps: data pre-processing, metric selection, and

classification and optimization (Fig. 3).
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Fig. 3. The pipeline of the proposed classification algorithm. The input lidar data is normalized with respect
to the ground surface, and subsequently divided into 3D cells. Within each 3D cell, point features are
computed and then projected onto the 2D cell situated on the X-Y plane. The resulting point features for each
2D cell are then fed into a Support Vector Machine (SVM) classifier, responsible for labeling each cell as
either P. australis present or not. A smoothing algorithm is then used to refine the classification output based

on the relationships among neighboring cells.
Data pre-processing

We generated a Normalized Digital Surface Model (N-DSM) to exclude ground elevation from LiDAR
point height (Datum: NAD1983) following a TIN densification algorithm (Axelsson 2000), in order to
acquire height of points relative to the land surface. We then rasterized LiDAR data into 5 x 5 m grids to
match the resolution and coordinates of ground surveyed points (Fig. 3).

To discard redundant point clouds from upper canopies, we limited the height of each 5 X 5 m grid to 8
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meters from the surface, which exceeds the height range of P. australis (2 - 4 m in height). We then
horizontally sliced the grid into multiple layers with a designated height step (Fig. 3), and calculated the
spatial distribution features of the point cloud within each slice as representatives of morphological
characteristics of P. australis stands. The height steps (k) tested ranged from 0.1 m to 1.5 m with an interval

of 0.1 m to identify the optimal height step corresponding to the highest classification accuracy.
Point Features

To represent the spatial distribution characteristics of point cloud within each 3D cell effectively, we
have carefully selected five metrics: Density (D), Mean Distance (M), Scatter (S), Omnivariance (O) and
Eigentropy (E).

Point density is defined as the ratio of Lidar points to the volume of a 3D cell (points per m?). Mean
distance is defined as the average distance between points projected onto the X-Y plane and is calculated
with Triangulated Irregular Network (TIN) model (Fig. 3). Scatter (S), Omnivariance (O) and Eigentropy (E)
are computed based on the three eigenvalues (44, 4,, A3) of the covariance matrix for all points within each

3D grid following Karen et al. (2004). The three Eigen-based metri cs are defined as below:

Scatter = A3/, Eq. (1)
Omnivariance = /11,13 Eq. (2)
Eigentropy = —1,log(1,) — A, 1log(4,) — 15log(13) Eq. 3)

where A, > 4, = 15.

We normalize all the point features within the range of 0 to 1 before feeding them into the SVM classifier.
Subsequently, the features of all 3D cells sharing the same X-Y position are consolidated into a single point
feature denoted as F = (fy, f2, ..., fn), Where n corresponds to the number of vertical slices. These features

are categorized into distinct feature vectors, namely F°, FM, FS FO and FE.
Classification

In our approach, we have selected Support Vector Machines (SVMs) as the binary classifier to tackle
our P. australis classification problem because of its strength in classifying relatively small sample datasets
with high-dimensional feature spaces (Cortes and Vapnik 1995), and its generalization and robustness to
new, unseen data (Hartling et al. 2019, Kattenborn et al. 2021). After testing different kernel functions, such

as Linear, Sigmoid, CH2, and Histogram Intersection kernels, we found the Radial Basis Function to be the
10
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most suitable kernel for our specific classification task.
Smoothing

Considering the way that P. australis tends to expand mostly through clonal spread (Kettenring et al.
2016), resulting in paths that often exceed the grid size (5 m) used in the classification process and exhibit
lateral continuity in marsh and under trees. We decided to take context information into account, so
misclassification caused by occasional obstacles or disturbances such as shrubs or tree trunks can be corrected
by contextual information.

To achieve this, we designed a slicing window as the convolution kernel to convolve with the label
image. The 3 X 3 slicing window is shown in Fig. 4, where the four corners are weighted v2/2, and the

others are weighted 1, which is the inverse of their distance from the target grid. Unlike the standard Gaussian

kernel, our proposed kernel assigns equal weights to the center and its left, right, up, and bottom neighbors

(Fig. 4).
V2 1 vz
2 z
1 1 1
A 1 V2
Z Z

Fig. 4. The proposed smoothing kernel.

The status of smoothed image can be calculated as

[ = Z?U-;i' Eq. (4)
where the input image [ is a Binary image, the value 0 and 1 indicates the presence and absence of P.
australis. The smoothed image [ is also a binary image by rounding the convoluted values. If needed, the

smoothing operation can be applied multiple times to incorporate an increasing amount of contextual

information, further refining the detection of P. australis.
3. Experiments and Results

We tested the sensitivity of the classification result to different parameter combinations to optimize the

classification algorithm. The parameter combination we tested includes height step, feature combination, and
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smoothing rounds. For each parameter optimization, we used ground truth data collected from Brownsville
to optimize and validate the classification algorithm. The training samples take up 70% of ground truth data
validation samples take 30% of ground truth data if not specifically defined. We repeated the entire training
and testing pipeline 50 times to calculate the mean classification accuracy.

We use the three most used metrics to evaluate the classification accuracy -- Accuracy, Recall, and F;-
score -- to estimate the performance of combined feature. Accuracy measures the proportion of correctly
classified instances out of the total number of instances in the dataset. Recall measures the proportion of true
positive predictions out of all actual positive instances and focuses on the ability to find all positive instances.

While Fl-score provides a balanced measure of both precision and recall, as defined as follows:

Accuracy = (TP +TN)/(TP + TN + FP + FN) Eq. (5)
Recall =TP /(TP + FP) Eq. (6)
F, = 2TP/(2TP + FP + FN) Eq. (7)

where TP is the sample number of True Positive, TN is the sample number of True Negatives, FP is the

sample number of False Positives, FN is the sample number of False Negatives.

3.1.0ptimal height step

For height step, we used a single-feature-based classifier to identify the optional height step for each
feature. We tested all the five individual features (D — Density, M — Mean Distance, S — Scatter, O —
Omnivariance, and E — Eigentropy) with five classifiers. For each classifier, we test the variation of
classification accuracy in response to changes in the height step (0.1~1.5 m, with 0.1 m interval).

The sensitivity of classification accuracy to the height step parameter indicated each metric has its own
optimal height step (Fig. 5), reflecting the unique information captured by the features. The best classification
was achieved by Mean distance (M) at 87.16% accuracy with a height step of 0.3 m, followed by Eigentropy
(85.56%) with a step of 0.5 m, Omnivariance (83.37%) with a step of 1.5 m, Scatter (77.96%) with a step of

1.5 m, and Density (76.76%) with a step of 1.0 m.
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Fig. 5. The classification accuracy using various height steps for all point metrics, including Density (D),

Mean distance (M), Scatter (S), Omnivariance (O) and Eigentropy (E).

3.2.Feature combination

For feature combination, we tested whether using a combination of different features can greatly
improve classification accuracy compared with using singular feather. Though different features might have
their own optimal height steps, to simplify the analysis, we select the height step (0.5 m) which worked well
for all point features. Features are ranked according to their classification accuracy performance in that height
step. If the ranking order is O, M, E, D, S, Ominivariance has the highest classification accuracy, then Mean
distance, and so on. We enriched the feature combination by gradually adding lower performing features into
the combination, e.g. OM, OME, OMED, OMEDS. Here OM stands for a combination of Omnivariance and
Mean Distance, which is fulfilled by stacking feature vector O and M into one feature vector.

As depicted in Fig. 6, the combination of Omnivariance and Mean Distance (i.e. OM) achieved the
highest Accuracy (84.92%) and Recall (74.22%), though F1-score (63.12%) was slightly lower than the peak
(64.56% under singular feature Omnivariance). When more features were included in the combination,

classification results deteriorated.
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Fig. 6. The classification accuracy on Brownsville dataset with individual or combination of point features.

D - Density, M - Mean Distance, S - Scatter, O - Omnivariance, and E - Eigentropy.

3.3.0ptimization by Smoothing

For smoothing, we assessed the efficacy of smoothing operations in improving the accuracy of P.
australis detection. Combined features of Omnivariance and Mean Distance, i.e. OM, at 0.5 m height step
was selected to generate a P. australis distribution map. Subsequently, we investigated the impact of multiple
rounds of smoothing operations on the classification accuracy.

The results revealed a gradual increase in Accuracy, Recall, and F1-Score with the first three or four
rounds of smoothing, followed by slightly decrease with extra round (Fig. 7). Accuracy increased from 88.78%
to 91.48%, and F1-score increased from 74.47% to 80.11% after four rounds of smoothing, Recall increased
from 70.35% to 73.86 after three rounds of smoothing. After five rounds of smoothing, Accuracy, Recall and

F1-score decrease to 91.11%, 73.51%,79.36%.
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Fig. 8 depicts the impact of smoothing on the predicted distribution of P. australis in rownsville. The
field survey results are color-coded, with cyan and blue denoting the presence and absence of P. australis,
respectively. Meanwhile, in the classification results, red signifies P. australis presence, green represents its
absence, and grey denotes bare ground or short stature vegetation (counted as the absence of P. australis).
The image reveals the merging of small regions with their larger neighboring areas, including both heavily-
invaded and uninvaded areas. Notably, the erroneous detection of P. australis in the blue regions (Fig. 8a)
was effectively rectified and removed by smoothing. These regions consisted of isolated small sections with
one to three pixels. The smoothing process aligns with the knowledge that P. australis typically does not

grow in small clumps.

[ +igh marsh
[ Low Marsh
B wudnat

[ Prragmites

B Fooipanne
1B Open vater
B Terrestrial border

W uoiane

Field Survey: Presence DAbsence Prediction: . Presence . Absence .Bare ground NALCC dataset
Fig. 8. Enhancing classification accuracy within the Brownsville data through smoothing. (a) Classification

results without smoothing; (b) Classification results with four rounds of smoothing; (c) NALCC dataset.
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3.4.Robustness of the pipeline

To test the robustness of the P. australis classification algorithm, we applied the optimized algorithm
from Brownsville to eight distinct sites (Fig. 1) where ground truth data were kept as blind test data to ensure
they had no influence on the training phase, neither for pre-classification nor fine-tuning of the classifier. By
adopting this approach, we were able to purely evaluate the performance of our proposed pipeline. The
optimized algorithm we chose from Brownsville used OM as the feature with 0.5 m height step and a four-
round smoothing operation.

The detection algorithm achieved its highest accuracy of 80.65% at Indiantown, while the lowest
accuracy of 56.16% was recorded at Howard, both illustrated in Fig. 9. Correspondingly, Indiantown
exhibited a recall of 82.61% and an F1-score of 86.36%, whereas Howard demonstrated a recall of 14.00%
and an F1-score of 23.93%. Notably, the Virginia sites (Box Tree, Cushman, Indiantown, and Oyster Harbor)
generally displayed higher accuracy compared to the Maryland sites. On average, the algorithm in Virginia
achieved an Accuracy, Recall, and Fl-score of 66.95%, 67.03%, and 58.86%, respectively, while in
Maryland, it yielded of 64.44%, 41.25%, and 51.40% (Fig. 9). Classification maps for the eight sites can be

found in Fig. 10.
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Fig. 9. Detection accuracy across validation sites.

16



350
351

352

353

354

355

356

357

Google Earth (2022) Google Earth (2022) Google Earth (2022) , Google Earth (2022)

LiDAR (2013)

(d) Howard

Google Earth (2013)

LiDAR (2015) LiDAR (2015) LiDAR (2015)

(e) Box Tree (f) Indiantown (g) Cushman’s Landing (h) Oyster Harbor

Field Survey of P. australis: Automatic Classification of P. australis:

.No . Low Medium High . Highest . Ground Absent . Present

Fig. 10. Detection results at the validation sites. For each site, the top image shows color coded field survey

data with stem density on a satellite image from Google Earth, and the bottom image is the P. australis
distribution map generated by the algorithm that was trained and validated using Brownsville information.
Bare ground on the P. australis distribution map indicates low-lying areas or water, where P. australis is

absent.

4. Discussion

In this study, we proposed a P. australis detection algorithm using airborne LiDAR data for application
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within sea-level-rise-affected coastal areas. We found that metrics representing the spatial distribution of
LiDAR points are informative in recognizing species-level plant stands. For P. australis specifically, Mean
distance, Omnivariance and Eigentropy performed better in P. australis detecting than point density and
scatter. Detection accuracy reached 91.48% at the most heavily sampled site, where the algorithm was trained,
and it reached accuracy of 56.16% to 80.65% at other sites with no training data.

The P. australis detection pipeline that we developed in this study, utilizing LiDAR technology, offers
an effective means of detecting P. australis beneath tree canopies. This innovative technique provides a cost-
efficient solution for land managers to identify newly established P. australis in deteriorating forests where
tree canopy has not fully opened up. Detecting P .australis in its early stages of invasion enables land
managers to prioritize control efforts to recently invaded forests, where removal is more manageable and
cost-effective. Our P. australis detection product outperformed existing P. australis detection products, i.e.
NALCC, which has very limited P. australis mapped. Consequently, the proposed P. australis detection
techniques facilitate close monitoring of P. australis invasion dynamics within the forest understory, enabling
timely and targeted control actions where they are most needed. The high efficacy and performance of our
method in detecting understory plants at the species level underscores the significant potential of LIDAR data

in enhancing ecological resolution for forest monitoring.

Optimal height step

The differences in optimal height steps can be attributed to how each feature captures the characteristics
of the point cloud data. Researchers find that the size of space partitioning is an essential parameter for
canopy estimation using LiDAR point clouds (Wang et al. 2020, Ross et al. 2022). In our case, the eigen-
based features perform well with high height steps (around 1.0 m) because they capture local variation within
thin computational units. Conversely, the mean distance metric emphasizes the horizontal point distribution,
making it more effective at lower height steps (around 0.2m). As the step increases, the eigen-based feature
performs better due to its ability to incorporate more 3D characteristics within each unit, while the mean
distance metric's detection capability diminishes.

Meanwhile, the optimal height is also influenced by the morphological features of P. australis. Stem
height of P. australis ranges from 1 m to 4 m depending on the maturity. Invasive P. australis leaves is dense

and with an average internode length of about 0.3 m (field observation by M. Qi). Within a clonal patch, P.
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australis stems normally share similar stem height. These morphological features make LiDAR points being
mostly intercepted by top leaves or surface canopy and result in vertical variation of point density and mean
distance from top leaves to the bottom. Therefore, Eigen-based feature that capture the variations with a 3D
cell works better at height step larger than internode length, which is 1.0 m in this study. Mean distance that
capture the horizontal point distribution can be more sensitive to different point density/spacing between the
surface canopy and lower layers with a smaller height step, which is 0.2 m in our study.

In conclusion, understanding the relationships between the morphological features of P. australis and
optimal height steps of each metrics enables us to tailor our analysis and select optimal settings for P.
australis detection. Moreover, this knowledge can guide feature selection and height step choices in similar

vegetation or point cloud analysis tasks.

Combined features or single feature

Our result indicates that the combination of Omnivariance and Mean Distance yields better performance
compared to singular feature or other combinations. However, as more features are included in the
combination, the classification results deteriorated. The increasing number of features negatively impacts the
classification performance, suggesting that Eigentropy, Density and Scatter do not contribute additional
valuable information to Omnivariance and Mean Distance, but instead introduce noise to the feature space.

Based on these findings, we highly recommend using the OM combination (Omnivariance & Mean
Distance) for P. australis identification, as it yields superior results compared to other combinations. The
OM combination strikes the right balance between accuracy, recall, and F1-score, making it the most suitable
choice for effectively identifying P. australis. The recommended height step for the OM is 0.5 m, which

balanced optimal performance in Accuracy, Recall and F1-score.

Smoothing

The smoothing method we proposed effectively enhanced the detection accuracy of P. australis (see
Fig. 8). Particularly noteworthy is the considerable reduction in mistakenly detected P. australis clusters in
thick forest in the Brownsville region (Fig. 8). However, it is worthwhile to mention that excessive smoothing
can lead to over-optimization. Fig. 7 shows the smoothing operation achieves the best result after three to
four rounds smoothing and decrease with more rounds of smoothing. Therefore, maintaining an appropriate
balance in the number of smoothing rounds is crucial to achieving optimal results.
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Robustness

When applying the P. australis detection algorithm to the validation sites, we observed a decline in
detection accuracy from 91.48% to between 80.65 and 56.16% (average of 64%). Several reasons might have
contributed to this, namely, regional variation in forest structure, differences in LiIDAR data quality, and the
lag time between LiDAR data and ground truth data collection. Firstly, spatial heterogeneity in tree canopy
and understory LiDAR points characteristics might exist but not have been accounted for in the algorithm
developed at Brownsville. Secondly, differences in LiDAR data quality may have played a role. The LIDAR
data in Maryland was collected two years earlier than that of Virginia and had a higher point spacing and a
smaller number of returns, which is consistent with the generally higher accuracy of the algorithm at the
Virginia sites. Thirdly, the time lag between LiDAR and ground truth data collection at the validation sites
(i.e. 7 to 9 yrs) was higher than at Brownsville (i.e. 4 yrs), which added uncertainty into classification and
introduced potential inconsistencies across sites. in the match of ground truth and LiDAR data, a problem
which is inevitable to a greater or lesser degree. However, we recommend minimizing the time difference

between ground truth and LiDAR data collection in future studies.

Accuracy

The detection accuracy in our training site achieved 91.48%, which is remarkably high, based on other
existing LIDAR-based understory (functional group or species) plant detection efforts , which typically yield
accuracies between 40% and 80% (Singh et al. 2015, Latifi et al. 2017, Gopalakrishnan et al. 2018,
Hakkenberg et al. 2018). Alhough LiDAR based understory detection efforts have lower accuracy compared
with traditional spectral-based methods (Tian et al 2020, Zhang et al 2020, Chen and Shi 2023), traditional
spectral based detection are incapable of mapping plant species or functional groups in the forest understory
environments. LiDAR-based methods fill this gap, where understory plant distribution mapping was
previously impossible. As current P. australis mapping products, i.e., NALCC, are incapable of mapping P.
australis in the forest understory (Fig. 8c), the proposed method provides the first scalable description of P.

australis distribution in the forest understory.

P. australis distribution pattern

Across all field sites in our study, we found P. australis presented typically in low-lying marshes,

seaward side of forests with either thin or thick tree canopies (Fig. 8, Fig. 9a,b,d,e, f, h), and forest pocket
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(Fig. 9¢,g). The presence of P. australis in marshes, forest pockets, and thin forests might because P. australis
prefers high light conditions (Galinato and Van der Valk 1986, Gucker 2008). The presence of P. australis
beneath dense forests indicates its capability to thrive in low-light environments, a finding corroborated by
Shaw et al.'s (2022) field and laboratory-based research. This underscores the pressing need for early

monitoring of P. australis within forested areas.

Potential applications

This study represents the first successful attempt at detecting P. australis beneath forest canopies. With
the availability of nationwide airborne LiDAR in United States of America, the method we proposed can be
leveraged to a broader scale to generate P. australis distribution maps and to facilitate P. australis control
and forest management.

Additionally, LiDAR data has historically been collected every 5-6 years. Historical LiDAR data
provide a unique method to map P. australis coverage through time. The historical reconstruction of P.
australis distribution would provide new information about this cosmopolitan invasive species, such as its
expansion rates through time, and provide fundamental insight on the factors that influence P. australis’
growth and spread.

While the training and evaluation datasets are limited due to the time difference in ground truth and
remote sensing data collection, our straightforward classification framework has demonstrated remarkable
efficacy and can be reapplied to different data sources, time periods, and environmental contexts. It will serve
as a strong foundation for evaluating more intricate methods. Moreover, this integration of data sources opens
opportunities to develop new and more complex toolkits for classification, such as the application of Deep

Learning on 3D points.

4645. Conclusion

465

466

467

468

In this paper, we propose a novel pipeline specifically designed to detect P. australis using publicly-
available airborne LiDAR points, particularly in marsh-forest ecotones where the plant is often obscured by
tree canopies. We find that the combination of Omnivariance and Mean Distance yield the best results with

a 0.5 m height step and four rounds of smoothing. The overall classification accuracy reaches 91.48% in the
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training dataset and 56.16% to 80.65% in the validation dataset, enabling us to effectively identify the
presence of P. australis beneath forest canopies, where P. australis could not be detected by current P.
australis mapping products.

Our proposed algorithm offers a cost-effective means to map P. australis using open access airborne
LiDAR data nationwide in the United States, which is collected every five to eight years. The generalization
of this algorithm could provide distribution maps that would greatly inform local and nationwide
conservation and management of native marsh ecosystems. Accelerating sea level rise is increasing the pace
of P. australis into retreating coastal forests (Smith 2013, Shaw et al. 2022). Our proposed method allows
early detection- even under a forested canopy- enabling land managers to intervene prior to full establishment

of P. australis and the resulting displacement of native marsh species.

Competing interests statement

The authors has no competing interests.

Acknowledgements

This publication was prepared by M. Qi and K. Gedan with support from award F12AP01037 from the
US Department of the Interior/US Fish and Wildlife Service to Maryland Sea Grant, the administrative entity
for the Mid-Atlantic Panel on Aquatic Invasive Species. Additional funding was provided by, Natural Science
Foundation award of Hubei Province of China 2023AFB460, US National Science Foundation awards
2012670 and 1832221. The statements, findings, conclusions, and recommendations are those of the authors
and do not necessarily reflect the views of Maryland Sea Grant, the US Department of Interior, or the US
Fish and Wildlife Service. The authors thank Jessica MacGregor, Justus Jobe, Aliya Khan, and Riley Leff

for contributing field survey data.

References

Anderson, C. J., D. Heins, K. C. Pelletier, and J. F. Knight. 2023. Using Voting-Based Ensemble Classifiers to
Map Invasive Phragmites australis. Remote Sensing.
Axelsson, P. 2000. DEM generation from laser scanner data using adaptive TIN models. International archives of

photogrammetry and remote sensing 33:110-117.

22



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

Bazezew, M. N., Y. A. Hussin, E. H. Kloosterman, I. M. M. Hasmadi, T. Soromessa, and M. S. Adan. 2021.
Factual approach for tropical forest parameters measurement and monitoring: future option with a focus on
synergetic use of airborne and terrestrial LIDAR technologies. INTERNATIONAL JOURNAL OF REMOTE
SENSING 42:3219-3230.

Campbell, M. J., P. E. Dennison, A. T. Hudak, L. M. Parham, and B. W. Butler. 2018. Quantifying understory
vegetation density using small-footprint airborne lidar. Remote Sensing of Environment 215:330-342.

Cassalho, F., A. de S. de Lima, C. M. Ferreira, M. Henke, G. de A. Coelho, T. W. Miesse, J. Johnston, D. J.
Coleman. 2023. Quantifying the effects of sea level rise driven marsh migration on wave attenuation.
Environmental Monitoring and Assessment 195(12): 1487.

Chen, W., and C. Shi. 2023. Fine-scale mapping of Spartina alterniflora-invaded mangrove forests with multi-
temporal WorldView-Sentinel-2 data fusion. Remote Sensing of Environment 295:113690.

Chen, Y., and M. L. Kirwan. 2022. A phenology-and trend-based approach for accurate mapping of sea-level
driven coastal forest retreat. Remote Sensing of Environment 281:113229.

Coleman, D. J., M. Schuerch, S. Temmerman, G. Guntenspergen, C. G. Smith, and M. L. Kirwan. 2022.
Reconciling models and measurements of marsh vulnerability to sea level rise. Limnology and Oceanography
Letters 7:140-149.

Dai, J., D. A. Roberts, D. A. Stow, L. An, S. J. Hall, S. T. Yabiku, and P. C. Kyriakidis. 2020. Mapping understory
invasive plant species with field and remotely sensed data in Chitwan, Nepal. Remote Sensing of
Environment 250:112037.

de Almeida, D. R. A., E. N. Broadbent, M. P. Ferreira, P. Meli, A. M. A. Zambrano, E. B. Gorgens, A. F. Resende,
C. T. de Almeida, C. H. do Amaral, A. P. D. Corte, C. A. Silva, J. P. Romanelli, G. A. Prata, D. d. A. Papa,
S. C. Stark, R. Valbuena, B. W. Nelsonn, J. Guillemot, J.-B. Feret, R. Chazdon, and P. H. S. Brancalion.
2021. Monitoring restored tropical forest diversity and structure through UAV -borne hyperspectral and lidar
fusion. Remote Sensing of Environment 264.

Galinato, M.I., and A.G. Van der Valk. 1986. Seed germination traits of annuals and emergents recruited during
drawdowns in the Delta Marsh, Manitoba, Canada. Aquatic Botany 26: 89—102.

Gedan, K. B., and E. Fernandez-Pascual. 2019. Salt marsh migration into salinized agricultural fields: A novel
assembly of plant communities. Journal of Vegetation Science 30:1007-1016.

Gopalakrishnan, R., V. A. Thomas, R. H. Wynne, J. W. Coulston, and T. R. Fox. 2018. Shrub detection using

disparate airborne laser scanning acquisitions over varied forest cover types. International Journal of Remote

23



525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

Sensing 39:1220-1242.

Gucker, C. L. 2008. Phragmites australis. U.S. Department of Agriculture, Forest Service, Rocky Mountain
Research Station, Fire Sciences Laboratory. Fire Effects Information System.

Hakkenberg, C. R., K. Zhu, R. K. Peet, and C. Song. 2018. Mapping multi-scale vascular plant richness in a forest
landscape with integrated LIDAR and hyperspectral remote-sensing. Ecology 99:474-487.

Hazelton, E. L., T. J. Mozdzer, D. M. Burdick, K. M. Kettenring, and D. F. Whigham. 2014. Phragmites australis
management in the United States: 40 years of methods and outcomes. AoB plants 6.

Huo, L., E. Lindberg, and J. Holmgren. 2022. Towards low vegetation identification: A new method for tree crown
segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD). Remote Sensing
of Environment 270:112857.

Jucker, T., C. R. Gosper, G. Wiehl, P. B. Yeoh, N. Raisbeck-Brown, F. J. Fischer, J. Graham, H. Langley, W.
Newchurch, and A. J. O'Donnell. 2023. Using multi-platform LiDAR to guide the conservation of the world's
largest temperate woodland. Remote Sensing of Environment 296:113745.

Karen, F. W., N. W. Brian, R. L. James, P. Steven, M. T. Joseph, and A. E. Iverson. 2004. Context-driven
automated target detection in 3D data. Pages 133-143 in Proc.SPIE.

Kearney, W. S., A. Fernandes, and S. Fagherazzi. 2019. Sea-level rise and storm surges structure coastal forests
into persistence and regeneration niches. PLOS ONE 14:¢0215977.

Kettenring, K. M., K. E. Mock, B. Zaman, and M. McKee. 2016. Life on the edge: reproductive mode and rate of
invasive Phragmites australis patch expansion. Biological Invasions 18:2475-2495.

Kirwan, M. L., and K. B. Gedan. 2019. Sea-level driven land conversion and the formation of ghost forests. Nature
Climate Change 9:450-457.

Kostensalo, J., L. Mehtédtalo, S. Tuominen, P. Packalen, and M. Myllymaéki. 2023. Recreating structurally realistic
tree maps with airborne laser scanning and ground measurements. Remote Sensing of Environment
298:113782.

Kottler, E. J., and K. Gedan. 2020. Seeds of change: characterizing the soil seed bank of a migrating salt marsh.
Annals of Botany 125:335-344.

Langston, A. K., D. J. Coleman, N. W. Jung, J. L. Shawler, A. J. Smith, B. L. Williams, S. S. Wittyngham, R. M.
Chambers, J. E. Perry, and M. L. Kirwan. 2022. The effect of marsh age on ecosystem function in a rapidly
transgressing marsh. Ecosystems 25:252-264.

Latifi, H., M. Heurich, F. Hartig, J. Miiller, P. Krzystek, H. Jehl, and S. Dech. 2016. Estimating over- and

24



555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry: An International
Journal of Forest Research 89:69-81.

Latifi, H., S. Hill, B. Schumann, M. Heurich, and S. Dech. 2017. Multi-model estimation of understorey shrub,
herb and moss cover in temperate forest stands by laser scanner data. Forestry: An International Journal of
Forest Research 90:496-514.

Li, S., T. Wang, Z. Hou, Y. Gong, L. Feng, and J. Ge. 2021. Harnessing terrestrial laser scanning to predict
understory biomass in temperate mixed forests. Ecological Indicators 121.

Lines, E. R., F. J. Fischer, H. J. F. Owen, and T. Jucker. 2022. The shape of trees: Reimagining forest ecology in
three dimensions with remote sensing. Journal of Ecology 110:1730-1745.

Martin, L. J., and B. Blossey. 2013. The Runaway Weed: Costs and Failures of Phragmites australis Management
in the USA. Estuaries and Coasts 36:626-632.

Melo, A. M., C. R. Reis, B. F. Martins, T. M. A. Penido, L. C. E. Rodriguez, and E. B. Gorgens. 2021. Monitoring
the understory in eucalyptus plantations using airborne laser scanning. SCIENTIA AGRICOLA 78.

Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, and S. Findlay. 2000. A comparison of Phragmites
australisin freshwater and brackish marsh environments in North America. Wetlands Ecology and
Management 8:89-103.

Rooth, J. E., and J. C. Stevenson. 2000. Sediment deposition patterns in Phragmites australiscommunities:
Implications for coastal areas threatened by rising sea-level. Wetlands Ecology and Management 8:173-183.

Ross, C. W., E. L. Loudermilk, N. Skowronski, S. Pokswinski, J. K. Hiers, and J. O’Brien. 2022. LiDAR voxel-
size optimization for canopy gap estimation. Remote Sensing 14:1054.

Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into
North America. Proceedings of the National Academy of Sciences 99:2445-2449.

Saltonstall, K., and L. A. Meyerson. 2016. Phragmites australis: from genes to ecosystems. Biological Invasions
18:2415-2420.

Shaw, P., J. Jobe, and K. B. Gedan. 2022. Environmental Limits on the Spread of Invasive Phragmites australis
into Upland Forests with Marine Transgression. Estuaries and Coasts 45:539-550.

Singh, K. K., A. J. Davis, and R. K. Meentemeyer. 2015. Detecting understory plant invasion in urban forests
using LiDAR. International Journal of Applied Earth Observation and Geoinformation 38:267-279.

Smith, J. A. M. 2013. The Role of Phragmites australis in Mediating Inland Salt Marsh Migration in a Mid-Atlantic

Estuary. Plos One 8:¢65091.

25



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

Song, J., X. Zhu, J. Qi, Y. Pang, L. Yang, and L. Yu. 2021. A Method for Quantifying Understory Leaf Area Index
in a Temperate Forest through Combining Small Footprint Full-Waveform and Point Cloud LiDAR Data.
Remote Sensing 13.

Sumnall, M. J., A. Trlica, D. R. Carter, R. L. Cook, M. L. Schulte, O. C. Campoe, R. A. Rubilar, R. H. Wynne,
and V. A. Thomas. 2021. Estimating the overstory and understory vertical extents and their leaf area index in
intensively managed loblolly pine (Pinus taeda L.) plantations using airborne laser scanning. Remote Sensing
of Environment 254.

Sward, R., A. Philbrick, J. Morreale, C. J. Baird, and K. Gedan. 2023. Shrub expansion in maritime forest
responding to sea level rise. Frontiers in Forests and Global Change 6.

Thompson, J. A. 2003. Common reed (Phragmites australis) in the Chesapeake Bay: a draft bay-wide management

plan.in U. S. F. a. W. Service, editor., http://www.midatlanticpanel.org/wp-

content/uploads/2016/04/phragmites 102003.pdf.

Tian, J., L. Wang, D. Yin, X. Li, C. Diao, H. Gong, C. Shi, M. Menenti, Y. Ge, S. Nie, Y. Ou, X. Song, and X.
Liu. 2020. Development of spectral-phenological features for deep learning to understand Spartina
alterniflora invasion. Remote Sensing of Environment 242:111745.

Torralba, J., P. Crespo-Peremarch, and L. A. Ruiz. 2018. Assessing the use of discrete, full-waveform LiDAR and
TLS to classify Mediterranean forest species composition. REVISTA DE TELEDETECCION:27-40.

Venier, L. A., T. Swystun, M. J. Mazerolle, D. P. Kreutzweiser, K. L. Wainio-Keizer, K. A. Mcllwrick, M. E.
Woods, and X. Wang. 2019. Modelling vegetation understory cover using LiDAR metrics. PLOS ONE 14.

Walter, M., and P. Mondal. 2023. Mapping of Phragmites in estuarine wetlands using high-resolution aerial
imagery. Environmental Monitoring and Assessment 195:478.

Wang, C., S. Luo, X. Xi, S. Nie, D. Ma, and Y. Huang. 2020. Influence of voxel size on forest canopy height
estimates using full-waveform airborne LiDAR data. Forest Ecosystems 7:1-12.

Wilen, B. O., and M. Bates. 1995. The US fish and wildlife service’s national wetlands inventory project.
Classification and inventory of the world’s wetlands:153-169.

Windham, L. 2001. Comparison of biomass production and decomposition between Phragmites australis
(Common Reed) and Spartina patens (Salt Hay Grass) in brackish tidal marshes of New Jersey. Wetlands
21:179-188.

Zhang, X., X. Xiao, X. Wang, X. Xu, B. Chen, J. Wang, J. Ma, B. Zhao, and B. Li. 2020. Quantifying expansion

and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during

26



615 1995-2018. Remote Sensing of Environment 247:111916.
616

617

27



618 Appendix A

True color drone

(11.2 x 11.2 m)

(11.2 x 11.2 m)

(11.2 x 11.2 m)

(28 x 28 m)

619 Table A1 Imagery of species typical to the marsh-forest ecotone
Plant species Habitat
images
Phragmites Marsh
australis
Juncus Marsh
roemerianus
Spartina patens & Marsh
Distichlis spicata
mixed stands
Tree canopies Transitional
forest
Phragmites Transitional
australis  (outline in forest

red) in a tree canopy

gap

(28 x 28 m)
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