

1 **Predicting Barrier Island Shrub Presence using Remote Sensing Products and**
2 **Machine Learning Techniques**

3 **Benton Franklin¹, Laura J. Moore¹, and Julie C. Zinnert²**

4 ¹Department of Earth, Marine, and Environmental Science, University of North Carolina at
5 Chapel Hill, Chapel Hill, NC, USA

6 ²Department of Biology, Virginia Commonwealth University, Richmond, VA, USA

7 Corresponding author: Benton Franklin (wbenton@email.unc.edu)

8 **Key Points:**

9 - Decision tree analysis and random forest modeling can predict shrub presence on barrier
10 islands in Virginia with ~90% accuracy

11 - Shrub presence on barrier islands correlate with dune elevations >1.9 m and maintenance
12 of island interior widths >160 m over a ~ 6-year period.

13 - Shrub establishment and removal lags changes in geomorphic conditions, indicating
14 hysteresis

15

16 **Abstract**

17 Barrier islands are highly dynamic coastal landforms that are economically, ecologically,
18 and societally important. Woody vegetation located within barrier island interiors can alter
19 patterns of overwash, leading to periods of periodic barrier island retreat. Due to the interplay
20 between island interior vegetation and patterns of barrier island migration, it is critical to better
21 understand the factors controlling the presence of woody vegetation on barrier islands. To
22 provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT,
23 and aerial photography to measure shrub presence, coastal dune metrics, and island

24 characteristics (e.g., beach width, island width) for an undeveloped mixed-energy barrier island
25 system in Virginia along the US mid-Atlantic coast. We apply decision tree and random forest
26 machine learning methods to identify new empirical relationships between island
27 geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be
28 present in areas where dune elevations are above ~ 1.9 m and island interior widths are greater
29 than ~160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island
30 interior widths are less than ~160 m regardless of dune elevation. Our machine learning
31 predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect
32 predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to
33 adapt to changing conditions and therefore their growth and removal lags changes in island
34 geomorphology, which can occur more rapidly.

35

36 **Plain Language Summary**

37 In this study we present two machine learning models for predicting the presence of
38 shrubs on barrier islands. We use data derived from satellites, LiDAR, and arial imagery to create
39 machine learning models. Using these models, we find that dune elevation and the minimum-
40 island-interior width between surveys correlates with whether or not shrubs are present on barrier
41 islands; sufficiently wide interior areas and sufficiently high dune elevations are necessary to
42 support shrubs. Additionally, in certain areas we observe a lag between predicted and observed
43 behavior. We attribute this lag to the different time scales over which shrub and barrier island
44 geomorphology processes operate; barrier island geomorphology can change rapidly, but it can
45 take several years for shrubs to respond to these changes.

46

47 **Keywords:**

48 Barrier island migration, machine learning, dune-shrub interactions, hysteresis

49

50 **1 Introduction**

51 Barrier islands are a common feature of coastal environments, located along roughly 10%
52 of coastlines globally (Stutz & Pilkey, 2011). These highly dynamic landforms provide
53 numerous societal benefits, including storm protection to mainland communities, tourism
54 revenue, and nesting areas for ecologically important shorebirds. Aided by storms which cause
55 overwash (e.g. Leatherman et al., 1979; Morton & Sallenger Jr, 2003), barrier islands migrate
56 landward over time due to gradients in alongshore sediment transport (e.g. Cipriani & Stone,
57 2001; Fitzgerald et al., 1984; Robbins et al., 2022), decreases in sediment supply (e.g. Beets &
58 van der Spek, 2000; Stutz & Pilkey, 2011; Williams et al., 2013), tidal inlet dynamics (e.g. Inman
59 & Dolan, 1989; Leatherman et al., 1979; Nienhuis & Lorenzo-Trueba, 2019), and sea level rise
60 (Lorenzo-Trueba & Ashton, 2014; Mariotti & Hein, 2022; Moore et al., 2010).

61 Coastal foredunes are prominent features on barrier islands and because water levels must
62 exceed dune elevation for overwash to occur (Sallenger, 2000), dunes play a crucial role in
63 determining how islands respond to storms (Durán Vinent & Moore, 2015) and how they migrate
64 over time (Houser et al., 2018; Reeves et al., 2021). When dunes are overtopped and overwash
65 occurs, sand is transported from the front of an island to its interior and beyond, resulting in
66 landward barrier island migration in the case of sea-level rise and/or negative sediment supply
67 (Donnelly et al., 2006; Leatherman, 1983). If islands are unable to move landward, they are at
68 risk of drowning and disintegration (e.g. Lorenzo-Trueba & Ashton, 2014; Moore et al., 2010).

69 The presence of woody shrub vegetation on a barrier island can alter overwash dynamics by
70 restricting sediment transport pathways in the island interior (Reeves et al., 2022; Zinnert et al.,

71 2019). This disruption increases the likelihood of an island undergoing punctuated rather than
72 continuous retreat, because shrubs inhibit overwash delivery to the island interior (Reeves et al.,
73 2022). During punctuated retreat, barrier islands undergo alternating periods of landward
74 migration followed by periods of relative immobility (Ashton & Lorenzo-Trueba, 2018; Ciarletta
75 et al., 2019; Lorenzo-Trueba & Ashton, 2014).

76 Just as plant dynamics can alter barrier island response to storms (e.g. Durán Vinent &
77 Moore, 2015; Reeves et al., 2022; Zinnert et al., 2019), storms can change barrier island plant
78 communities. Storms can erode or wash away dunes (Morton & Sallenger Jr, 2003), removing
79 established foredune vegetation and converting vegetated areas to bare sand (Snyder & Boss,
80 2002). Through the erosion and/or removal of foredunes, storms can also expose vegetation in
81 the barrier island interior to salt spray, flooding, and burial (Carter et al., 2018; Snyder & Boss,
82 2002), potentially resulting in a decrease in total vegetated area and recolonization by more salt
83 tolerant species. Over time, depending upon post-storm recovery rates, areas can return to prior
84 ecological successions (Snyder & Boss, 2002; Velasquez-Montoya et al., 2021) or some habits
85 may be eliminated (Carter et al., 2018).

86 Woody vegetation is a common ecological feature in coastal environments along the Gulf and
87 East Coasts of the United States (Duncan & Duncan, 1987), establishing on barrier islands from
88 seeds carried by wind, waves, and birds (Ehrenfeld, 1990; Shiflett & Young, 2010). On barrier
89 islands, shrub growth has been linked to a variety of abiotic processes including warming climate
90 (Huang et al., 2018; Wood et al., 2020), dune elevation (Woods et al., 2019), interior elevation
91 (Young et al., 2011), salinity exposure (Young et al., 1994), and freshwater availability (Young et
92 al., 2011). High dunes protect shrubs, especially seedlings, from salt spray and overwash (Miller

93 et al., 2008); Woods et al. (2019) found foredune elevations of at least 1.75 m were required for
94 shrub growth on the Virginia Barrier Islands, USA.

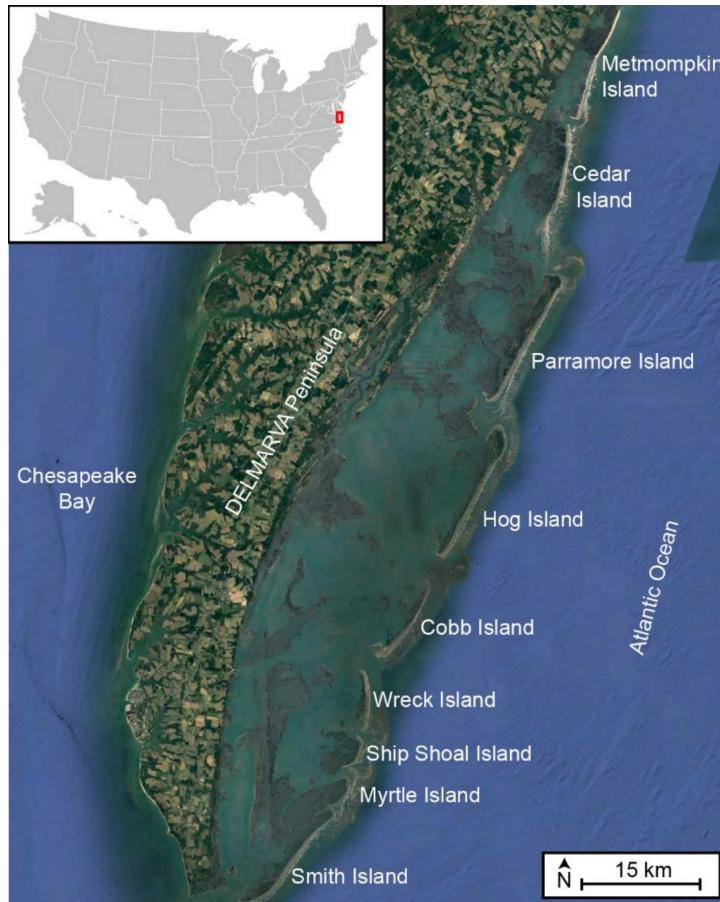
95 Several recent studies use a combination of LIDAR, aerial photography, satellite imagery,
96 and field observations to classify landcover in a variety of barrier island settings (Anderson et al.,
97 2016; Enwright et al., 2019; Fisher et al., 2023; Velasquez-Montoya et al., 2021). Although
98 previous research succeeds in identifying the presence of vegetation and vegetation type, few
99 studies predict its occurrence, though Enwright et al. (2019) succeeded in using machine learning
100 techniques to predict 11 habitat classes on Dauphin Island, Alabama, including a woody
101 vegetation class.

102 Because shrubs can alter the rate and style of barrier island migration (Reeves et al., 2022;
103 Zinnert et al., 2019), our objective is to understand the relationship between barrier island
104 geomorphology and the presence or absence of shrubs, and to develop a means for predicting
105 shrub expansion and loss. Here we use decision tree analysis and random forest modeling—
106 machine learning techniques—to assess the empirical relationships between barrier island
107 geomorphology and shrub presence, and to identify remote-sensing-derived metrics capable of
108 predicting the presence or absence of shrubs for large-scale undeveloped barrier island systems.

109 Machine learning techniques show promise in coastal geomorphology (e.g. Beuzen &
110 Splinter, 2020; Houser et al., 2022). Recent examples include the use of machine learning to
111 classify images to calculate coastal landslide risk (Fisher et al., 2023), characterize biological
112 marsh communities (Martínez Prentice et al., 2021), and identify shoreline features (McAllister
113 et al., 2022). Additionally, machine learning algorithms have been coupled with physically based
114 models to predict changes in barrier island habitat (Enwright et al., 2021), calibrate dune
115 evolution models (Itzkin et al., 2022), and simulate shoreline evolution (Montaño et al., 2020).

116 To meet our objectives, we focus on the Virginia Barrier Islands, which are largely owned by
117 The Nature Conservancy (TNC) and are included within the National Science Foundation's
118 Virginia Coast Reserve (VCR) Long-Term Ecological Research site. We focus on the islands
119 that comprise the VCR, which extend 110 km along the outer coast of the DELMARVA
120 Peninsula (Figure 1), from Fisherman's Island in the south to Metompkin Island in the north.
121 Islands within the VCR are separated from the mainland by wide back-barrier lagoons many of
122 which are fully or partially filled with back-barrier marsh (of varying width and depth).

123 Since 1962, the VCR has lost subaerial barrier island volume while simultaneously gaining
124 shrub area (Zinnert et al., 2016). Because TNC owns the VCR and limits anthropogenic effects,
125 the VCR is an ideal setting for studying natural physical and ecological barrier dynamics. While
126 many other types of plants are found within the VCR, we focus on predicting the presence of
127 shrubs because they are ubiquitous on many islands in the VCR (Zinnert, 2022; Zinnert et al.,
128 2016, 2019) as well as other barrier islands in the U.S., and their presence significantly alters
129 barrier island migration (Reeves et al., 2022; Zinnert et al., 2019).



130

131 **Figure 1.** Study area map. The Virginia Coastal Reserve (VCR) extends from Smith Island to
 132 Metompkin Island, located on the Delmarva Peninsula, Virginia, United States.

133

134 **2 Methods**

135 **2.1 Data**

136 To quantify the relationship between barrier island geomorphology and shrub extent over
 137 space and time in the VCR, we utilized LiDAR digital elevation models (DEMs), landcover
 138 maps created from LANDSAT imagery by Zinnert et al. (2016, 2019, 2022), and aerial
 139 photography (Table 1). Three LiDAR DEMs from March 2010 (VITA, 2018), October 2016
 140 (OCM Partners, 2023a), and June 2017 (OCM Partners, 2023b) allowed us to quantify dune
 141 morphometrics (details below). The 2010 DEM has a resolution of 3.048 m (10 ft) and a vertical
 142 accuracy of 20 cm, while the 2016 and 2017 DEMs have resolutions of 1 m and vertical

143 accuracies of 10 cm. We supplemented DEM-derived values with dune elevations from Oster &
 144 Moore (2019), which were calculated from a 2005 United States Army Corps of Engineers
 145 (USACE) DEM with a 2 m resolution and a 20 cm vertical accuracy.

146

147 **Table 1.** Data sources. Summary of data type, collection year, accuracy, and source.

Remote Sensing Data	Year	Horizontal Accuracy	Data Sources
LiDAR	2005	2 m	Oster and Moore, 2007
	2010	3.048 m (10 ft)	VITA, 2011
	2016	1 m	OCM Partners, 2023a
	2017	1 m	OCM Partners, 2023ab
LANDSAT Groundcover	1998	30 m	Zinnert, 2022
	2011	30 m	Zinnert, 2022
	2016	30 m	Zinnert, 2022
Aerial Photography	2009	0.305 m	VGIN, 2009
	2013	0.305 m	VGIN, 2013
	2017	0.305 m	VGIN, 2017
	2021	0.305 m	VGIN, 2021

148

149 We identified the presence of shrubs using previously published landcover classifications
 150 generated by Zinnert et al. (2016, 2019, 2022) from LANDSAT (30-m resolution) using bands
 151 one through four, five and seven (resolution = 30m). Zinnert et al. (2016, 2019, 2022) divided
 152 the VCR into five landcover classes: woody, grassland, sand / bare, water, and marsh. All
 153 satellite images were collected between mid-August to mid-September, on cloud free days during
 154 the summer growing season (Zinnert et al., 2016) to minimize the effects of seasonal differences
 155 in vegetation cover. For this project, we focused on the woody, water, and marsh classes from
 156 1998, 2011, and 2016, with shrubs being represented by the woody landcover class. We
 157 manually compared Zinnert et al.'s (2016, 2019, 2022) shrub classifications to true color and
 158 infrared aerial imagery from 2009, 2013, and 2017, with resolutions of 0.3 m collected by the
 159 Virginia Department of Emergency Management (Virginia Geographic Information Network,
 160 2009, 2013, 2017), to serve as data validation. We used photographs collected in 2021 (Virginia
 161 Geographic Information Network, 2021) to gauge current shrub extent. All aerial photographs

162 were collected in the spring, and although summer timing is more ideal, these are the only high-
163 resolution aerial photographs available.

164 To efficiently analyze the large geographic area of the VCR, using ArcGIS Pro, we
165 created 517 transects, spaced 100 m apart and spanning the eight VCR islands from Smith Island
166 to Parramore Island. We cast transects perpendicular to a fixed offshore baseline that runs
167 parallel to island shorelines, excluding transects that overlapped each other near inlets due to
168 high inlet shoreline curvature, thereby avoiding the complexities associated with tidal inlet
169 dynamics. To classify our transects as ‘shrub’ or ‘non-shrub’, we used the Zinnert et al. (2016,
170 2019, 2022) landcover classifications; we categorized transects as ‘shrub’ if they contained any
171 amount of area classified as ‘woody’ landcover within 50 m of a transect, and conversely, we
172 classified transects as ‘non-shrub’ if no shrubs were present. We chose a buffer of 50 m because
173 our transects are spaced 100 m apart. Because shrub thickets are sometimes patchy, employing a
174 50-m buffer spacing allowed us to capture all areas with shrubs, while reducing the likelihood of
175 counting the same area twice. Utilizing a buffer, rather than focusing on where transects directly
176 intersect shrub polygons also allowed us to examine island and dune morphology characteristics
177 for areas located near shrubs, and mitigated the lower 30-m spatial resolution of the shrub data
178 (vs. aerial photography).

179 Because the LiDAR, LANDSAT, and aerial imagery were not all collected at a constant
180 time interval, understanding temporal variability required us to create a composite time series
181 representing conditions in 2010, 2016, and 2017 (Table 2).

182 **Table 2.** Summary of datasets (by year), used to generate annual composites. LiDAR (in bold
183 *italics*) and LANDSAT (underlined) datasets identified by the year of collection, used to measure
184 and develop the eight morphometric variables that characterize dune and island morphology.
185 Note: When calculating the DCE_{LBS} for Composite 2017 we included 2010 as well as 2016 and
186 2017 because there was so little time between the 2016 and 2017 surveys, and therefore this
187 doesn’t capture the lowest value over a multi-year time span.

Datasets (LiDAR, LANDSAT)	Dune-crest elevation (DCE)	Lowest- dune-crest elevation between surveys (DCE _{LBS})	Island- interior width (IIW)	Minimum- island-interior width between surveys (IIW _{MBS})	Beach width (BW)	Change-in- dune-crest elevation (ΔDCE)	Change-in- island- interior width (ΔIIW)	Change-in- beach width (ΔBW)
2010 Composite	2010	2005, 2010	2010, 2011	(2010, 2011) vs (2005, 1998)	2010	2010-2005	(2010, 2011) - (2005, 1998)	2010 - 2005
2016 Composite	2016	2010, 2016	2016, 2016	(2016, 2016) vs (2010, 2011)	2016	2016-2010	(2016, 2016) - (2010, 2011)	2016 - 2010
2017 Composite	2017	2010, 2016, 2017	2017, 2016	(2017, 2016) vs (2010, 2011)	2017	2017-2010	(2017, 2016) - (2010, 2011)	2017 - 2010

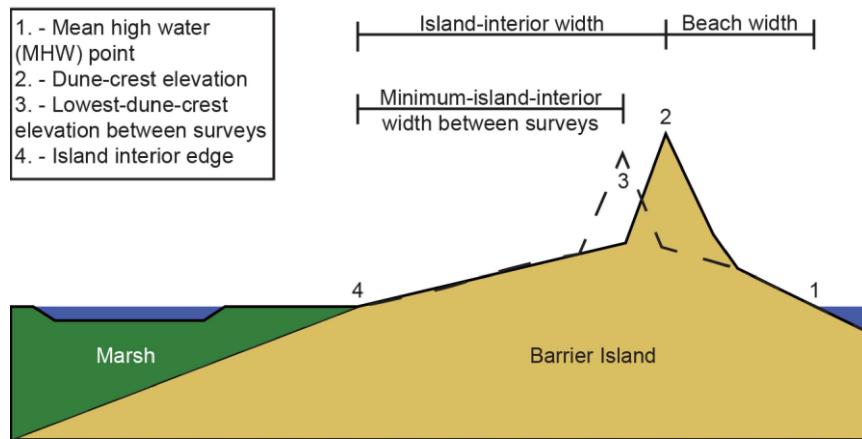
188

189 2.2 Morphometric Variables

190 To quantify dune and island interior characteristics (Table 2), we measured—for each
 191 composite data set—eight morphometric variables. We selected these variables because they can
 192 be reliably calculated and are potentially important to shrub presence (Figure 2). *Dune-crest*
 193 *elevation (DCE)* represents a transect’s LiDAR-derived foredune elevation (Figure 2) which we
 194 identified using the Matlab program Automorph developed by Itzkin et al. (2020). Automorph
 195 identifies dune-crest elevation as the maximum seaward elevation found above a user-specified
 196 elevation (1.5 m for this analysis to avoid misidentifying berms as dunes) with a minimum
 197 backshore drop of 0.6 m behind it, based on formulations from Mull & Ruggiero (2014).

198 *Lowest-dune-crest-elevation between surveys (DCE_{LBS})* represents the lowest dune-crest
 199 elevation value that we measured between the current and previous LANDSAT survey periods
 200 (e.g., for the 2016 composite, DCE_{LBS} is the lowest DCE measured from the 2010 and 2016
 201 LiDAR surveys). *Island-interior width (IIW)* is the distance between the dune-crest elevation
 202 and the island interior edge (where the island interior intersects either the back-barrier bay or
 203 marsh edge if present), based on the boundary between marsh and water landcover classifications
 204 (Zinnert et al., 2016, 2019, 2022). We focus on the width of the island interior rather than total
 205 island width because shrubs only grow in the island interior. *Minimum-island-interior width*
 206 *between surveys (IIW_{MBS})* represents the smallest island-interior width measured for a transect

207 between the current and previous LANDSAT surveys (e.g., for the 2016 composite, IIW_{MBS} is
 208 the smallest IIW between IIW 2010 and IIW 2016). *Beach width (BW)* is the distance between
 209 dune-crest elevation and the horizontal position where the elevation equals 0.35 m (NAVD88,
 210 representing mean high water used by Oster & Moore, 2019).



211

212 **Figure 2.** Illustration of morphometric variables. An idealized cartoon profile showing the
 213 location of each of the measured morphometric variables used to characterize dune and island
 214 morphology.

215

216 In addition to including measures of dune elevation, beach width, and island interior
 217 width, we quantified how these values changed over time. Because of differences in data set
 218 acquisition dates, we normalized our change-over-time variables to represent annualized percent
 219 change values. *Change-in-dune-crest elevation (Δ DCE)* represents the difference in DCEs
 220 between the current composite DCE value and previous composite survey DCE (e.g., Δ DCE
 221 2016 is the difference between DCE 2016 and DCE 2010). We calculated *Change-in island-*
 222 *interior width (Δ IIW)* and *Change-in-beach width (Δ BW)* in the same way. Using the Mann-
 223 Whitney nonparametric test ($\alpha = 0.05$), we tested for statistically significant differences between
 224 shrub and non-shrub transects for each of the eight morphometric variables one at a time.

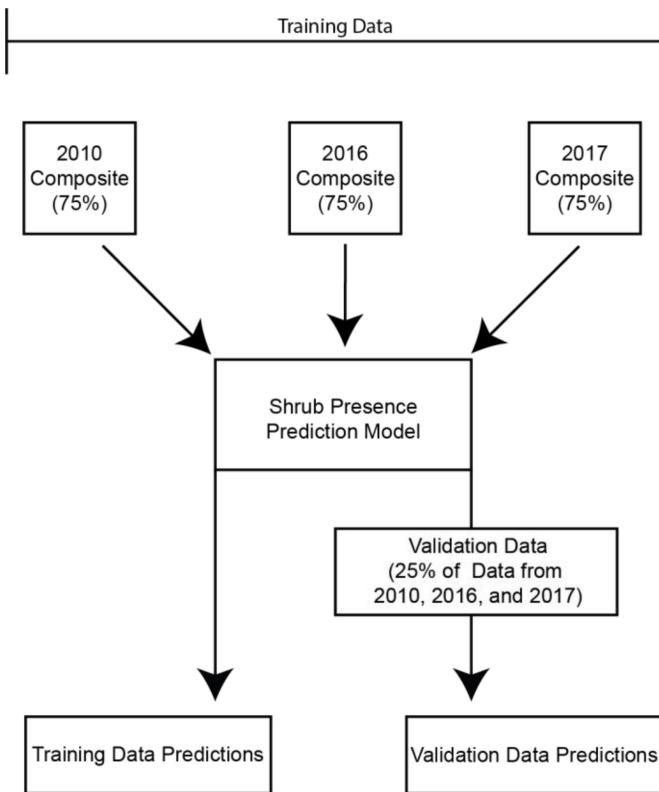
225

226 2.3 Machine Learning

227 Machine learning is a powerful tool that excels in identifying patterns within large
228 datasets and that is commonly used to analyze data generated from remote sensed products (e.g.,
229 Barbarella et al., 2021; Gómez et al., 2022; Lary et al., 2016; Maxwell et al., 2018). These data-
230 driven techniques have been used in a variety of coastal applications including the prediction of
231 wave ripples (Goldstein et al., 2013), shoreline evolution (Montaño et al., 2020), and in the
232 calibration of a physically based dune-beach model (Itzkin et al., 2022), among others. In this
233 study, we use decision tree analysis and random forest modeling to categorize transects as either
234 ‘shrub’ or ‘non-shrub’ based on our eight morphometric variables. While we initially considered
235 utilizing several different machine learning techniques including support vector machine (SVM)
236 and k-nearest neighbor (KNN) analysis, we elected to use decision tree analysis because it is
237 easily interpreted and yields threshold values that can be further probed; we chose to use random
238 forest modeling due to its high model accuracy and quick computation times.

239 We combined our three composite data sets (2010, 2016, 2017) in preparation for using
240 machine learning and then, using R (version 4.1.1), we randomly split the data into training (75%
241 of data) and validation sets (25% of data) (Figure 3). Although there are not specific rules on the
242 sample size required to conduct machine learning analyses (Goldstein et al., 2019),
243 improvements in model accuracy typically decrease and become marginal after reaching a
244 certain threshold sample size (Luan et al., 2020; Morgan et al., 2003; Perry & Dickson, 2018).
245 For example, Perry and Dickson (2018) used a small training set of approximately N=50 samples
246 and found this sufficient for random forest model rankings of relative variable importance, with
247 only minimal increases in model accuracy achieved by adding more samples. We sampled every
248 100 m within the VCR, because it afforded a sufficiently large dataset for performing training

249 and validation, while simultaneously providing a small enough sample size to conduct quality
 250 control.



251
 252 **Figure 3.** Machine learning workflow. 75% of the data comprising each composite was used to
 253 train the Shrub Presence Prediction Model which made the training data predictions. The
 254 remaining 25% of data not used to train our model was applied to generate validation data
 255 predictions.

256
 257 2.3.1 Decision Tree Modeling

258 To conduct decision tree analysis we used the ‘rpart’ (Therneau et al., 2022) R package.
 259 Decision tree analysis repeatedly splits data into groups based on different explanatory variable
 260 values to find the combination of values that is best able to predict the presence of a response
 261 variable (Breiman et al., 1984; De’ath & Fabricius, 2000; Goldstein et al., 2019), while
 262 minimizing the number of output categories.

263 After completing decision tree modeling, we examined the misidentified transects to
 264 identify where predictions diverged from observations. In this analysis, we focused on three

265 potential sources of error: system hysteresis, remote sensing misidentification, and decision tree
266 misclassification. We considered a transect to be misclassified due to system hysteresis when
267 observed shrub presence or absence on a transect did not match decision tree predictions but did
268 match observations from LANDSAT or aerial imagery collected within the following 10 years.
269 Remote sensing misidentification occurred when the LANDSAT-derived shrub classification for
270 a given transect disagreed with higher resolution aerial imagery collected during the same period.
271 To identify these instances, we compared 2016 LANDSAT imagery to 2017 aerial imagery, and
272 the 2011 LANDSAT imagery to both 2009 and 2013 aerial imagery. We made this comparison,
273 by overlaying Zinnert et al.'s (2022) shrub polygons on the corresponding aerial photographs in
274 ArcGis Pro and visually inspecting the transect locations to determine if shrubs were, in fact,
275 present in the locations indicated by the LANDSAT imagery analysis. We refer to prediction
276 errors that we couldn't attribute to either hysteresis or remote sensing misclassification, as
277 decision tree errors.

278 2.3.2 Random Forest Modeling

279 For comparison with the results of the decision tree analysis and to gauge the relative
280 importance of the eight morphometric variables, we conducted random forest (RF) modeling
281 using the 'randomForest' (Liaw & Wiener, 2022) R package. RF modeling is an expanded form
282 of decision tree analysis (Breiman, 2001; Hastie et al., 2009). RF models create a series, or
283 'forest,' of different decision trees, each drawn from a randomly sampled subset of the training
284 data response variables. Each individual decision tree within the 'forest' results in a prediction
285 based on its response variables, with the random forest model averaging together the predictions
286 from each individual tree to make an overall classification based on the predictions of a majority
287 of trees. Informed by the work of Oshiro et al. (2012) who found 64-128 trees sufficient to make

288 accurate predictions, we chose to use the R package default of 500 trees. This far surpasses the
289 minimum number of trees recommended by Oshiro et al. (2012), yet still allows reasonably rapid
290 computation time.

291

292 2.4 Analyzing Shrub Colonization and Removal for Comparison with DT Thresholds

293 To gauge the accuracy of DT-generated empirical thresholds for predicting shrub
294 colonization or removal, we analyzed transects that changed shrub classification, examining
295 dune-crest elevation and minimum-island-interior width between survey values. We identified
296 ‘shrub colonization’ and ‘shrub loss’ transects using ArcGIS Pro, overlaying shrub polygons
297 from Zinnert et al. (2022) from 1998, 2011, and 2016 to identify areas of shrub loss or
298 expansion. We compared the 1998 and 2010 LANDSAT surveys to determine change for the
299 2010 composite transects and used the 2011 and 2016 surveys for the 2016 and 2017 composite
300 transects. Based on this analysis, we considered transects that lacked (had) shrubs in the previous
301 LANDSAT survey but have (lack) shrubs in the subsequent LANDSAT survey to represent
302 ‘shrub colonization’ (‘shrub removal’) transects. To ensure accuracy, we then verified the
303 presence or absence of shrubs for each transect by visually comparing Zinnert et al.’s (2022)
304 woody classification polygons to aerial photographs taken around the same time, using the same
305 image comparison procedure outlined earlier, retaining verified transects for further analysis as
306 mentioned above.

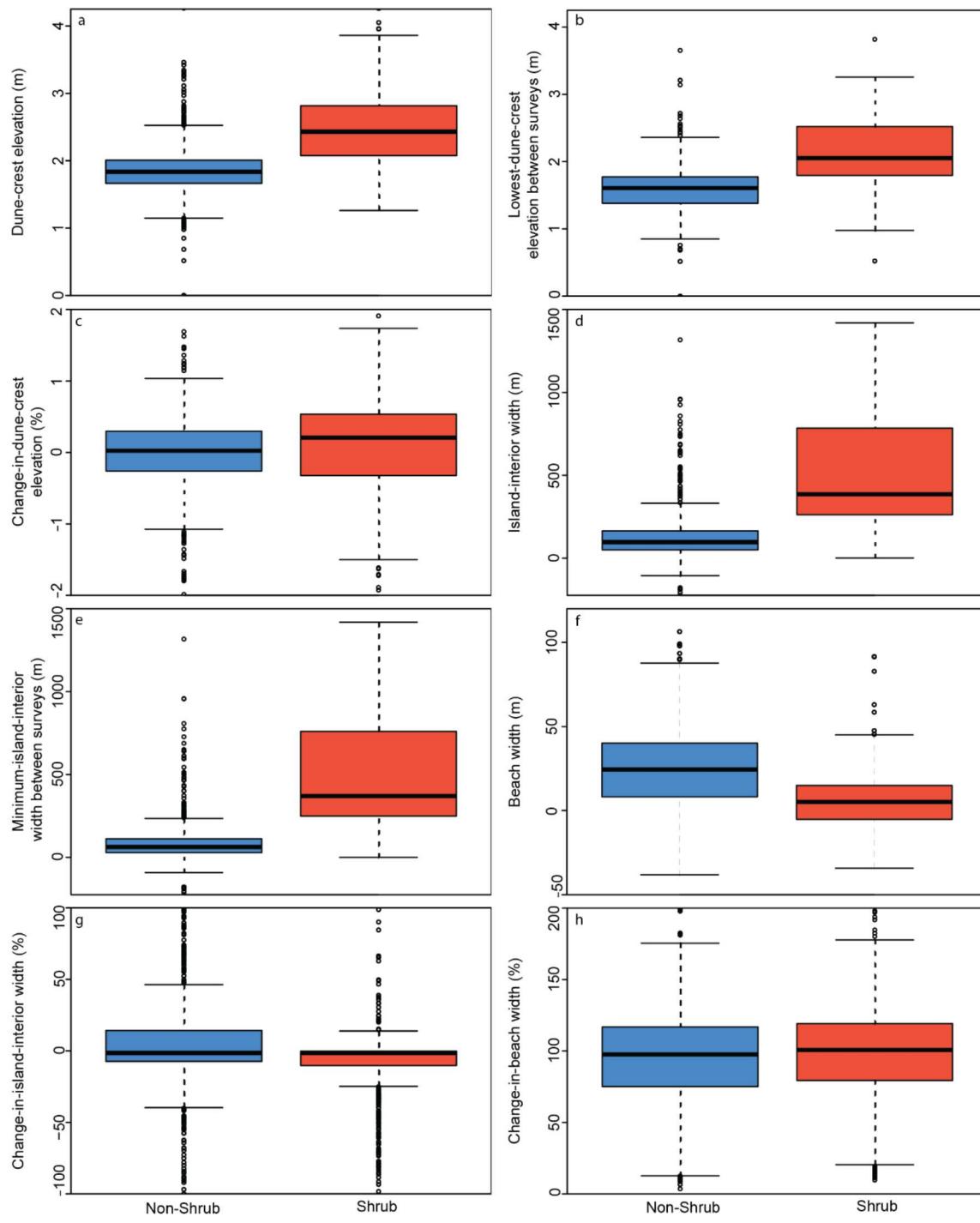
307

308

309 **3 Results**

310 3.1 Morphometric Variables Statistical Analysis

311 Shrub and non-shrub transects were statistically different from each other across most of
312 the measured dune and island-interior morphometrics. Comparing dune morphometrics between
313 shrub and non-shrub transects using the Mann-Whitney (MW) test revealed that shrub transects
314 had higher dune-crest elevations (shrub mean = 2.58 m +/- 0.53, non-shrub mean = 1.85 m +/-
315 0.39, $p_{MW} < 0.01$; Figure 4a) than non-shrub transects, as well as higher lowest-dune-crest
316 elevation between surveys values (shrub mean = 2.13 m +/- 0.46, non-shrub mean = 1.59 m +/-
317 0.36, $p_{MW} < 0.01$; Figure 4b), and greater changes in dune-crest elevation (shrub mean = 0.04%
318 +/- 0.76%, non-shrub mean = -0.01% +/- 0.54%, $p_{MW} < 0.01$; Figure 4c). Comparison of island-
319 interior morphometrics for shrub vs. non-shrub transects revealed a similar pattern; relative to
320 non-shrub transects, shrub transects had greater island interior widths (shrub mean = 501m +/-
321 318, non-shrub mean = 132 m +/- 155, $p_{MW} < 0.01$; Figure 4d) and higher minimum-island-
322 interior-width-between survey values (shrub mean = 489 m +/- 322, non-shrub mean = 93 m +/-
323 141, $p_{MW} < 0.01$; Figure 4e). In contrast, non-shrub transects, in comparison to shrub transects,
324 had greater beach widths (shrub mean = 7.2 +/- 17.3, non-shrub mean = 27.4 m +/- 47.0, $p_{MW} <$
325 0.01; Figure 4f) and change-in-island-interior widths (shrub mean = 2% +/- 549%, non-shrub
326 mean = 8% +/- 349, $p_{MW} < 0.01$; Figure 4g). Shrub and non-shrub transects were not statistically
327 different in terms of changes in beach width ($p_{MW} = 0.10$; Figure 4h).



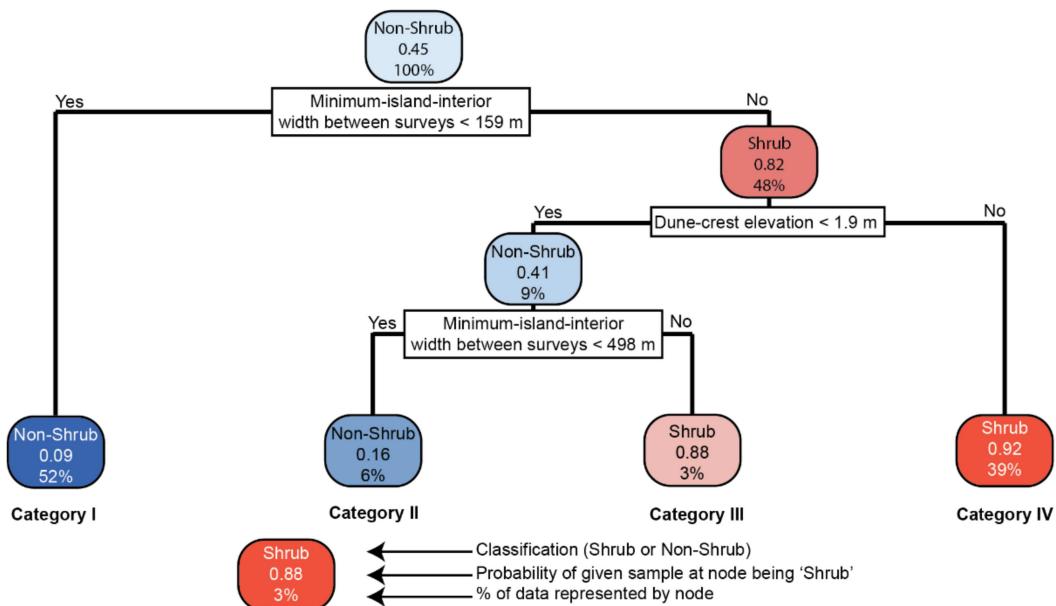
328

329 **Figure 4.** Summary of morphometric variables. Box and whisker plots showing non-shrub and
 330 shrub values for eight morphometric variables including: dune-crest elevation (a), lowest-dune-
 331 crest elevation between surveys (b), change-in-dune elevation (c), island-interior width (d),
 332 minimum-island-interior width between surveys (e), beach width (f), change-in-island-interior
 333 width (g), and change-in-beach width (h).

334

335 3.2 Decision Tree Predictions

336 The decision tree (Figure 5) grouped transects into four categories based on a
 337 combination of values for minimum-island-interior width between surveys and dune-crest
 338 elevation, resulting in predictions that are 90% accurate for the presence or absence of shrubs
 339 (Table 3). We found no statistically significant linear or polynomial correlation between dune-
 340 crest elevation and minimum-island-interior width between surveys, with multiple R-squared
 341 values below 0.3 (Figure 6). A summary of the four categories generated by the decision tree is
 342 presented in Table 4. The spatial extent of each category within the VCR is shown in Figure 7,
 343 and the values for dune-crest elevation and minimum-island-interior width between surveys that
 344 delineate the categories are indicated in Figure 6.



345
 346 **Figure 5.** Shrub identification decision tree. Generated decision tree that makes predictions
 347 based on transect dune-crest elevation and minimum-island-interior width between surveys.
 348

349 **Table 3.** Confusion matrices from decision tree (DT) and random forest (RF) predictions for both
 350 training and validation datasets.
 351

DT Training Data (75%)	Observed Non-Shrub	Observed Shrub	DT Validation Data (25%)	Observed Non-Shrub	Observed Shrub
Predicted Non-Shrub	594	76	Predicted Non-Shrub	203	15

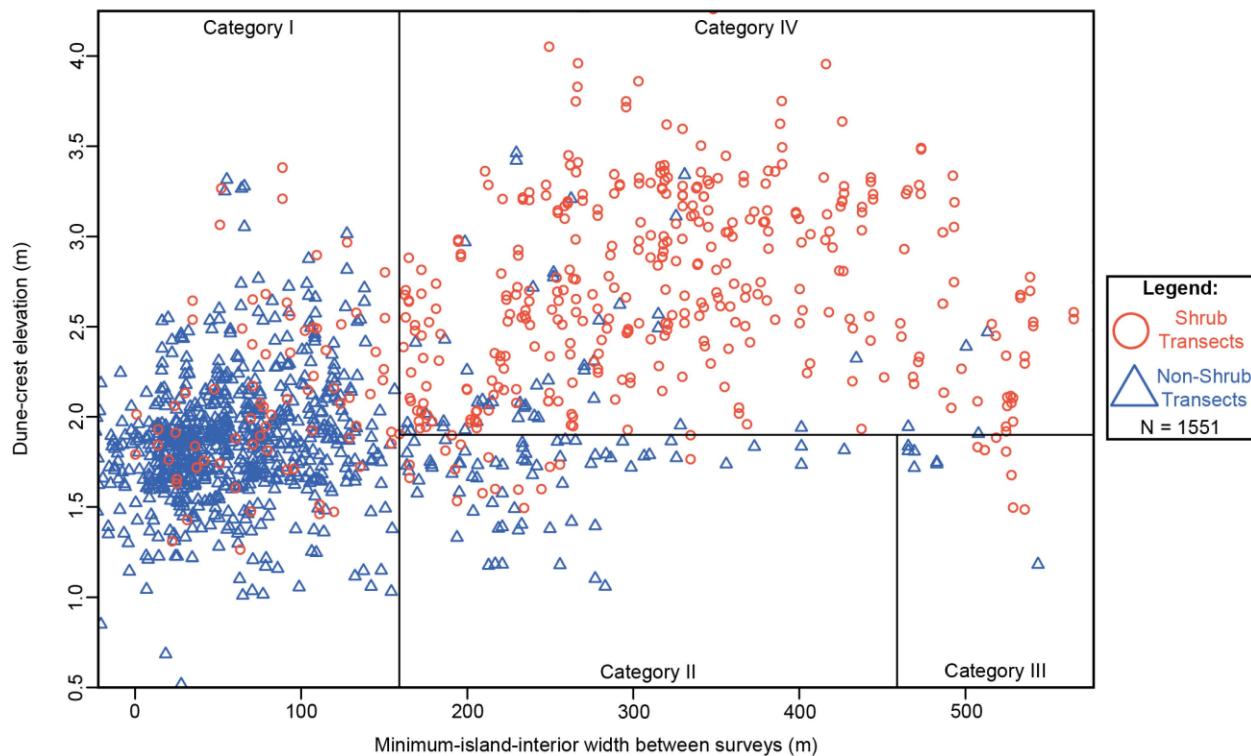
Predicted Shrub	53	441	Predicted Shrub	12	157
DT Accuracy		89%			93%
RF Training Data (75%)	Observed Non-Shrub	Observed Shrub	RF Validation Data (25%)	Observed Non-Shrub	Observed Shrub
Predicted Non-Shrub	607	40	Predicted Non-Shrub	203	26
Predicted Shrub	53	464	Predicted Shrub	12	146
RF Accuracy		92%			90%

352

353 **Table 4.** Summary of four categories generated from decision tree analysis.

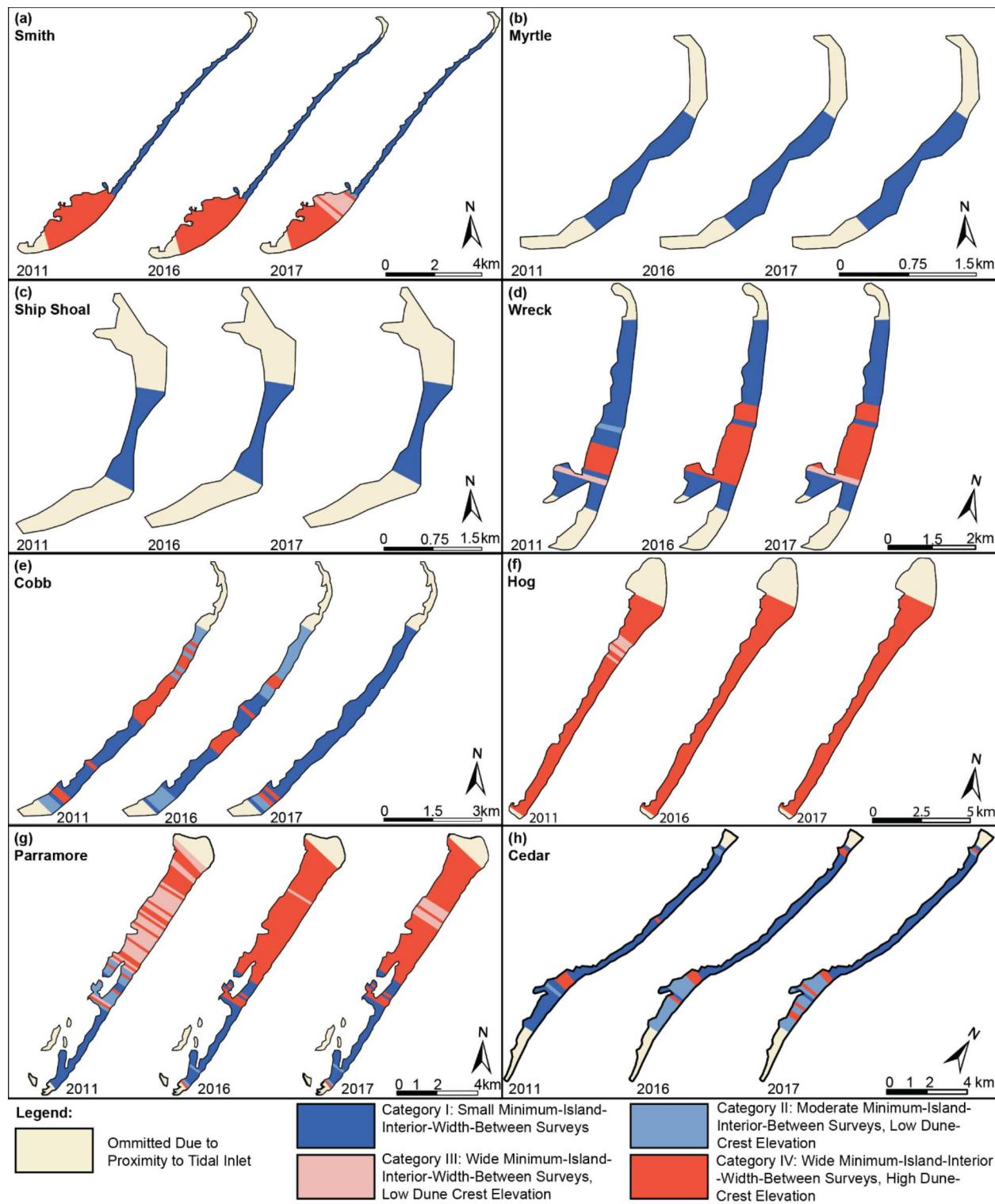
Category	I	II	III	IV
% of Total Data	51.9%	5.7%	3.4%	39%
# of Transects	805	88	56	605
% Shrub	9%	16%	88%	92%
Dune-crest elevation	NA	> 1.9 m	> 1.9 m	< 1.9 m
Minimum-island-interior width between surveys	> ~ 160 m	~160 – ~500 m	< ~500 m	< ~ 160 m
Location within VCR	Northern half of Smith Island, Myrtle Island, Ship Shoal, the northern and southern thirds of Wreck Island, the southern half of Cobb Island (2010, 2016), the majority of Cobb Island (2017), the southern half of Parramore Island, and the northern half of Cedar Island	Cobb Island, the southern half of Parramore Island, and the southern third of Cedar Island	Southern quarter of Smith Island (2017), the northern third of Hog Island (2010), and the northern half of Parramore Island (2010, 2017)	Southern end of Smith, the middle third of Wreck Island, southern two-thirds of Hog Island (2010), all of Hog Island (2016 and 2017), the middle portion of Cobb (2010, 2016) Island, the northern half of Parramore Island, and the southern half of Cedar Island
Summary	Category I represents the largest category, had the lowest shrub percentage, and possessed the narrowest IIW _{MBS} values	Category II had wider IIW _{MBS} values compared to Category I, narrower IIW _{MBS} values compared to Category III, and lower DCE's compared to Category IV	Category III had wider IIW _{MBS} values compared to Categories I and II, and lower DCE measures than Category IV	Category had the majority of total shrub transects (79%), wider IIW _{MBS} values compared to Categories I and II and higher DCE values compared to Categories II and III

354



355

356 **Figure 6.** Dune-crest elevation versus minimum-island-interior width between surveys.
 357 Scatterplot showing dune-crest elevation versus minimum-island-interior width between surveys
 358 for shrub and non-shrub transects. Solid black lines show four categories generated by DT
 359 analysis based on dune-crest elevation and minimum-island-interior width between surveys.
 360



361

362 **Figure 7.** Decision tree categories by island over time. VCR islands color-coded according to
 363 decision tree categories for 2011, 2016, and 2017 composites for all eight islands: Smith (a),
 364 Myrtle (b), Ship Shoal (c), Wreck (d), Cobb (e), Hog (f), Parramore (g), and Cedar (h).
 365

366 3.2.5 Misidentification

367 Focusing on the 10% of transects that were incorrectly categorized by the decision tree
 368 analysis, we found that misclassification due to hysteresis was the most common error
 369 representing 48% of total misidentifications (75 transects, 4.8% of total transects; Table 5).
 370 Remote sensing misidentification was the second largest error source, accounting for 28% of all
 371 errors (44 transects, 2.8% of total transects; Table 5), being most common where shrubs were
 372 less well established and had smaller spatial extents. We attributed the remaining 24% of error
 373 (36 transects, 2.4% of total transects, Table 5) to decision tree error, representing outlier data
 374 points, errors stemming from the DT method, and other assorted error sources not represented by
 375 hysteresis, remote sensing error, or the DT method.

376 **Table 5.** Summary statistics for misidentified transects by error type. The number of incorrectly
 377 identified transects associated with each type of error, as well as the percentage of transects
 378 within each type relative to the total number of misidentified transects and all transects studied.
 379

Type of Error	Number of Transects (N)	% of Misidentified transects	% of Transects Studied
System Hysteresis	75	48	4.8
Remote Sensing	44	28	2.8
Decision Tree	36	24	2.4

380 3.3 Areas of Shrub Colonization and Removal for Comparison with DT Thresholds

381 During the study period 181 transects changed shrub classification: Shrubs newly
 382 appeared on 87 transects (hereafter referred to as shrub colonization transects) and shrubs were
 383 no longer present on 94 transects (hereafter referred to as shrub removal transects). Comparing
 384 the dune-crest elevation and minimum-island-interior width between survey values of shrub
 385 colonization and loss transects to the threshold values generated by the decision tree analysis
 386 provides a useful check on the decision tree analysis. We found 96% of shrub colonization
 387 transects (N = 84) had dune crest elevations above ~1.9 m, with the lowest dune crest elevation
 388 being 1.76 m. In contrast, only 22% of shrub removal transects (N = 21) had elevations greater

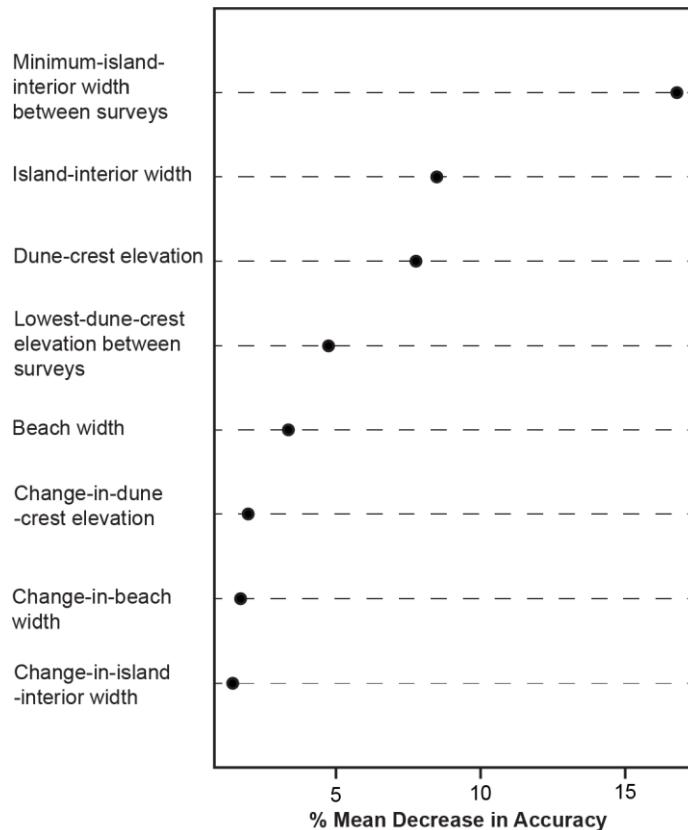
389 than ~1.9 m. Examining minimum-island-interior width between survey values, we found 79%
390 of shrub colonization transects ($N = 75$) had IIW_{MBS} values of at least ~160 m, with 90% ($N =$
391 81) having IIW_{MBS} values of at least 100 m. Whereas 72% of shrub removal transects ($N=68$)
392 had IIW_{MBS} values of less than ~160 m. Considering both DCE and IIW_{MBS} together, 76% of
393 shrub colonization transects ($N = 66$) exceeded both thresholds (IIW_{MBS} values >160 m and DCE
394 values >1.9 m), and 94% of shrub removal transects ($N = 6$) fell below both thresholds (IIW_{MBS}
395 <160 m and DCE <1.9).

396

397 3.4 Random Forest Model

398 The random forest model made predictions with 92% accuracy using the training data and 90%
399 accuracy when applied to the validation data (Table 3). Similar to the results of decision tree
400 analysis, in the random forest model, minimum-island-interior width between surveys, dune-
401 crest elevation, and island-interior width, were the most important morphometric variables for
402 making accurate predictions about shrub presence (Figure 8). Omitting the minimum-island-
403 interior width between surveys variable resulted in a 15.0% mean decrease in algorithm
404 accuracy, whereas excluding island-interior width or dune-crest elevation decreased accuracy by
405 ~8.3% or 7.8% respectively. Lowest-dune-crest elevation between surveys and beach width
406 were the 4th and 5th most important variables, with their omissions resulting in a 4.7% and 3.3%
407 decrease in mean accuracy. The change over time variables (change-in-dune elevation, change-
408 in-beach width, change-in-island interior width had the lowest impact on mean accuracy
409 resulting in 2.0%, 1.6% and 1.4% decreases respectively. Based on the respective mean decrease
410 in accuracy percentages we see a significant spread in the importance of the different variables,
411 with the most important variable being ~ 9 times more important than the least important

412 variable and twice as important as the next most important variable (island-interior width). The
 413 change over time variables don't add much to the overall accuracy of the model. It is possible
 414 that the change values would be more important if the landcover changes could be measured
 415 over shorter time periods and at a higher spatial resolution than our data sources allow.



416
 417 **Figure 8.** Random-forest variable importance plot. Plot shows the relative importance of the
 418 eight explanatory variables on RF model accuracy as measured by the percent decrease in
 419 accuracy arising from omitting the variable.

420

421 4 Discussion

422 4.1 Role of Minimum-Island-Interior Width Between Surveys and Dune-Crest Elevation

423 The decision tree resulting from our analysis accurately predicts the presence or absence
 424 of shrubs within the VCR based on the minimum-island-interior width between surveys and
 425 dune-crest elevation, with the former being most important. This is likely because minimum-
 426 island-interior width between surveys represents two important factors that affect shrub presence:

427 physical space and distance from saline island edges. Generally, relative to narrower islands,
428 wider islands will have larger areas of potential shrub habitat, making it more likely that shrubs
429 will seed, grow, and become established. The minimum-island-interior width between surveys
430 serves as a rough proxy for the area of potential shrub habitat maintained over the period of
431 observation. This finding is consistent with other studies that report on factors associated with
432 the presence of woody vegetation on barrier islands. For example, though Velasquez-Montoya et
433 al. (2021) focused on the effects of storms on multiple barrier island landcover classes, their
434 finding that shrubs tend to be located on wider island segments and landward of an oceanfront
435 road fronted by a dune is consistent with our findings that island width (and dune height) are
436 related to shrub presence. Enwright et al. (2019) analyzed landcover for a developed Gulf Coast
437 barrier island and found that in this environment woody vegetation, which included both shrubs
438 and trees, was only found in the island interior where there was sufficient space available.
439 Critically, by considering multiple snapshots in time, our work indicates that minimum-island-
440 interior width between surveys (which is an indication of island width over time) is more
441 important than island-interior width at the time of survey, suggesting that the response of shrubs
442 to the limiting effect of island interior width is not instantaneous; minimum width within the
443 recent past (relative to shrub survey timing) is more important than wider widths achieved either
444 in the more distant past or present.

445 The importance of island width revealed by our analyses is consistent with previous work
446 related to shrub habitat suitability, which demonstrates that wider island interiors provide
447 protection from excess salinity and access to necessary freshwater. Shrubs are damaged by
448 excess salinity (e.g., Du & Hesp, 2020; Miller et al., 2008; Young et al., 1994; Zinnert et al.,
449 2011), which commonly arises from salt spray associated with breaking waves (Du & Hesp,

450 2020) or saltwater delivered by overwash or inundation during storms (Miller et al., 2008;
451 Woods et al., 2019). Wider islands provide the opportunity for shrubs to be located a greater
452 distance from the ocean, reducing salt spray and overwash exposure. While salt spray and soil
453 salinity are an important control on shrub presence, they are not the only controlling factor, as
454 highlighted by soil salinity levels from the VCR. Sabo (2023), found mean total-chloride salinity
455 values of 16.9 ppm (SD of 195.6, N = 195) for soils on Hog and Parramore islands within the
456 dune and barrier island interiors. Young et al. (1994) calculated soil salinity levels in areas with
457 *Morella cerifera* within the VCR, observing soil chloride levels of less than 500 parts per million
458 (ppm), with 88% being below 50 ppm. When findings from Young et al., (1994) are applied to
459 soil samples from Hog and Metompkin islands, 98% (N= 195) of soil samples had soil chloride
460 values below the 500 ppm threshold, with 72% of soil samples having chloride values below 50
461 ppm (Sabo, 2023). Since the majority samples (72 %) had soil chloride values below 50 ppm
462 with 98% of samples being below 500 ppm, we conclude that soil salinity is not the sole
463 determining factor in shrub presence within the VCR, and unlikely to control the distribution of
464 shrubs in island interiors.

465 In addition to their sensitivity to saline conditions, shrubs require sufficient fresh
466 groundwater to exist (Young et al., 2011). Greater island widths and higher interior elevations
467 (Bolyard et al., 1979; Hayden et al., 1995) are important controls on the availability of fresh
468 groundwater, with wider islands having a larger area to store and collect freshwater.
469 Additionally, wider islands have a larger area unaffected by back-barrier saline intrusion, which
470 otherwise lowers shrub habitat suitability by increasing groundwater salinity in flooded areas
471 (Young et al., 1994). Some of the same positive attributes provided by wider island interior
472 widths are also provided by high foredune elevations. High dunes can protect shrubs from

473 damaging salt spray (Miller et al., 2008; Woods et al., 2019), prevent harmful overwash events
474 (e.g., Houser et al., 2018; Reeves et al., 2021; Sallenger, 2000), and increase the amount of island
475 groundwater storage (Bolyard et al., 1979; Hayden et al., 1995).

476 The decision tree algorithm yields a minimum-island-interior width between surveys
477 threshold of >160 m and dune-crest elevation threshold of >1.9 m as predictive of shrub
478 presence. The latter represents a refinement on earlier observations by Woods et al. (2019) of
479 1.75 m, which was determined from a smaller sample size. Categorizing transects into groups
480 based only on minimum-island-interior width between surveys values, allows for predictions that
481 are 91% accurate for non-shrub transects but lower, at an accuracy of 82%, for shrub transects.
482 Improving accuracy for shrub transects requires considering both minimum-island-interior width
483 between surveys and dune-crest elevation thresholds; using both values improves shrub
484 prediction accuracy to 92%.

485 While the empirical relationships represented by Categories II and III arise from much
486 smaller sample sizes than Categories I and IV and so are not as well supported as Categories I
487 and IV, the relationships they represent are conceptually consistent with what we would expect
488 based on factors that influence shrub presence or absence. Islands with sufficient minimum-
489 island-interior width between surveys ($IIW_{MBS} > \sim 160$ m), but lower dune-crest elevations (DCE
490 < 1.9 m) are unlikely to have shrubs, with exceptions typically either having extremely wide
491 interior widths (Category III, $IIW_{MBS} > \sim 500$ m) or older beachfront shrubs, which are in the
492 process of being removed by coastal erosion (Category II) (as identified in Zinnert et al. 2019).
493 In contrast, transects having both adequate minimum-island-interior width between surveys
494 ($IIW_{MBS} > \sim 160$ m) and dune-crest elevations (DCE > 1.9 m; Category IV) are highly likely to
495 have shrubs: > 92% of transects that met these two criteria are shrub transects, similar to Miller

496 et al.'s (2008) findings that distance to shore and dune elevation affect the success of shrub
497 seedlings.

498 The importance of interior-island width and dune elevation in determining shrub
499 presence/absence from our decision tree analysis is corroborated and supported by the variable
500 importance rankings arising from our random forest modeling. Because the decision tree
501 modeling yields not only predictions, but also thresholds that can be further evaluated, in the
502 next section we discuss how the results of the decision tree analysis allow us to better understand
503 where predictions diverge from observations.

504

505 4.2 Decision Tree Misidentification

506 While definitive standards have not been set regarding machine learning accuracy, the
507 accuracy of 90% achieved by our approach compares favorably to other recently published
508 studies (e.g., accuracy scores of 93% from Adam et al. (2014), 75% from Barbella et al. (2021),
509 and 86% from Gómez et al. (2022)) and is significantly higher than the no information rate (i.e.,
510 weighted on probability only) of 55%. Even so, it is valuable and informative to understand why
511 our decision tree model doesn't correctly predict the remaining 10% of the data. Below, we
512 discuss the three sources of error we identified.

513 4.2.1 System Hysteresis

514 Our machine learning approach involved using contemporaneous relationships between
515 variables to derive predictions; however, physical changes in the island landscape (island interior
516 and dune elevation) can occur on different timescales than shrub dynamics, leading to a lag
517 between predicted and observed shrub behavior and misclassification due to system hysteresis.
518 Although changes in the landscape can occur on the scale of days, it takes a few years for shrub

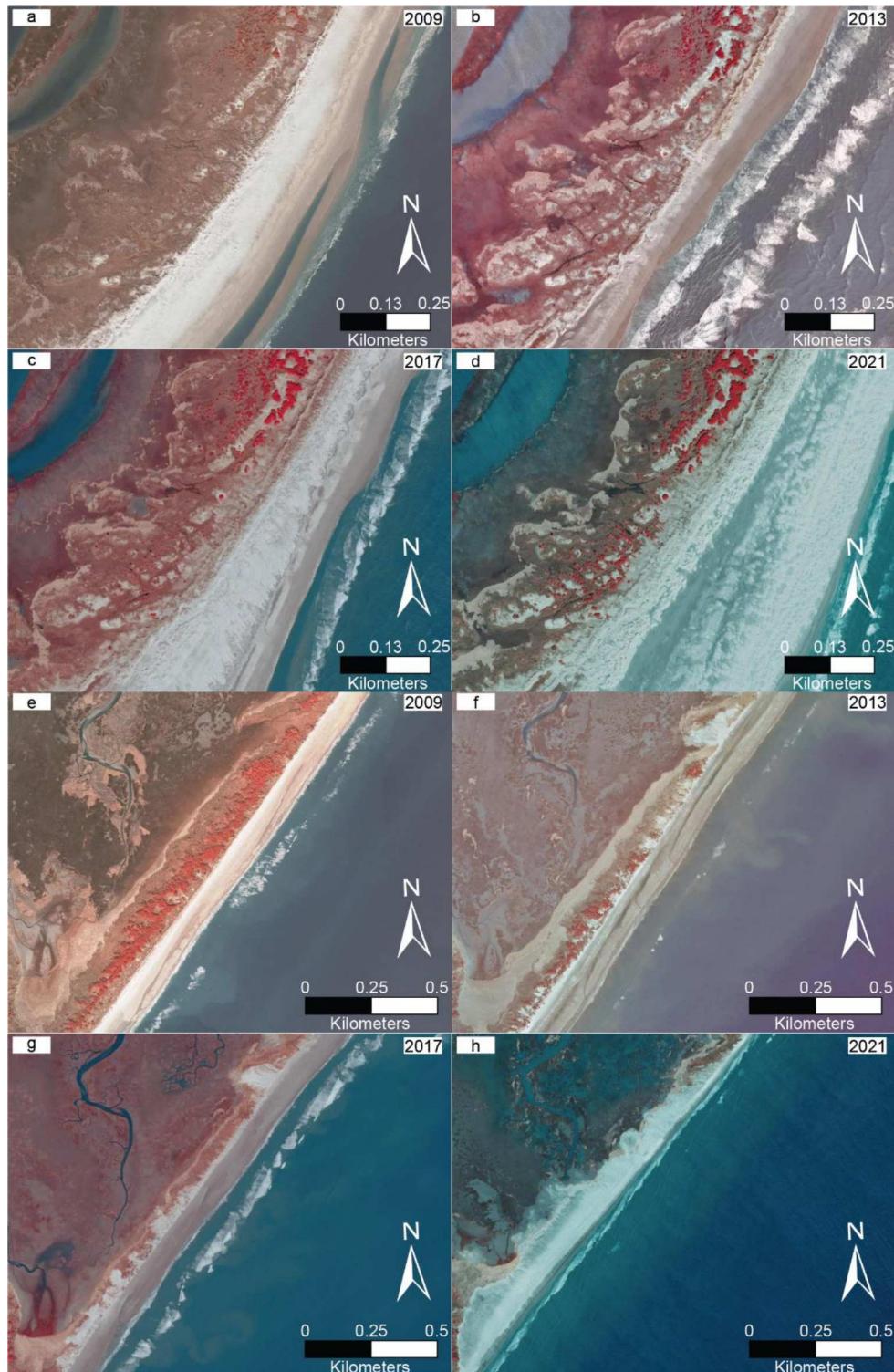
519 seedlings to take hold and grow sufficiently large to significantly alter sediment transport
520 processes (Reeves et al., 2022); larger shrubs have a greater effect on overwash processes.

521 Within the VCR, shrub thickets are rapidly transitioning from grasslands due to warming
522 climate, a phenomenon seen in many other coastal and non-coastal systems (Woods et al., 2020;
523 Young et al., 1994; Zinnert et al., 2021). In addition to maintaining favorable physical
524 conditions for shrub establishment, areas need to meet requisite biological preconditions
525 including presence of seeds and potentially, sufficient grass cover (Woods et al., 2019).

526 Similarly, shrub decline and removal are not instantaneous; it can take a few years to shrubs to
527 die and wash away after conditions are no longer conducive for shrub growth as witnessed by
528 gradual removal of shrubs from the southern end of Smith Island (Figure 9) and the middle
529 portion of Hog Island. While a single storm might remove a protective foredune in front of a
530 shrub, it can take time for shrubs to die off because species like *Morella cerifera* are resistant to
531 episodic saline flooding (Tolliver et al., 1997; Young et al., 1995).

532 Hysteresis is a well-documented phenomenon found in other VCR habitats, including
533 lagoonal seagrass beds and marshes (Broome et al., 1988; Carr et al., 2012; Da Silveira Lobo
534 Sternberg, 2001; Denny & Benedetti-Cecchi, 2012), which exhibit similar lags in establishment
535 and removal. Prior to the 1930's, the lagoons behind the VCR were home to rich seagrass
536 communities. However, during the 1930's a wasting disease and increases in lagoon
537 temperatures led to a severe seagrass die off (Rasmussen, 1977). While physical conditions
538 (light, nutrients, etc.) were sufficient for seagrass growth, the lack of seeds prevented natural
539 recovery. This idea was supported by the rapid seagrass growth that occurred following the large-
540 scale planting of seedlings (Orth et al., 2012). Marshes can also exhibit a similar lag in
541 reestablishment, as it took three years for pioneer marsh species in La Grande marsh (France) to

542 reestablish following the cleanup of the Amoco Cadiz Oil Spill (Seneca & Broome, 1982), and a
543 Portuguese marsh still showed reduced marsh plant richness 10 years after inputs of mercury
544 pollution ceased compared to nearby uncontaminated marshes (Válega et al., 2008). The lag in
545 seagrass and marsh establishment is analogous to the delay in shrub colonization we observed
546 along the southern tip of Hog Island (also noted by Woods et al., 2019).



547

548 **Figure 9.** Examples of system hysteresis. Color-infrared aerial images (vegetation in red)
549 showing (a-d) gradual shrub expansion on Hog Island in an area predicted to have shrubs but
550 where observations revealed some transects had shrubs and some did not and (e-h) gradual
551 removal of shrubs on Smith Island in an area predicted to be non-shrub but initially observed to
552 have shrubs

553 In addition to displaying lagged behavior in establishment, seagrass, marsh, and shrubs show
554 similar delayed patterns of system removal. Seagrass exhibits hysteresis when dying off and
555 transitioning to bare sand, as it can take several years for seagrass to be removed when
556 conditions are no longer conducive to seagrass presence (Carr et al., 2012), with the initial
557 density of seagrass controlling the timeframe required to return to bare unvegetated sand.
558 Marshes can temporally avoid drowning if fronted by a sufficiently large adjoining mudflat,
559 under rates of relative sea-level rise and suspended sediment concentrations that do not support
560 marsh persistence (Mariotti & Carr, 2014). Whereas the presence of wide mudflats may delay
561 the inevitable, eventually these marshes will erode and drown as they equilibrate to new physical
562 conditions (Mariotti & Carr, 2014). On the southern third of Smith Island (Figure 9 e-h), we
563 observe a similar lag in shrub removal; based on our observations from aerial photography, it
564 takes over 10 years for shrubs to be completely removed from an area.

565 A few examples highlight the lag between model predictions and shrub observations.
566 Transects along the southern portion of Smith Island are consistently predicted to lack shrubs
567 (consistent Category I designation). Although shrubs were initially present along this portion of
568 Smith, shrub extent consistently decreased between 2009 and 2021 (Figure 9A-D), with most
569 shrubs being removed by shoreline erosion between 2009 and 2013 (Figure 9e-f). By 2017, only
570 a few isolated shrubs remained (Figure 9g), before they were completely removed by 2021
571 (Figure 9h). Similarly, the southern end of Hog Island was repeatedly predicted to have shrubs
572 (Category IV). Despite this, shrubs were not initially present throughout, taking 10 years (2011-
573 2021) to become established across all predicted areas (Figure 9a-d).

574 4.2.1.2 Shrub Colonization and Removal Transects

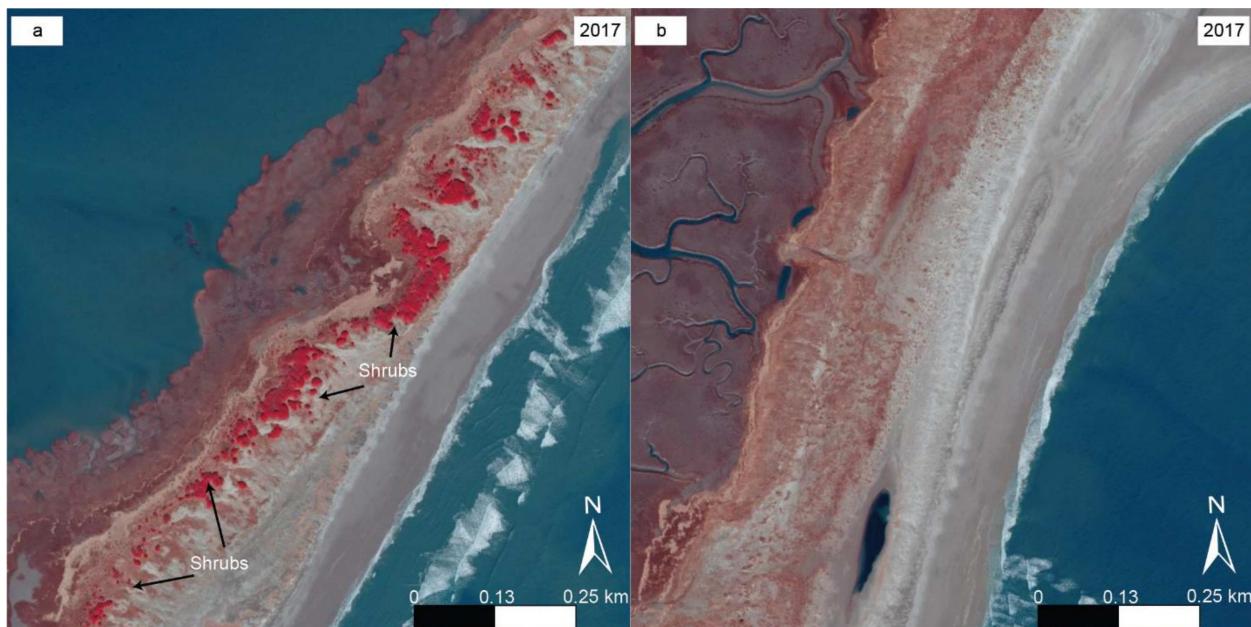
575 Our analysis of shrub colonization and shrub loss transects lends further support to the
576 DCE and IIW_{MBS} threshold values associated with shrub presence and absence identified by the
577 decision tree analysis. Measures of DCE are especially consistent, with 96% of shrub
578 colonization transects having elevations above the 1.9 m DT threshold compared with only 16%
579 of shrub removal transects. Focusing on IIW_{MBS} values, 79% of shrub colonization transects had
580 widths exceeding the 160m DT threshold in contrast to 28% of shrub removal transects. Looking
581 at DCE and IIW_{MBS} thresholds together, 76% of shrub colonization transects exceeded both
582 threshold DT values, compared to just 6% of shrub removal transects, supporting the empirical
583 relationships identified by the DT, as shrub presence is predicted based on having both high
584 enough DCE and wide-enough IIW_{MBS}.

585 While applying DT thresholds to shrub colonization and removal data provides
586 additional information that largely supports our DT analysis and thresholds, additional
587 observations would be helpful to refine the specific IIW_{MBS} and DCE thresholds associated with
588 shrub colonization or removal. While the DT analysis is adept at identifying the empirical
589 thresholds associated with shrub presence or absence, it is less suited to predicting the specific
590 thresholds at which an area will change from shrub to non-shrub because this method is based on
591 correlations identified within the observations used in the analysis. Based on 96% of shrub
592 colonization areas having elevations of at least 1.9 m, it seems practical to infer shrub
593 colonization requires elevations of at least 1.9 m; while, the 79% of shrub growth transects with
594 IIW_{MBS} values exceeding 160 m, provides validation for 160 m being a reasonable threshold to
595 split the data, however the specific minimum width may be lower as 90% of transects had
596 IIW_{MBS} values exceeding 100 m. Future field studies and LiDAR surveys could help us refine
597 the specific IIW_{MBS} values associated with shrub colonization or removal.

598

599 4.2.2 Remote Sensing Misidentification

600 The remaining fourth island (Ship Shoal) does not display hysteresis, instead
 601 misclassification of transects on Ship Shoal arises from the misidentification of shrubs on
 602 LANDSAT imagery (Figure 10), highlighting a drawback of relying on LANDSAT data for
 603 small spatial and temporal scale analyses. Though, we note that while large LANDSAT-derived
 604 datasets will occasionally yield some misidentifications, the positive benefits derived from the
 605 large spatial and temporal scale of this type of data outweigh the potential detriment of
 606 occasional misidentifications. Empirically derived predictions such as those generated by
 607 machine learning have the potential to improve quality control on future data products derived
 608 from remotely sensed imagery, such as LANDSAT or LiDAR. The continued improvement in
 609 resolution and availability of LiDAR and satellite imagery will further improve the utility of
 610 remote sensing products for identifying barrier island landcover change.



611
 612
 613
 614
 615

Figure 10. An illustrative example of remote sensing misidentification. Color-infrared aerial imagery (a) of Cobb Island, illustrating the typical appearance of shrubs for reference, for comparison with (b) imagery of Ship Shoal from an area that was incorrectly identified as having shrubs based on LANDSAT imagery.

616
617

4.2.3 Decision Tree Misidentification

618 The remaining misclassified transects cannot be attributed to hysteresis or remote sensing
619 errors and thus represent outlier data points that may arise from the misidentification of certain
620 dune, beach, or island interior properties. The existence of decision tree misclassification within
621 our data, highlights that no empirical relationship will ever be 100% accurate, as nature rarely
622 falls entirely into neat categories; however, the small number of algorithm-based errors supports
623 the veracity of our derived empirical thresholds.

624

625 4.3 Potential Model Limitations, Applications and Future Work

626 Despite the potential applications of our approach and results, it is worth considering
627 their limitations. Because of constraints arising from the availability of data, we studied a
628 relatively short time period representing roughly 15 years. Extending this analysis over longer
629 time periods may reveal different or altered empirical relationships or provide further support for
630 the relationships we identify here. Conducting a similar analysis with new remote sensing data
631 and identifying areas of continued match or mismatch between predicted and observed shrub
632 behavior would allow quantification of the timescales associated with hysteresis in shrub
633 colonization and removal. Additional data, potentially including field observations, may be most
634 useful in refining and assessing the validity of the Category II and III classifications, which
635 represent 10% of the data. Additionally, using LiDAR data, LANDSAT imagery and aerial
636 imagery collected within the same month would be most ideal, but given the accuracy achieved
637 by the models developed here using the data available, we anticipate that more synchronous
638 timing of data sets would yield only minor improvements.

639 Although the new empirically derived relationships we identify have a high predictive
640 accuracy for describing the VCR, when applying these relationships beyond the VCR it will be
641 important to test them against data from other barrier island systems because landscape
642 characteristics and woody vegetation extent may differ across varying barrier island types,
643 climates, and vegetation species. Even within the VCR, climate change and the resulting large-
644 scale alterations to the barrier island system may alter the applicability of the machine learning
645 models to make correct predictions in the future, as observed empirical relationships could be
646 different in a changing climate. Repeating our approach on future observations will allow
647 assessment of whether or not the identified relationships and empirical thresholds remain the
648 same or change.

649 While the relationships we identified are valid for the undeveloped VCR, they may be less
650 applicable to developed coastal areas, where humans have a greater impact on species
651 composition. For example, plantings, dune construction, nourishment and the presence of
652 infrastructure alter island geomorphology, especially in the island interior behind dunes.

653 Applying a machine learning algorithm, such as the one developed here, to future predictions
654 of dune and island morphometrics from geomorphic models, will allow prediction of future
655 shrub presence/extent and absence, and assessment of whether or not shrub-overwash dynamics
656 should be included in model runs (e.g., Reeves et al., 2022).

657 In addition to providing the potential for future assessments of shrub colonization and
658 growth, and allowing assessment of the importance of including shrub dynamics within existing
659 geomorphic models (Reeves et al., 2021, 2022), thresholds from decision tree models for
660 predicted shrub colonization and removal could be coupled with, or integrated into, spatially
661 explicit barrier island models, in a hybrid modeling approach. Hybrid approaches combine data-

662 driven models with numerical models (Beuzen & Splinter, 2020; Goldstein & Coco, 2015), and
663 their utility in the study of coastal environments continues to evolve and expand (e.g. Itzkin et
664 al., 2022; Montaño et al., 2020). For example, Enwright et al. (2021) demonstrated the utility of
665 employing a hybrid modeling approach to look at land-cover relationships to barrier island
666 migration on the developed barrier Dauphin Island. Integrating machine learning algorithms
667 trained with data from undeveloped systems, within geomorphic models that simulate barrier
668 island evolution over time, would provide another means (in addition to Reeves et al., 2022) for
669 shrub and barrier dynamics to evolve dynamically throughout model runs, potentially yielding
670 further insights into the importance of ecomorphodynamic interactions in barrier response to
671 changing conditions over decadal to centurial timescales.

672

673 **5 Conclusions**

674 Using machine learning, we identified empirical relationships between island geomorphology
675 and shrubs that can accurately predict the presence of shrubs within the VCR. We find that
676 minimum-island-interior width between surveys and dune-crest elevation are the most important
677 variables for making accurate predictions, with minimum-island-interior width between surveys
678 being sufficient to predict a lack of shrubs, while both minimum-island-interior width between
679 surveys and dune-crest elevation are needed to predict shrub presence.

680 Islands with minimum-island-interior width between survey values less than ~160 m tend to
681 lack shrubs (Category I), whereas areas that have dune-crest elevation values above 1.9 m and
682 minimum-island-interior width between survey values exceeding ~160 m (Category IV) tend to
683 have shrubs.

684 We attribute errors in our machine learning predictions to a combination of system hysteresis,
685 remote sensing, and decision tree misclassification. Based on our analysis of misidentified
686 transects, we find that shrub presence is a lagging indicator of change, with shrubs requiring time
687 to adapt to changes in dune elevation or interior width that allow their growth. In the future, by
688 looking at the areas where the observations diverge from model predictions, we can gain new
689 insights into system evolution, the timescales of hysteresis, and improve future remote sensing
690 classifications.

691

692 **Acknowledgements**

693 The authors acknowledge that there aren't any conflicts of interest in this research. This research
694 was supported by the Virginia Coastal Reserve Long-Term Ecological Research Program
695 (National Science Foundation DEB-1832221) via a subaward to Laura J. Moore at the University
696 of North Carolina at Chapel Hill and Julie C. Zinnert at Virginia Commonwealth University and
697 by the Preston Jones and Mary Elizabeth Frances Dean Martin Fellowship Fund from the
698 Department of Earth, Marine, and Environmental Sciences at the University of North Carolina at
699 Chapel Hill.

700

701 **Open Research**

702 All morphometric data and code used to generate this analysis is archived on Zendo (Franklin,
703 2024). Information to access DEMs of the Virginia Coastal Reserve are available in these in-text
704 data citations (OCM Partners, 2023a, 2023a; VITA, 2018). Barrier island landcover can be
705 accessed from the VCR data repository cited here (Zinnert, 2022). Aerial imagery are available
706 from the Virginia Geographic Information Network's Virginia GIS Clearinghouse (Virginia

707 Geographic Information Network, 2009a, 2009b, 2013a, 2013b, 2017b, 2017a, 2021a, 2021b).
708 Soil salinity data from VCR barrier islands is stored on the VCR data repository (Sabo &
709 Zinnert, 2022).

710

711 **References**

712 Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover
713 classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating
714 the performance of random forest and support vector machines classifiers. *International
715 Journal of Remote Sensing*, 35(10), 3440–3458.
716 <https://doi.org/10.1080/01431161.2014.903435>

717 Anderson, C. P., Carter, G. A., & Funderburk, W. R. (2016). The use of aerial RGB imagery and
718 LIDAR in comparing ecological habitats and geomorphic features on a natural versus
719 man-made barrier island. *Remote Sensing*, 8(7), 602.

720 Ashton, A. D., & Lorenzo-Trueba, J. (2018). Morphodynamics of barrier response to sea-level
721 rise. In L. J. Moore & A. B. Murray (Eds.), *Barrier Dynamics and Response to Changing
722 Climate* (pp. 277–304). Springer International Publishing. [https://doi.org/10.1007/978-3-319-68086-6_9](https://doi.org/10.1007/978-3-
723 319-68086-6_9)

724 Barbarella, M., Di Benedetto, A., & Fiani, M. (2021). Application of supervised machine
725 learning technique on LiDAR data for monitoring coastal land evolution. *Remote
726 Sensing*, 13(23), 4782. <https://doi.org/10.3390/rs13234782>

727 Beets, D. J., & van der Spek, A. J. (2000). The Holocene evolution of the barrier and the back-
728 barrier basins of Belgium and the Netherlands as a function of late Weichselian

729 morphology, relative sea-level rise and sediment supply. *Netherlands Journal of*
730 *Geosciences*, 79(1), 3–16.

731 Beuzen, T., & Splinter, K. (2020). Machine learning and coastal processes. In *Sandy Beach*
732 *Morphodynamics* (pp. 689–710). Elsevier. <https://doi.org/10.1016/B978-0-08-102927-5.00028-X>

733 Bolyard, T. H., Hornberger, G. M., Dolan, R., & Hayden, B. P. (1979). Freshwater reserves of
734 mid-atlantic coast barrier Islands. *Environmental Geology*, 3(1), 1–11.
735 <https://doi.org/10.1007/BF02423273>

736 Breiman, L. (2001). Random forests. *Machine Learning*, 45, 5–32.

737 Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). *Classification and regression*
738 *trees*. Chapman & Hall.

739 Broome, S. W., Seneca, E. D., & Woodhouse, W. W. (1988). Tidal salt marsh restoration. *Aquatic*
740 *Botany*, 32(1–2), 1–22. [https://doi.org/10.1016/0304-3770\(88\)90085-X](https://doi.org/10.1016/0304-3770(88)90085-X)

741 Carr, J. A., D'Odorico, P., McGlathery, K. J., & Wiberg, P. L. (2012). Stability and resilience of
742 seagrass meadows to seasonal and interannual dynamics and environmental stress.
743 *Journal of Geophysical Research: Biogeosciences*, 117(G1).
744 <https://doi.org/10.1029/2011JG001744>

745 Carter, G. A., Otvos, E. G., Anderson, C. P., Funderburk, W. R., & Lucas, K. L. (2018).
746 Catastrophic storm impact and gradual recovery on the Mississippi-Alabama barrier
747 islands, 2005–2010: Changes in vegetated and total land area, and relationships of post-
748 storm ecological communities with surface elevation. *Geomorphology*, 321, 72–86.
749 <https://doi.org/10.1016/j.geomorph.2018.08.020>

751 Ciarletta, D. J., Lorenzo-Trueba, J., & Ashton, A. D. (2019). Mechanism for retreating barriers to
752 autogenically form periodic deposits on continental shelves. *Geology*, 47(3), 239–242.
753 <https://doi.org/10.1130/G45519.1>

754 Cipriani, L. E., & Stone, G. W. (2001). Net longshore sediment transport and textural changes in
755 beach sediments along the southwest Alabama and Mississippi barrier islands, USA.
756 *Journal of Coastal Research*, 443–458.

757 Da Silveira Lobo Sternberg, L. (2001). Savanna-forest hysteresis in the tropics: *Savanna-forest*
758 *hysteresis*. *Global Ecology and Biogeography*, 10(4), 369–378.
759 <https://doi.org/10.1046/j.1466-822X.2001.00243.x>

760 De'ath, G., & Fabricius, K. E. (2000). Classification and regression trees: A powerful yet simple
761 technique for ecological data analysis. *Ecology*, 81(11), 3178–3192.
762 [https://doi.org/10.1890/0012-9658\(2000\)081\[3178:CARTAP\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2)

763 Denny, M., & Benedetti-Cecchi, L. (2012). Scaling up in ecology: Mechanistic approaches.
764 *Annual Review of Ecology, Evolution, and Systematics*, 43(1), 1–22.
765 <https://doi.org/10.1146/annurev-ecolsys-102710-145103>

766 Donnelly, C., Kraus, N., & Larson, M. (2006). State of knowledge on measurement and
767 modeling of coastal overwash. *Journal of Coastal Research*, 22(4), 965–991.

768 Du, J., & Hesp, P. A. (2020). Salt Spray Distribution and Its Impact on Vegetation Zonation on
769 Coastal Dunes: A Review. *Estuaries and Coasts*, 43(8), 1885–1907.
770 <https://doi.org/10.1007/s12237-020-00820-2>

771 Duncan, W. H., & Duncan, M. B. (1987). *The Smithsonian guide to seaside plants of the Gulf*
772 *and Atlantic coasts* (1st ed.). Smithsonian Institution Press.

773 Durán Vinent, O., & Moore, L. J. (2015). Barrier island bistability induced by biophysical
774 interactions. *Nature Climate Change*, 5(2), 158–162.

775 Ehrenfeld, J. G. (1990). Dynamics and processes of barrier-island vegetation. *Reviews in Aquatic
776 Sciences*, 2(3–4), 437–480.

777 Enwright, N. M., Wang, L., Borchert, S. M., Day, R. H., Feher, L. C., & Osland, M. J. (2019).
778 Advancing barrier island habitat mapping using landscape position information. *Progress
779 in Physical Geography: Earth and Environment*, 43(3), 425–450.
780 <https://doi.org/10.1177/0309133319839922>

781 Enwright, N. M., Wang, L., Dalyander, P. S., Wang, H., Osland, M. J., Mickey, R. C., Jenkins, R.
782 L., & Godsey, E. S. (2021). Assessing Habitat Change and Migration of Barrier Islands.
783 *Estuaries and Coasts*, 44(8), 2073–2086. <https://doi.org/10.1007/s12237-021-00971-w>

784 Fisher, K. R., Ewing, R. C., & Duran Vinent, O. (2023). Decadal and seasonal changes in
785 landcover at Padre Island: Implications for the role of the back-barrier in signaling island
786 state change. *Earth Surface Processes and Landforms*, 48(1), 163–178.
787 <https://doi.org/10.1002/esp.5479>

788 Fitzgerald, D. M., Penland, S., & Nummedal, D. A. G. (1984). Control of barrier island shape by
789 inlet sediment bypassing: East Frisian Islands, West Germany. *Marine Geology*, 60(1–4),
790 355–376.

791 Franklin, B. (2024). *franklin1895/Predicting_BARRIER_ISLAND_Shrub_Presence: Code & Data
792 Repository* (v1.1) [Computer software]. Zenodo.
793 <https://doi.org/10.5281/zenodo.10806356>

794 Goldstein, E. B., & Coco, G. (2015). Machine learning components in deterministic models:
795 Hybrid synergy in the age of data. *Frontiers in Environmental Science*, 3.
796 <https://doi.org/10.3389/fenvs.2015.00033>

797 Goldstein, E. B., Coco, G., & Murray, A. B. (2013). Prediction of wave ripple characteristics
798 using genetic programming. *Continental Shelf Research*, 71, 1–15.
799 <https://doi.org/10.1016/j.csr.2013.09.020>

800 Goldstein, E. B., Coco, G., & Plant, N. G. (2019). A review of machine learning applications to
801 coastal sediment transport and morphodynamics. *Earth-Science Reviews*, 194, 97–108.
802 <https://doi.org/10.1016/j.earscirev.2019.04.022>

803 Gómez, R. D., Pasternack, G. B., Guillon, H., Byrne, C. F., Schwindt, S., Larrieu, K. G., & Solis,
804 S. S. (2022). Mapping subaerial sand-gravel-cobble fluvial sediment facies using airborne
805 lidar and machine learning. *Geomorphology*, 401, 108106.

806 Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). *The elements of statistical
807 learning: Data mining, inference, and prediction* (Vol. 2). Springer.

808 Hayden, B. P., Santos, M. C., Shao, G., & Kochel, R. C. (1995). Geomorphological controls on
809 coastal vegetation at the Virginia Coast Reserve. *Geomorphology*, 13(1–4), 283–300.

810 Houser, C., Lehner, J., & Smith, A. (2022). The field geomorphologist in a time of artificial
811 intelligence and machine learning. *Annals of the American Association of Geographers*,
812 112(5), 1260–1277. <https://doi.org/10.1080/24694452.2021.1985956>

813 Houser, C., Wernette, P., & Weymer, B. A. (2018). Scale-dependent behavior of the foredune:
814 Implications for barrier island response to storms and sea-level rise. *Geomorphology*,
815 303, 362–374.

816 Huang, H., Zinnert, J. C., Wood, L. K., Young, D. R., & D'Odorico, P. (2018). Non-linear shift
817 from grassland to shrubland in temperate barrier islands. *Ecology*, 99(7), 1671–1681.

818 Inman, D. L., & Dolan, R. (1989). The Outer Banks of North Carolina: Budget of sediment and
819 inlet dynamics along a migrating barrier system. *Journal of Coastal Research*, 193–237.

820 Itzkin, M., Moore, L. J., Ruggiero, P., & Hacker, S. D. (2020). The effect of sand fencing on the
821 morphology of natural dune systems. *Geomorphology*, 352, 106995.
822 <https://doi.org/10.1016/j.geomorph.2019.106995>

823 Itzkin, M., Moore, L. J., Ruggiero, P., Hovenga, P. A., & Hacker, S. D. (2022). Combining
824 process-based and data-driven approaches to forecast beach and dune change.
825 *Environmental Modelling & Software*, 153, 105404.

826 Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in
827 geosciences and remote sensing. *Geoscience Frontiers*, 7(1), 3–10.
828 <https://doi.org/10.1016/j.gsf.2015.07.003>

829 Leatherman, S. P. (1983). Barrier dynamics and landward migration with Holocene sea-level
830 rise. *Nature*, 301(5899), 415–417. <https://doi.org/10.1038/301415a0>

831 Leatherman, S. P., Geological Society of America, & Society of Economic Paleontologists and
832 Mineralogists (Eds.). (1979). *Barrier islands from the Gulf of St. Lawrence to the Gulf of*
833 *Mexico*. Academic Press.

834 Liaw, A., & Wiener, M. (2022). *RandomForest: Breiman and Cutler's random forests for*
835 *classification and regression* (4.7-1.1) [Computer software]. <https://cran.r-project.org/web/packages/randomForest/index.html>

837 Lorenzo-Trueba, J., & Ashton, A. D. (2014). Rollover, drowning, and discontinuous retreat:
838 Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic
839 model. *Journal of Geophysical Research: Earth Surface*, 119(4), 779–801.

840 Luan, J., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2020). The predictive performances of random
841 forest models with limited sample size and different species traits. *Fisheries Research*,
842 227, 105534.

843 Mariotti, G., & Carr, J. (2014). Dual role of salt marsh retreat: Long-term loss and short-term
844 resilience. *Water Resources Research*, 50(4), 2963–2974.
845 <https://doi.org/10.1002/2013WR014676>

846 Mariotti, G., & Hein, C. J. (2022). Lag in response of coastal barrier-island retreat to sea-level
847 rise. *Nature Geoscience*, 15(8), 633–638. <https://doi.org/10.1038/s41561-022-00980-9>

848 Martínez Prentice, R., Viloslada Peciña, M., Ward, R. D., Bergamo, T. F., Joyce, C. B., & Sepp,
849 K. (2021). Machine Learning Classification and Accuracy Assessment from High-
850 Resolution Images of Coastal Wetlands. *Remote Sensing*, 13(18), Article 18.
851 <https://doi.org/10.3390/rs13183669>

852 Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning
853 classification in remote sensing: An applied review. *International Journal of Remote
854 Sensing*, 39(9), 2784–2817. <https://doi.org/10.1080/01431161.2018.1433343>

855 McAllister, E., Payo, A., Novellino, A., Dolphin, T., & Medina-Lopez, E. (2022). Multispectral
856 satellite imagery and machine learning for the extraction of shoreline indicators. *Coastal
857 Engineering*, 174, 104102. <https://doi.org/10.1016/j.coastaleng.2022.104102>

858 Miller, D. L., Thetford, M., & Schneider, M. (2008). Distance from the Gulf influences survival
859 and growth of three barrier island dune plants. *Journal of Coastal Research*, 4, 261–266.
860 <https://doi.org/10.2112/07-0914.1>

861 Montaño, J., Coco, G., Antolínez, J. A., Beuzen, T., Bryan, K. R., Cagigal, L., Castelle, B.,
862 Davidson, M. A., Goldstein, E. B., & Ibaceta, R. (2020). Blind testing of shoreline
863 evolution models. *Scientific Reports*, 10(1), 2137.

864 Moore, L. J., List, J. H., Williams, S. J., & Stolper, D. (2010). Complexities in barrier island
865 response to sea level rise: Insights from numerical model experiments, North Carolina
866 Outer Banks. *Journal of Geophysical Research: Earth Surface*, 115(F3).

867 Morgan, J., Daugherty, R., Hilchie, A., & Carey, B. (2003). *Sample size and modeling accuracy
868 of decision tree based data mining tools*. 6(2).

869 Morton, R. A., & Sallenger Jr, A. H. (2003). Morphological impacts of extreme storms on sandy
870 beaches and barriers. *Journal of Coastal Research*, 560–573.

871 Mull, J., & Ruggiero, P. (2014). Estimating storm-induced dune erosion and overtopping along
872 US West Coast beaches. *Journal of Coastal Research*, 30(6), 1173–1187.

873 Nienhuis, J. H., & Lorenzo-Trueba, J. (2019). Can barrier islands survive sea-level rise?
874 Quantifying the relative role of tidal inlets and overwash deposition. *Geophysical
875 Research Letters*, 46(24), 14613–14621.

876 OCM Partners. (2023a). *2016 USACE Post-Matthew topobathy lidar DEM: Southeast Coast
877 (VA, NC, SC, GA and FL)* [dataset]. <https://www.fisheries.noaa.gov/inport/item/49409>

878 OCM Partners. (2023b). *2017 USACE NCMP topobathy lidar DEM: East Coast (NY, NJ, DE,
879 MD, VA, NC, SC, GA)* [dataset]. <https://www.fisheries.noaa.gov/inport/item/52446>

880 Orth, R., Moore, K., Marion, S., Wilcox, D., & Parrish, D. (2012). Seed addition facilitates
881 eelgrass recovery in a coastal bay system. *Marine Ecology Progress Series*, 448, 177–
882 195. <https://doi.org/10.3354/meps09522>

883 Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest?
884 *Machine Learning and Data Mining in Pattern Recognition: 8th International
885 Conference, MLDM 2012, Berlin, Germany, July 13-20, 2012. Proceedings* 8, 154–168.

886 Oster, D., & Moore, L. (2019). *Beach Morphology of the Virginia Barrier Islands 1998, 2005
887 and 2009* [dataset]. Environmental Data Initiative.
888 <https://doi.org/10.6073/PASTA/09C14D85B004205DE6F558854941671A>

889 Perry, G. L. W., & Dickson, M. E. (2018). Using machine learning to predict geomorphic
890 disturbance: The effects of sample size, sample prevalence, and sampling strategy.
891 *Journal of Geophysical Research: Earth Surface*, 123(11), 2954–2970.
892 <https://doi.org/10.1029/2018JF004640>

893 Rasmussen, E. (1977). The wasting disease of eelgrass (*Zostera marina*) and its effects on
894 environmental factors and fauna. *Seagrass Ecosystems*, 1–51.

895 Reeves, I. R. B., Goldstein, E. B., Moore, L. J., & Zinnert, J. C. (2022). Exploring the impacts of
896 shrub-overwash feedbacks in coastal barrier systems with an ecological-morphological
897 model. *Journal of Geophysical Research: Earth Surface*, 127(3).
898 <https://doi.org/10.1029/2021JF006397>

899 Reeves, I. R. B., Moore, L. J., Murray, A. B., Anarde, K. A., & Goldstein, E. B. (2021). Dune
900 dynamics drive discontinuous barrier retreat. *Geophysical Research Letters*, 48(13),
901 e2021GL092958. <https://doi.org/10.1029/2021GL092958>

902 Robbins, M. G., Shawler, J. L., & Hein, C. J. (2022). Contribution of longshore sand exchanges
903 to mesoscale barrier-island behavior: Insights from the Virginia Barrier Islands, US East
904 Coast. *Geomorphology*, 403, 108163.

905 Sabo, A. (2023). Dune building dynamics impact cross-island connectivity and barrier island
906 characteristics. *VCU Theses and Dissertations*. <https://doi.org/10.25772/NG7M-G291>

907 Sabo, A., & Zinnert, J. C. (2022). *Barrier Island Plant and Soil Properties on Hog and*
908 *Metompkin Islands, Virginia, 2021-2022* (knb-lter-vcr.392.2) [dataset]. Environmental
909 Data Initiative. <https://www.vcrler.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter->
910 vcr.392

911 Sallenger Jr, A. H. (2000). Storm impact scale for barrier islands. *Journal of Coastal Research*,
912 890–895.

913 Seneca, E. D., & Broome, S. W. (1982). Restoration of marsh vegetation impacted by the Amoco
914 Cadiz oil spill and subsequent clean up operations at lle Grande France. *Ecological*
915 *Studies of the Amoco Cadiz Oil Spill. Report of the NOAA-CNEXO Joint Scientific*
916 *Commission, CNEXO, Paris*, 363–419.

917 Shiflett, S. A., & Young, D. R. (2010). Avian seed dispersal on Virginia Barrier Islands: Potential
918 influence on vegetation community structure and patch dynamics. *The American Midland*
919 *Naturalist*, 164(1), 91–106. <https://doi.org/10.1674/0003-0031-164.1.91>

920 Snyder, R. A., & Boss, C. L. (2002). Recovery and stability in barrier island plant communities.
921 *Journal of Coastal Research*, 530–536.

922 Stutz, M. L., & Pilkey, O. H. (2011). Open-ocean barrier islands: Global influence of climatic,
923 oceanographic, and depositional settings. *Journal of Coastal Research*, 27(2), 207–222.

924 Therneau, T., Atkinson, B., port, B. R. (producer of the initial R., & maintainer 1999-2017).
925 (2022). *Rpart: Recursive partitioning and regression trees* (4.1.19) [Computer software].
926 <https://cran.r-project.org/web/packages/rpart/index.html>
927 Tolliver, K. S., Martin, D. W., & Young, D. R. (1997). Freshwater and saltwater flooding
928 response for woody species common to barrier island swales. *Wetlands*, 17(1), 10–18.
929 <https://doi.org/10.1007/BF03160714>
930 Válega, M., Lillebø, A. I., Pereira, M. E., Duarte, A. C., & Pardal, M. A. (2008). Long-term
931 effects of mercury in a salt marsh: Hysteresis in the distribution of vegetation following
932 recovery from contamination. *Chemosphere*, 71(4), 765–772.
933 <https://doi.org/10.1016/j.chemosphere.2007.10.013>
934 Velasquez-Montoya, L., Sciaudone, E. J., Harrison, R. B., & Overton, M. (2021). Land cover
935 changes on a barrier island: Yearly changes, storm effects, and recovery periods. *Applied
936 Geography*, 135, 102557.
937 Virginia Geographic Information Network. (2009a). *VBMP 2009 infrared WGS Web Mercator
938 (VGIN)* [dataset]. <https://vgin.vdem.virginia.gov/pages/clearinghouse>
939 Virginia Geographic Information Network. (2009b). *VBMP 2009 WGS Web Mercator (VGIN)*
940 [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2009-wgs-web-mercator->
941 [vgin/about](https://vgin.vdem.virginia.gov/vgin/about)
942 Virginia Geographic Information Network. (2013a). *VBMP 2013 infrared WGS Web Mercator
943 (VGIN)* [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2013-infrared->
944 [wgs-web-mercator-vgin/about](https://vgin.vdem.virginia.gov/vgs-web-mercator-vgin/about)

945 Virginia Geographic Information Network. (2013b). *VBMP 2013 WGS Web Mercator (VGIN)*
946 [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2013-wgs-web-mercator->
947 vgin/about

948 Virginia Geographic Information Network. (2017a). *VBMP 2017 infrared WGS Web Mercator*
949 [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2017-infrared->
950 wgs-web-mercator-vgin/about

951 Virginia Geographic Information Network. (2017b). *VBMP 2017 WGS Web Mercator (VGIN)*
952 [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2017-wgs-web-mercator->
953 vgin/about

954 Virginia Geographic Information Network. (2021a). *VBMP 2021 infared WGS Web Mercator*
955 [dataset]. <https://vgin.vdem.virginia.gov/pages/clearinghouse>

956 Virginia Geographic Information Network. (2021b). *VBMP 2021 WGS Web Mercator (VGIN)*
957 [dataset]. <https://vgin.vdem.virginia.gov/datasets/VGIN::vbmp-2021-wgs-web-mercator->
958 vgin/about

959 VITA. (2018). *LiDAR-based Digital Elevation Model for Northampton and Accomack Co., VA, 2010* [dataset]. Environmental Data Initiative.
960 <https://doi.org/10.6073/PASTA/EF88A4D75F9924B27D095D1FED91078C>

962 Williams, J. R., Dellapenna, T. M., & Lee, G. (2013). Shifts in depositional environments as a
963 natural response to anthropogenic alterations: Nakdong Estuary, South Korea. *Marine*
964 *Geology*, 343, 47–61.

965 Wood, L. K., Hays, S., & Zinnert, J. C. (2020). Decreased temperature variance associated with
966 biotic composition enhances coastal shrub encroachment. *Scientific Reports*, 10(1), 8210.

990 remote sensing approach. *Geocarto International*, 26(8), 595–612.

991 <https://doi.org/10.1080/10106049.2011.621031>

992 Zinnert, J. C., Via, S. M., Nettleton, B. P., Tuley, P. A., Moore, L. J., & Stallins, J. A. (2019).

993 Connectivity in coastal systems: Barrier island vegetation influences upland migration in

994 a changing climate. *Global Change Biology*, 25(7), 2419–2430.

995 <https://doi.org/10.1111/gcb.14635>

996