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A B S T R A C T

Adhesive contacts which possess a dominant stress concentration, such as at the contact edge in spherical
junctions or at the detachment front in a peeling film, are well studied. More complex adhesive junction
geometries, such as mushroom-shaped fibrils in bioinspired micropatterned dry adhesives, have exhibited a
complex dependence of adhesive strength on the presence of interfacial defects within the contact. This has led
to the emergence of statistical variation of the local behavior among micropatterned sub-contacts. In order to
examine the interplay between geometry and interfacial defect character in control of the adhesive strength, the
model system of a stiff cylindrical probe on an elastic layer is examined. Both experiments (glass on PDMS) and
cohesive zone finite element simulations are performed, with analytical asymptotic limits also considered. The
thickness of the elastic layer is varied to alter the interfacial stress distribution, with thinner layers having
a reduced edge stress concentration at the expense of increased stress at the contact center. The size and
position of manufactured interfacial defects is varied. It is observed that for the thickest substrates the edge
stress concentration is dominant, with detachment propagating from this region regardless of the presence
of an interfacial defect within the contact. Only very large center defects, with radius greater than half of
that of the contact influence the adhesive strength. This transition is in agreement with analytical asymptotic
limits. As the substrate is made thinner and the stress distribution changes, a strong decay in adhesive strength
with increasing center defect radius emerges. For the thinnest substrate the flaw-insensitive upper bound is
approached, suggesting that this decay is dominated by a reduction in the contact area. For penny-shaped
defects at increasing radial positions, the adhesive strength for the thinnest substrates becomes non-monotonic.
This confirms an intricate interplay between the geometry-controlled interfacial stress distribution and the size
and position of interfacial defects in adhesive contacts, which will lead to statistical variation in strength when
defects form due to surface roughness, fabrication imperfections, or contaminant particles.
1. Introduction

The geometry of adhesive junctions is known to influence the stress
distribution at the interface. This may lead to the nucleation of detach-
ment beginning at the contact edge, such as in spherical contacts [1–3]
or in peeling [4–6]. However, the strength of adhesive junctions with
more complex geometries may be controlled by pre-existing defects
within the interface. This is the case for bioinspired micropatterned
adhesives, where arrays of sub-contacts form at the tip of individual fib-
rils. These junctions may have complex geometries [7–10] or variation
f material properties close to the interface [11–14]. Fig. 1(a) illustrates
typical ‘mushroom-shaped’ fibrillar micropatterned adhesive, and the
ontact which forms with a target surface [15,16]. Defects in the
nterface may result from surface roughness, fabrication imperfections,
r contaminant particles. One defect may be dominant in controlling
etachment, or defects may interact. In either case, variation in the
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defect distribution from fibril to fibril leads to local statistical variation
in strength across the array. Fig. 1(b) shows the force–displacement
characteristics of the separation process, and the progressive detach-
ment of fibrils which results despite assurance of a uniform load
distribution among the sub-contacts. Fig. 1(c) shows the distribution
in elongation at detachment of individual fibrils, decomposed by the
dominant defect type as determined by in-situ contact visualization.
This local strength distribution has been shown to influence the global
strength and stability of micropatterned adhesive patches [15–17].

In order to understand how this statistical variation emerges, it is
necessary to systematically study the strength of an adhesive contact
in the presence of defects of specified size and location within the
interface. Furthermore, the interplay of the geometry of the adhe-
sive junction with these defects, and their propagation characteristics,
https://doi.org/10.1016/j.eml.2024.102238
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Fig. 1. (a) Schematic representation of a synthetic micropatterned adhesive contact. The loading system applies force 𝐹 , and displacement 𝑢. Also shown is a scanning electron
micrograph of mushroom fibril microstructures as well as a contact image against a rough and contaminated surface that induces multiple interfacial defects at the fibril tip.
Adapted from [15] (CC BY license); (b) Tensile load vs. displacement applied to an adhesive joint consisting of an array of micropatterned sub-contacts. Insets show the contact
at two points during retraction, demonstrating progressive stochastic detachment of fibrils. Adapted with permission from [16]; (c) Exemplary center and edge defects during
propagation, and the histogram of elongation at detachment (representing the local adhesive performance of individual sub-contacts) broken down by defect type. Adapted with
permission from [16].
should be examined. This work seeks to achieve this through explo-
ration of a stiff cylindrical punch in contact with a compliant elastic
layer, where manufactured defects are created in the punch.

2. Theory

Fig. 2a–b show the geometric and elastic properties of this config-
uration. The rigid punch is characterized by radius, 𝑏, and the elastic
layer by thickness, ℎ, Young’s modulus, 𝐸, and Poisson ratio, 𝜈 (where
henceforth 𝐸∗ = 𝐸∕(1 − 𝜈2)). The adhesive interaction is characterized
by the intrinsic strength, 𝜎0, and work of adhesion, 𝑊 . A penny shaped
defect of radius, 𝑎, is introduced at radial position, 𝑝. It is introduced
on the rigid punch and is assumed to completely interrupt the adhesive
interaction, hence its depth is arbitrary. The junction is subject to a
remote applied displacement, 𝛥, and a corresponding nominal applied
stress, 𝜎. The peak applied stress during separation is defined as the
adhesive strength, 𝜎max.

Defect-insensitive detachment refers to the optimal condition in
which the adhesive strength is controlled by the intrinsic strength
of the interaction across the entire contact [18]. This is a result of
the interfacial stress distribution being approximately uniform, which
occurs when the length-scale which controls the size of the fracture
process zone, 𝐸∗𝑊 ∕𝜎20 , is large in comparison to the dimensions of
the contact or the thickness of the layer. Defect-insensitivity may result
from a long-range adhesive interaction, or when opening displacements
are limited by high modulus. It represents the upper bound on the
adhesive strength, which is obtained based on the contact area as

𝜎max = 𝜎0

[

1 −
(𝑎)2

]

. (1)

𝑏

2 
Conversely, when the fracture process zone is very small, the linear
elastic interfacial stress distribution dominates. In the limit that ℎ ≫ 𝑏,
and in the absence of any interfacial defects (𝑎∕𝑏 = 0), the analytical
solution for this stress distribution is [19]

𝜎𝑧𝑧 =
𝜎

[

1 −
(

𝑟
𝑏

)2
]

1
2

. (2)

The asymptotic elastic stresses at the contact edge (𝑟 → 𝑏) are singular
and equivalent to the tip of a crack in a bulk material, with stress
intensity factor

𝐾I =
1
2
𝜎
√

𝜋𝑏, (3)

leading to the linear elastic fracture mechanics (LEFM) limit of the
adhesive strength when controlled by detachment from the contact
edge [20]

𝜎max =
(

8𝐸∗𝑊
𝜋𝑏

)
1
2
. (4)

An analytical solution for a center defect is also available in the limit of
ℎ ≫ 𝑏, where the stress intensity factor is equivalent to a penny-shaped
defect in the center of a rod [21]

𝐾I =
2
𝜋
𝜎
√

𝜋𝑎𝑓
(𝑎
𝑏

)

, (5)

where

𝑓
(𝑎
𝑏

)

=
1 − 0.5

(

𝑎
𝑏

)

+ 0.15
(

𝑎
𝑏

)3

[

1 −
(

𝑎
)]

1
2

, (6)
𝑏
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Fig. 2. Schematic of adhesive junction geometry utilized in both modeling and
xperiment. A glass cylinder contacts a polydimethylsiloxane (PDMS) layer. For the
urpose of modeling the glass is treated as rigid and the PDMS as a linear elastic solid.
circular defect is created in the cylinder at a specified radial position. Adhesion is
odeled by definition of a cohesive zone traction–separation law at the interface.

eading to the linear elastic fracture mechanics (LEFM) limit of the
dhesive strength when controlled by detachment from the defect at
ontact center

max =

⎛

⎜

⎜

⎜

⎝

𝜋𝐸∗𝑊

2𝑎𝑓
(

𝑎
𝑏

)2

⎞

⎟

⎟

⎟

⎠

1
2

. (7)

Detachment may be governed by a competition of the center defect
and the contact edge, in which case the lesser of the results of Eqs. (4)
and (7) will dominate asymptotically. The center defect size associated
with transition between regimes is given by solution of the nonlinear
equation

𝑎
𝑏
𝑓
(𝑎
𝑏

)2
= 𝜋2

16
, (8)

thus center defects with size exceeding approximately 𝑎∕𝑏 = 0.514 will
control detachment. It should be noted that this transition point will
change for thinner substrates, where a stress concentration emerges at
the contact center, as will be discussed later in this work. The adhesive
strength of perfect contacts on thin elastic substrates has previously
been considered analytically [20,22–24], by numerical simulation [23,
25], and in experiment [20,22,24]. Here, this treatment is extended to
contacts with interfacial defects.

3. Materials and methods

3.1. Experiment

Experiments equivalent to the schematic of Fig. 2 utilize cylindrical
glass probes, radius 𝑏 = 5 mm, on polydimethylsiloxane (PDMS)
samples of four different thicknesses, ℎ = [0.5, 1.5, 3, 5] mm. Sylgard
84 (Dow Corning, Midland, MI) is mixed at a 10:1 ratio of base to
uring agent. The thinnest sample was spin coated, while the thicker
3 
three are molded. All are cured at a temperature of 85 ◦C for 4 h.
The glass is polished to an optical grade of 60-40 (MIL-REF-13830B).
The defects are made by drilling into the glass probe. Center defects of
five different sizes, 𝑎 = [0.815, 1.345, 1.88, 2.285, 2.75] mm, are created.
Additionally, a defect of radius 𝑎 = 1.75 mm is placed at five radial
locations, 𝑝 = [0, 1, 1.5, 2, 2.5] mm, from the center of the probe. The
robe and sample are aligned using a custom-built two motor stage,
nd a Nelder–Mead algorithm is used to adjust the angle to find the
eak adhesive force. The adhesion tests are performed on a 2.5 kN
wickiLine tensile tester (ZwickRoell USA, Kennesaw, GA). The probe
nd sample are brought to a compressive preload of 10 N through
pproach at a rate of 1 mm/min, followed by a 20 s hold period and a
etraction at a rate of 1 mm/min.

.2. Cohesive zone finite element model

The model shown schematically in Fig. 2a–b is implemented nu-
merically using finite element analysis in ANSYS Mechanical [26]. The
radius of the punch is set to unity such that 𝑏 serves to normalize
all length scales. Linear elastic solid elements (PLANE183 for 2D ax-
isymmetric studies and SOLID187 for 3D studies) are utilized to model
both the cylindrical punch and the substrate. Results obtained show
that largest principal strains observed across all simulations are < 1%,
thus the nonlinear elastic response of the elastomer substrate is not
expected to play a significant role. A uniform mesh of quadrilateral
elements is utilized. The modulus of the substrate is set to unity such
that 𝐸 serves to normalize all parameters of dimension force per unit
area. The modulus of the cylindrical punch is set to 103 to render its
compliance negligible relative to the substrate. The Poisson ratio of
both the cylindrical punch and the elastic substrate are set to 𝜈 =
0.49 to avoid numerical issues associated with incompressibility. A
bilinear cohesive zone model, shown in Fig. 2c, is implemented at
the interface using CONTA172/TARGE169 elements for 2D axisym-
metric studies and CONTA174/TARGE170 elements for 3D studies,
implemented with a pure penalty method. The intrinsic strength, 𝜎0∕𝐸,
and the critical separation, 𝛿f∕𝑏, are specified. The contact stiffness is
determined automatically based upon the properties of the two bodies.
Artificial damping is used to stabilize the numerical solution during
debonding, and is set to one-tenth of the time step size. The studies are
implemented with control of the normalized applied displacement, 𝛥∕𝑏,
with a specified finite increment, d𝛥∕𝑏, to a final displacement value
which ensures complete separation of the two bodies. The nominal
stress, 𝜎∕𝐸, in reaction to this displacement is recorded throughout
the separation. Its maximum defines the adhesive strength, 𝜎max∕𝐸.
Geometric nonlinearity is considered.

In order to benchmark the model, convergence of the adhesive
strength must be ensured as the displacement increment, d𝛥∕𝑏, and
mesh size, 𝑑∕𝑏 are reduced. In order to enable broader parametric
studies, a rule-of-thumb is sought for the selection of these parameters
which ensures convergence as the intrinsic properties of the interface
are varied. We approximate an elastic half space so that the results
can later be compared to available analytical solutions [20,27]. The
thickness and width of the substrate, relative to the radius of the punch,
are two times larger. The bottom surface of the substrate is fixed, and
the outer edge is free. Increasing each of these dimensions to four times
larger results in only a ∼5% change in the adhesive strength (for the
converged case of 𝜎0∕𝐸 = 0.01 and 𝛿f∕𝑏 = 0.001 discussed later).

Fig. S1-S3 of the Supplementary Information show the results of a
convergence study for three values of the intrinsic strength, 𝜎0∕𝐸 =
[0.001, 0.01, 0.1], for a fixed critical separation, 𝛿f∕𝑏 = 0.001. The effect
of increasing the intrinsic strength is to decrease the size of the fracture
process zone at the contact edge, which can be approximated based
upon the equations of linear elastic fracture mechanics as
𝑟p = 1 𝐸∗𝑊

2
= 1 𝐸∗𝛿f . (9)
𝑏 𝜋 𝜎0𝑏 2𝜋 𝜎0𝑏



C.K. Jones et al.

A
s
T

𝜎

w
b

i
s

Extreme Mechanics Letters 72 (2024) 102238 
This has a significant effect on the manner in which the results con-
verge. It is observed that for a small process zone, a smaller mesh size
is required but less refinement of the displacement increment is needed.
Conversely, when the process zone is large, larger mesh sizes provide
converged results but only with greater refinement of the displacement
increment. This result follows intuition, as a large fracture process
zone leads to a more uniform interfacial stress distribution (thus less
mesh refinement is needed to resolve profile) which in turn leads to a
more rapid/simultaneous detachment across the contact (thus a smaller
displacement increment is needed to determine maximum stress during
this process). It is found that convergence within 1% leads to the
identification of the following rule-of-thumb for mesh size
𝑑
𝑏
< 1

2
𝑟p
𝑏
, (10)

and displacement increment
d𝛥
𝑏

< 10−7 𝑏
𝑟p
. (11)

n analytical solution based upon a Dugdale traction–separation law,
hown in Fig. 2d, is available for benchmarking the numerical solution.
he adhesive strength is [27]

max =
2𝜎0
𝜋

( 𝑐
𝑏

)2
[√

( 𝑏
𝑐

)2
− 1 +

( 𝑏
𝑐

)2
cos−1

( 𝑐
𝑏

)

]

, (12)

here the critical lateral extent of the fracture process zone, 𝑐, is given
y solution of the non-linear equation

𝐸∗𝑊
𝜎20𝑏

= 4
𝜋

[

𝑐
𝑏
− 1 +

√

1 −
( 𝑐
𝑏

)2
cos−1

( 𝑐
𝑏

)

]

. (13)

Fig. 3 shows the results of adopting this rule-of-thumb by compar-
son of the resulting adhesive strength from FEA with the analytical
olutions of Eqs. (4) and (12). Equivalence of the fracture process zone
size for the Dugdale traction–separation law (analytical) and bilinear
traction–separation law (FEA) is ensured by imposing the condition
𝛿f = 2𝛿c, thus 𝐸∗𝑊 ∕𝜎20𝑏 = 𝐸∗𝛿c∕𝜎0𝑏 = 𝐸∗𝛿f∕2𝜎0𝑏. Two sets of FEA
results are presented. For the first set, the critical separation is held
fixed, 𝛿f∕𝑏 = 0.001, and the intrinsic strength, 𝜎0∕𝐸, is varied to
alter the process zone size. For the second set, the intrinsic strength
is held fixed, 𝜎0∕𝐸 = 0.01, and critical separation, 𝛿f∕𝑏, is varied to
alter the process zone size. Good agreement is observed between the
solutions for process zone sizes smaller than approximately one-tenth
of the punch radius. This suggests that in this regime, the normalized
strength solution, 𝜎max∕𝜎0, is independent of the shape of the traction
separation law when the resulting process zone size is equivalent.
The FEA results deviate from the analytical solution in the regime of
geometry-insensitive detachment. This may be a result of the finite
contact stiffness in the FEA solution (i.e. a result of the difference in
shape of the traction–separation law), but is not deemed to be a major
concern since the focus of this work is defect-controlled detachment,
which implies operation outwith this regime. For this reason, the
rule-of-thumb is adopted for subsequent studies.

3.3. Extraction of model parameters from experiment

Experiments equivalent to the schematic of Fig. 2 were described in
Section 3.1. Results in the absence of a defect (𝑎∕𝑏 = 0) can be utilized
to deduce approximate ranges for the interface parameters 𝜎0∕𝐸 and
𝛿f∕𝑏 to be used in subsequent numerical simulations. The adhesive
strength, 𝜎max, appears to be asymptotically approaching the limit of
an elastic half-space as the thickness of the substrate, ℎ, is increased
(Fig. S4). Accordingly, it is deemed that a reasonable approximation
is obtained when the result from the thickest substrate (ℎ = 5 mm)
is used in conjunction with the LEFM result of Eq. (4). Adopting an
approximation of the modulus, 𝐸 = 2 MPa [28], the strength 𝜎max =

2
32.5 kPa leads to an estimate of the work of adhesion of𝑊 = 0.788 J∕m .

4 
Fig. 3. Normalized adhesive strength, 𝜎max∕𝜎0 vs. normalized approximate process zone
size. Assessment of convergence rule of thumb based upon comparison to analytical
models using LEFM (Eq. (4)) and using Dugdale CZM (Eq. (12)). Two sets of FEA
results are presented. For the first set (crosses), the critical separation is held fixed,
𝛿f∕𝑏 = 0.001, and the intrinsic strength, 𝜎0∕𝐸, is varied to alter the process zone size.
For the second set (circles), the intrinsic strength is held fixed, 𝜎0∕𝐸 = 0.01, and critical
separation, 𝛿f∕𝑏, is varied to alter the process zone size.

This suggests that the product 𝜎0∕𝐸 and 𝛿f∕𝑏 should be of order 10−4.
Recognizing that the intrinsic strength, 𝜎0, will be higher than the
largest values of adhesive strength observed for the thinnest substrate
with no defect, 𝜎max = 142 kPa, an order of magnitude estimate of in-
trinsic strength 𝜎0∕𝐸 = 0.1 is obtained. Accordingly, for the product to
be of order 10−4, the critical separation 𝛿f∕𝑏 = 0.001 is adopted. Given
the approximate nature of this parameter selection, for comparison, an
order of magnitude lower intrinsic strength, 𝜎0∕𝐸 = 0.01, with the same
critical separation, 𝛿f∕𝑏 = 0.001, is also considered. It should be noted
that this reduction the intrinsic strength should have an equivalent
effect to holding the intrinsic strength fixed and increasing the critical
separation, as discussed in the previous section.

4. Results and discussion

4.1. Effect of substrate thickness on static stress distribution

Of particular interest in this work is the interplay between the
nominal interfacial stress distribution controlled by the global features
of the contact geometry, and the presence of defects which perturb this
stress distribution locally, in controlling the adhesive strength of the
junction. In order to investigate this, the interfacial stress distribution
in the absence of a defect is first examined.

Fig. 4 shows the normal stress at the interface, 𝜎𝑧𝑧∕𝜎, where 𝜎
is the nominal applied stress. An inverse-square-root singularity is
anticipated at the contact edge, as described in Eqs. (2) and (3), and
hence a reversed logarithmic scale is used when plotting as a function
of the radial position, 𝑟∕𝑏. Reducing the substrate thickness, ℎ∕𝑏, leads
to a reduction in the strength of the edge stress concentration, and
moves stress toward the contact center. This is the result of a well-
known confinement effect, which has been exploited in the design of
bioinspired micropatterned adhesive fibrils with soft tip layers [11–14].
In considering the results which follow, this suggests that a different
dependence of adhesive strength on defect position may emerge for
differing substrate thicknesses.

4.2. Effect of center defect size on strength and propagation characteristics

For the experiments described in Section 3.1, Fig. 5 shows the
detachment propagation characteristics and the adhesive strength for

preexisting defects located at the contact center as their size is varied.
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Fig. 4. Normalized interfacial stress, 𝜎𝑧𝑧∕𝜎 vs. radial position, 𝑟∕𝑏. Normalized sub-
trate thickness, ℎ∕𝑏, is varied. Note that a reversed logarithmic scale is utilized for
he radial position to better visualize the singular result as 𝑟∕𝑏 → 1.

he thickness of the substrate is also varied in order to modify the
ominal interfacial stress distribution (Fig. 4). It is observed that for
hicker substrates the contact-edge stress-concentration is dominant.
ropagation of detachment begins from the contact edge, regardless of
he presence of a defect at the contact center (Fig. 5a, ℎ = 5.0 mm).
ccordingly, it is observed that the adhesive strength of the junction
s approximately independent of the center defect radius in the range
xamined (Fig. 5b, ℎ = 3.0 mm and ℎ = 5.0 mm). As the thickness of
he substrate is reduced, the severity of the edge stress concentration
s reduced and the interfacial stress at the contact center increases. It
s observed that the detachment propagation changes, and is simul-
aneously observed from the defect at the contact center and from
he contact edge (Fig. 5a, ℎ = 1.5 mm). Accordingly, the adhesive
trength decays as the center defect size increases for the two thinner
ubstrates (Fig. 5b, ℎ = 0.5 mm and ℎ = 1.5 mm). The adhesive strength
ncreases as the thickness of the substrate decreases, suggesting that the
eneficial effect of reduction of the edge-stress concentration outweighs
he detrimental increase in the stress at the contact center (Fig. 4).
These trends can be elucidated by comparison to equivalent simula-

ions. Fig. 6 shows the detachment propagation characteristics and the
dhesive strength for preexisting defects located at the contact center as
heir size is varied. In the contour plots of Fig. 6a the contrast between
he punch and substrate indicates separation. The same trends in defect
ropagation as in experiment are observed, with the thickest substrate
eing controlled by the edge-stress-concentration and a transition to
enter-out propagation occurring as the thickness of the substrate is
educed. Fig. 6b also shows equivalent trends in the adhesive strength.
n increase in the intrinsic strength of the interface, as shown in
ig. 6c, does not significantly influence the result for the thinnest
ubstrate. Since the primary effect of the increase in intrinsic strength
s a reduction in the size of the fracture process zone, this suggests
hat the thinnest substrate is approaching the limit of flaw-insensitivity.
his is confirmed when the results are compared to the upper bound
f Eq. (1), which is shown in the dashed lines of Fig. 6b–c. Thicker
ubstrates do exhibit significant differences as the intrinsic strength is
aried. The higher intrinsic strength results in a relative reduction in
he adhesive strength, as stresses become more localized to the fracture
rocess zone. The difference between the results for the two thickest
ubstrates is reduced, but they have not yet converged as they did in
xperiment. This suggests the true intrinsic strength of the interface in
xperiment may be even higher than both cases studied in simulations
r, equivalently, the critical separation may be smaller than assumed.
he thickest substrates approach the analytical asymptotic limits for
he elastic half space identified in Eq. (4) and (7). A gradual transition
rom edge-controlled to center-controlled detachment is observed close

o the transition defect size of 𝑎∕𝑏 = 0.514 identified in Section 2.

5 
Fig. 5. (a) Experimental detachment propagation characteristics for both a thin (ℎ =
1.5 mm) and thick (ℎ = 5.0 mm) substrate with no preexisting center defect (left) and
center defect radii 𝑎 = 1.345 mm (center) and 𝑎 = 2.285 mm (right). In each case, the
contact image is captured at a time equidistant from the initiation of defect propagation
and complete detachment; (b) Adhesive strength, 𝜎max vs. defect radius, 𝑎, for a center
defect. Substrate thickness, ℎ, is varied.

4.3. Effect of defect location on strength and propagation characteristics

Fig. 7 shows the detachment propagation characteristics and the
adhesive strength for preexisting defects at increasing radial positions
from the contact center. The thickness of the substrate is once again
varied. For the thickest substrate, propagation of detachment begins
from the contact edge (Fig. 7a, ℎ = 5.0 mm). This behavior, equivalent
to that which was observed for the center defect, persists even as
the defect approaches the contact edge (𝑝 = 2.5 mm). The adhesive
strength remains approximately independent of the center defect radius
in the range examined (Fig. 7b, ℎ = 3.0 mm and ℎ = 5.0 mm). As the
thickness of the substrate is reduced, a non-monotonic trend emerges.
Detachment is simultaneously observed from the defect at the contact
center and from the contact edge (Fig. 7a, ℎ = 1.5 mm), as it was for
the center defect. The dependence of the adhesive strength on defect
position becomes non-monotonic (Fig. 7b, ℎ = 0.5 mm and ℎ = 1.5 mm).
In order to explore this trend in more detail, equivalent simulations
are performed (Fig. 7c), which additionally allows defect positions up
to the contact edge (𝑝∕𝑏 = 1) to be considered. These simulations
are now 3D, due to the breakdown of axisymmetry. The associated
computation intensity leads attention to be limited to the thinnest
substrate where the non-monotonic trend emerges (ℎ∕𝑏 = 0.1). It is
observed that the strength is lowest when the defect is at the contact
center. The strength increases for defects at intermediate positions, and

then decays again as the defect reaches the contact edge. This is in



C.K. Jones et al.

N

Extreme Mechanics Letters 72 (2024) 102238 
Fig. 6. (a) Simulated detachment propagation characteristics for both a thin (ℎ∕𝑏 = 0.3)
and thick (ℎ∕𝑏 = 1.0) substrate with no preexisting center defect (left) and center
defect radii 𝑎∕𝑏 = 0.269 (center) and 𝑎∕𝑏 = 0.457 (right). Results are shown for intrinsic
strength 𝜎0∕𝐸 = 0.01. Contrast in stress contour color between the rigid punch and the
substrate indicates separation. In each case, the image is captured at a displacement
equidistant from the initiation of defect propagation and complete detachment; (b)–
(c) Normalized adhesive strength, 𝜎max∕𝜎0 vs. defect radius, 𝑎∕𝑏, for a center defect.
ormalized substrate thickness, ℎ∕𝑏, is varied. Both lower intrinsic strength, (b) 𝜎0∕𝐸 =

0.01, and higher intrinsic strength, (c) 𝜎0∕𝐸 = 0.1 are compared. The dashed line
represents the upper bound associated with defect-insensitive detachment given in
Eq. (1), and the dot-dashed line represents the LEFM result in the limit ℎ ≫ 𝑏 with the
lower of Eq. (4) for edge-controlled detachment and Eq. (7) for center-defect-controlled
detachment being plotted. The + indicates the point of transition between these two
regimes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
6 
Fig. 7. (a) Experimental detachment propagation characteristics for both a thin (ℎ =
1.5 mm) and thick (ℎ = 5.0 mm) substrate with defect of radius 𝑎 = 1.75 mm at increasing
radial positions, 𝑝 = 0 mm (left), 𝑝 = 1.0 mm (center), and 𝑝 = 2.5 mm (right). In each
case, the contact image is captured at a time equidistant from the initiation of defect
propagation and complete detachment; (b) Experimental adhesive strength, 𝜎max vs.
defect position, 𝑝, for a defect of radius 𝑎 = 1.75 mm. Substrate thickness, ℎ, is varied;
(c) Normalized adhesive strength, 𝜎max∕𝜎0 vs. defect location, 𝑝∕𝑏, for a penny-shaped
defect of normalized radius 𝑎∕𝑏 = 0.35. Normalized substrate thickness, ℎ∕𝑏 = 0.1, and
intrinsic strength 𝜎0∕𝐸 = 0.01. The dashed line represents the upper bound associated
with defect-insensitive detachment given in Eq. (1), modified to account for the change
in reduction of the contact area as the defect reaches the contact edge.

agreement with the regions of highest stress observed in the nominal
interfacial stress distribution (Fig. 4). The reduction in strength for
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a defect at the contact edge is further evidence that the behavior is
defect-controlled, and the result cannot be explained by the geometry-
controlled upper bound shown (Fig. 7c, dashed line). In fact, the upper
bound increases as the defect reaches the contact edge as the loss
in area is less pronounced. The difference in trend as compared to
experiment (Fig. 7b, ℎ = 0.5 mm) may be the result of an increased
ensitivity to alignment for the thinnest substrates. Nonetheless, this
on-monotonic trend highlights the interplay between the geometry-
ontrolled interfacial stress distribution and defect size and location in
ontrolling the strength of an adhesive contact.

. Conclusions

In this work it has been demonstrated that the dominant singular
tress concentration at the edge of an adhesive contact is not always
he determinant of adhesive strength. For the model system of a stiff
ylindrical punch contacting an elastic substrate of differing thickness,
ariation in the geometry-controlled interfacial stress distribution can
ead to a dependence on interfacial defects within the contact. In
hick substrates, the singular stress concentration at the contact edge
oes render the strength insensitive to the presence of defects at the
ontact center, except when these defects exceed approximately half
f the radius of the contact. This transition was correctly predicted by
omparison to analytical models in the limit of an elastic half space. As
he thickness of the substrate is reduced, stress increases at the contact
enter and the strength becomes strongly dependent on defect size at
his location. Simulations show that an increase in the intrinsic strength
f the interface causes a slower onset of center defect propagation as the
hickness is reduced. They also show that the thinnest substrates exam-
ned approach the theoretical upper bound associated with the intrinsic
trength, where reduction in contact area becomes more significant
han defect propagation. Variation in position of defects is also very
ignificant. For the thinnest substrate, it leads to a non-monotonic trend
n adhesive strength in accordance with the nominal interfacial stress
istribution. Insights from this model adhesive system are relevant to
ore complex micropatterned surfaces, where variation in strength
etween sub-contacts emerges due to differences in the local interfacial
efect distribution.
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