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Key Points:
- Decision tree analysis and random forest modeling can predict shrub presence on barrier
islands in Virginia with ~90% accuracy
- Shrub presence on barrier islands correlate with dune elevations >1.9 m and maintenance
of island interior widths >160 m over a ~ 6-year period.
- Shrub establishment and removal lags changes in geomorphic conditions, indicating

hysteresis

Abstract

Barrier islands are highly dynamic coastal landforms that are economically, ecologically,
and societally important. Woody vegetation located within barrier island interiors can alter
patterns of overwash, leading to periods of periodic barrier island retreat. Due to the interplay
between island interior vegetation and patterns of barrier island migration, it is critical to better
understand the factors controlling the presence of woody vegetation on barrier islands. To
provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT,

and aerial photography to measure shrub presence, coastal dune metrics, and island
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characteristics (e.g., beach width, island width) for an undeveloped mixed-energy barrier island
system in Virginia along the US mid-Atlantic coast. We apply decision tree and random forest
machine learning methods to identify new empirical relationships between island
geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be
present in areas where dune elevations are above ~ 1.9 m and island interior widths are greater
than ~160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island
interior widths are less than ~160 m regardless of dune elevation. Our machine learning
predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect
predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to
adapt to changing conditions and therefore their growth and removal lags changes in island

geomorphology, which can occur more rapidly.

Plain Language Summary

In this study we present two machine learning models for predicting the presence of
shrubs on barrier islands. We use data derived from satellites, LIDAR, and arial imagery to create
machine learning models. Using these models, we find that dune elevation and the minimum-
island-interior width between surveys correlates with whether or not shrubs are present on barrier
islands; sufficiently wide interior areas and sufficiently high dune elevations are necessary to
support shrubs. Additionally, in certain areas we observe a lag between predicted and observed
behavior. We attribute this lag to the different time scales over which shrub and barrier island
geomorphology processes operate; barrier island geomorphology can change rapidly, but it can

take several years for shrubs to respond to these changes.
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1 Introduction

Barrier islands are a common feature of coastal environments, located along roughly 10%
of coastlines globally (Stutz & Pilkey, 2011). These highly dynamic landforms provide
numerous societal benefits, including storm protection to mainland communities, tourism
revenue, and nesting areas for ecologically important shorebirds. Aided by storms which cause
overwash (e.g. Leatherman et al., 1979; Morton & Sallenger Jr, 2003), barrier islands migrate
landward over time due to gradients in alongshore sediment transport (e.g. Cipriani & Stone,
2001; Fitzgerald et al., 1984; Robbins et al., 2022), decreases in sediment supply (e.g. Beets &
van der Spek, 2000; Stutz & Pilkey, 2011; Williams et al., 2013), tidal inlet dynamics (e.g. Inman
& Dolan, 1989; Leatherman et al., 1979; Nienhuis & Lorenzo-Trueba, 2019), and sea level rise
(Lorenzo-Trueba & Ashton, 2014; Mariotti & Hein, 2022; Moore et al., 2010).

Coastal foredunes are prominent features on barrier islands and because water levels must
exceed dune elevation for overwash to occur (Sallenger, 2000), dunes play a crucial role in
determining how islands respond to storms (Duran Vinent & Moore, 2015) and how they migrate
over time (Houser et al., 2018; Reeves et al., 2021). When dunes are overtopped and overwash
occurs, sand is transported from the front of an island to its interior and beyond, resulting in
landward barrier island migration in the case of sea-level rise and/or negative sediment supply
(Donnelly et al., 2006; Leatherman, 1983). If islands are unable to move landward, they are at
risk of drowning and disintegration (e.g. Lorenzo-Trueba & Ashton, 2014; Moore et al., 2010).

The presence of woody shrub vegetation on a barrier island can alter overwash dynamics by

restricting sediment transport pathways in the island interior (Reeves et al., 2022; Zinnert et al.,

3
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2019). This disruption increases the likelihood of an island undergoing punctuated rather than
continuous retreat, because shrubs inhibit overwash delivery to the island interior (Reeves et al.,
2022). During punctuated retreat, barrier islands undergo alternating periods of landward
migration followed by periods of relative immobility (Ashton & Lorenzo-Trueba, 2018; Ciarletta
et al., 2019; Lorenzo-Trueba & Ashton, 2014).

Just as plant dynamics can alter barrier island response to storms (e.g. Duran Vinent &
Moore, 2015; Reeves et al., 2022; Zinnert et al., 2019), storms can change barrier island plant
communities. Storms can erode or wash away dunes (Morton & Sallenger Jr, 2003), removing
established foredune vegetation and converting vegetated areas to bare sand (Snyder & Boss,
2002). Through the erosion and/or removal of foredunes, storms can also expose vegetation in
the barrier island interior to salt spray, flooding, and burial (Carter et al., 2018; Snyder & Boss,
2002), potentially resulting in a decrease in total vegetated area and recolonization by more salt
tolerant species. Over time, depending upon post-storm recovery rates, areas can return to prior
ecological successions (Snyder & Boss, 2002; Velasquez-Montoya et al., 2021) or some habits
may be eliminated (Carter et al., 2018).

Woody vegetation is a common ecological feature in coastal environments along the Gulf and
East Coasts of the United States (Duncan & Duncan, 1987), establishing on barrier islands from
seeds carried by wind, waves, and birds (Ehrenfeld, 1990; Shiflett & Young, 2010). On barrier
islands, shrub growth has been linked to a variety of abiotic processes including warming climate
(Huang et al., 2018; Wood et al., 2020), dune elevation (Woods et al., 2019), interior elevation
(Young et al., 2011), salinity exposure (Young et al., 1994), and freshwater availability (Young et

al., 2011). High dunes protect shrubs, especially seedlings, from salt spray and overwash (Miller
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93 etal., 2008); Woods et al. (2019) found foredune elevations of at least 1.75 m were required for
94  shrub growth on the Virginia Barrier Islands, USA.
95 Several recent studies use a combination of LIDAR, aerial photography, satellite imagery,
96 and field observations to classify landcover in a variety of barrier island settings (Anderson et al.,
97  2016; Enwright et al., 2019; Fisher et al., 2023; Velasquez-Montoya et al., 2021). Although
98  previous research succeeds in identifying the presence of vegetation and vegetation type, few
99  studies predict its occurrence, though Enwright et al. (2019) succeeded in using machine learning
100  techniques to predict 11 habitat classes on Dauphin Island, Alabama, including a woody
101  vegetation class.
102 Because shrubs can alter the rate and style of barrier island migration (Reeves et al., 2022;
103 Zinnert et al., 2019), our objective is to understand the relationship between barrier island
104  geomorphology and the presence or absence of shrubs, and to develop a means for predicting
105  shrub expansion and loss. Here we use decision tree analysis and random forest modeling—
106  machine learning techniques—to assess the empirical relationships between barrier island
107  geomorphology and shrub presence, and to identify remote-sensing-derived metrics capable of
108  predicting the presence or absence of shrubs for large-scale undeveloped barrier island systems.
109 Machine learning techniques show promise in coastal geomorphology (e.g. Beuzen &
110 Splinter, 2020; Houser et al., 2022). Recent examples include the use of machine learning to
111 classify images to calculate coastal landslide risk (Fisher et al., 2023), characterize biological
112 marsh communities (Martinez Prentice et al., 2021), and identify shoreline features (McAllister
113 etal., 2022). Additionally, machine learning algorithms have been coupled with physically based
114  models to predict changes in barrier island habitat (Enwright et al., 2021), calibrate dune

115  evolution models (Itzkin et al., 2022), and simulate shoreline evolution (Montafio et al., 2020).



116

117

118

119

120

121

122

123

124

125

126

127

128

129

Journal of Geophysical Research: Earth Surface

To meet our objectives, we focus on the Virginia Barrier Islands, which are largely owned by
The Nature Conservancy (TNC) and are included within the National Science Foundation’s
Virginia Coast Reserve (VCR) Long-Term Ecological Research site. We focus on the islands
that comprise the VCR, which extend 110 km along the outer coast of the DELMARVA
Peninsula (Figure 1), from Fisherman’s Island in the south to Metompkin Island in the north.
Islands within the VCR are separated from the mainland by wide back-barrier lagoons many of
which are fully or partially filled with back-barrier marsh (of varying width and depth).

Since 1962, the VCR has lost subaerial barrier island volume while simultaneously gaining
shrub area (Zinnert et al., 2016). Because TNC owns the VCR and limits anthropogenic effects,
the VCR is an ideal setting for studying natural physical and ecological barrier dynamics. While
many other types of plants are found within the VCR, we focus on predicting the presence of
shrubs because they are ubiquitous on many islands in the VCR (Zinnert, 2022; Zinnert et al.,
2016, 2019) as well as other barrier islands in the U.S., and their presence significantly alters

barrier island migration (Reeves et al., 2022; Zinnert et al., 2019).
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Figure 1. Study area map. The Virginia Coastal Reserve (VCR) extends from Smith Island to
Metompkin Island, located on the Delmarva Peninsula, Virginia, United States.

2 Methods

2.1 Data

To quantify the relationship between barrier island geomorphology and shrub extent over
space and time in the VCR, we utilized LiDAR digital elevation models (DEMs), landcover
maps created from LANDSAT imagery by Zinnert et al. (2016, 2019, 2022), and aerial
photography (Table 1). Three LIDAR DEMs from March 2010 (VITA, 2018), October 2016
(OCM Partners, 2023a), and June 2017 (OCM Partners, 2023b) allowed us to quantify dune
morphometrics (details below). The 2010 DEM has a resolution of 3.048 m (10 ft) and a vertical

accuracy of 20 cm, while the 2016 and 2017 DEMs have resolutions of 1 m and vertical
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accuracies of 10 cm. We supplemented DEM-derived values with dune elevations from Oster &
Moore (2019), which were calculated from a 2005 United States Army Corps of Engineers

(USACE) DEM with a 2 m resolution and a 20 cm vertical accuracy.

Table 1. Data sources. Summary of data type, collection year, accuracy, and source.

Remote Sensing Year Horizontal Data Sources ‘
Data Accuracy
LiDAR 2005  2m Oster and Moore, 2007
2010 | 3.048 m (10 ft) VITA, 2011
2016  1m OCM Partners, 2023a
2017 | I m OCM Partners, 2023ab
LANDSAT 1998 | 30 m Zinnert, 2022
Groundcover
2011 | 30m Zinnert, 2022
2016 | 30 m Zinnert, 2022
Aerial Photography | 2009 | 0.305 m VGIN, 2009
2013 | 0.305m VGIN, 2013
2017 | 0.305 m VGIN, 2017
2021 | 0.305m VGIN, 2021

We identified the presence of shrubs using previously published landcover classifications
generated by Zinnert et al. (2016, 2019, 2022) from LANDSAT (30-m resolution) using bands
one through four, five and seven (resolution = 30m). Zinnert et al. (2016, 2019, 2022) divided
the VCR into five landcover classes: woody, grassland, sand / bare, water, and marsh. All
satellite images were collected between mid-August to mid-September, on cloud free days during
the summer growing season (Zinnert et al., 2016) to minimize the effects of seasonal differences
in vegetation cover. For this project, we focused on the woody, water, and marsh classes from
1998, 2011, and 2016, with shrubs being represented by the woody landcover class. We
manually compared Zinnert et al.’s (2016, 2019, 2022) shrub classifications to true color and
infrared aerial imagery from 2009, 2013, and 2017, with resolutions of 0.3 m collected by the
Virginia Department of Emergency Management (Virginia Geographic Information Network,
2009, 2013, 2017), to serve as data validation. We used photographs collected in 2021 (Virginia

Geographic Information Network, 2021) to gauge current shrub extent. All aerial photographs
8
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were collected in the spring, and although summer timing is more ideal, these are the only high-
resolution aerial photographs available.

To efficiently analyze the large geographic area of the VCR, using ArcGIS Pro, we
created 517 transects, spaced 100 m apart and spanning the eight VCR islands from Smith Island
to Parramore Island. We cast transects perpendicular to a fixed offshore baseline that runs
parallel to island shorelines, excluding transects that overlapped each other near inlets due to
high inlet shoreline curvature, thereby avoiding the complexities associated with tidal inlet
dynamics. To classify our transects as ‘shrub’ or ‘non-shrub’, we used the Zinnert et al. (2016,
2019, 2022) landcover classifications; we categorized transects as ‘shrub’ if they contained any
amount of area classified as ‘woody’ landcover within 50 m of a transect, and conversely, we
classified transects as ‘non-shrub’ if no shrubs were present. We chose a buffer of 50 m because
our transects are spaced 100 m apart. Because shrub thickets are sometimes patchy, employing a
50-m buffer spacing allowed us to capture all areas with shrubs, while reducing the likelihood of
counting the same area twice. Utilizing a buffer, rather than focusing on where transects directly
intersect shrub polygons also allowed us to examine island and dune morphology characteristics
for areas located near shrubs, and mitigated the lower 30-m spatial resolution of the shrub data
(vs. aerial photography).

Because the LIDAR, LANDSAT, and aerial imagery were not all collected at a constant
time interval, understanding temporal variability required us to create a composite time series
representing conditions in 2010, 2016, and 2017 (Table 2).

Table 2. Summary of datasets (by year), used to generate annual composites. LIDAR (in bold
italics) and LANDSAT (underlined) datasets identified by the year of collection, used to measure
and develop the eight morphometric variables that characterize dune and island morphology.
Note: When calculating the DCELgs for Composite 2017 we included 2010 as well as 2016 and

2017 because there was so little time between the 2016 and 2017 surveys, and therefore this
doesn’t capture the lowest value over a multi-year time span.
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Datasets Dune-crest Lowest- Island- Minimum- Change-in- Change-in- Change-in-
(LiDAR, elevation dune-crest interior island-interior dune-crest island- beach
LANDSAT) (DCE) elevation width width between elevation interior width  width
between (nw) surveys (11Wss) (ADCE) (anw) (ABW)
surveys
(DCEss)
2010 2010 2005, 2010 2010,2011 (2010, 2011) vs 2010 2010-2005 (2010, 2011)- | 2010 - 2005
Composite (2005, 1998) (2005, 1998)
2016 2016 2010, 2016 2016,2016 | (2016, 2016) vs 2016 2016-2010 (2016, 2016) - | 2016 - 2010
Composite (2010, 2011) (2010, 2011)
2017 2017 2010, 2016, | 2017,2016 @ (2017, 2016) vs 2017 2017-2010 (2017, 2016) - = 2017 - 2010
Composite 2017 (2010,2011) (2010, 2011)

2.2 Morphometric Variables

To quantify dune and island interior characteristics (Table 2), we measured—for each
composite data set—eight morphometric variables. We selected these variables because they can
be reliably calculated and are potentially important to shrub presence (Figure 2). Dune-crest
elevation (DCE) represents a transect’s LIDAR-derived foredune elevation (Figure 2) which we
identified using the Matlab program Automorph developed by Itzkin et al. (2020). Automorph
identifies dune-crest elevation as the maximum seaward elevation found above a user-specified
elevation (1.5 m for this analysis to avoid misidentifying berms as dunes) with a minimum
backshore drop of 0.6 m behind it, based on formulations from Mull & Ruggiero (2014).
Lowest-dune-crest-elevation between surveys (DCE|ps) represents the lowest dune-crest
elevation value that we measured between the current and previous LANDSAT survey periods
(e.g., for the 2016 composite, DCErgs is the lowest DCE measured from the 2010 and 2016
LiDAR surveys). Island-interior width (IIW) is the distance between the dune-crest elevation
and the island interior edge (where the island interior intersects either the back-barrier bay or
marsh edge if present), based on the boundary between marsh and water landcover classifications
(Zinnert et al., 2016, 2019, 2022). We focus on the width of the island interior rather than total
island width because shrubs only grow in the island interior. Minimum-island-interior width

between surveys (IIWwgs) represents the smallest island-interior width measured for a transect

10
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between the current and previous LANDSAT surveys (e.g., for the 2016 composite, [IWwugs is
the smallest ITW between IIW 2010 and IIW 2016). Beach width (BW) is the distance between
dune-crest elevation and the horizontal position where the elevation equals 0.35 m (NAVDSS,

representing mean high water used by Oster & Moore, 2019).

1. - Mean high water L Island-interior width | Beach width |
(MHW) point I J '
2. - Dune-crest elevation o ) o
3. - Lowest-dune-crest L_Minimume-island-interior |
elevation between surveys ' width between surveys !
4. - Island interior edge A

3

Barrier Island

Figure 2. Illustration of morphometric variables. An idealized cartoon profile showing the
location of each of the measured morphometric variables used to characterize dune and island
morphology.

In addition to including measures of dune elevation, beach width, and island interior
width, we quantified how these values changed over time. Because of differences in data set
acquisition dates, we normalized our change-over-time variables to represent annualized percent
change values. Change-in-dune-crest elevation (ADCE) represents the difference in DCEs
between the current composite DCE value and previous composite survey DCE (e.g., ADCE
2016 is the difference between DCE 2016 and DCE 2010). We calculated Change-in island-
interior width (AIIW) and Change-in-beach width (ABW) in the same way. Using the Mann-
Whitney nonparametric test (o = 0.05), we tested for statistically significant differences between

shrub and non-shrub transects for each of the eight morphometric variables one at a time.

2.3 Machine Learning
11
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Machine learning is a powerful tool that excels in identifying patterns within large
datasets and that is commonly used to analyze data generated from remote sensed products (e.g.,
Barbarella et al., 2021; Gémez et al., 2022; Lary et al., 2016; Maxwell et al., 2018). These data-
driven techniques have been used in a variety of coastal applications including the prediction of
wave ripples (Goldstein et al., 2013), shoreline evolution (Montafio et al., 2020), and in the
calibration of a physically based dune-beach model (Itzkin et al., 2022), among others. In this
study, we use decision tree analysis and random forest modeling to categorize transects as either
‘shrub’ or ‘non-shrub’ based on our eight morphometric variables. While we initially considered
utilizing several different machine learning techniques including support vector machine (SVM)
and k-nearest neighbor (KNN) analysis, we elected to use decision tree analysis because it is
easily interpreted and yields threshold values that can be further probed; we chose to use random
forest modeling due to its high model accuracy and quick computation times.

We combined our three composite data sets (2010, 2016, 2017) in preparation for using
machine learning and then, using R (version 4.1.1), we randomly split the data into training (75%
of data) and validation sets (25% of data) (Figure 3). Although there are not specific rules on the
sample size required to conduct machine learning analyses (Goldstein et al., 2019),
improvements in model accuracy typically decrease and become marginal after reaching a
certain threshold sample size (Luan et al., 2020; Morgan et al., 2003; Perry & Dickson, 2018).
For example, Perry and Dickson (2018) used a small training set of approximately N=50 samples
and found this sufficient for random forest model rankings of relative variable importance, with
only minimal increases in model accuracy achieved by adding more samples. We sampled every

100 m within the VCR, because it afforded a sufficiently large dataset for performing training

12



249

250

251

252
253
254
255
256
257
258
259
260
261
262
263

264

Journal of Geophysical Research: Earth Surface

and validation, while simultaneously providing a small enough sample size to conduct quality

control.

| Training Data |

2010 2016 2017
Composite Composite Composite
(75%) (75%) (75%)

Shrub Presence
Prediction Model

Validation Data
(25% of Data from
2010, 2016, and 2017)

\ 4 Y

Training Data Predictions Validation Data Predictions

Figure 3. Machine learning workflow. 75% of the data comprising each composite was used to
train the Shrub Presence Prediction Model which made the training data predictions. The
remaining 25% of data not used to train our model was applied to generate validation data
predictions.
2.3.1 Decision Tree Modeling

To conduct decision tree analysis we used the ‘rpart’ (Therneau et al., 2022) R package.
Decision tree analysis repeatedly splits data into groups based on different explanatory variable
values to find the combination of values that is best able to predict the presence of a response
variable (Breiman et al., 1984; De’ath & Fabricius, 2000; Goldstein et al., 2019), while
minimizing the number of output categories.

After completing decision tree modeling, we examined the misidentified transects to

identify where predictions diverged from observations. In this analysis, we focused on three

13
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potential sources of error: system hysteresis, remote sensing misidentification, and decision tree
misclassification. We considered a transect to be misclassified due to system hysteresis when
observed shrub presence or absence on a transect did not match decision tree predictions but did
match observations from LANDSAT or aerial imagery collected within the following 10 years.
Remote sensing misidentification occurred when the LANDSAT-derived shrub classification for
a given transect disagreed with higher resolution aerial imagery collected during the same period.
To identify these instances, we compared 2016 LANDSAT imagery to 2017 aerial imagery, and
the 2011 LANDSAT imagery to both 2009 and 2013 aerial imagery. We made this comparison,
by overlaying Zinnert et al.’s (2022) shrub polygons on the corresponding aerial photographs in
ArcGis Pro and visually inspecting the transect locations to determine if shrubs were, in fact,
present in the locations indicated by the LANDSAT imagery analysis. We refer to prediction
errors that we couldn’t attribute to either hysteresis or remote sensing misclassification, as
decision tree errors.
2.3.2 Random Forest Modeling

For comparison with the results of the decision tree analysis and to gauge the relative
importance of the eight morphometric variables, we conducted random forest (RF) modeling
using the ‘randomForest’ (Liaw & Wiener, 2022) R package. RF modeling is an expanded form
of decision tree analysis (Breiman, 2001; Hastie et al., 2009). RF models create a series, or
‘forest,” of different decision trees, each drawn from a randomly sampled subset of the training
data response variables. Each individual decision tree within the ‘forest’ results in a prediction
based on its response variables, with the random forest model averaging together the predictions
from each individual tree to make an overall classification based on the predictions of a majority

of trees. Informed by the work of Oshiro et al. (2012) who found 64-128 trees sufficient to make

14
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accurate predictions, we chose to use the R package default of 500 trees. This far surpasses the
minimum number of trees recommended by Oshiro et al. (2012), yet still allows reasonably rapid

computation time.

2.4 Analyzing Shrub Colonization and Removal for Comparison with DT Thresholds

To gauge the accuracy of DT-generated empirical thresholds for predicting shrub
colonization or removal, we analyzed transects that changed shrub classification, examining
dune-crest elevation and minimum-island-interior width between survey values. We identified
‘shrub colonization’ and ‘shrub loss’ transects using ArcGIS Pro, overlaying shrub polygons
from Zinnert et al. (2022) from 1998, 2011, and 2016 to identify areas of shrub loss or
expansion. We compared the 1998 and 2010 LANDSAT surveys to determine change for the
2010 composite transects and used the 2011 and 2016 surveys for the 2016 and 2017 composite
transects. Based on this analysis, we considered transects that lacked (had) shrubs in the previous
LANDSAT survey but have (lack) shrubs in the subsequent LANDSAT survey to represent
‘shrub colonization’ (‘shrub removal’) transects. To ensure accuracy, we then verified the
presence or absence of shrubs for each transect by visually comparing Zinnert et al.’s (2022)
woody classification polygons to aerial photographs taken around the same time, using the same
image comparison procedure outlined earlier, retaining verified transects for further analysis as

mentioned above.

3 Results

3.1 Morphometric Variables Statistical Analysis

15
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Shrub and non-shrub transects were statistically different from each other across most of
the measured dune and island-interior morphometrics. Comparing dune morphometrics between
shrub and non-shrub transects using the Mann-Whitney (MW) test revealed that shrub transects
had higher dune-crest elevations (shrub mean = 2.58 m +/- 0.53, non-shrub mean = 1.85 m +/-
0.39, pmw < 0.01; Figure 4a) than non-shrub transects, as well as higher lowest-dune-crest
elevation between surveys values (shrub mean = 2.13 m +/- 0.46, non-shrub mean = 1.59 m +/-
0.36, pmw < 0.01; Figure 4b), and greater changes in dune-crest elevation (shrub mean = 0.04%
+/- 0.76%, non-shrub mean = -0.01% +/- 0.54%, pmw < 0.01; Figure 4c). Comparison of island-
interior morphometrics for shrub vs. non-shrub transects revealed a similar pattern; relative to
non-shrub transects, shrub transects had greater island interior widths (shrub mean = 501m +/-
318, non-shrub mean = 132 m +/- 155, pmw < 0.01; Figure 4d) and higher minimum-island-
interior-width-between survey values (shrub mean = 489 m +/- 322, non-shrub mean = 93 m +/-
141, pmw < 0.01; Figure 4e). In contrast, non-shrub transects, in comparison to shrub transects,
had greater beach widths (shrub mean = 7.2 +/- 17.3, non-shrub mean = 27.4 m +/- 47.0, pmw <
0.01; Figure 4f) and change-in-island-interior widths (shrub mean = 2% +/- 549%, non-shrub
mean = 8% +/- 349, pmw < 0.01; Figure 4g). Shrub and non-shrub transects were not statistically

different in terms of changes in beach width (pmw = 0.10; Figure 4h).

16



328

329
330
331
332
333
334

Journal of Geophysical Research: Earth Surface

+{2 H «{b
T o
1 i o
! S
5 i ! 1 . —
[ »
e ¢ - 7 8 ;
§ | 8¢ :
g 62
) ' cc
°© ' = '
- o+ 0 o o '
g P - 3z
5 ' o 2 1
T & ' =2 '
() ' 2 c '
= E— -2 ' i
S ~- . T~ ' "
° > _
o % 8
° ° °
o o
o~ o
(= e old P—
8 —_— 0
) L o o '
i ' :
'
’
'
E —_— ' = o
BT : . E 8| :
= ll o '
O ~ ’ £ - 8 )
o R 4 o g '
c
Sz e
T 8 oA 2 i
cE =
s 3 2 8
2 .
53 : - £ B
®© ' ' 2
£ '
S - ! - ’ '
[ : 2
L .
I . e — :
—_ o4 4 _—
(] H A
o 8 ]
3 f
e P
2 . : S .
' e’ e
—_~ 1 i o
B‘E’O : o
= 0 Q4
o >9 ° ' _
- 0 v ] o
c = g
£ i . ! < o
23 H £ 0] I
S c e 2
B0 ] s
tis 5
:% w0 @
EsS @
E% - oA
2‘; ) '
(= ’
oA O —_—
R — —_—
o e —
| | [t
o v o v
Slg ° S1|h g
9 ° s ——
g
_
& i H .
r= < )
x '
§ S- ] < I-ro)- [ '
3 £ L ' v
5 ' 2 : :
5 - x '
£ —— 5
% e _ : 3 8
. o o4
2 | °
S [} 0 L
@ ' —_— <
T ' (] ' '
= —— =4 ' ]
.
(=8 ol ' '
87 o) E wn ’ ]
S ! o ' '
g ) '
° 8 ' L
=] _!_
b o
Non-Shrub Shrub Non-Shrub Shrub

Figure 4. Summary of morphometric variables. Box and whisker plots showing non-shrub and
shrub values for eight morphometric variables including: dune-crest elevation (a), lowest-dune-
crest elevation between surveys (b), change-in-dune elevation (c), island-interior width (d),
minimum-island-interior width between surveys (e), beach width (f), change-in-island-interior
width (g), and change-in-beach width (h).
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3.2 Decision Tree Predictions

The decision tree (Figure 5) grouped transects into four categories based on a
combination of values for minimum-island-interior width between surveys and dune-crest
elevation, resulting in predictions that are 90% accurate for the presence or absence of shrubs
(Table 3). We found no statistically significant linear or polynomial correlation between dune-
crest elevation and minimum-island-interior width between surveys, with multiple R-squared
values below 0.3 (Figure 6). A summary of the four categories generated by the decision tree is
presented in Table 4. The spatial extent of each category within the VCR is shown in Figure 7,
and the values for dune-crest elevation and minimum-island-interior width between surveys that

delineate the categories are indicated in Figure 6.

Non-Shrub
045
100%

Yes Minimume-island-interior No
width between surveys < 159 m

:“ES_IDune—crest elevation <1.9m : g
Non-Shrub
0.41
9%
Yes Minimum-island-interior No

width between surveys <498 m

Non-Shrub Shrub Shrub
0.09 0.88 0.92
52% 3% 39%

Category | Category Il Category Il Category IV

Shrub <«——Classification (Shrub or Non-Shrub)
0.88 <——Probability of given sample at node being ‘Shrub’
3% <«—— % of data represented by node

Figure 5. Shrub identification decision tree. Generated decision tree that makes predictions
based on transect dune-crest elevation and minimum-island-interior width between surveys.

Table 3. Confusion matrices from decision tree (DT) and random forest (RF) predictions for both
training and validation datasets.

DT Training Observed Observed DT Validation Observed Observed ‘
Data (75%) Non-Shrub Shrub Data (25%) Non-Shrub Shrub
Predicted Non- = 594 76 Predicted Non- 203 15

Shrub Shrub
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53 441 Predicted Shrub 12 157

89% 93%
Observed Observed RF Validation Data | Observed Observed
Non-Shrub Shrub (25%) Non-Shrub | Shrub
607 40 Predicted Non- 203 26

Shrub

53 464 Predicted Shrub 12 146

92% 90%

51.9%
805

9%
NA

>~160 m

Northern half of Smith
Island, Myrtle Island, Ship
Shoal, the northern and
southern thirds of Wreck
Island, the southern half of
Cobb Island (2010, 2016),
the majority of Cobb
Island (2017), the southern
half of Parramore Island,
and the northern half of
Cedar Island
Category I represents the
largest category, had the
lowest shrub percentage,
and possessed the
narrowest IIWys
values

11
5.7%

88

16%
>19m

~160 — ~500 m

Cobb Island, the southern

half of Parramore Island,

and the southern third of
Cedar Island

Category II had wider
ITW s values compared to
Category I, narrower [TWyps
values compared to
Category III, and lower
DCE’s compared to
Category IV

19

Table 4. Summary of four categories generated from decision tree analysis.

111
3.4%

56

88%
>19m

<~500 m

Southern quarter of Smith
Island (2017), the northern
third of Hog Island (2010), and
the northern half of Parramore
Island (2010, 2017)

Category III had wider [TWyps
values compared to Categories
T and II, and lower DCE
measures than Category IV

39%
605

92%
<19m

<~160 m

Southern end of Smith, the
middle third of Wreck Island,
southern two-thirds of Hog
Island (2010), all of Hog Island
(2016 and 2017), the middle
portion of Cobb (2010, 2016)
Island, the northern half of
Parramore Island, and the
southern half of Cedar Island

Category had the majority of
total shrub transects (79%),
wider ITWygs values compared
to Categories I and II and
higher DCE values compared
to Categories II and III
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Figure 6. Dune-crest elevation versus minimum-island-interior width between surveys.
Scatterplot showing dune-crest elevation versus minimum-island-interior width between surveys

for shrub and non-shrub transects. Solid black lines show four categories generated by DT
analysis based on dune-crest elevation and minimum-island-interior width between surveys.
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(b)
Myrtle
}N\ ;\
2011 2016 2017 Q___2 4km| 544 2016 2017 9 0.75 _1.5km
(c) (d)
Ship Shoal Wreck
;\ AV
2011 2016 2017 Q___075 1.5km| 5914 2016 2017 e 52K
(e) (f)
Cobb Hog
A Av
2011 2016 2017 Q15 3km| o, 2016 017 L
(9)
Parramore
.
\Y 2017 012 4km

Ommitted Due to
Proximity to Tidal Inlet

Low Dune Crest

Category |: Small Minimum-Island-
Interior-Width-Between Surveys

Category IlI: Wide Minimum-Island-
Interior-Width-Between Surveys,

Category II: Moderate Minimum-Island-
Interior-Between Surveys, Low Dune-
Crest Elevation

Category IV: Wide Minimum-Island-Interior
-Width-Between Surveys, High Dune-
Elevation Crest Elevation

Figure 7. Decision tree categories by island over time. VCR islands color-coded according to
decision tree categories for 2011, 2016, and 2017 composites for all eight islands: Smith (a),
Myrtle (b), Ship Shoal (c), Wreck (d), Cobb (e), Hog (f), Parramore (g), and Cedar (h).
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3.2.5 Misidentification

Focusing on the 10% of transects that were incorrectly categorized by the decision tree
analysis, we found that misclassification due to hysteresis was the most common error
representing 48% of total misidentifications (75 transects, 4.8% of total transects; Table 5).
Remote sensing misidentification was the second largest error source, accounting for 28% of all
errors (44 transects, 2.8% of total transects; Table 5), being most common where shrubs were
less well established and had smaller spatial extents. We attributed the remaining 24% of error
(36 transects, 2.4% of total transects, Table 5) to decision tree error, representing outlier data
points, errors stemming from the DT method, and other assorted error sources not represented by
hysteresis, remote sensing errot, or the DT method.
Table 5. Summary statistics for misidentified transects by error type. The number of incorrectly

identified transects associated with each type of error, as well as the percentage of transects
within each type relative to the total number of misidentified transects and all transects studied.

Type of Number of Transects (N) % of Misidentifed transects % of Transects Studied

Error

System 75 48 4.8
Hysteresis

Remote 44 28 2.8
Sensing

Decision 36 24 2.4

Tree
3.3 Areas of Shrub Colonization and Removal for Comparison with DT Thresholds

During the study period 181 transects changed shrub classification: Shrubs newly
appeared on 87 transects (hereafter referred to as shrub colonization transects) and shrubs were
no longer present on 94 transects (hereafter referred to as shrub removal transects). Comparing
the dune-crest elevation and minimum-island-interior width between survey values of shrub
colonization and loss transects to the threshold values generated by the decision tree analysis
provides a useful check on the decision tree analysis. We found 96% of shrub colonization
transects (N = 84) had dune crest elevations above ~1.9 m, with the lowest dune crest elevation

being 1.76 m. In contrast, only 22% of shrub removal transects (N = 21) had elevations greater
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than ~1.9 m. Examining minimum-island-interior width between survey values, we found 79%
of shrub colonization transects (N = 75) had IIWwmgs values of at least ~160 m, with 90% (N =
81) having [IWwgs values of at least 100 m. Whereas 72% of shrub removal transects (N=68)
had [IWwmgs values of less than ~160 m. Considering both DCE and [IWwgs together, 76% of
shrub colonization transects (N = 66) exceeded both thresholds (ITWwmgs values >160 m and DCE
values >1.9 m), and 94% of shrub removal transects (N = 6) fell below both thresholds (IIWwmgs

<160 m and DCE <1.9).

3.4 Random Forest Model

The random forest model made predictions with 92% accuracy using the training data and 90%
accuracy when applied to the validation data (Table 3). Similar to the results of decision tree
analysis, in the random forest model, minimum-island-interior width between surveys, dune-
crest elevation, and island-interior width, were the most important morphometric variables for
making accurate predictions about shrub presence (Figure 8). Omitting the minimum-island-
interior width between surveys variable resulted in a 15.0% mean decrease in algorithm
accuracy, whereas excluding island-interior width or dune-crest elevation decreased accuracy by
~8.3% or 7.8% respectively. Lowest-dune-crest elevation between surveys and beach width
were the 4™ and 5™ most important variables, with their omissions resulting in a 4.7% and 3.3%
decrease in mean accuracy. The change over time variables (change-in-dune elevation, change-
in-beach width, change-in-island interior width had the lowest impact on mean accuracy
resulting in 2.0%, 1.6% and 1.4% decreases respectively. Based on the respective mean decrease
in accuracy percentages we see a significant spread in the importance of the different variables,

with the most important variable being ~ 9 times more important than the least important
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variable and twice as important as the next most important variable (island-interior width). The
change over time variables don’t add much to the overall accuracy of the model. It is possible
that the change values would be more important if the landcover changes could be measured

over shorter time periods and at a higher spatial resolution than our data sources allow.

Minimume-island-
interior width
between surveys

Island-interior width

Dune-crest elevation

Lowest-dune-crest
elevation between
surveys

Beach width

Change-in-dune
-crest elevation

Change-in-beach
width

Change-in-island

-interior width

% Mean Decrease in Accuracy
Figure 8. Random-forest variable importance plot. Plot shows the relative importance of the
eight explanatory variables on RF model accuracy as measured by the percent decrease in
accuracy arising from omitting the variable.

4 Discussion
4.1 Role of Minimum-Island-Interior Width Between Surveys and Dune-Crest Elevation

The decision tree resulting from our analysis accurately predicts the presence or absence
of shrubs within the VCR based on the minimum-island-interior width between surveys and
dune-crest elevation, with the former being most important. This is likely because minimum-

island-interior width between surveys represents two important factors that affect shrub presence:
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physical space and distance from saline island edges. Generally, relative to narrower islands,
wider islands will have larger areas of potential shrub habitat, making it more likely that shrubs
will seed, grow, and become established. The minimume-island-interior width between surveys
serves as a rough proxy for the area of potential shrub habitat maintained over the period of
observation. This finding is consistent with other studies that report on factors associated with
the presence of woody vegetation on barrier islands. For example, though Velasquez-Montoya et
al. (2021) focused on the effects of storms on multiple barrier island landcover classes, their
finding that shrubs tend to be located on wider island segments and landward of an oceanfront
road fronted by a dune is consistent with our findings that island width (and dune height) are
related to shrub presence. Enwright et al. (2019) analyzed landcover for a developed Gulf Coast
barrier island and found that in this environment woody vegetation, which included both shrubs
and trees, was only found in the island interior where there was sufficient space available.
Critically, by considering multiple snapshots in time, our work indicates that minimum-island-
interior width between surveys (which is an indication of island width over time) is more
important than island-interior width at the time of survey, suggesting that the response of shrubs
to the limiting effect of island interior width is not instantaneous; minimum width within the
recent past (relative to shrub survey timing) is more important than wider widths achieved either
in the more distant past or present.

The importance of island width revealed by our analyses is consistent with previous work
related to shrub habitat suitability, which demonstrates that wider island interiors provide
protection from excess salinity and access to necessary freshwater. Shrubs are damaged by
excess salinity (e.g., Du & Hesp, 2020; Miller et al., 2008; Young et al., 1994; Zinnert et al.,

2011), which commonly arises from salt spray associated with breaking waves (Du & Hesp,
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450  2020) or saltwater delivered by overwash or inundation during storms (Miller et al., 2008;

451  Woods et al., 2019). Wider islands provide the opportunity for shrubs to be located a greater
452  distance from the ocean, reducing salt spray and overwash exposure. While salt spray and soil
453  salinity are an important control on shrub presence, they are not the only controlling factor, as
454  highlighted by soil salinity levels from the VCR. Sabo (2023), found mean total-chloride salinity
455  values of 16.9 ppm (SD of 195.6, N = 195) for soils on Hog and Parramore islands within the
456  dune and barrier island interiors. Young et al. (1994) calculated soil salinity levels in areas with
457  Morella cerifera within the VCR, observing soil chloride levels of less than 500 parts per million
458  (ppm), with 88% being below 50 ppm. When findings from Young et al., (1994) are applied to
459  soil samples from Hog and Metompkin islands, 98% (N= 195) of soil samples had soil chloride
460  values below the 500 ppm threshold, with 72% of soil samples having chloride values below 50
461  ppm (Sabo, 2023). Since the majority samples (72 %) had soil chloride values below 50 ppm
462  with 98% of samples being below 500 ppm, we conclude that soil salinity is not the sole

463  determining factor in shrub presence within the VCR, and unlikely to control the distribution of
464  shrubs in island interiors.

465 In addition to their sensitivity to saline conditions, shrubs require sufficient fresh

466  groundwater to exist (Young et al., 2011). Greater island widths and higher interior elevations
467  (Bolyard et al., 1979; Hayden et al., 1995) are important controls on the availability of fresh
468  groundwater, with wider islands having a larger area to store and collect freshwater.

469  Additionally, wider islands have a larger area unaffected by back-barrier saline intrusion, which
470  otherwise lowers shrub habitat suitability by increasing groundwater salinity in flooded areas
471  (Young et al., 1994). Some of the same positive attributes provided by wider island interior

472  widths are also provided by high foredune elevations. High dunes can protect shrubs from

26



473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Journal of Geophysical Research: Earth Surface

damaging salt spray (Miller et al., 2008; Woods et al., 2019), prevent harmful overwash events
(e.g., Houser et al., 2018; Reeves et al., 2021; Sallenger, 2000), and increase the amount of island
groundwater storage (Bolyard et al., 1979; Hayden et al., 1995).

The decision tree algorithm yields a minimum-island-interior width between surveys
threshold of >160 m and dune-crest elevation threshold of >1.9 m as predictive of shrub
presence. The latter represents a refinement on earlier observations by Woods et al. (2019) of
1.75 m, which was determined from a smaller sample size. Categorizing transects into groups
based only on minimum-island-interior width between surveys values, allows for predictions that
are 91% accurate for non-shrub transects but lower, at an accuracy of 82%, for shrub transects.
Improving accuracy for shrub transects requires considering both minimum-island-interior width
between surveys and dune-crest elevation thresholds; using both values improves shrub
prediction accuracy to 92%.

While the empirical relationships represented by Categories II and III arise from much
smaller sample sizes than Categories I and IV and so are not as well supported as Categories I
and IV, the relationships they represent are conceptually consistent with what we would expect
based on factors that influence shrub presence or absence. Islands with sufficient minimum-
island-interior width between surveys (IIWwmps>~160 m), but lower dune-crest elevations (DCE
< 1.9 m) are unlikely to have shrubs, with exceptions typically either having extremely wide
interior widths (Category III, IWwmBs > ~500 m) or older beachfront shrubs, which are in the
process of being removed by coastal erosion (Category II) (as identified in Zinnert et al. 2019).
In contrast, transects having both adequate minimum-island-interior width between surveys
(ITWwmBs > ~160 m) and dune-crest elevations (DCE > 1.9 m; Category 1V) are highly likely to

have shrubs: > 92% of transects that met these two criteria are shrub transects, similar to Miller
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et al.’s (2008) findings that distance to shore and dune elevation affect the success of shrub
seedlings.

The importance of interior-island width and dune elevation in determining shrub
presence/absence from our decision tree analysis is corroborated and supported by the variable
importance rankings arising from our random forest modeling. Because the decision tree
modeling yields not only predictions, but also thresholds that can be further evaluated, in the
next section we discuss how the results of the decision tree analysis allow us to better understand

where predictions diverge from observations.

4.2 Decision Tree Misidentification

While definitive standards have not been set regarding machine learning accuracy, the
accuracy of 90% achieved by our approach compares favorably to other recently published
studies (e.g., accuracy scores of 93% from Adam et al. (2014), 75% from Barbella et al. (2021),
and 86% from Gomez et al. (2022)) and is significantly higher than the no information rate (i.e.,
weighted on probability only) of 55%. Even so, it is valuable and informative to understand why
our decision tree model doesn’t correctly predict the remaining 10% of the data. Below, we
discuss the three sources of error we identified.
4.2.1 System Hysteresis

Our machine learning approach involved using contemporaneous relationships between
variables to derive predictions; however, physical changes in the island landscape (island interior
and dune elevation) can occur on different timescales than shrub dynamics, leading to a lag
between predicted and observed shrub behavior and misclassification due to system hysteresis.

Although changes in the landscape can occur on the scale of days, it takes a few years for shrub
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seedlings to take hold and grow sufficiently large to significantly alter sediment transport
processes (Reeves et al., 2022); larger shrubs have a greater effect on overwash processes.

Within the VCR, shrub thickets are rapidly transitioning from grasslands due to warming
climate, a phenomenon seen in many other coastal and non-coastal systems (Woods et al., 2020;
Young et al., 1994; Zinnert et al., 2021). In addition to maintaining favorable physical
conditions for shrub establishment, areas need to meet requisite biological preconditions
including presence of seeds and potentially, sufficient grass cover (Woods et al., 2019).
Similarly, shrub decline and removal are not instantaneous; it can take a few years to shrubs to
die and wash away after conditions are no longer conducive for shrub growth as witnessed by
gradual removal of shrubs from the southern end of Smith Island (Figure 9) and the middle
portion of Hog Island. While a single storm might remove a protective foredune in front of a
shrub, it can take time for shrubs to die off because species like Morella cerifera are resistant to
episodic saline flooding (Tolliver et al., 1997; Young et al., 1995).

Hysteresis is a well-documented phenomenon found in other VCR habitats, including
lagoonal seagrass beds and marshes (Broome et al., 1988; Carr et al., 2012; Da Silveira Lobo
Sternberg, 2001; Denny & Benedetti-Cecchi, 2012), which exhibit similar lags in establishment
and removal. Prior to the 1930’s, the lagoons behind the VCR were home to rich seagrass
communities. However, during the 1930’s a wasting disease and increases in lagoon
temperatures led to a severe seagrass die off (Rasmussen, 1977). While physical conditions
(light, nutrients, etc.) were sufficient for seagrass growth, the lack of seeds prevented natural
recovery. This idea was supported by the rapid seagrass growth that occurred following the large-
scale planting of seedings (Orth et al., 2012). Marshes can also exhibit a similar lag in

reestablishment, as it took three years for pioneer marsh species in La Grande marsh (France) to
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reestablish following the cleanup of the Amoco Cadiz Oil Spill (Seneca & Broome, 1982), and a
Portuguese marsh still showed reduced marsh plant richness 10 years after inputs of mercury
pollution ceased compared to nearby uncontaminated marshes (Valega et al., 2008). The lag in
seagrass and marsh establishment is analogous to the delay in shrub colonization we observed

along the southern tip of Hog Island (also noted by Woods et al., 2019).
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548  Figure 9. Examples of system hysteresis. Color-infrared aerial images (vegetation in red)

549  showing (a-d) gradual shrub expansion on Hog Island in an area predicted to have shrubs but
550  where observations revealed some transects had shrubs and some did not and (e-h) gradual

551  removal of shrubs on Smith Island in an area predicted to be non-shrub but initially observed to
552 have shrubs
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In addition to displaying lagged behavior in establishment, seagrass, marsh, and shrubs show
similar delayed patterns of system removal. Seagrass exhibits hysteresis when dying off and
transitioning to bare sand, as it can take several years for seagrass to be removed when
conditions are no longer conducive to seagrass presence (Carr et al., 2012), with the initial
density of seagrass controlling the timeframe required to return to bare unvegetated sand.
Marshes can temporally avoid drowning if fronted by a sufficiently large adjoining mudflat,
under rates of relative sea-level rise and suspended sediment concentrations that do not support
marsh persistence (Mariotti & Carr, 2014). Whereas the presence of wide mudflats may delay
the inevitable, eventually these marshes will erode and drown as they equilibrate to new physical
conditions (Mariotti & Carr, 2014). On the southern third of Smith Island (Figure 9 e-h), we
observe a similar lag in shrub removal; based on our observations from aerial photography, it
takes over 10 years for shrubs to be completely removed from an area.

A few examples highlight the lag between model predictions and shrub observations.
Transects along the southern portion of Smith Island are consistently predicted to lack shrubs
(consistent Category I designation). Although shrubs were initially present along this portion of
Smith, shrub extent consistently decreased between 2009 and 2021 (Figure 9A-D), with most
shrubs being removed by shoreline erosion between 2009 and 2013 (Figure 9e-f). By 2017, only
a few isolated shrubs remained (Figure 9g), before they were completely removed by 2021
(Figure 9h). Similarly, the southern end of Hog Island was repeatedly predicted to have shrubs
(Category IV). Despite this, shrubs were not initially present throughout, taking 10 years (2011-
2021) to become established across all predicted areas (Figure 9a-d).

4.2.1.2 Shrub Colonization and Removal Transects
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Our analysis of shrub colonization and shrub loss transects lends further support to the
DCE and IWwgs threshold values associated with shrub presence and absence identified by the
decision tree analysis. Measures of DCE are especially consistent, with 96% of shrub
colonization transects having elevations above the 1.9 m DT threshold compared with only 16%
of shrub removal transects. Focusing on [IWwvgs values, 79% of shrub colonization transects had
widths exceeding the 160m DT threshold in contrast to 28% of shrub removal transects. Looking
at DCE and [IWwmgs thresholds together, 76% of shrub colonization transects exceeded both
threshold DT values, compared to just 6% of shrub removal transects, supporting the empirical
relationships identified by the DT, as shrub presence is predicted based on having both high
enough DCE and wide-enough [IWwss.

While applying DT thresholds to shrub colonization and removal data provides
additional information that largely supports our DT analysis and thresholds, additional
observations would be helpful to refine the specific [IWwmgs and DCE thresholds associated with
shrub colonization or removal. While the DT analysis is adept at identifying the empirical
thresholds associated with shrub presence or absence, it is less suited to predicting the specific
thresholds at which an area will change from shrub to non-shrub because this method is based on
correlations identified within the observations used in the analysis. Based on 96% of shrub
colonization areas having elevations of at least 1.9 m, it seems practical to infer shrub
colonization requires elevations of at least 1.9 m; while, the 79% of shrub growth transects with
IIWwgs values exceeding 160 m, provides validation for 160 m being a reasonable threshold to
split the data, however the specific minimum width may be lower as 90% of transects had
[TWwgBs values exceeding 100 m. Future field studies and LiDAR surveys could help us refine

the specific [IWwmgs values associated with shrub colonization or removal.
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4.2.2 Remote Sensing Misidentification

The remaining fourth island (Ship Shoal) does not display hysteresis, instead
misclassification of transects on Ship Shoal arises from the misidentification of shrubs on
LANDSAT imagery (Figure 10), highlighting a drawback of relying on LANDSAT data for
small spatial and temporal scale analyses. Though, we note that while large LANDSAT-derived
datasets will occasionally yield some misidentifications, the positive benefits derived from the
large spatial and temporal scale of this type of data outweigh the potential detriment of
occasional misidentifications. Empirically derived predictions such as those generated by
machine learning have the potential to improve quality control on future data products derived
from remotely sensed imagery, such as LANDSAT or LiDAR. The continued improvement in

resolution and availability of LIDAR and satellite imagery will further improve the utility of

remote sensing products for identifying barrier island landcover change.

Shrubs

" ‘..§ o~ t
J o 013 025km o 0 ¥ m013

Figure 10. An illustrative example of remote sensing misidentification. Color-infrared aerial
imagery (a) of Cobb Island, illustrating the typical appearance of shrubs for reference, for
comparison with (b) imagery of Ship Shoal from an area that was incorrectly identified as having
shrubs based on LANDSAT imagery.
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4.2.3 Decision Tree Misidentification

The remaining misclassified transects cannot be attributed to hysteresis or remote sensing
errors and thus represent outlier data points that may arise from the misidentification of certain
dune, beach, or island interior properties. The existence of decision tree misclassification within
our data, highlights that no empirical relationship will ever be 100% accurate, as nature rarely
falls entirely into neat categories; however, the small number of algorithm-based errors supports

the veracity of our derived empirical thresholds.

4.3 Potential Model Limitations, Applications and Future Work

Despite the potential applications of our approach and results, it is worth considering
their limitations. Because of constraints arising from the availability of data, we studied a
relatively short time period representing roughly 15 years. Extending this analysis over longer
time periods may reveal different or altered empirical relationships or provide further support for
the relationships we identify here. Conducting a similar analysis with new remote sensing data
and identifying areas of continued match or mismatch between predicted and observed shrub
behavior would allow quantification of the timescales associated with hysteresis in shrub
colonization and removal. Additional data, potentially including field observations, may be most
useful in refining and assessing the validity of the Category II and III classifications, which
represent 10% of the data. Additionally, using LiDAR data, LANDSAT imagery and aerial
imagery collected within the same month would be most ideal, but given the accuracy achieved
by the models developed here using the data available, we anticipate that more synchronous

timing of data sets would yield only minor improvements.
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Although the new empirically derived relationships we identify have a high predictive
accuracy for describing the VCR, when applying these relationships beyond the VCR it will be
important to test them against data from other barrier island systems because landscape
characteristics and woody vegetation extent may differ across varying barrier island types,
climates, and vegetation species. Even within the VCR, climate change and the resulting large-
scale alterations to the barrier island system may alter the applicability of the machine learning
models to make correct predictions in the future, as observed empirical relationships could be
different in a changing climate. Repeating our approach on future observations will allow
assessment of whether or not the identified relationships and empirical thresholds remain the
same or change.

While the relationships we identified are valid for the undeveloped VCR, they may be less
applicable to developed coastal areas, where humans have a greater impact on species
composition. For example, plantings, dune construction, nourishment and the presence of
infrastructure alter island geomorphology, especially in the island interior behind dunes.

Applying a machine learning algorithm, such as the one developed here, to future predictions
of dune and island morphometrics from geomorphic models, will allow prediction of future
shrub presence/extent and absence, and assessment of whether or not shrub-overwash dynamics
should be included in model runs (e.g., Reeves et al., 2022).

In addition to providing the potential for future assessments of shrub colonization and
growth, and allowing assessment of the importance of including shrub dynamics within existing
geomorphic models (Reeves et al., 2021, 2022), thresholds from decision tree models for
predicted shrub colonization and removal could be coupled with, or integrated into, spatially

explicit barrier island models, in a hybrid modeling approach. Hybrid approaches combine data-
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driven models with numerical models (Beuzen & Splinter, 2020; Goldstein & Coco, 2015), and
their utility in the study of coastal environments continues to evolve and expand (e.g. Itzkin et
al., 2022; Montafio et al., 2020). For example, Enwright et al. (2021) demonstrated the utility of
employing a hybrid modeling approach to look at land-cover relationships to barrier island
migration on the developed barrier Dauphin Island. Integrating machine learning algorithms
trained with data from undeveloped systems, within geomorphic models that simulate barrier
island evolution over time, would provide another means (in addition to Reeves et al., 2022) for
shrub and barrier dynamics to evolve dynamically throughout model runs, potentially yielding
further insights into the importance of ecomorphodynamic interactions in barrier response to

changing conditions over decadal to centurial timescales.

5 Conclusions

Using machine learning, we identified empirical relationships between island geomorphology
and shrubs that can accurately predict the presence of shrubs within the VCR. We find that
minimum-island-interior width between surveys and dune-crest elevation are the most important
variables for making accurate predictions, with minimum-island-interior width between surveys
being sufficient to predict a lack of shrubs, while both minimum-island-interior width between
surveys and dune-crest elevation are needed to predict shrub presence.

Islands with minimum-island-interior width between survey values less than ~160 m tend to
lack shrubs (Category I), whereas areas that have dune-crest elevation values above 1.9 m and
minimum-island-interior width between survey values exceeding ~160 m (Category I'V) tend to

have shrubs.
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We attribute errors in our machine learning predictions to a combination of system hysteresis,
remote sensing, and decision tree misclassification. Based on our analysis of misidentified
transects, we find that shrub presence is a lagging indicator of change, with shrubs requiring time
to adapt to changes in dune elevation or interior width that allow their growth. In the future, by
looking at the areas where the observations diverge from model predictions, we can gain new
insights into system evolution, the timescales of hysteresis, and improve future remote sensing

classifications.
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