

Genome analysis and description of *Tunturibacter* gen. nov. expands the diversity of *Terriglobia* in tundra soils

3

Adriana Messyasz ¹, Minna K. Männistö ², Lee J. Kerkhof ³, and Max M. Häggbloom ^{1*}

6

¹ Department of Biochemistry and Microbiology Rutgers University, 76 Lipman Drive,
9 New Brunswick, NJ 08901, U.S.A.

² Natural Resources Institute Finland, Ounasjoentie 6, FI-96200 Rovaniemi, Finland

12

³ Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New
Brunswick, NJ 08901, U.S.A.

15

18 Running title: *Tunturibacter* gen. nov. in the *Acidobacteriota* phylum

21 Corresponding author:

Max M. Häggbloom

haggblom@rutgers.edu

24

Abstract

Higher temperatures in Arctic tundra ecosystems are driving increased microbial respiration of soil organic matter with the release of carbon dioxide and methane. To understand the impacts of such microbial activity, we need to better characterize the complex diversity of Arctic soil microbial communities. Our aim is to refine the phylogenetic diversity of the ubiquitous, but elusive, members of the *Terriglobia* in the *Acidobacteriota* phylum so we can begin to link this diversity to differences in carbon and nitrogen utilization patterns. Long-read Oxford Nanopore MinION sequences were combined with metagenomic short-read sequences to assemble full *Acidobacteriota* genomes, build multi-locus phylogenies, and annotate pan-genome markers to differentiate *Acidobacteriota* strains from several tundra soil isolates. We identified a phylogenetic cluster which contains four novel species previously associated with *Edaphobacter lichenicola* and conclude that the cluster represents a novel genus, *Tunturibacter*. Four novel species are described: *Tunturibacter lichenicola* comb. nov., *Tunturibacter empetritectus* sp. nov., *Tunturibacter gelidoferens* sp. nov., and *Tunturibacter psychrotolerans* sp. nov. By uncovering novel species and strains within the *Terriglobia* and improving the accuracy of their phylogenetic placements, we aim to enhance our understanding of this complex phylum and elucidate the mechanisms which shape microbial communities in polar soils.

45

Keywords: *Acidobacteriota*, soil isolates, genome assembly, MinION sequencing

INTRODUCTION

48 Approximately one-third of the global soil carbon stock is stored in Arctic soils
(Loya and Grogan, 2004; Hugelius *et al.*, 2014), and despite sub-zero temperatures,
microbial activity persists throughout the long winters, albeit at a slower rate (Oechel *et*
51 *al.*, 1997; Welker *et al.*, 2000; Natali *et al.*, 2014; Nikrad *et al.*, 2016; Gadkari *et al.*,
2020; Pessi *et al.*, 2022; Poppeliers *et al.*, 2022). Microbes play important roles in
nutrient cycling as they decompose soil organic matter (SOM). As polar soils warm due
54 to climate change, it is of concern that enhanced microbial activity will increase the rate
of SOM degradation and consequently greenhouse gas emissions (Welker *et al.*, 2000;
Campbell *et al.*, 2010; Graham *et al.*, 2012; Natali *et al.*, 2014). SOM degradation
57 usually increases in the short summer season, with climate change resulting in faster
and longer soil decomposition and increased greenhouse gas emissions that contribute
to a positive warming feedback loop (Schuur *et al.*, 2008; Bond-Lamberty and Thomson,
60 2010; Koven *et al.*, 2011). However, the mechanisms by which climate change affects
gas emissions are complex and site specific, likely determined by e.g. vegetation type
and microbial community structure (Fry *et al.*, 2023).

63 The microbial community diversity of Arctic environments, like the tundra, is
shaped by soil abiotic factors (e.g., pH, SOM, temperature and water activity) and the
extreme conditions of the Arctic (e.g., intense UV radiation, drought, long periods of
66 sub-zero temperatures interspersed by freeze-thaw events) (Weintraub and Schimel,
2003; Männistö *et al.*, 2009; Tveit *et al.*, 2014; Taş *et al.*, 2018; Viitamäki *et al.*, 2022).
Despite these harsh conditions, there is tremendous bacterial diversity in tundra soils,
69 with the bacterial communities dominated by *Acidobacteriota*, *Actinomycetota* and
Pseudomonadota (*Proteobacteria*) (Männistö *et al.*, 2007, 2013; Chu *et al.*, 2010; Kim *et*
al., 2014; Voříšková *et al.*, 2019; Viitamäki *et al.*, 2022). Members of these phyla
72 change in abundance, composition, and activity in response to environmental variables
such as seasonal changes (freeze-thaw cycles), vegetation, and soil pH (Männistö *et*
al., 2009, 2013; Zinger *et al.*, 2009; McMahon *et al.*, 2011; Viitamäki *et al.*, 2022). The
75 ubiquitous but elusive *Acidobacteriota* are particularly susceptible to changes in soil pH
and different members of the phylum thrive at different pH levels. Members of the Class
Terriglobia (formerly *Acidobacteriia*; Subdivision 1 (SD1) *Acidobacteriota*) are

78 particularly abundant in the cold, nutrient poor, acidic soils such as those in Arctic
tundra and boreal forest biomes (Männistö *et al.*, 2007, 2009; Campbell *et al.*, 2010;
Kim *et al.*, 2014; Männistö *et al.*, 2018; Belova, Ravin, *et al.*, 2018; Ivanova *et al.*, 2020).

81 The *Acidobacteriota* is one of the most abundant phyla in soils around the globe,
however the diversity within this phylum is still largely uncharacterized (Zhang *et al.*,
2022). Initial culture-independent methods initially delineated 26 subdivisions of
84 *Acidobacteria* (Barns *et al.*, 2007). More recently, these subdivisions were refined into
15 class-level units (Dedysh and Yilmaz, 2018). Of these, the classes *Terriglobia*,
87 *Blastocatellia* and *Vicinamibacteria* are most abundant in soils (Janssen, 2006; Jones *et*
al., 2009). Furthermore, members of the *Terriglobia* have been the most successfully
cultivated group with over 40 named and published species to date (Zhang *et al.*, 2022;
Göker, 2023).

90 The family *Acidobacteriaceae* currently encompasses over a dozen named
genera, however with faster and more advanced sequencing technologies a greater
number of *Acidobacteriota* species and strains are being described (Kalam *et al.*, 2020;
93 Zhang *et al.*, 2022). The analysis of multiple genes from isolate genomes and
environmental metagenomes has contributed towards a better understanding of the
diversity of *Acidobacteriota* in multiple ecosystems without the need for cultivation
96 (Parsley *et al.*, 2011; Kielak *et al.*, 2016; Kalam *et al.*, 2020; Dedysh *et al.*, 2022).
Genome analysis has indicated a variety of metabolic functions within the
99 *Acidobacteriota* including complex carbohydrate degradation (xylan, cellulose,
hemicelluloses, pectin, starch, and chitin), nitrogen metabolism (nitrate, nitrite, and nitric
oxide reduction), genes for oxygen utilization in hypo- and hyperoxic conditions, as well
as the ability to oxidize methanol (Eichorst *et al.*, 2007; Ward *et al.*, 2009; Rawat *et al.*,
102 2012; Diamond *et al.*, 2019; Kalam *et al.*, 2020). Some *Acidobacteriota* are equipped
with regulatory genes in response to stressors like starvation, oxidative stress, heat
stress, as well as acid resistance systems (Ward *et al.*, 2009; Challacombe *et al.*, 2011;
105 Kielak *et al.*, 2016; Kalam *et al.*, 2020). Secondary metabolites from biosynthetic gene
clusters were also found within *Acidobacteriota*. Specifically, nonribosomal peptide
synthetases and polyketides synthases were found within *Candidatus Angelobacter* (a

108 proposed *Terriglobia*), indicating mechanisms for interbacterial competition (Crits-
Christoph *et al.*, 2022).

111 There may be several reasons for such a high taxonomic and functional diversity
of *Acidobacteriota* in terrestrial systems. Primarily, soils create complex and
spatially/temporally heterogenous environments, with this disequilibrium ensuring that
no one species dominates over others (Lennon *et al.*, 2012; Ghoul and Mitri, 2016).
114 Additionally, ecological drivers, such as resource partitioning, selective predation, and
temporal separation, most likely shape the diversity of *Acidobacteriota* and other soil
phyla (Chesson and Huntly, 1997; Chesson, 2000). To better understand how
117 *Acidobacteriota* activity is shaped by environmental and ecological factors we need to
identify the yet uncharacterized species/strains within this phylum and compare their
genomes to elucidate metabolic potential. In this study, we sequenced several new
120 tundra soil *Acidobacteriota* isolates from Malla Nature Reserve, Kilpisjärvi, Finland using
both Illumina short-read and Oxford Nanopore long-read technologies. Through rRNA
operon and full genome analysis we expand the current phylogenetic diversity of the
123 order *Terriglobales* in the *Acidobacteriota*. We also delineate and name a novel genus,
Tunturibacter, containing four new species in phylogenetic proximity to other species
within the genera *Terriglobus* (Eichorst *et al.*, 2007; Männistö *et al.*, 2011; Rawat *et al.*,
126 2012; Podar *et al.*, 2019), *Granulicella* (Pankratov and Dedysh, 2010; Männistö *et al.*,
2012; Rawat *et al.*, 2013, 2014), and *Edaphobacter* (Koch *et al.*, 2008; Wang *et al.*,
2016). With functional annotation and comparison of this new genus to known
129 *Acidobacteriota*, the core and unique genes of the genera within this group can be
identified. Our phylogenetic analysis demonstrates that a complex diversity of the
Terriglobales can be uncovered. Additionally, understanding how novel genera differ
132 within *Acidobacteriota* can help further elucidate why such diversity exists in soil
environments.

135 **EXPERIMENTAL PROCEDURES**

***Acidobacteriota* isolation and DNA extraction**

138 *Acidobacteriota* strains were isolated from tundra soil samples collected from
Malla Nature Reserve, Kilpisjärvi, Finland (69°01'N, 20°50'E) in July 2010 (strain codes

that begin with "M") and July 2012 (strain codes that begin with "X"). Several carbon substrates were tested in an attempt to isolate novel members of the *Acidobacteriota*.

141 Soil samples were diluted in VL55 mineral medium (Davis *et al.* 2005) and dilution plated on the different media. Plates were incubated at 4°C for up to three months and inspected every two weeks. To isolate *Acidobacteriota* and other slow growing

144 oligotrophs, only colonies that formed after 1-2 month incubation were picked and streaked to new media. After purification, isolated strains were identified by Sanger sequencing of the 16S rRNA gene. DNA was extracted from the isolates using the

147 DNeasy UltraClean Microbial Kit (Qiagen) according to the manufacturer's instructions.

16S rRNA genes were amplified using 27f and 1525r primers (Lane *et al.*, 1991) and the PCR products sequenced by LGC Genomics (Berlin, Germany) using the forward 150 primer 27f. Approximately 800 bp sequences were compared to those in the EzTaxon database (Yoon *et al.*, 2017) and those identified as members of the *Acidobacteriota* selected for further studies.

153 Strains M8UP20, M8UP22, M8UP23, M8UP27, M8UP28, M8UP30, and M8UP39 were isolated using a mixture of carboxy methyl cellulose, xylan, pectin and starch (each 0.25 g l⁻¹) in VL55 mineral salt medium amended with yeast extract (0.1 g l⁻¹) and 156 agar (20 g l⁻¹). Strain MP8S11 was isolated using cellobiose, trehalose and sucrose (each 0.25 g l⁻¹) in VL55 mineral salt medium amended with yeast extract (0.1 g l⁻¹) and agar (20 g l⁻¹). Strains X4BP1, X5P3, X5P6, and X4EP2 were isolated using xylan (0.5 159 g l⁻¹, cellobiose (0.25 g l⁻¹) and xylose (0.25 g l⁻¹) in VL55 mineral salt medium amended with MEM essential and non-essential amino acids (Sigma-Aldrich®). VL55 mineral salt solution was prepared as described by Davis *et al.* (2005), pH was adjusted either to 4.0 162 or 5.5. All strains were maintained at pH 5.5 using GY medium containing glucose (1 g l⁻¹) and yeast extract (0.5 g l⁻¹) in VL55. Isolation of *Granulicella arctica* MP5ACTX2 has been described earlier (Männistö *et al.*, 2012).

165 **Phenotypic and chemotaxonomic analyses**

168 Growth of strains M8UP23, M8UP39 and X5P6 on GY medium was tested at different temperatures and pH. Temperature range was evaluated by growth on GY- agar incubated at 2, 4, 10, 15, 20, 25 and 30°C. The plates were checked every 1-2

days for growth. Visual differences in growth at different temperatures were recorded.

171 The effect of pH on growth was evaluated by growing the strains in liquid GY medium at
pH 3.0-9.0 (in 0.5 pH unit increments) in 96 well plates. Carbon source utilization of the
three strains was analyzed in 96-well plates for up to 10 days at 20°C with VL55 mineral
174 medium supplemented with 100 mg l⁻¹ yeast extract and 10 mM of each carbon source.
Yeast extract was required for good growth on single carbon sources. The control
contained only yeast extract. Growth was measured at 620 nm using a Multiscan FC
177 microplate reader (Thermo Scientific). Hydrolysis of different polysaccharides (starch,
carboxy methyl cellulose (CMC), xylan, lichenan, pectin, xanthan and gum arabic) was
determined at room temperature by observing CO₂ production for up to 20 days and
180 analyzed as described in Männistö et al. (2012).

Cellular fatty acids were analyzed by gas chromatography as described in
Männistö et al. (2012). Analysis of respiratory quinones and polar lipids were carried out
183 by the Identification Service, DSMZ, Braunschweig, Germany. For the analysis, cells
were cultivated on GY medium, collected by centrifugation, washed with PBS buffer,
and freeze-dried. Polar lipids were extracted from 200 mg of freeze-dried cells and
186 separated by thin-layer chromatography (German Collection of Microorganisms and Cell
Cultures GmbH: Polar Lipids). Respiratory quinones were extracted from 50 mg of
freeze-dried cells and analysed by HPLC (German Collection of Microorganisms and
189 Cell Cultures GmbH: Respiratory Quinones).

Genome sequencing and assembly

192 A total of 13 *Acidobacteriota* isolates were used for whole genome sequencing
via the Oxford Nanopore MinION. Sequence libraries were prepared using R 9.4
chemistry and the MinION Rapid Sequencing kit (SQK-RAD004). Libraries were run on
195 a MinION R9.4 Flongle for approximately 24 hours. Fast5 files were basecalled using
Guppy (V 6.0.1) (Oxford Nanopore Technologies Ltd.) in high accuracy mode and the
FastA reads were used for genome assembly with the Tricycler assembler package (V
198 0.5.3) (Wick et al., 2021), which allows for multiple assemblies specific to Nanopore
long read sequences. For these genomes, the assemblers Flye --nano-hq (V 2.9) (Lin et
al., 2016; Kolmogorov et al., 2019), Minipolish (V 0.1.2) (Wick and Holt, 2019), and

201 Raven (V 1.8.1) (Vaser and Šikić, 2021) were employed using default settings. The
202 contigs were put into clusters and multiple sequence alignments were generated to
203 produce a consensus or final assembly using Medaka (V 1.6.0) (© 2018 Oxford
204 Nanopore Technologies Ltd.).

205 In addition, several of the assemblies were run through PolyPolish (V 0.5.0)
206 (Wick and Holt, 2022) to close and complete the genomes. Of the 13 isolates used for
207 genome assembly, 6 also had Illumina short-read sequences publicly available via the
208 JGI Genome Portal (see Project IDs in Table S1), and 4 (MP8S11, M8UP39, X5P6, and
209 M8UP23) were previously sequenced via Illumina (Supplemental Methods and Results).
210 These short reads along with our Trycycler-Medaka assemblies were used in the
211 PolyPolish pipeline (default parameters). Genome assembly completeness and
212 contamination for all 13 isolates was analyzed via CheckM (V 1.0.18) (Parks *et al.*,
213 2015). Percent GC was calculated via QUAST (V 4.4) (Gurevich *et al.*, 2013). For each
214 assembly with greater than one contig, the second longest contig was searched against
215 the plasmid database PLSDB (V 2023_11_03_v2) (Schmartz *et al.*, 2021). This search
216 was conducted via the PLSDB online API tool using Mash (V 2.3) (Ondov *et al.*, 2016)
217 to search against the PLSDB database (parameters used: maximal p-value 0.1,
218 maximal distance 0.1, minimal identity 0.70). Gene prediction was run via Prokka (V
219 1.14.5) (Seeman 2014). To find annotations to Carbohydrate-Active Enzymes (CAZy),
220 genes annotated via Prokka were scanned using a set of Hidden Markov Models
221 (HMMs) from the dbCAN2 CAZy collection (dbCAN HMM database v10) (Zhang *et al.*,
222 2018) using HMMER (v 3.3.2) (Eddy, 2011). The minimum e-value for this search was
223 1e-15 and the minimum coverage of the model length was set at 90%. The Genome
224 Taxonomy Database (GTDB; releases 207 and 214; GTDB R07-RS207 and R08-
225 RS214) (Parks *et al.*, 2022) was used to taxonomically classify the genomes via the
GTDB-Tk tool (v 2.3.2).

226 **Genome phylogenies and pangenome analysis**

227 A single copy gene (SCG) phylogeny including the 13 new tundra soil isolate
228 genomes and known Class *Terriglobia* (SD1 *Acidobacteriota*) species was analyzed via
229 the GToTree program (V 1.7.05) (Lee, 2019). The program was run with default settings

for alignment (MUSCLE V 5.1) (Edgar, 2021) and approximately-maximum-likelihood phylogenetic tree building (FastTree V 2.1.11) (Price *et al.*, 2010). The “-H Bacteria” 234 parameter was used to identify 74 bacterial single copy genes across all genomes 237 analyzed (listed in Supplementary Materials). Another multi-locus tree for the same genomes was built via OrthoFinder (V 2.5.4) (Emms and Kelly, 2019). The Orthofinder tree also utilized a MUSCLE (V 5.1) (Edgar, 2021) alignment and phylogenetic tree 240 building with FastTree (Price *et al.*, 2010). Both SCG and OrthoFinder trees were viewed via the iTOL interface (V6) (Letunic and Bork, 2021). These trees were 243 compared to 16S rRNA gene and rRNA-operon trees, which included a more complete 246 representation of the *Terriglobia* and the novel *Acidobacteriota* isolates included in the rRNA operon analysis (see Supplementary Methods and Results). Genome alignment visualizations were conducted via PGV-Mummer (default setting; V 0.3.2) (Shimoyama, 243 249 252 255 258 2022) and progressive MAUVE (Geneious plugin V 1.1.1) with 15 match seed weight, minimum 5,000 Locally Collinear Blocks (LCB) score, full alignment, and MUSCLE 3.6 gapped aligner (Darling *et al.*, 2004).

Genome assemblies of the new tundra isolates along with some select *Terriglobia* were further compared through the Anvi'o pangenome analysis pipeline (Eren *et al.*, 2021). A contig database for each genome was created with the following additions: HMM search, SCG taxonomy, tRNAs scan, NCBI cogs search, and KEGG Kofam search. Average nucleotide identity across the compared genomes was calculated via pyANI (Pritchard *et al.*, 2015) program plugin within the Anvi'o pangenome pipeline (command: “anvi-compute-genome-similarity”). The pangenome was then visualized via the Anvi'o interactive display, organizing samples by a gene cluster frequencies tree. Functional enrichment between strain categories within the pangenome analysis was computed via anvi-compute-functional-enrichment-in-pan using the KEGG_Class and COG20_PATHWAY annotation sources (Shaiber *et al.*, 2020).

Analysis of *Acidobacteriota* community in Malla tundra heath soils

261 Soil samples were collected from tundra heaths of Mt. Pikku Malla in Malla 262 Nature Reserve, Kilpisjärvi (69°03' 50"N, 20°44'40"E), with differences in topography

that dramatically influence snow accumulation. Four plots representing windswept
264 slopes and four plots corresponding to snow-accumulating biotopes were sampled at a
depth of <5 cm in February 2013 as described previously (Männistö *et al.* 2024).
Composite soil samples of 5 soil cores were taken from each plot with three
267 subsamples from each composite sample used for DNA extraction with a CTAB-based
method.

Near full-length bacterial rRNA operons were amplified from extracted DNA using
270 16S rRNA-27Forward and 23S rRNA-2241R primers, <10 ng template DNA, and a
High-Fidelity Taq Polymerase (Biomake Inc., CA, USA; Kerkhof *et al.*, 2017). PCR
conditions were: Initial denaturation for 3 min at 94°C; followed by 25 cycles of 98°C/10
273 sec denaturation, 60°C/15 sec primer annealing and 72°C/240 sec extension; and a
final extension at 72°C for 5 min. Barcoded rRNA operon amplicons were visualized and
quantified by agarose gel electrophoresis and stored at -20°C until library preparation.
276 Library construction utilized the SQK-LSK108 sequencing kit and sequencing via the
Oxford Nanopore MinION. The fast5 files were basecalled using Guppy (3.2.0). Raw
reads were demultiplexed with Guppy and sized (3700-5000 bp) using Geneious
279 (11.1.5). FastA files were initially screened via MegaBLAST (2.10.0) against the
ribosomal RNA operon database (rOPDB; Kerkhof *et al.*, 2022) to determine the raw
reads associated with the *Acidobacteriota*. These *Acidobacteriota* reads were re-
282 screened against a modified database using the original *Acidobacteriota* rRNA operons
from the rOPDB, amended with rRNA operons from the new *Tunturibacter* and
Granulicella strains described in this study. Best BLAST hits (BBHs) were identified
285 using the following settings: word size -60, match/mismatch cost -2/-3, gap open/extend
-0/-4, and e-value of 1×10^{-10} . Relative abundance of the *Acidobacteriota* BBHs to the
updated database was calculated and bubble plots were generated in RStudio
288 (2023.06.0+421) using ggplot2 and reshape2.

RESULTS AND DISCUSSION

291 Novel tundra *Acidobacteriota* isolates

294 *Acidobacteriota* strains were isolated from tundra heath soil samples from Malla
294 Nature Reserve using different carbon substrate combinations. Initial analysis of partial
16S rRNA sequences (data not shown) indicated that these were members of the
297 *Terriglobia*, closely related to *Edaphobacter* and *Granulicella* species. Physiological
comparisons of our isolates to known *Edaphobacter* and *Granulicella* strains showed
297 similarities in the utilization of various organic compounds and slight differences in
temperature and pH range. Further investigation utilizing long-read Oxford Nanopore
300 sequencing to assemble full genomes uncovered phylogenetic differences between the
isolates and other members of the *Terriglobia*. The consistent phylogenetic placement
across several comparative tools (single-gene trees, multi-locus trees, pangenome
303 analysis) clearly separates the tundra heath isolates from known *Edaphobacter* and
Granulicella species. Therefore, these isolates ultimately represent a novel genus within
Terriglobia for which we propose the name *Tunturibacter*. Here we present the genomic,
306 phylogenetic, and phenotypic characterization of four novel species within the
Tunturibacter genus.

309 **Genome assemblies**

312 The 13 new *Acidobacteriota* genome assemblies are listed in Table 1. Of these,
10 included Illumina short reads used to polish the genomes to >99% completion. Three
312 of the 10 complete genomes had only one scaffold/contig, while the remainder had two
or more scaffolds/contigs, with the longer scaffold representing the bacterial
chromosome and the shorter contigs representing smaller genetic elements, i.e.
315 plasmids. To examine whether these shorter contigs could be plasmids, we searched
the shorter contigs from assemblies with more than one contig against the PLSDB
plasmid database. For each assembly, the second longest contig had one or more hits
318 with an average 75% identity to an already annotated plasmid from the database (Table
S2). Their predominant alignment to plasmids from *Granulicella tundricola* at only
around 75% identity indicates these are novel plasmids belonging to the *Tunturibacter*.
321 These plasmids may code for a few extra genes that are not necessary for
Tunturibacter growth, reproduction, or existence, but may offer some resistance
strategies beneficial for survival.

324 The assembled genomes of the *Tunturibacter* strains had between 3,600-7,400
predicted genes, of which >98% were protein coding genes for each assembly (Table
1). Of these genes, on average approximately 44% were annotated as non-hypothetical.
327 Full assembly statistics for these genomes are included in Table S1. Based on GTDB
annotation, 10 out of 13 assemblies were classified as most similar to *Edaphobacter*
lichenicola DSM 104462 with ANI values ranging from 89% to 100% and amino acid
330 (AA) similarities from 76% to 94%. Of the remaining three assemblies, two were
classified as most similar to *Granulicella arctica* MP5ACTX2 (DSM 23128) (79%-100%
ANI and 86%-94% AA) and one to *Granulicella mallensis* MP5ACTX8 (100% ANI and
333 94% AA).

Multi-locus phylogeny of the SD1 *Acidobacteriota*

336 To determine the taxonomic placement of the new tundra *Acidobacteriota*
isolates we compared 16S rRNA gene, rRNA operon, and single copy gene
phylogenies. Utilizing the full genomes of members of the *Terriglobia*, we
339 phylogenetically compared the genome assemblies using 74 selected single copy
genes (SCGs) (Figure 1A). The resulting SCG tree more accurately groups the
Edaphobacter, *Granulicella* and *Terriglobus* species than the rRNA operon or 16S rRNA
342 gene trees alone (Figures S1A-B and S2A-B). Importantly, the assemblies grouping
together with *Edaphobacter lichenicola* DSM 104462 were phylogenetically separated
from the other *Edaphobacter* species, including the type species *E. modestus*, and
345 would thus represent the new genus *Tunturibacter*. As can be seen from the SCG tree,
this new genus appears to comprise four species, each with several strains.

348 The phylogeny is more evident in the SCG sub-tree showing the members of the
Terriglobia most closely related to the proposed *Tunturibacter* genus (Figure 1B). The
SCG tree also more accurately clusters the *Granulicella* species. Another potential new
351 genus may be represented by *Granulicella mallensis*, *G. paludicola*, and *G. cerasi*,
which group with *Bryocella elongata*, phylogenetically distinct from the other species in
the *Granulicella* cluster, including the type species *G. paludicola* (Figure 1A). A
comparison of these genomes via a multi-locus phylogeny based on orthogroups and

354 orthologs (Orthofinder) also resulted in a similar phylogenetic structure as the SCG tree
(Figure S3).

357 Overall, compared to the rRNA operon tree, phylogenies built on multiple genes
from fully assembled genomes more accurately delineated the *Acidobacteriota* genera
and species. However, the rRNA operon tree was still able to differentiate the various
360 novel clusters, revealing the polyphyletic nature of some of these genera, supporting the
separation of *Edaphobacter lichenicola* and three new species as the proposed new
genus *Tunturibacter*.

363 **Pangenome Analysis**

366 Pangome analysis was used to compare gene frequencies from the COG,
KEGG, SCG, and Kofam annotations of the input genomes (Figure 2 and Figure 3). The
369 gene frequency tree created from this analysis (Figure 2, right side) is similar to the
SCG tree, again supporting the separation of two new potential genera in the
Terriglobia. The proposed *Tunturibacter* genus is present as its own cluster, as is the
cluster which groups several *Granulicella* species that affiliate with *Bryocella elongata*
(Figure 2). The very last row indicating the number of contributing genomes (Figure 2
bottom left) shows that the area of the pangenome comparison with the most
372 contributing genomes also includes the SCG clusters, representing the core genome of
the *Acidobacteriota* analyzed (Figure 3; Bin 1, 337 clusters, 11,791 gene calls).

375 With the exception of strain M8UP15, ANI analysis clearly separated the
proposed new *Tunturibacter* species from the other *Edaphobacter* species, with *E.*
modestus as the type species. The ANI similarities, along with the phylogenetic clusters
378 of this new genus in the SCG tree (Figure 1) support the separation of four species
within the new *Tunturibacter* genus with their respective type strains: *E. lichenicola* DSM
104462 transferred to the genus as *Tunturibacter lichenicola* comb. nov. (includes strain
MP8S11), *Tunturibacter psychrotolerans* sp. nov. X5P6 (includes strains X4BP1 and
381 X5P2), *Tunturibacter empetritectus* sp. nov. M8UP23 (includes strains M8UP22,
M8US30, M8UP20, and M8UP27), and *Tunturibacter gelidoferens* sp. nov. M8UP39
(includes strains M8UP30 and M8UP28). Bin 2 captures the gene clusters unique to this
384 new genus (Figure 3; Bin 2, 147 clusters, 1,903 gene calls).

One major difference in this analysis compared to the SCG tree, is the grouping of genome M8UP15 with *E. aggregans* DSM 19364 rather than the *Tunturibacter* genus. 387 These two genomes have the highest number of gene clusters, with one area sharing multiple genes unique to these two genomes (Figure 3; Bin 3, 1,820 clusters, 3,640 gene calls). The high ANI similarity of these two genomes indicates that strain M8UP15 390 is most closely related to *E. aggregans* DSM 19364. However, out of all the genomes in this analysis, M8UP15 and *E. aggregans* DSM 19364 share the highest number of partial genes (416), indicating that their genomes are not complete. Since the SCG and 393 operon trees did not group these two genomes closely, it is unclear whether this result is being driven by their unique genes or their incomplete genomes. The taxonomic placement of strain M8UP15 may thus require future reassessment.

396

Physiological comparison of *Tunturibacter* species

The phenotypic properties of the proposed type-strains for the new species, 399 *Tunturibacter empetrifectus* M8UP23, *Tunturibacter gelidoferens* M8UP39, and *Tunturibacter psychrotolerans* X5P6 were compared to *Tunturibacter* (*Edaphobacter*) 402 *lichenicola* (Belova, Suzina, *et al.*, 2018). Similarities were found for all strains based on their utilization of various organic compounds (Table 2), as well as hydrolysis of 405 polysaccharides, enzyme activities (API ZYM tests), and composition of quinones and major cellular fatty acids (Table S4). The temperature growth range for strains *T. empetrifectus* M8UP23, *T. gelidoferens* M8UP39, and *T. psychrotolerans* X5P6 was 2- 30°C, while the growth range of *T. lichenicola* DSM 104462 was different at 7-37°C. 408 These *Tunturibacter* species/strains tolerate cold conditions, similar to *Terriglobus* (4- 30°C) (Eichorst *et al.*, 2007; Männistö *et al.*, 2011) and *Granulicella* species (4-28°C) 411 (Männistö *et al.*, 2012). The growth pH range for *T. empetrifectus* M8UP23, *T. gelidoferens* M8UP39, and *T. psychrotolerans* X5P6 was 3.5-6.5 and for *T. lichenicola* DSM 104462 was 3.4-7.0. These ranges are most similar to those of *Granulicella tundricola* and *Granulicella mallensis* (pH 3.5-6.5) (Männistö *et al.*, 2011) and can 414 tolerate more acidic conditions than *Terriglobus* (pH 4.5-7.5) (Eichorst *et al.*, 2007; Männistö *et al.*, 2012).

Genome comparisons of *Tunturibacter* species

417 Genome alignments at various taxonomic levels further support the designations
of the new *Tunturibacter* species and strains (Figure 4). Only the longest assembled
418 scaffold for each genome was used for the alignment. At the genus level we compared
419 *Tunturibacter lichenicola* DSM 104462 (5,662,239 bp), *Granulicella arctica* DSM 23128
(4,736,692 bp), *Edaphobacter modestus* DSM 18191 (6,121,180 bp), and *Terriglobus*
420 *saanensis* SP1PR4 (5,095,225 bp). At the species level we compared *Tunturibacter*
421 *lichenicola* DSM 104462 (5,662,239 bp), *Tunturibacter empetritectus* M8UP23
(4,898,072bp), *Tunturibacter gelidoferens* M8UP39 (5,453,280bp), and *Tunturibacter*
422 *psychrotolerans* X5P6 (5,619,635bp). At the strain level we also compared
423 *Tunturibacter empetritectus* strains M8UP23 (4,898,072bp), M8UP20 (4,830,045bp),
424 M8UP22 (5,076,618bp), and M8UP27 (4,842,676bp).

425 These alignments show decreased homology when comparing the *Tunturibacter*
genomes against other genera in the *Terriglobia* (Figure 4A), compared to increased
426 homology when comparing the genomes of the *Tunturibacter* species against each
427 other (Figure 4B and 4C). The strength of homology increases with species and strain
428 level alignments, with strain level alignments (within the *T. empetritectus* strains)
429 showing the least amount of genome rearrangements (Figure 4C). These trends are
430 also apparent when using another genome alignment visualization tool, Mauve (Figure
431 S4A-C), which results in longer homology segments within alignments at the proposed
432 strains compared to the species and genus level alignments.

433 Unique pathways and phenotypic data of *Tunturibacter* species

434 The *Tunturibacter* strains had between 3,600-7,400 predicted genes, of which
435 >98% were protein coding genes (Table 1). All strains had at least one successful
436 alignment to a gene family in the CAZy HMM database within the following CAZy
437 classes: glycoside hydrolases, glycosyl transferases, carbohydrate-binding modules,
438 carbohydrate esterases, polysaccharide lyases, and auxiliary activities. For each
439 assembled genome the number of CAZy gene alignments includes one or more hits to
440 unique CAZy genes spanning numerous functions (Table 1; Figure S5). In the different
441 strains, 8 to 16% of the total number of predicted genes were code for modules of the

447 CAZy family, with genes for glycoside hydrolases being most abundant. While these hits
represent mostly partial alignments to CAZy genes, this indicates a wide set of unique
genes involved in the build-up and breakdown of complex carbohydrates.

450 Compared to the other *Acidobacteriota* genomes in the pangenome analysis,
several pathways were significantly enriched ($p < 0.05$) in members of the *Tunturibacter*
genus (Table 3). Based on KEGG Class and COG20 Functional annotations,
453 *Tunturibacter* genomes are more enriched in functional pathways involving the
metabolism of amino acids, such as tryptophan, betaine, and lysine. The enriched
GABA (γ -aminobutyric acid) biosynthesis pathway suggests a pH resistance strategy
456 within the *Tunturibacter* spp. (Dhakal *et al.*, 2012). This genus is also enriched in genes
within pathways involving the metabolism and biosynthesis of cofactors and vitamins
such as menaquinone, cobalamin, biotin, and molybdopterin. These (COG20 Pathway)
459 annotations do not, however, support the presence of the full pathway within the
Tunturibacter. The specific KEGG and COG20 genes annotated from the enriched
functional pathways can be found in Table S5.

462 Additionally, there is a lack of evidence for prominent vitamin and cofactor
biosynthesis genes within many members of the *Terriglobia*. Menaquinone has been
found in *Acidobacterium capsulatum* (Kishimoto *et al.*, 1991), cobalamin (B12) transport
465 has only been speculated in SD4 and SD8 *Acidobacteriota* and *Bryocella* species
(Kielak *et al.*, 2016). An uncultivated group of *Acidobacteriota*, GAL08, from hot springs
contained a biotin-specific transporter, however it was not able to synthesize biotin
468 (Ruhl *et al.*, 2022). Although more detailed analysis is needed, the enrichment of
vitamin/cofactor biosynthesis genes within the *Tunturibacter* suggests that members of
this genus may be able to synthesize vitamins *de novo* and have increased metabolic
471 capabilities compared to the *Edaphobacter*, *Granulicella*, and *Terriglobus* species.

***Acidobacteriota* community in Malla tundra heath soils**

474 We examined the distribution of the *Terriglobia* in a set of snow-accumulating
and windswept tundra heath soils in Malla Nature Reserve, from which the novel
477 *Tunturibacter* species were isolated. At this site, areas in depressions are sheltered
from the winds with high snow accumulation (up to $\geq 1\text{m}$), while windswept areas

remain essentially snow-free throughout the winter leading to distinctly different soil temperature profiles and differences in the amplitude of annual temperature variation (Männistö *et al.*, 2024). The bacterial communities were assessed by rRNA operon profiling with the Oxford Nanopore MinION, enabling strain-specific identification of bacterial community members. Overall, rRNA operon reads from the *Acidobacteriota* represented 4.2-18.4% of the >760K total bacterial reads from these tundra samples. Specifically, the *Acidobacteriota* reads varied from 1,524-18,818 reads per sample with an average of $6,536 \pm 5,478$ per site. Re-screening of these reads against the augmented *Acidobacteriota* rRNA database, containing the new rRNA operons from this study, indicated that 18-38% of these *Acidobacteriota* reads have best BLAST matches to *Tunturibacter* and *Granulicella*.

Furthermore, distinct differences in the relative abundance of *Edaphobacter*, *Granulicella* and *Terriglobus* species/strains could be observed between windswept and snow-accumulating tundra heaths (Figure 5). Reads matching to the various *Tunturibacter* strains were generally more dominant in the windswept plots, while *Granulicella* strain were more abundant in the snow-accumulating plots. These strain and species distinctions correspond to the observed differences in the overall soil microbial communities between windswept and snow-accumulating tundra heaths (Männistö *et al.*, 2024). Snow-cover and the linked vegetation shifts and soil C and N dynamics may thus be an important microclimatic driver of bacterial communities. The improved taxonomy of the *Acidobacteriota* combined with the genomic and phenotypic information of cultivated strains will enable and improved understanding of the community response to fluctuating environmental conditions in a changing climate.

Ecological context of *Acidobacteriota* in tundra soils

Members of the *Acidobacteriota* are ubiquitous in acidic Arctic tundra and sub-Arctic forest soils. The Kilpisjärvi study site has representative tundra vegetation dominated by dwarf shrub-rich *Empetrum* heaths over acidic soils, or forb- and graminoid-rich *Dryas* heaths over non-acidic soils (Männistö *et al.*, 2007, 2009, 2013; Eskelinen *et al.*, 2009). These soils are organic-rich and well-aerated, harboring abundant aerobic heterotrophic microbiota where diverse *Acidobacteriota* make up 10-

40% of the total bacterial community (Männistö *et al.*, 2009, 2013). The abundance and
510 composition of the *Acidobacteriota* vary with topography and exposure that influence
snow accumulation and soil temperatures (Männistö *et al.*, 2013) as well as bedrock
material which influences soil pH (Männistö *et al.*, 2007). Different species within the
513 *Acidobacteriota* appear to respond to environmental conditions differently, highlighting
the wide functional diversity of these organisms even within the *Terriglobia*. From the
tundra heath sites in Kilpisjärvi Finland, several species of *Terriglobus*, *Granulicella* and
516 *Tunturibacter* have been cultivated (Männistö *et al* 2011, 2012, this study). These
species appear adapted to breakdown, utilization and biosynthesis of diverse
polysaccharides, and resilience to fluctuating temperatures and nutrient-deficient
519 conditions.

Increased competition between plants and microbes and within the microbial
community can occur due to environmental factors such as the increased presence of
522 woody evergreen shrubs that immobilize nutrients as a consequence of warming-
induced 'shrubification' on Arctic soil carbon storage (Stark *et al.*, 2023). Tundra soil
carbon and nitrogen cycles are strongly coupled with soil nitrogen availability often
525 decreasing over the growing season, leading to the soil microbial communities
becoming increasingly N-limited (Jonasson *et al.*, 1999, Stark and Kytöviita, 2006).
Methods to combat low nutrient concentrations include having the functional capacity for
528 nutrient assimilation and transport. *Acidobacteriota* are known to contain genes involved
in attaining nitrogen, which include genes essential for ammonia assimilation, e.g.
glutamine synthetase, and genes for the ammonium channel transporter family (*amtB*
531 gene) (Eichorst *et al.*, 2018). In a recent study comparing microbial responses to Arctic
greening in Alaskan soils, *Acidobacteriota* most strongly expressed the glutamine
synthetase metaprotein, a large component of the proteins involved in ammonia
534 metabolism (Miller *et al.*, 2023). Within our study, glutamine synthetase (COG0174) was
annotated mainly within the core genome of the *Tunturibacter* pangenome (Figure 3;
Bin 1).

537 Another adaptation to low nutrient concentrations includes genes for high affinity
transport systems (Kielak *et al.*, 2016; Eichorst *et al.*, 2018). Transporter genes
annotated within the *Tunturibacter* pangenome include high affinity Mn²⁺ porin

540 (COG3659), high-affinity iron transporter (COG4393), and high-affinity nickel/cobalt
541 permease (HoxN) (COG3376). *Acidobacteriota* have been shown to contain a broad
542 substrate range of transporters, including the Drug/Metabolite transporter superfamily,
543 the Ammonia Transporter Channel (Amt) Family, and the Metal Ion (Mn²⁺ Iron)
544 Transporter (Nramp) (Kielak *et al.*, 2016). This diversity of transporters suggests that
545 *Acidobacteriota* have an advantage in nutrient assimilation in nutrient poor conditions.

546 Tundra soil *Acidobacteriota* appear to be oligotrophs with slow growth rates and
547 low population turnover rates that are favored by the presence of recalcitrant carbon.
548 The genomes of the tundra soil *Acidobacteriota* contain an abundance of conserved
549 genes/gene clusters encoding for modules of the carbohydrate-active enzyme
550 (CAZyme) families, predominately glycoside hydrolases and glycosyltransferases
551 (Figure S5; Rawat *et al.*, 2012; Eichorst *et al.*, 2018). In our study, pangenome
552 glycosyltransferase COGs involved in cell wall biosynthesis (COG0438) and in the
553 glycosylation of proteins and lipid IVA (COG1807) were found across all *Acidobacteriota*
554 analyzed. Multiple alignments to various CAZy gene families were also found within the
555 *Tunturibacter* indicating for a wide ability for utilizing complex carbohydrates. Another
556 interesting feature of the *Acidobacteriota* is their synthesis of hopanoid lipids, which may
557 play a role in regulating membrane stability. Additionally, quorum-sensing associated
558 genes, such as acyl homoserine lactone (acyl-HSL), were found within several
559 *Tunturibacter* and across *Acidobacteriota* within our pangenome analysis (Parsek *et al.*,
560 1999). Signaling molecules like acyl-HSLs are known to impact bacterial community
561 dynamics in soils, particularly in response to virulence genes (Parsek *et al.*, 1999; Riaz
562 *et al.*, 2008).

563 Members of the *Acidobacteriota* are known to play a role in decomposition of soil
564 organic matter, in particular various biopolymers, and they participate in the global
565 cycling of carbon, iron and hydrogen. While *Acidobacteriota* constitute from 5 to 50% of
566 the total bacterial community in organic-rich, low pH, Arctic and boreal soils based on
567 rRNA gene reads (Männistö *et al.*, 2007, 2009, 2013) they continue to be notoriously
568 difficult to cultivate and are thus woefully under-represented in culture collections. The
569 description of new strains and species provides key phenotypic and genomic
570 information to help us understand why they are so dominant and how they maintain

diversity within the group. There is much to learn about their ecosystem functions in soils, their interactions with other microbes, and their adaptations to environmental stress and climate change.

Description of *Tunturibacter* gen. nov.

The results from the multiple lines of analyses presented above indicate that *E. lichenicola* is not a member of the genus *Edaphobacter* and should be reclassified as a species of the proposed new genus *Tunturibacter*, with the proposed name *Tunturibacter lichenicola* comb. nov. The NCBI BioProject ID for the 10 newly assembled *Tunturibacter* genomes is: PRJNA1004338. Accession numbers for all new *Tunturibacter* 16S rRNA genes and genomes are in Table S6.

Tunturibacter (Tun'tu.ri.bac'ter. tunturi, referring to the Arctic treeless fells in Finland, N.L. masc. n. *bacter*, a short rod; N.L. masc. n. *Tunturibacter* rod-shaped tundra fell bacterium).

Cells are Gram-negative aerobic rods. On agar plates, cells form circular, mucoid colonies. Colony pigment varies from light beige to pink. Produce extracellular polysaccharide-like substances. Sugars are preferred carbon sources and the different strains are capable of hydrolyzing various polysaccharides. The major cellular fatty acids are iso-15:0, iso-13:0, 16:1 ω 7c, 16:0. The predominant menaquinone is MK-8. The DNA G+C content is 56–58%. Strains have been isolated from tundra soil and lichen thalli collected from lichen-dominated forested tundra. The type species is *Tunturibacter lichenicola* comb. nov.

Emended description of *Tunturibacter lichenicola* comb. nov.

The description is as given by Belova et al. (2018). The type strain is SBC68^T (=DSM 104462^T =VKM B-3208^T).

600 Description of *Tunturibacter empetritectus* sp. nov.

603 *Tunturibacter empetritectus* (em.pet.ri.tectus. *empetri*, referring to the plant *Empetrum* *nigrum* ssp. *hermaphroditum*; L. adj. *tectus*, covered; L. part. Adj. *empetritectus*, growing under tundra heath dominated by *Empetrum nigrum* ssp. *hermaphroditum*).

606 Cells are Gram-negative, non-motile, aerobic rods. Colonies are light beige or pink, circular and smooth when grown on GY agar (Figure S6). Growth occurs at 2-30°C and at pH 3.5-6.5. In VL55 mineral medium with 100 mg l⁻¹ yeast extract and 5-10 mM carbon source, utilizes cellobiose, xylose, fructose, fucose, glucosamine, glucose, L-609 glutamic acid (weak), maltose, mannose, N-acetyl-glucosamine, salicin and trehalose. Hydrolyzes xylan, pectin, xanthan and gum arabic. The major cellular fatty acids are iso-15:0, iso-13:0, 16:1ω7c, 16:0. The DNA G+C content determined from genome 612 sequence of type strain is 57.82%.

615 The type strain is M8UP23^T (= DSMZ 117310 = HAMBI 3810) isolated from tundra soil in Malla Nature Reserve, Kilpisjärvi, Finland (69°01'N, 20°50'E). NCBI accession numbers for the 16S rRNA gene sequence and for the draft genome sequence of the type strain are OR449309 and CP132932-CP132934, respectively.

618

Description of *Tunturibacter gelidoferens* sp. nov.

621 *Tunturibacter gelidoferens* (ge.li.do.ferens. L. adj. *gelido* cold; L. pres. Part. *Ferens*, to endure; L. part. Adj. *gelidoferens*, cold-enduring).

624 Cells are Gram-negative, non-motile, aerobic rods. Colonies are pink, circular and smooth when grown on GY agar (Figure S6). Growth occurs at 2-30°C and at pH 3.5-6.5. In VL55 mineral medium with 100 mg l⁻¹ yeast extract and 5-10 mM carbon source, utilizes cellobiose, xylose, fructose, fucose, glucosamine, glucose, L-glutamic acid 627 (weak), maltose, mannose, N-acetyl-glucosamine, salicin and trehalose. Hydrolyzes carboxy methyl cellulose (weak), xylan, pectin, lichenin, starch (weak), and gum arabic (weak). The major cellular fatty acids are iso-15:0, iso-13:0, 16:1ω7c, 16:0. The DNA 630 G+C content determined from genome sequence of type strain is 57.42%.

The type strain is M8UP39^T (= DSMZ 117311 = HAMBI 3809) isolated from tundra soil
633 in Malla Nature Reserve, Kilpisjärvi, Finland (69°01'N, 20°50'E). NCBI accession
numbers for the 16S rRNA gene sequence and for the draft genome sequence of the
type strain are OR449311 and CP132937-CP132938, respectively.

636

Description of *Tunturibacter psychrotolerans* sp. nov

Tunturibacter psychrotolerans (*psy.chro.to'le.rans*. Gr. Adj. *psychros*, cold; L. pres.

639 Part. *Tolerans*, tolerating; N.L. part. Adj. *psychrotolerans*, cold-tolerating).

Cells are Gram-negative, non-motile, aerobic rods. Colonies are light beige to light pink,
642 circular and smooth when grown on GY agar (Figure S6). Growth occurs at 2-30°C and
at pH 3.5-6.5. In VL55 mineral medium with 100 mg l⁻¹ yeast extract and 5–10 mM
carbon source, utilizes cellobiose, xylose, fructose, fucose, glucosamine (weak),
645 glucose, L-glutamic acid (weak), maltose, mannose, N-acetyl-glucosamine (weak),
salicin and trehalose. Hydrolyzes carboxy methyl cellulose (weak), pectin, lichenin,
starch, xanthan and gum arabic (weak). The major cellular fatty acids are iso-15:0, iso-
648 13:0, 16:1ω7c, 16:0. The DNA G+C content determined from genome sequence of type
strain is 56.72%.

651 The type strain is X5P6^T (= DSMZ 117309 = HAMBI 3811) isolated from tundra soil in
Malla Nature Reserve, Kilpisjärvi, Finland (69°01'N, 20°50'E). NCBI accession numbers
654 for the 16S rRNA gene sequence and for the draft genome sequence of the type strain
are OR449310 and CP132942-CP132943, respectively.

657

Acknowledgements

We thank Sirkka-Liisa Aakkonen, Sari Välijalo and Marika Pätsi for the help in
cultivating and characterizing the strains. We thank Kristina Chew and Serena Connolly
660 for assistance with nomenclature. This study was funded in part by the U.S. National
Science Foundation (Award Number 2129351) to MMH and LJK, the Academy of
Finland (decision numbers 130507 and 310776) to MKM, and the USDA National

663 Institute of Food and Agriculture Hatch project accession number 1012785 through the
664 New Jersey Agricultural Experiment Station (Hatch Project NJ01160) to MMH. Illumina
665 sequencing of select strains was done through the Community Science Program (CSP)
666 of the US Department of Energy Joint Genomes Institute (Genomic Sequencing of Core
667 and Pangenomes of Soil and Plant-associated Prokaryotes; PI William B. Whitman).

669 **Author Contributions**

670 MKM isolated and characterized the original *Tunturibacter* stains and prepared samples
671 for DOE JGI Illumina sequencing. AM and LJK performed the MinION sequencing. AM
672 performed the bioinformatics analysis and wrote the first draft. MKM, MMH, and LJK
673 edited the manuscript.

675

Data Availability

676 The NCBI BioProject ID for the newly assembled *Tunturibacter* genomes is
677 PRJNA1004338. Accession numbers for 16S rRNA genes are OR449309 - OR449318.
678 Accession numbers for genomes are CP132926-CP132945. The rRNA operon reads
679 from Malla Nature Reserve soil samples are available in BioProject ID PRJNA1093128.

681

References

682 Barns, S.M., Cain, E.C., Sommerville, L., and Kuske, C.R. (2007) Acidobacteria phylum
683 sequences in uranium-contaminated subsurface sediments greatly expand the
684 known diversity within the phylum. *Appl Environ Microbiol* **73**: 3113–3116.

685 Belova, S.E., Ravin, N.V., Pankratov, T.A., Rakitin, A.L., Ivanova, A.A., Beletsky, A.V.,
686 et al. (2018) Hydrolytic capabilities as a key to environmental success:
687 Chitinolytic and cellulolytic Acidobacteria from acidic sub-arctic soils and boreal
688 peatlands. *Front Microbiol* **9**: 2775.

689 Belova, S.E., Suzina, N.E., Rijpstra, W.I.C., Sinninghe Damsté, J.S., and Dedysh, S.N.
690 (2018) *Edaphobacter lichenicola* sp. nov., a member of the family
691 Acidobacteriaceae from lichen-dominated forested tundra. *Int J Syst Evol
692 Microbiol* **68**: 1265–1270.

693 Bond-Lamberty, B. and Thomson, A. (2010) Temperature-associated increases in the
694 global soil respiration record. *Nature* **464**: 579–582.

695 Campbell, B.J., Polson, S.W., Hanson, T.E., Mack, M.C., and Schuur, E.A.G. (2010)
696 The effect of nutrient deposition on bacterial communities in Arctic tundra soil.
697 *Environ Microbiol* **12**: 1842–1854.

699 Challacombe, J.F., Eichorst, S.A., Hauser, L., Land, M., Xie, G., and Kuske, C.R. (2011)
700 Biological consequences of ancient gene acquisition and duplication in the large
701 genome of *Candidatus Solibacter usitatus* Ellin6076. *PLOS ONE* **6**: e24882.

702 Chesson, P. (2000) Mechanisms of maintenance of species diversity. *Annual Review of
703 Ecology and Systematics* **31**: 343–366.

705 Chesson, P. and Huntly, N. (1997) The roles of harsh and fluctuating conditions in the
706 dynamics of ecological communities. *The American Naturalist* **150**: 519–553.

708 Chu, H., Fierer, N., Lauber, C.L., Caporaso, J.G., Knight, R., and Grogan, P. (2010) Soil
709 bacterial diversity in the Arctic is not fundamentally different from that found in
710 other biomes. *Environ Microbiol* **12**: 2998–3006.

711 Crits-Christoph, A., Diamond, S., Al-Shayeb, B., Valentin-Alvarado, L., and Banfield,
712 J.F. (2022) A widely distributed genus of soil Acidobacteria genomically enriched
713 in biosynthetic gene clusters. *ISME COMMUN* **2**: 1–8.

714 Darling, A.C.E., Mau, B., Blattner, F.R., and Perna, N.T. (2004) Mauve: Multiple
715 alignment of conserved genomic sequence with rearrangements. *Genome Res*
716 **14**: 1394–1403.

717 Davis, K.E.R., Joseph, S.J., and Janssen, P.H. (2005) Effects of growth medium,
718 inoculum size, and incubation time on culturability and isolation of soil bacteria.
719 *Appl Environ Microbiol* **71**: 826–834.

720 Dedysh, S.N., Ivanova, A.A., Begmatov, Sh.A., Beletsky, A.V., Rakitin, A.L., Mardanov,
721 A.V., et al. (2022) Acidobacteria in fens: Phylogenetic diversity and genome
722 analysis of the key representatives. *Microbiology* **91**: 662–670.

723 Dedysh, S.N. and Yilmaz, P. (2018) Refining the taxonomic structure of the phylum
724 Acidobacteria. *Int J Syst Evol Microbiol* **68**: 3796–3806.

725 Dhakal, R., Bajpai, V.K., and Baek, K.-H. (2012) Production of gaba (γ – Aminobutyric
726 acid) by microorganisms: a review. *Braz J Microbiol* **43**: 1230–1241.

727 Diamond, S., Andeer, P.F., Li, Z., Crits-Christoph, A., Burstein, D., Anantharaman, K., et
728 al. (2019) Mediterranean grassland soil C–N compound turnover is dependent on
729 rainfall and depth, and is mediated by genomically divergent microorganisms.
730 *Nat Microbiol* **4**: 1356–1367.

731 Eddy, S. R. (2011) Accelerated Profile HMM Searches. *PLoS Comput. Biol.* **7**:
732 e1002195

733 Edgar, R.C. (2021) MUSCLE v5 enables improved estimates of phylogenetic tree
734 confidence by ensemble bootstrapping. 2021.06.20.449169.

735 Eichorst, S.A., Breznak, J.A., and Schmidt, T.M. (2007) Isolation and characterization of
736 soil bacteria that define *Terriglobus* gen. nov., in the phylum Acidobacteria. *Appl
737 Environ Microbiol* **73**: 2708–2717.

738 Eichorst, S.A., Trojan, D., Roux, S., Herbold, C., Rattei, T., and Woebken, D. (2018)
739 Genomic insights into the Acidobacteria reveal strategies for their success in
740 terrestrial environments. *Environmental Microbiology* **20**: 1041–1063.

741 Emms, D.M. and Kelly, S. (2019) OrthoFinder: phylogenetic orthology inference for
742 comparative genomics. *Genome Biology* **20**: 238.

743 Eren, A.M., Kiefl, E., Shaiber, A., Veseli, I., Miller, S.E., Schechter, M.S., et al. (2021)
744 Community-led, integrated, reproducible multi-omics with anvi'o. *Nat Microbiol* **6**:
745 3–6.

744 Eskelinen, A., Stark, S., and Männistö, M. (2009) Links between plant community
composition, soil organic matter quality and microbial communities in contrasting
tundra habitats. *Oecologia* **161**: 113–123.

747 Fry, E.L., Ashworth, D., Allen, K.A.J., Chardon, N.I., Rixen, C., Björkman, M.P., et al.
(2023) Vegetation type, not the legacy of warming, modifies the response of
microbial functional genes and greenhouse gas fluxes to drought in oro-arctic
750 and alpine regions. *FEMS Microbiology Ecology* **99**: fiad145.

753 Gadkari, P.S., McGuinness, L.R., Männistö, M.K., Kerkhof, L.J., and Häggblom, M.M.
(2020) Arctic tundra soil bacterial communities active at subzero temperatures
detected by stable isotope probing. *FEMS Microbiology Ecology* **96**: fiz192.

756 Schmartz, G.P., Hartung, A., Hirsch, P., Kern, F., Fehlmann, T., Müller, R., Keller, A.
(2021) PLSDB: advancing a comprehensive database of bacterial plasmids.
Nucleic Acids Res **50**: D273–D278.

759 German Collection of Microorganisms and Cell Cultures GmbH: Polar Lipids.
German Collection of Microorganisms and Cell Cultures GmbH: Respiratory Quinones.

762 Ghoul, M. and Mitri, S. (2016) The ecology and evolution of microbial competition.
Trends in Microbiology **24**: 833–845.

765 Göker, M. (2023) Filling the gaps: missing taxon names at the ranks of class, order and
family. *International Journal of Systematic and Evolutionary Microbiology* **72**:
005638.

768 Graham, D.E., Wallenstein, M.D., Vishnivetskaya, T.A., Waldrop, M.P., Phelps, T.J.,
Pfiffner, S.M., et al. (2012) Microbes in thawing permafrost: the unknown variable
in the climate change equation. *ISME J* **6**: 709–712.

771 Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013) QUAST: quality
assessment tool for genome assemblies. *Bioinformatics* **29**: 1072–1075.

774 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E. a. G., Ping, C.-L., et
al. (2014) Estimated stocks of circumpolar permafrost carbon with quantified
uncertainty ranges and identified data gaps. *Biogeosciences* **11**: 6573–6593.

777 Ivanova, A.A., Zhelezova, A.D., Chernov, T.I., and Dedysh, S.N. (2020) Linking ecology
and systematics of acidobacteria: Distinct habitat preferences of the
Acidobacteriia and Blastocatellia in tundra soils. *PLOS ONE* **15**: e0230157.

780 Janssen, P.H. (2006) Identifying the dominant soil bacterial taxa in libraries of 16S
rRNA and 16S rRNA genes. *Appl Environ Microbiol* **72**: 1719–1728.

783 Jonasson, S., Michelsen, A., and Schmidt, I.K. (1999) Coupling of nutrient cycling and
carbon dynamics in the Arctic, integration of soil microbial and plant processes.
Appl Soil Ecol **11**: 135–46.

786 Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., and Fierer, N.
(2009) A comprehensive survey of soil acidobacterial diversity using
pyrosequencing and clone library analyses. *ISME J* **3**: 442–453.

Kalam, S., Basu, A., Ahmad, I., Sayyed, R.Z., El-Enshasy, H.A., Dailin, D.J., and
Suriani, N.L. (2020) Recent understanding of soil Acidobacteria and their
ecological significance: A critical review. *Frontiers in Microbiology* **11**: 580024.

Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., and Kuramae, E.E. (2016)
The ecology of Acidobacteria: Moving beyond genes and genomes. *Frontiers in
Microbiology* **7**: 744.

789 Kim, H.M., Jung, J.Y., Yergeau, E., Hwang, C.Y., Hinzman, L., Nam, S., et al. (2014) Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. *FEMS Microbiology Ecology* **89**: 465–475.

792 Kishimoto, N., Kosako, Y., and Tano, T. (1991) *Acidobacterium capsulatum* gen. nov., sp. nov.: An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. *Current Microbiology* **22**: 1–7.

795 Koch, I.H., Gich, F., Dunfield, P.F., and Overmann, J. (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. *Int J Syst Evol Microbiol* **58**: 1114–1122.

798 Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019) Assembly of long, error-prone reads using repeat graphs. *Nat Biotechnol* **37**: 540–546.

801 Koven, C.D., Rengeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. *Proceedings of the National Academy of Sciences* **108**: 14769–14774.

804 Lane, D.J. (1991) 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.

807 Lee, M.D. (2019) GtoTree: a user-friendly workflow for phylogenomics. *Bioinformatics* **35**: 4162–4164.

810 Lennon, J.T., Aanderud, Z.T., Lehmkuhl, B.K., and Schoolmaster Jr., D.R. (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. *Ecology* **93**: 1867–1879.

813 Letunic, I. and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Research* **49**: W293–W296.

816 Lin, Y., Yuan, J., Kolmogorov, M., Shen, M.W., Chaisson, M., and Pevzner, P.A. (2016) Assembly of long error-prone reads using de Bruijn graphs. *Proceedings of the National Academy of Sciences* **113**: E8396–E8405.

822 Loya, W.M. and Grogan, P. (2004) Carbon conundrum on the tundra. *Nature* **431**: 406–408.

819 Männistö, M.K., Ahonen, S.H.K., Ganzert, L., Tiirola, M., Stark, S., and Häggblom, M.M. (2024) Bacterial and fungal communities in sub-Arctic tundra heaths are shaped by contrasting snow accumulation and nutrient availability. *FEMS Microbiology Ecology* **100**: fiae036.

825 Männistö, M., Vuosku, J., Stark, S., Saravesi, K., Suokas, M., Markkola, A., et al. (2018) Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. *FEMS Microbiology Ecology* **94**: fiy123.

828 Männistö, M.K., Kурхела, Е., Tiirola, M., and Häggblom, M.M. (2013) Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. *FEMS Microbiol Ecol* **84**: 47–59.

831 Männistö, M.K., Rawat, S., Starovoytov, V., and Häggblom, M.M. (2012) *Granulicella arctica* sp. nov., *Granulicella mallensis* sp. nov., *Granulicella tundricola* sp. nov. and *Granulicella sapmiensis* sp. nov., novel acidobacteria from tundra soil. *Int J Syst Evol Microbiol* **62**: 2097–2106.

834 Männistö, M.K., Rawat, S., Starovoytov, V., and Häggblom, M.M. (2011) *Terriglobus
saanensis* sp. nov., an acidobacterium isolated from tundra soil. *Int J Syst Evol
Microbiol* **61**: 1823–1828.

837 Männistö, M.K., Tirola, M., and Häggblom, M.M. (2007) Bacterial communities in Arctic
fields of Finnish Lapland are stable but highly pH-dependent. *FEMS Microbiology
Ecology* **59**: 452–465.

840 Männistö, M.K., Tirola, M., and Häggblom, M.M. (2009) Effect of freeze-thaw cycles on
bacterial communities of arctic tundra soil. *Microb Ecol* **58**: 621–631.

843 McMahon, S.K., Wallenstein, M.D., and Schimel, J.P. (2011) A cross-seasonal
comparison of active and total bacterial community composition in Arctic tundra
soil using bromodeoxyuridine labeling. *Soil Biology and Biochemistry* **43**: 287–
295.

846 Miller, S.E., Colman, A.S., and Waldbauer, J.R. (2023) Metaproteomics reveals
functional partitioning and vegetational variation among permafrost-affected
Arctic soil bacterial communities. *mSystems* **8**: e01238-22.

849 Natali, S.M., Schuur, E.A.G., Webb, E.E., Pries, C.E.H., and Crummer, K.G. (2014)
Permafrost degradation stimulates carbon loss from experimentally warmed
tundra. *Ecology* **95**: 602–608.

852 Nikrad, M.P., Kerkhof, L.J., and Häggblom, M.M. (2016) The subzero microbiome:
microbial activity in frozen and thawing soils. *FEMS Microbiol Ecol* **92**: fiw081.

855 Oechel, W.C., Vourlitis, G., and Hastings, S.J. (1997) Cold season CO₂ emission from
Arctic soils. *Global Biogeochemical Cycles* **11**: 163–172.

Ondov, B.D., Treangen, T.J., Melsted, P. et al. (2016) Mash: fast genome and
metagenome distance estimation using MinHash. *Genome Biol* **17**, 132.

858 Pankratov, T.A. and Dedysh, S.N. (2010) *Granulicella paludicola* gen. nov., sp. nov.,
Granulicella pectinivorans sp. nov., *Granulicella aggregans* sp. nov. and
Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from
861 *Sphagnum* peat bogs. *Int J Syst Evol Microbiol* **60**: 2951–2959.

Parks, D.H., Chuvochina, M., Rinke, C., Mussig, A.J., Chaumeil, P.-A., and Hugenholtz,
P. (2022) GTDB: an ongoing census of bacterial and archaeal diversity through a
864 phylogenetically consistent, rank normalized and complete genome-based
taxonomy. *Nucleic Acids Research* **50**: D785–D794.

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015)
867 CheckM: assessing the quality of microbial genomes recovered from isolates,
single cells, and metagenomes. *Genome Res* **25**: 1043–1055.

Parsek, M.R., Val D.L., Hanzelka, B.L., Cronan, J.E., and Greenberg E.P. (1998) Acyl
870 homoserine-lactone quorum-sensing signal generation. *Proc Natl Acad Sci U S A*
96: 4360–4365.

Parsley, L.C., Linneman, J., Goode, A.M., Becklund, K., George, I., Goodman, R.M., et
873 al. (2011) Polyketide synthase pathways identified from a metagenomic library
are derived from soil Acidobacteria. *FEMS Microbiol Ecol* **78**: 176–187.

Pessi, I.S., Viitamäki, S., Virkkala, A.-M., Eronen-Rasimus, E., Delmont, T.O.,
876 Marushchak, M.E., et al. (2022) In-depth characterization of denitrifier
communities across different soil ecosystems in the tundra. *Environmental
Microbiome* **17**: 30.

879 Podar, M., Turner, J., Burdick, L.H., and Pelletier, D.A. (2019) Complete Genome
Sequence of *Terriglobus albidus* Strain ORNL, an Acidobacterium Isolated from
the *Populus deltoides* Rhizosphere. *Microbiology Resource Announcements* **8**:
e01065-19.

882 Poppeliers, S.W.M., Hefting, M., Dorrepaal, E., and Weedon, J.T. (2022) Functional
microbial ecology in arctic soils: the need for a year-round perspective. *FEMS
Microbiol Ecol* **98**: fiac134.

885 Price, M.N., Dehal, P.S., and Arkin, A.P. (2010) FastTree 2 – Approximately Maximum-
Likelihood Trees for Large Alignments. *PLOS ONE* **5**: e9490.

888 Pritchard, L., Glover, R.H., Humphris, S., Elphinstone, J.G., and Toth, I.K. (2015)
Genomics and taxonomy in diagnostics for food security: soft-rotting
enterobacterial plant pathogens. *Anal Methods* **8**: 12–24.

891 Rawat, S.R., Männistö, M.K., Starovoytov, V., Goodwin, L., Nolan, M., Hauser, L., et al.
(2014) Complete genome sequence of *Granulicella tundricola* type strain
MP5ACTX9(T), an Acidobacteria from tundra soil. *Stand Genomic Sci* **9**: 449–
461.

894 Rawat, S.R., Männistö, M.K., Starovoytov, V., Goodwin, L., Nolan, M., Hauser, L., et al.
(2012) Complete genome sequence of *Terriglobus saanensis* type strain
SP1PR4(T), an Acidobacteria from tundra soil. *Stand Genomic Sci* **7**: 59–69.

897 Rawat, S.R., Männistö, M.K., Starovoytov, V., Goodwin, L., Nolan, M., Hauser, L.J., et
al. (2013) Complete genome sequence of *Granulicella mallensis* type strain
MP5ACTX8T, an acidobacterium from tundra soil. *Stand Genomic Sci* **9**: 71–82.

900 Riaz, K., Elmerich, C., Moreira, D., Raffoux, A., Dessaix, Y., and Faure, D. (2008) A
metagenomic analysis of soil bacteria extends the diversity of quorum-quenching
lactonases. *Environ Microbiol.* **10**: 560-70.

903 Ruhl, I.A., Sheremet, A., Furgason, C.C., Krause, S., Bowers, R.M., Jarett, J.K., et al.
(2022) GAL08, an uncultivated group of Acidobacteria, is a dominant bacterial
clade in a neutral hot spring. *Frontiers in Microbiology* **12**: 787651.

906 Seeman, Torsten (2014) Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
15: 2068-9

909 Schuur, E.A.G., Bockheim, J., Canadell, J.G., Euskirchen, E., Field, C.B., Goryachkin,
S.V., et al. (2008) Vulnerability of permafrost carbon to climate change:
Implications for the global carbon cycle. *BioScience* **58**: 701–714.

912 Shaiber, A., Willis, A.D., Delmont, T.O., Roux, S., Chen, L.-X., Schmid, A.C., et al.
(2020) Functional and genetic markers of niche partitioning among enigmatic
members of the human oral microbiome. *Genome Biology* **21**: 292.

915 Shimoyama, Y. (2022) pyGenomeViz: A genome visualization python package for
comparative genomics.

918 Stark, S., Kytöviita, M.-M. (2006) Simulated grazer effects on microbial respiration in a
subarctic meadow: Implications for nutrient competition between plants and soil
microorganisms. *Appl Soil Ecol.* **31**: 20–31.

921 Stark, S., Kumar, M., Myrsky, E., Vuorinen, J., Kantola, A.M., Telkki, V.-V., et al. (2023)
Decreased soil microbial nitrogen under vegetation ‘shrubification’ in the
subarctic forest–tundra ecotone: The potential role of increasing nutrient
competition between plants and soil microorganisms. *Ecosystems* **26**: 1504–
1523

924

927 Taş, N., Prestat, E., Wang, S., Wu, Y., Ulrich, C., Kneafsey, T., et al. (2018) Landscape
topography structures the soil microbiome in arctic polygonal tundra. *Nat
Commun* **9**: 777.

930 Tveit, A.T., Urich, T., and Svenning, M.M. (2014) Metatranscriptomic analysis of arctic
peat soil microbiota. *Applied and Environmental Microbiology* **80**: 5761–5772.

933 Vaser, R. and Šikić, M. (2021) Time- and memory-efficient genome assembly with
Raven. *Nat Comput Sci* **1**: 332–336.

936 Viitamäki, S., Pessi, I.S., Virkkala, A.-M., Niittynen, P., Kemppinen, J., Eronen-Rasimus,
E., et al. (2022) The activity and functions of soil microbial communities in the
Finnish sub-Arctic vary across vegetation types. *FEMS Microbiol Ecol* **98**:
fiac079.

939 Voříšková, J., Elberling, B., and Priemé, A. (2019) Fast response of fungal and
prokaryotic communities to climate change manipulation in two contrasting
tundra soils. *Environmental Microbiome* **14**: 6.

942 Wang, J., Chen, M.-H., Lv, Y.-Y., Jiang, Y.-W., and Qiu, L.-H. (2016) *Edaphobacter
dinghuensis* sp. nov., an acidobacterium isolated from lower subtropical forest
soil. *Int J Syst Evol Microbiol* **66**: 276–282.

945 Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., et
al. (2009) Three genomes from the phylum Acidobacteria provide insight into the
lifestyles of these microorganisms in soils. *Appl Environ Microbiol* **75**: 2046–
2056.

948 Weintraub, M.N. and Schimel, J.P. (2003) Interactions between carbon and nitrogen
mineralization and soil organic matter chemistry in arctic tundra soils.
Ecosystems **6**: 129–143.

951 Welker, J.M., Fahnestock, J.T., and Jones, M.H. (2000) Annual CO₂ flux in dry and
moist arctic tundra: Field responses to increases in summer temperatures and
winter snow depth. *Climatic Change* **44**: 139–150.

954 Wick, R.R. and Holt, K.E. (2019) Benchmarking of long-read assemblers for prokaryote
whole genome sequencing. *F1000Res* **8**: 2138.

957 Wick, R.R. and Holt, K.E. (2022) Polypolish: Short-read polishing of long-read bacterial
genome assemblies. *PLOS Computational Biology* **18**: e1009802.

960 Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017)
Introducing EzBioCloud: A taxonomically united database of 16S rRNA and
whole genome assemblies. *Int J Syst Evol Microbiol*. **67**:1613-1617

963 Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., Busk P.K., Xu Y. and Yin Y.
(2018) dbCAN2: a meta server for automated carbohydrate-active enzyme
annotation. *Nucleic Acids Res.* **46**(W1):W95-W101.

966 Zhang, Q.-M., Fu, J.-C., Chen, Z.-Q., and Qiu, L.-H. (2022) *Paracidobacterium acidisolii*
gen. nov., sp. nov. and *Alloacidobacterium dinghuense* gen. nov., sp. nov., two
acidobacteria isolated from forest soil, and reclassification of *Acidobacterium
ailaau* and *Acidipila dinghuensis* as *Pseudacidobacterium ailaau* gen. nov.,
comb. nov. and *Silvibacterium dinghuense* comb. nov. *Int J Syst Evol Microbiol*
72: :005415.

972 Zinger, L., Shahnavaaz, B., Baptist, F., Geremia, R.A., and Choler, P. (2009) Microbial
diversity in alpine tundra soils correlates with snow cover dynamics. *ISME J* **3**:
850–859.

975

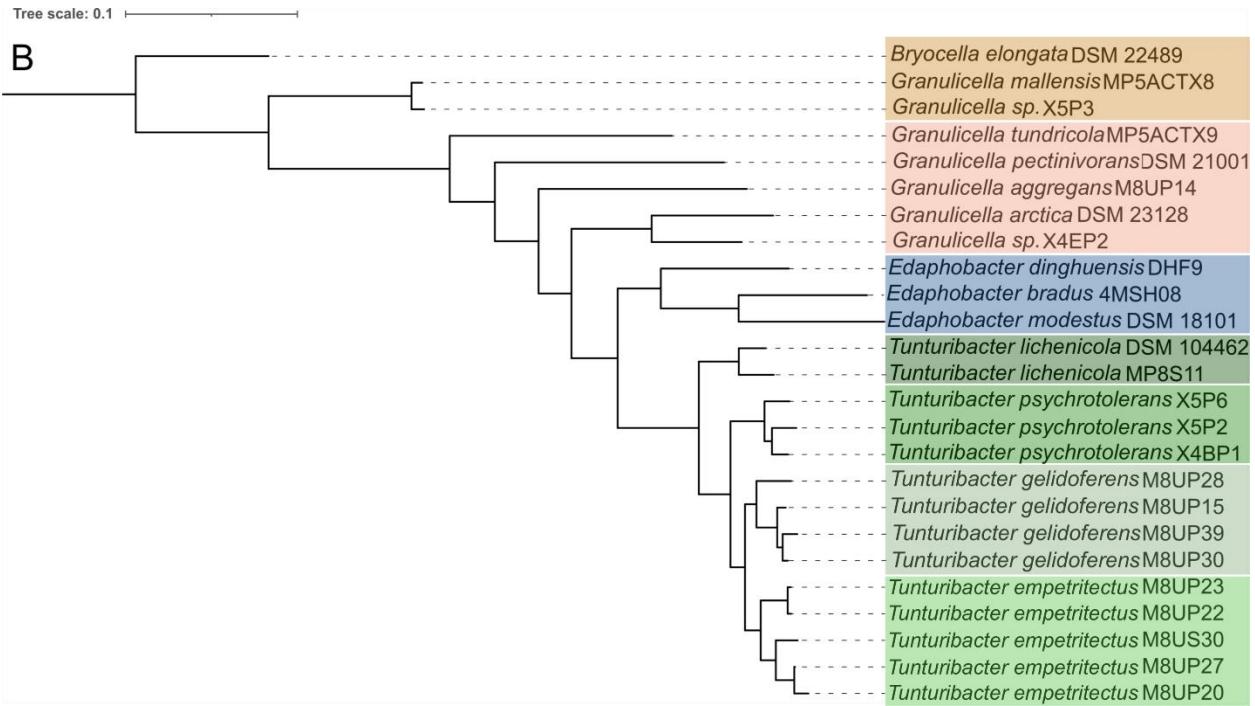
FIGURE LEGENDS

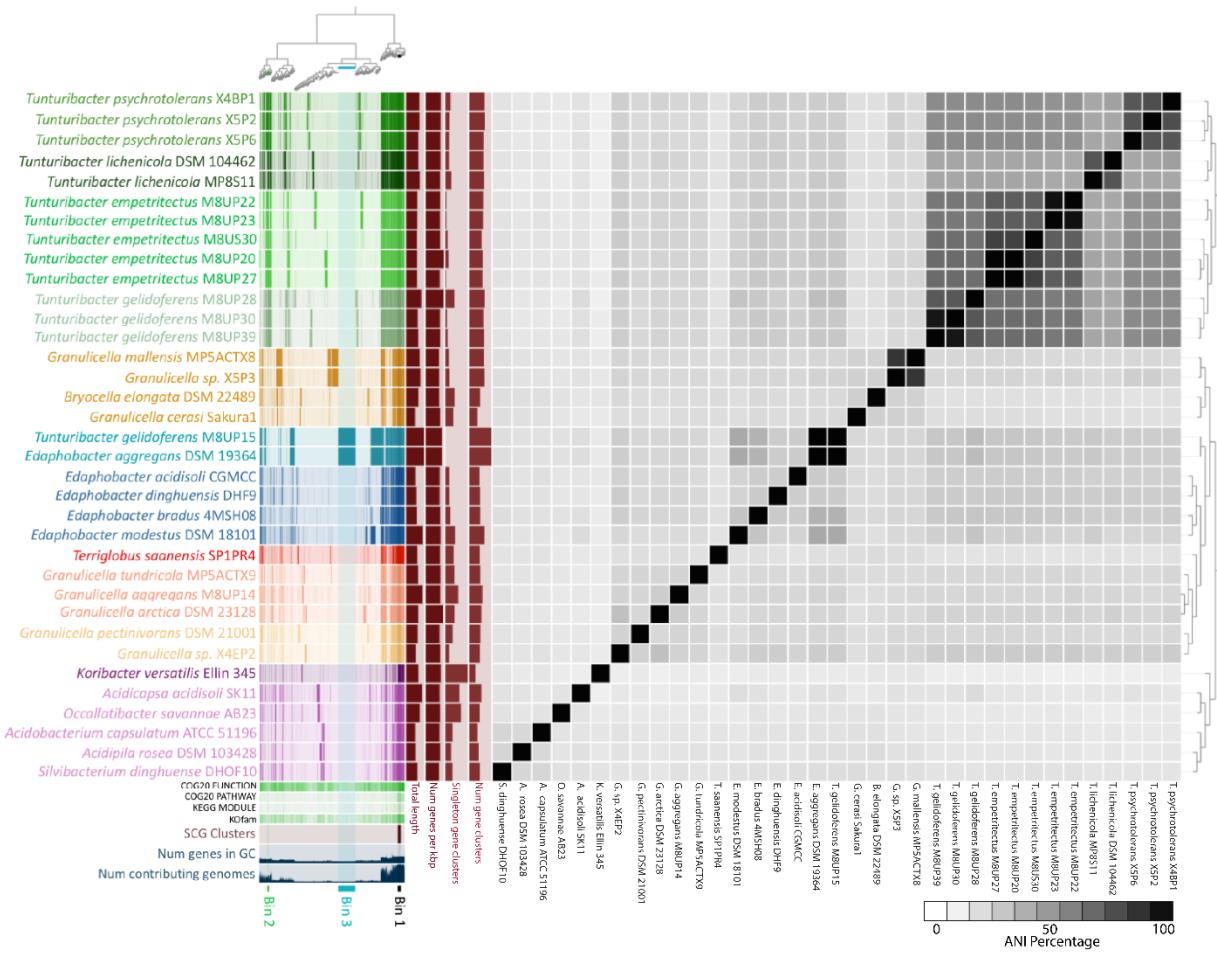
978 **Figure 1.** A) Single copy gene phylogeny of *Terriglobia* genomes, B) Sub-tree of the phylogenetic placement of the new *Tunturibacter* genus with more closely related genera. Accession numbers for genomes available from NCBI are listed in Table S3.

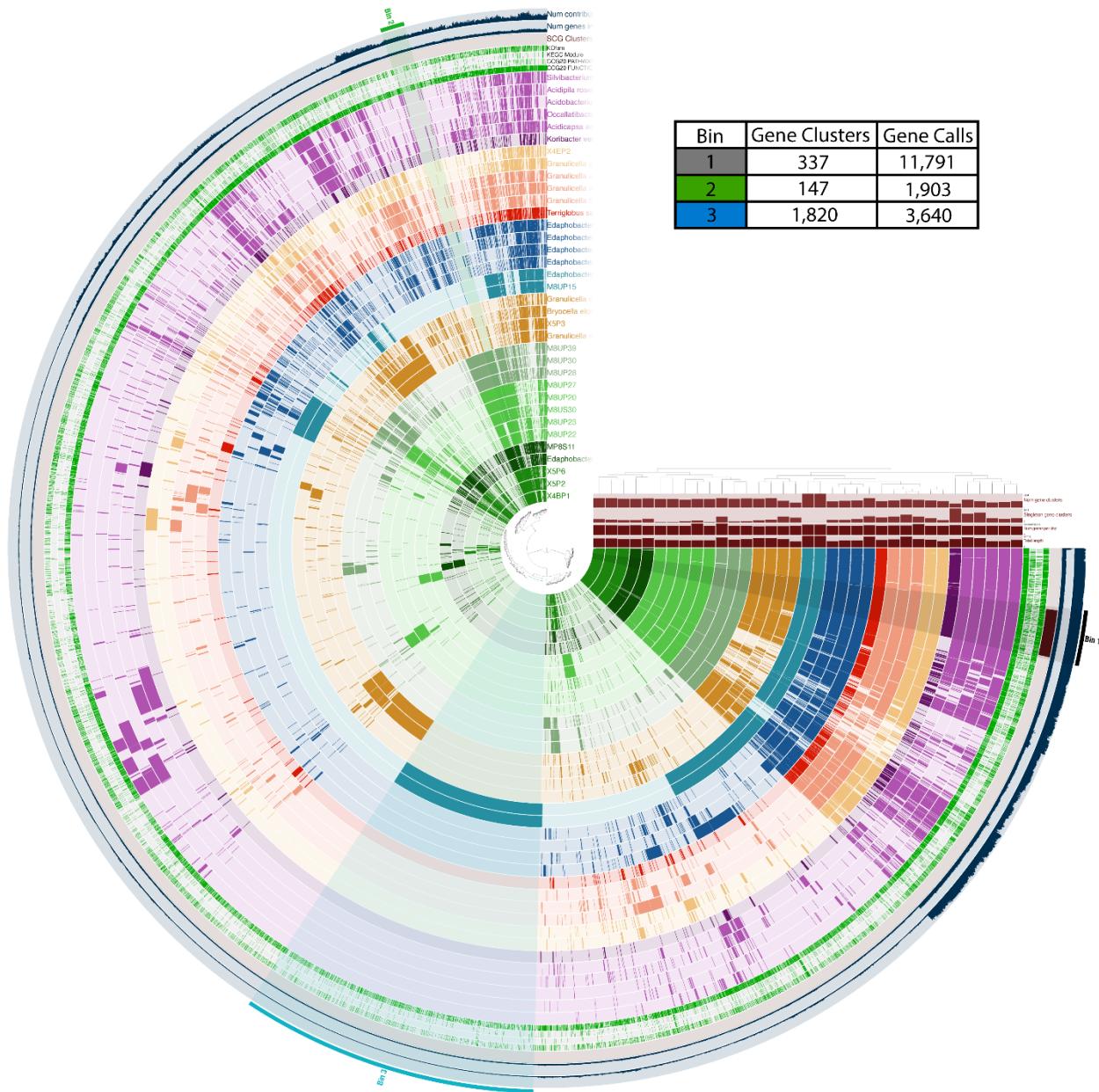
981
984 **Figure 2.** Pangenome analysis of the *Terriglobia* in the *Acidobacteriota*. Comparison of gene clusters between the 13 assembled tundra soil isolates and known *Terriglobia*.
987 Each row designating an *Acidobacteriota* strain starts with information on the presence of gene clusters (gene clusters are marked by the darker-colored regions within the row). This is followed by the red/maroon columns indicating levels of: genome total length, number of genes per kbp, singleton gene clusters, and number of gene clusters. These columns are followed by the ANI data from the pangenome analysis, and the grouping of the *Acidobacteriota* based on gene cluster frequency (right-hand tree).
990 Under the gene cluster presence rows are rows indicating COG20, KEGG, and Kofam annotations, SCG clusters, and number of genes and contributing genomes in the gene cluster.

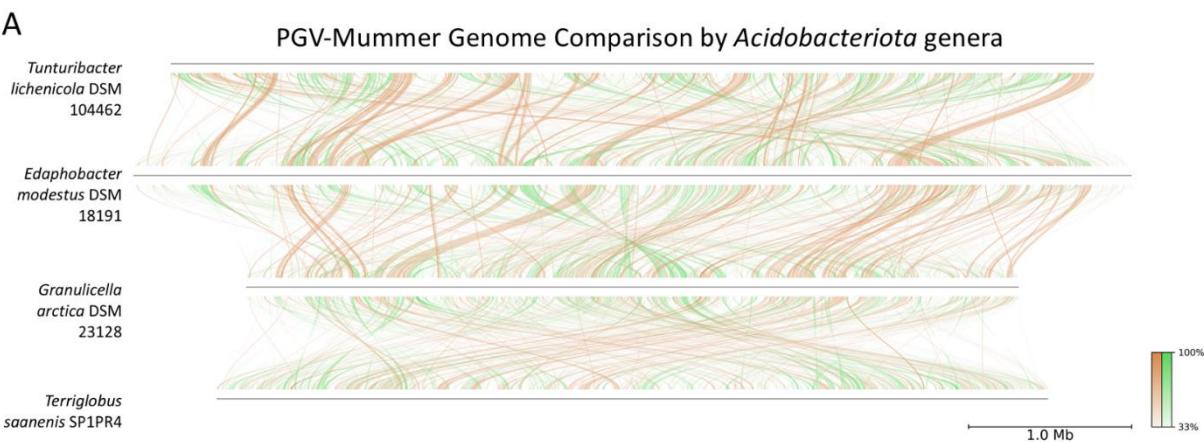
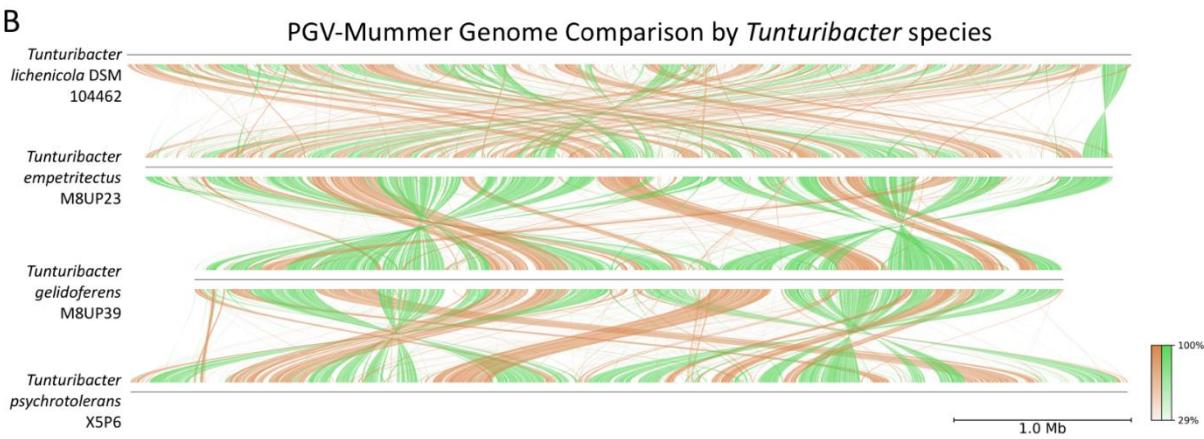
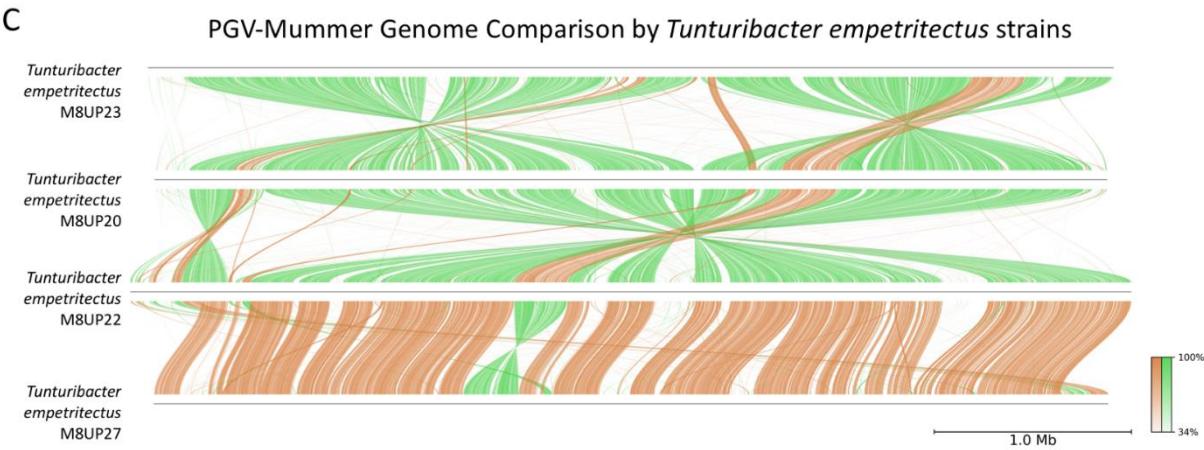
993
996 **Figure 3.** Circularized Anvio pangenome of the *Terriglobia*.

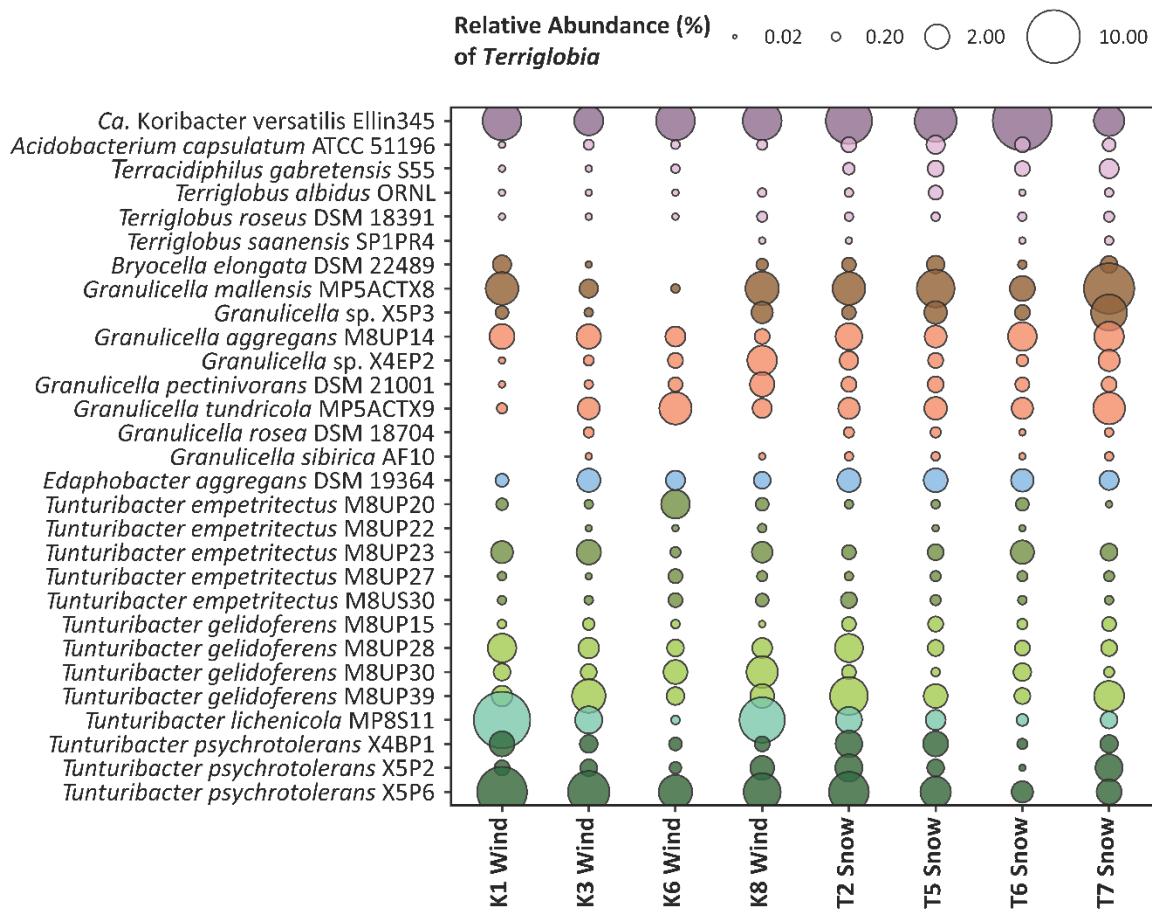
1002 **Figure 4.** Genome comparisons at various taxonomic levels. A) Comparison of 4 SD1 *Acidobacteriota* including *Tunturibacter lichenicola*. B) Comparison of the 4 species within the *Tunturibacter* (each species represents the type strain). C) Comparison of 4 strains within the *Tunturibacter empetritectus*. Genome comparisons were viewed via PGV-Mummer. Black horizontal lines indicate the span of the genome being compared, green lines connect homologous regions between the genomes in the same orientation (normal link), brown lines connect homologous regions of between the genomes in reverse orientation (inverted link). The shade of the green and brown indicate percent homology (bottom right legend, dark color means higher percent homology).


1005


Figure 5. *Terriglobia* community in soils of windswept (K1, K3, K6, K8) and snow-
accumulating (T2, T5, T6, T7) tundra heath plots of Mt. Pikku Malla. rRNA operon reads
from the *Acidobacteriota* represent 4.2-18.4% of the total bacterial reads.


Tree scale: 1




A



A**B****C**

Supplementary Methods and Results

Genome analysis and description of *Tunturibacter* gen. nov. expands the diversity of *Terriglobia* in tundra soils

Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof and Max M. Hägglom

Generating Illumina short-read sequences for MP8S11, M8UP39, X5P6, and M8UP23

Sequencing was performed via 300bp paired-end Illumina MiSeq V3. Demultiplexing was done via the Illumina bcl2fastq 1.8.4 software. Adapter remnants were clipped from the reads and then reads were quality trimmed by removing reads containing more than one N, removing bases or complete reads with sequencing errors, trimming reads at 3'-end to get a minimum average Phred quality score of 10 over a window of ten bases, and removing reads with final length < 20 bases. Error correction of quality trimmed reads was conducted via Musket version 1.0.6 (k-mer size for correction: 21) (Liu *et al.*, 2013).

rRNA operon analysis

rRNA operon amplification

DNA was extracted from tundra soil isolates using the DNeasy UltraClean Microbial Kit (Qiagen) according to manufacturer's instructions. The extracted DNA from these *Acidobacteriota* isolates was used for the genome assembly (main text methods; samples M8UP23, M8UP39, and X5P6 were not included in this operon analysis). For the operon analysis bacterial ribosomal RNA (rRNA) operons were targeted via the modified 16S rRNA-27F forward primer (5' TTT CTG TTG GTG CTG ATA TTG C-[barcode overhang for PCR labeling]-AGA GTT TGA TCC TGG CTC AG 3') (Lane, 1991) and the modified 23S rRNA-2241R reverse primer (5' ACT TGC CTG TCG CTC TAT CTT C-[barcode overhang for PCR labeling]-ACC GCC CCA GTH AAA CT 3') (Hunt *et al.*, 2006; Kerkhof *et al.*, 2017). To generate ribosomal operon amplicons, these primers were added to a 25 µl PrimeStar GXL reaction with 1 µl extracted DNA, Oxford Nanopore barcodes, dNTPs, Taq polymerase, and 5X PCR buffer. Operons were then amplified with the following PCR conditions: 3 min denaturation at 94°C, 25 cycles of 10s melting at 98°C, 15s annealing at 60°C, 5 min extension at 68°C, followed by a 7min hold at 72°C. PCR product for each sample was visualized by agarose gel electrophoresis and amplicons were pooled in equimolar ratios (50 ng/sample). This pool was then cleaned with 0.5 volume of AMPure beads, 5 minute room temperature incubation, two 70% ethanol washes, and elution into 47 µl of 10mM Tris after a 5 minute room temperature incubation.

Library preparation and MinION sequencing

The operon library, consisting of operon amplicons from the isolates, was prepared for sequencing using the MinION end-repair ligation protocol LSK109 chemistry (Oxford Nanopore Technologies). Briefly, 1 µg (45 µl) of the pooled amplicons was added to 7 µl of end-repair

reaction buffer, 3 μ l end-repair enzyme mix, 2.5 μ l dNTPs, and brought to 60 μ l with ultra-pure water. dA-tailing was done via the following conditions: 20°C for 6 minutes, 65°C for 5 minutes, cool to 4°C. dA-tailed amplicons were then bead-cleaned with 30 μ l AMPure beads, followed by a 5 minute room temperature incubation, two 70% ethanol washes, and elution into 60 μ l 10 mM Tris after a 5 minute room temperature incubation. Ligation was performed by transferring the bead-cleaned amplicons to a low-bind tube and then amplicons were adapter ligated by adding the following solutions sequentially: 58 μ l bead-cleaned amplicon DNA, 5 μ l adapter mix (AMX-F), 25 μ l ligation buffer (LNB), and 12 μ l blunt/TA ligation master mix. Then 2 μ l of freshly prepared ATP solution (~4 mg/ml) was added and the mixture was incubated at room temperature for 30 minutes. A final bead-cleaned was performed by adding 40 μ l of AMPure beads, 5 minute room temperature incubation, two washes with 200 μ l Long Fragment Buffer (LFB), and eluted into 15 μ l of elution buffer (EB) after a 5 minute room temperature incubation. 5 μ l of the final bead-cleaned library was transferred to a low-bind tube and loaded onto a flongle as per the manufacturer's instructions and run with fast basecalling enabled. Once sequenced, the resulting passed reads were input into the Guppy basecaller (V 6.0.1 Oxford Nanopore Technologies). For the *Acidobacteriota* strains, a total of ~9,500 reads that passed Guppy basecalling were produced from MinION sequencing.

Operon long read consensus reconstruction

The passed reads from basecalling were then input into Geneious for quality control, demultiplexing, and long-read consensus building. Reads between 4,000-5,700bp were kept and operons from each sample were obtained by extracting the sequence in between the annotated forward and reverse MinION barcodes. All reads were inspected for size and forward orientation, reverse complementing any reads in reverse orientation. Long-read consensus construction was conducted for the 15 *Acidobacteriota* isolate samples via an iterative LastZ alignment approach (Harris, 2007). Briefly, for each *Acidobacteriota* sample, all sequences were aligned via MUSCLE (1 iteration, V 3.8.425) (Edgar, 2004) and the distance matrix was inspected to extract the 100 best aligned sequences. These sequences were divided into quarters and the last 25 were MUSCLE aligned and then inspected to extract the 10 best aligned sequences. Another MUSCLE alignment (4 iterations) of these 10 best sequences was run to create a consensus sequence. This consensus sequence was then used for a LastZ alignment (V 1.02.00) with the 10 best aligned sequences to create the first iteration of the final consensus sequence (termed "con 1A"). Con 1A was then run through a LastZ alignment with the bottom quarter of the first 100 best sequences to create the second iterative consensus sequence "Con 2A". Then each new consensus sequence iteration was LastZ aligned to each quarter of the 100 best aligned sequences, all the 100 best aligned sequences, and the first MUSCLE alignment of all sequences. This produced the final consensus with adequate coverage and length for operon annotation. The number of sequences (post Geneious demultiplexing and quality control) and final LRC length for each *Acidobacteriota* operon is recorded in Supp. Table S7. The lengths of our LRC operons spanned from ~4,200bp – 4,800bp, and the average length was ~4,767bp.

Operon annotation and phylogenetic tree analysis

We annotated the 16S rRNA, tRNA-ala, tRNA-leu, and the beginning of the 23S rRNA gene for all 15 *Acidobacteriota* isolate consensus sequences using already annotated

Acidobacteriota operons from a curated rRNA operon database (Kerkhof *et al.*, 2022). We also annotated and extracted the operons from the assemblies of the 3 isolates included in the genome analysis (M8UP23, M8UP39, and X5P6). These *Acidobacteriota* annotated operons were aligned to other known SD1 *Acidobacteriota* operons via 4 MUSCLE iterations (Edgar, 2004). The alignment was viewed and edited in Geneious to remove ambiguously aligned bases and the ITS regions between the 16S rRNA, tRNAs, and 23S rRNA genes. A phylogenetic tree of the resulting unambiguous alignment (3,905 bp) was then constructed via the maximum likelihood method (FastTree V 2.1.11 with default settings) (Price *et al.*, 2010).

56 total operons were used for the tree and the closest relative of the 15 *Acidobacteriota* operons (generated in our operon analysis) are noted in Table S6. Two of our operon isolates (M8UP14 and MP5ACTX2) were removed from the operon tree due to redundancy. In this operon tree (Supp. Fig. 1A), we see clear separation of the LRCs that group with the previously named “*Edaphobacter lichenicola*” from the other *Edaphobacter* species. We consider this a new genus of SD1 *Acidobacteriota* and name it *Tunturibacter*. Within this genus it appears that there are at least 4 species, each with several strains as seen in Fig. S1B. It also appears that *Granulicella mallensis*, *G. paludicola*, and *G. cerasi* that group with *Bryocella elongata* are clustering separately from the other *Granulicella* species and may represent a separate genus as well (Fig. S1A). This tree had similar topology to a 16S rRNA tree (Fig. S2A) constructed with the same method (unambiguous MUSCLE alignment of the 16S rRNA region – 1,419bp - and FastTree construction) using 62 *Acidobacteriota* species/strains (not including redundant M8UP14 and MP5ACTX2). The 16S rRNA gene sub-tree also separates the 4 new species within the proposed *Tunturibacter* genus (Fig. S2B).

Bacterial single copy genes used via GToTree

The 74 bacterial single copy genes used for phylogenetic analysis via GToTree are available for download at: <https://zenodo.org/record/7860735/files/Bacteria.hmm?download=1>

The pfam names of these SCGs are:

5-FTHF_cyc-lig, Adenylsucc_synt, ADK, AICARFT_IMPCHas, ATP-synt, ATP-synt_A, Chorismate_synt, EF_TS, eIF-1a, Exonuc_VII_L, Exonuc_VII_S, GrpE, Ham1p_like, IPPT, OSCP, Peptidase_A8, Pept_tRNA_hydro, PGK, PseudoU_synth_1, RBFA, RecO_C, Ribonuclease_P, Ribosomal_L1, Ribosomal_L13, Ribosomal_L14, Ribosomal_L16, Ribosomal_L17, Ribosomal_L18p, Ribosomal_L19, Ribosomal_L20, Ribosomal_L21p, Ribosomal_L22, Ribosomal_L23, Ribosomal_L24, Ribosomal_L27, Ribosomal_L27A, Ribosomal_L28, Ribosomal_L29, Ribosomal_L3, Ribosomal_L32p, Ribosomal_L34, Ribosomal_L35p, Ribosomal_L4, Ribosomal_L6, Ribosomal_L9_C, Ribosomal_S10, Ribosomal_S11, Ribosomal_S13, Ribosomal_S15, Ribosomal_S16, Ribosomal_S17, Ribosomal_S19, Ribosomal_S2, Ribosomal_S20p, Ribosomal_S6, Ribosomal_S7, Ribosomal_S8, Ribosomal_S9, Ribosomal_S12_S23, RNA_pol_L, RNA_pol_Rpb6, RRF, RsfS, RuvX, SecE, SecG, SecY, SmpB, tRNA-synt_1d, tRNA_m1G_MT, TsaE, UPF0054, YajC, and YidD

References

Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**: 113.

Harris, R.S. (2007) Improved pairwise alignment of genomic DNA. PhD thesis.

Hunt, D.E., Klepac-Ceraj, V., Acinas, S.G., Gautier, C., Bertilsson, S., and Polz, M.F. (2006) Evaluation of 23S rRNA PCR Primers for Use in Phylogenetic Studies of Bacterial Diversity. *Applied and Environmental Microbiology* **72**: 2221–2225.

Kerkhof, L.J., Dillon, K.P., Häggblom, M.M., and McGuinness, L.R. (2017) Profiling bacterial communities by MinION sequencing of ribosomal operons. *Microbiome* **5**: 116.

Kerkhof, L.J., Roth, P.A., Deshpande, S.V., Bernhards, R.C., Liem, A.T., Hill, J.M., et al. (2022) A ribosomal operon database and MegaBLAST settings for strain-level resolution of microbiomes. *FEMS Microbes* **3**: xtac002.

Lane, D.J. (1991) 16S/23S rRNA sequencing. In *16S/23S rRNA sequencing*. Chichester, England: John Wiley & Sons Ltd., pp. 115–175.

Liu, Y., Schröder, J., and Schmidt, B. (2013) Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. *Bioinformatics* **29**: 308–315.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. *PLOS ONE* **5**: e9490.

Supplementary Tables and Figures

Genome analysis and description of *Tunturibacter* gen. nov. expands the diversity of *Terriglobia* in tundra soils

Adriana Messyasz, Minna K. Männistö, Lee J. Kerkhof and Max M. Häggblom

Supplementary Table S1. Genome assemblies.

Supplementary Table S2. Plasmid database highest identity hit for second longest contig in genome assemblies.

Supplementary Table S3. Accession numbers for NCBI genomes.

Supplementary Table S4. Phenotypic data for *Tunturibacter* strains.

Supplementary Table S5. Enriched genes from the enriched functional pathways within the *Tunturibacter* species.

Supplementary Table S6. NCBI Accession numbers for *Tunturibacter* gen. nov. 16S rRNA genes and genomes.

Supplementary Table S7. Operon long read consensus (LRC) data.

Supplementary Figure S1A. rRNA operon phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).

Supplementary Figure S1B. rRNA operon phylogeny of novel *Tunturibacter* genus (accession numbers for genomes taken from NCBI are in Supp. Table S2).

Supplementary Figure S2A. 16S rRNA gene phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).

Supplementary Figure S2B. 16S rRNA gene phylogeny of novel *Tunturibacter* species (accession numbers for genomes taken from NCBI are in Supp. Table S2).

Supplementary Figure S3. Orthogroup phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).

Supplementary Figure S4. Mauve genome comparison.

Supplementary Figure S5. Distribution of major CAZy family genes (% of total predicted genes).

Supplementary Figure S6. Colony morphology and photomicrographs of *Tunturibacter* strains.

Supplementary Table S1. Genome assemblies.

Strain	Total MinION reads	Total basecalled reads	Tracycлер output total bp	Tracycлер contigs	Tracycлер completeness	Tracycлер contamination	Polypolish output total bp	Polypolish contigs	Polished completeness	Polished contamination	Illumina reads (R1)	Illumina reads source	GTDB relative, closest ANI, AA % in MSA
M8UP30	99,451	57,516	5,287,291	2	90.52	0.86	5,289,310	2	100.00	0.86	10,793,290	JGI: Edaphobacter lichenicola M8UP30 (Project ID: 1254311)	GCF_013410115.1 Edaphobacter lichenicola, 100, 93.33
MP5ACTX2	160,979	55,460	5,590,690	6	95.52	0.86	NA	NA	NA	NA	NA	NA	GCF_013410065.1 Granulicella B arctica, 79.66, 86.96
M8UP20	63,710	41,308	4,908,185	2	89.31	0.00	NA	NA	NA	NA	NA	NA	GCF_014201315.1 Edaphobacter lichenicola, 99.89, 76.45
M8UP27	118,141	33,801	4,896,458	2	89.66	0.86	4,897,989	2	100.00	0.05	5,117,144	JGI: Edaphobacter lichenicola M8UP27 (Project ID: 1254301)	GCF_013410115.1 Edaphobacter lichenicola, 100, 93.33
M8UP28	123,689	71,052	6,830,749	2	91.42	0.86	NA	NA	NA	NA	NA	NA	GCF_013410115.1 Edaphobacter lichenicola, 89.77, 80.9
X4BP1	71,590	50,435	6,127,097	1	91.21	0.86	6,129,460	1	100.00	0.86	7,169,664	JGI: Edaphobacter lichenicola X4BP1 (Project ID: 1254307)	GCF_014201335.1 Edaphobacter lichenicola, 90.93, 91.74
X5P3	222,828	63,146	6,506,373	1	93.07	2.63	6,509,459	1	100.00	2.63	5,630,000	JGI: Granulicella mallensis X5P3 (Project ID: 1254317)	GCF_014203225.1 Granulicella mallensis A, 100, 94.12
X4EP2	733,456	71,8215	4,305,473	1	96.58	1.71	4,305,847	1	100.00	1.71	6,319,706	JGI: Granulicella arctica X4EP2 (Project ID: 1254323)	GCF_013410065.1 Granulicella B arctica, 100, 93.91
MP8S11	122,775	86,931	6,273,739	2	88.84	1.90	6,275,948	2	100.00	1.72	536,285	Previous assembly	GCF_014201335.1 Edaphobacter lichenicola, na, 92.97
M8UP22	53,858	38,398	5,088,737	2	93.17	0.43	5,091,646	2	99.78	0.00	6,776,254	JGI: Edaphobacter lichenicola M8UP22 (Project ID: 1254299)	GCF_013410875.1 Edphobacter lichenicola, 100, 94.06
M8UP39	22,410	15,636	5,579,037	2	94.83	0.86	5,581,845	2	100.00	0.86	901,687	Previous SPAdes assembly	GCF_013410115.1 Edaphobacter lichenicola, 98.07, 93.31
X5P6	43,422	24,621	5,633,542	2	91.16	0.86	5,636,298	2	100.00	0.86	896,994	Previous SPAdes assembly	GCF_013410875.1 Edaphobacter lichenicola, 90.3, 92.5
M8UP23	61,597	39,643	5,027,926	3	94.49	0.00	5,030,191	3	99.78	0.00	815,655	Previous SPAdes assembly	GCF_013410875.1 Edaphobacter lichenicola, 98.51, 94.08

Supplementary Table S2. Plasmid database highest identity hit for second longest contig in genome assemblies.

Genome	Plasmid Database Hit Result			
	% Identity	P-value	Plasmid Taxonomy	Plasmid length (bp)
M8UP23	75.83	2.93e-15	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
M8UP22	74.38	5.66e-12	Paracoccus aminovorans isolate JCM7685 plasmid III	4,158
M8UP27	74.38	7.09e-11	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
M8UP20	75.83	1.01e-15	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
M8UP39	74.38	4.26e-10	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
M8UP30	74.38	5.11e-10	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
M8UP28	74.38	1.33e-9	Granulicella tundricola MP5ACTX9 plasmid pACIX903	188,167
X5P6	71.97	3.81e-06	Sphingobium xenophagum QYY plasmid pSx-Qyy	5,683
MP8S11	74.38	1.32e-8	Granulicella tundricola MP5ACTX9 plasmid pACIX904	115,493
MP5ACTX2	82.36	4.31e-94	Granulicella tundricola MP5ACTX9 plasmid pACIX905	115,221

Supplementary Table S3. Accession numbers for NCBI genomes.

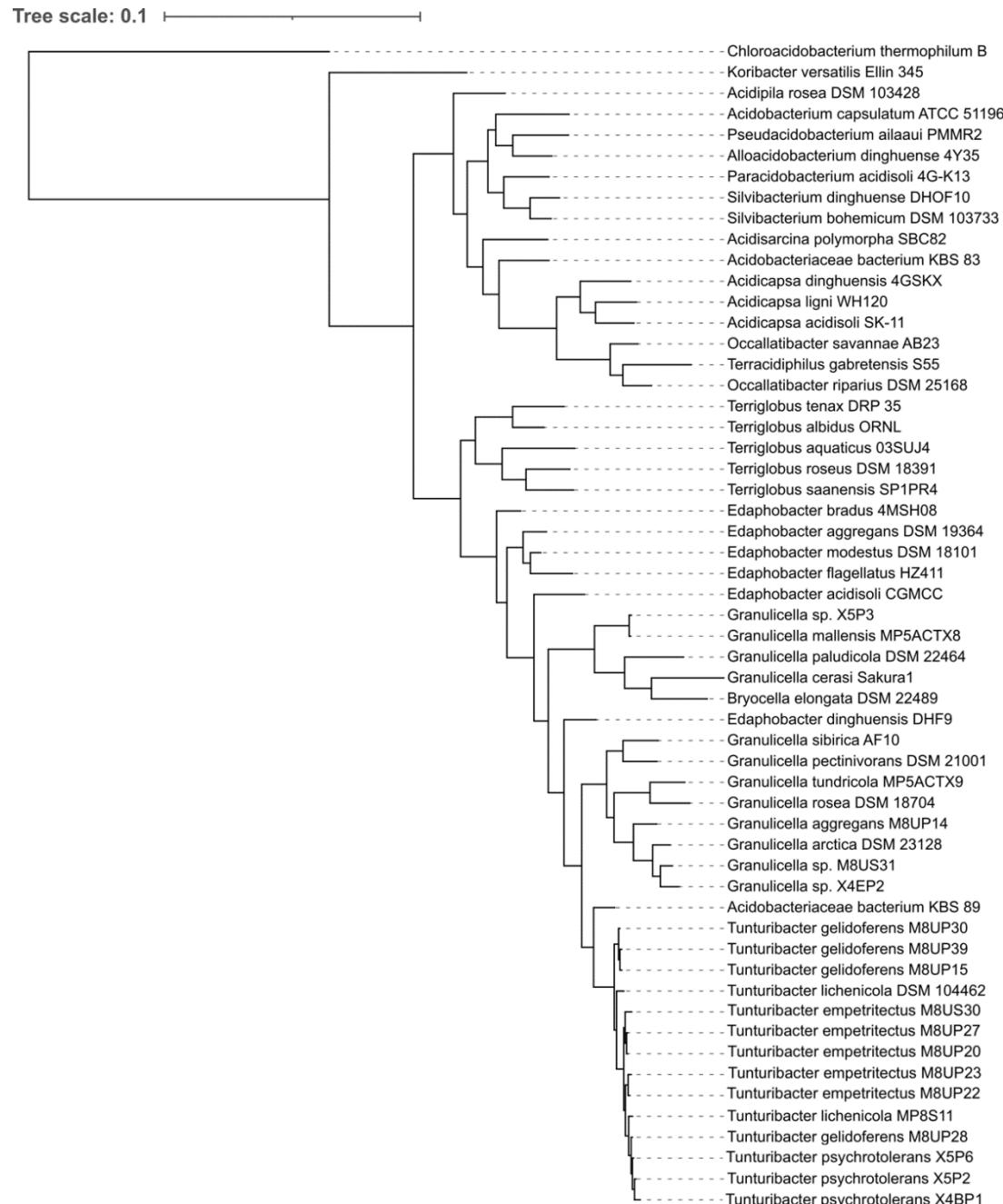
Acidobacteriota	Genome accession num.	16S accession num.
<i>Acidicapsa acidiphila</i> MCF10	n/a	NR_148579.1
<i>Acidicapsa acidisoli</i> SK11	GCF_025685625.1	NR_148580.1
<i>Acidicapsa borealis</i> KA1	n/a	NR_117182.1
<i>Acidicapsa dinghuensis</i> 4GSKX	GCF_025685685.1	NR_179686.1
<i>Acidicapsa ferrireducens</i> MCF9	n/a	NR_149202.1
<i>Acidicapsa ligni</i> WH120	GCF_025685655.1	NR_116444.1
<i>Acidipila rosea</i> DSM 103428	GCF_004339725.1	n/a
<i>Acidisarcina polymorpha</i> SBC82	GCF_003330725.1	NR_180095.1
<i>Acidobacteriaceae bacterium</i> KBS 83	GCF_000381585.1	n/a
<i>Acidobacteriaceae bacterium</i> KBS 89	GCF_000381605.1	n/a
<i>Acidobacterium capsulatum</i> ATCC 51196	GCF_000022565.1	NR_074106.1
<i>Alloacidobacterium dinghuense</i> 4Y35	GCF_014274465.1	NR_181376.1
<i>Bryocella elongata</i> DSM 22489	GCF_900108185.1	n/a
<i>Chloracidobacterium thermophilum</i> B	GCF_018304665.1	NR_074296.1
<i>Edaphobacter acidisoli</i> CGMCC	GCF_014642855.1	n/a
<i>Edaphobacter aggregans</i> DSM 19364	GCF_000745965.1	n/a
<i>Edaphobacter bradus</i> 4MSH08	GCF_025685645.1	NR_179685.1
<i>Edaphobacter dinghuensis</i> DHF9	GCF_025685705.1	NR_147748.1
<i>Edaphobacter flagellatus</i> HZ411	GCF_025264665.1	NR_179102.1
<i>Edaphobacter modestus</i> DSM 18101	GCF_004217555.1	n/a
<i>Granulicella acidiphila</i> MCF40	n/a	NR_148567.1
<i>Granulicella aggregans</i> M8UP14	GCF_014203275.1	n/a
<i>Granulicella arctica</i> DSM 23128	GCF_025685605.1	n/a
<i>Granulicella cerasi</i> Sakura1	GCF_025685575.1	NR_134047.1
<i>Granulicella mallensis</i> MP5ACTX8	GCF_000178955.2	n/a
<i>Granulicella paludicola</i> OB1010	GCF_025685545.1	NR_115072.1
<i>Granulicella pectinivorans</i> DSM 21001	GCF_900114625.1	n/a
<i>Granulicella rosea</i> DSM 18704	GCF_900188085.1	n/a
<i>Granulicella sapmiensis</i> S6CTX5A	n/a	NR_118023.1
<i>Granulicella sibirica</i> AF10	GCF_004115155.1	NR_180238.1
<i>Granulicella tundricola</i> MP5ACTX9	GCF_000178975.2	NR_118021.1
<i>Koribacter versatilis</i> Ellin 345	GCF_000014005.1	n/a
<i>Occallatibacter riparius</i> DSM 25168	GCF_025264625.1	n/a
<i>Occallatibacter savannae</i> AB23	GCF_003131205.1	n/a
<i>Paracidobacterium acidisoli</i> 4G-K13	GCF_003428625.2	NR_179684.1
<i>Pseudacidobacterium ailaui</i> PMMR2	GCF_000688455.1	NR_153719.1
<i>Silvibacterium bohemicum</i> DSM 103733	GCF_014201455.1	n/a
<i>Silvibacterium dinghuense</i> DHOF10	GCF_004123295.1	NR_147722.1
<i>Telmatobacter bradus</i> TPB6017	n/a	NR_115074.1
<i>Terracidiphilus gabretensis</i> S55	GCF_001449115.1	NR_146368.1
<i>Terriglobus albidus</i> ORNL	GCF_008000815.1	n/a
<i>Terriglobus aquaticus</i> 03SUI4	GCF_025685415.1	NR_135733.1
<i>Terriglobus roseus</i> DSM 18391	GCF_000265425.1	n/a
<i>Terriglobus saanensis</i> SP1PR4	GCF_000179915.2	NR_117834.1
<i>Terriglobus tenax</i> DRP 35	GCF_025685395.1	NR_133877.1
<i>Tunturibacter empetritectus</i> M8US30	GCF_014201375.1	n/a
<i>Tunturibacter gelidoferens</i> M8UP15	GCF_014201365.1	n/a
<i>Tunturibacter lichenicola</i> DSM 104462	GCF_025264645.1	n/a
<i>Tunutribacter psychrotolerans</i> X5P2	GCF_014201335.1	n/a

Supplementary Table S4. Phenotypic data for *Tunturibacter* strains.

Phenotypic Data	M8UP23	M8UP39	X5P6	T. lichenicola (Dedysh et al., 2018)
Hydrolysis of polysaccharides				
CMC	-	w	w	
Xylan	+	+	-	+
Pectin	+	+	+	-
Lichenin	-	+	+	+
Starch	-	w	+	-
Xanthan	+	-	+	
Gum arabic	+	w	+	
API ZYM tests				
Alkaline phosphatase	+	+	+	+
Esterase (C4)	+	+	-	+
Esterase (C8)	-	+	+	+
Lipase (C14)	-	-	-	-
Leucine arylamidase	+	+	+	+
Valine arylamidase	+	+	+	+
Cystine arylamidase	+	+	+	+
Trypsin	-	-	+	-
α -chymotrypsin	-	-	+	+
Acid phosphatase	+	+	+	+
Naphtol-AS-BI-phophohydrolase	+	+	+	+
α -galactosidase	+	+	+	+
β -galactosidase	+	+	+	+
β -glucuronidase	+	+	+	+
α -glucosidase	+	+	+	+
β -glucosidase	+	+	+	+
N-acetyl- β -glucosaminidase	+	+	+	+
α -mannosidase	-	-	-	-
α -fucosidase	+	-	-	-
Quinones				
	MK-8	MK-8	MK-8	MK-8
Major cellular fatty acids				
	i-15:0, i-13:0, 16:1 ω 7c, 16:0	i-15:0, i-13:0, 16:1 ω 7c, 16:0	i-15:0, i-13:0, 16:1 ω 7c, 16:0	

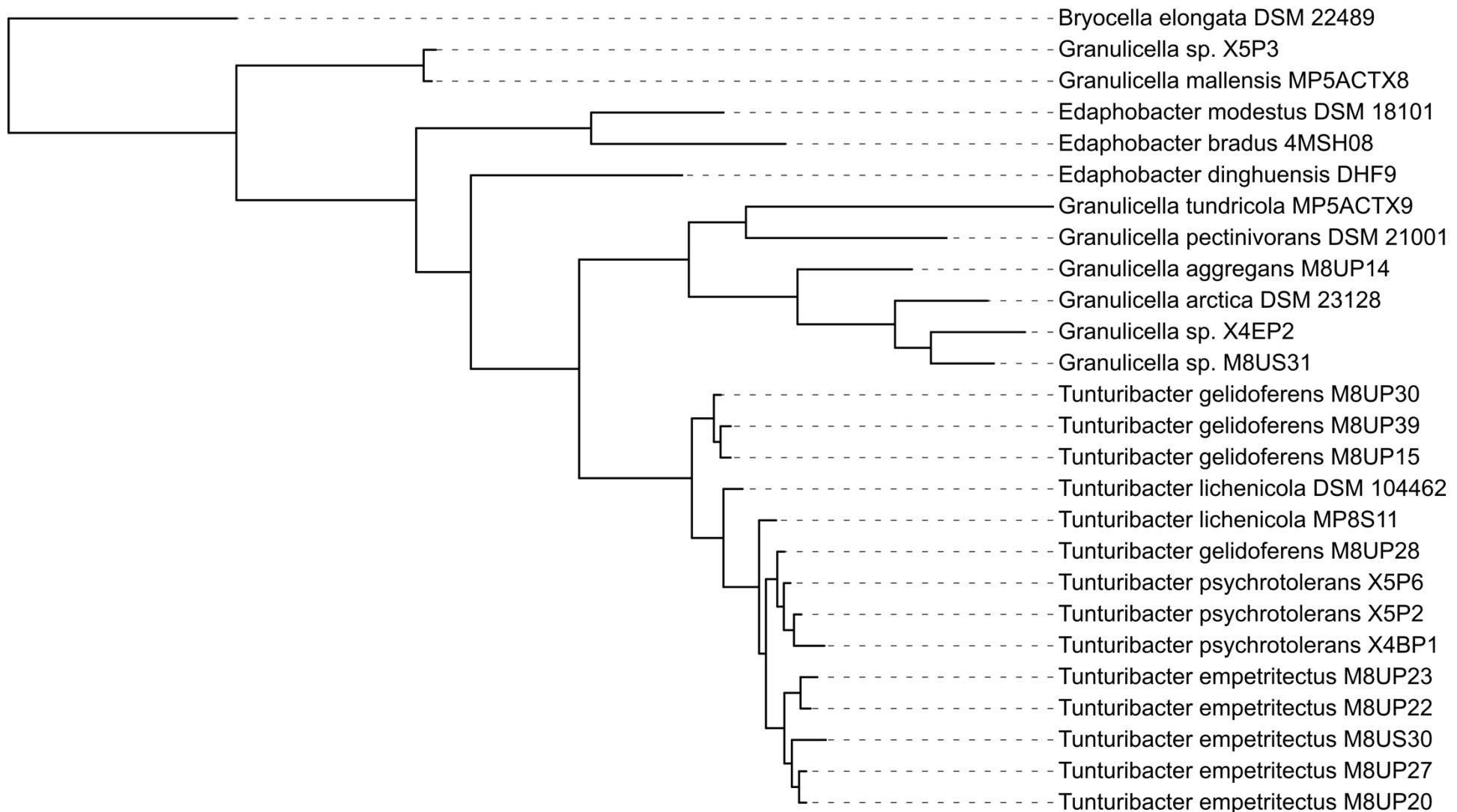
+: positive reaction, -: negative reaction, w : weak positive reaction

Supplementary Table S5. Enriched genes from the enriched functional pathways within the *Tunturibacter* species.

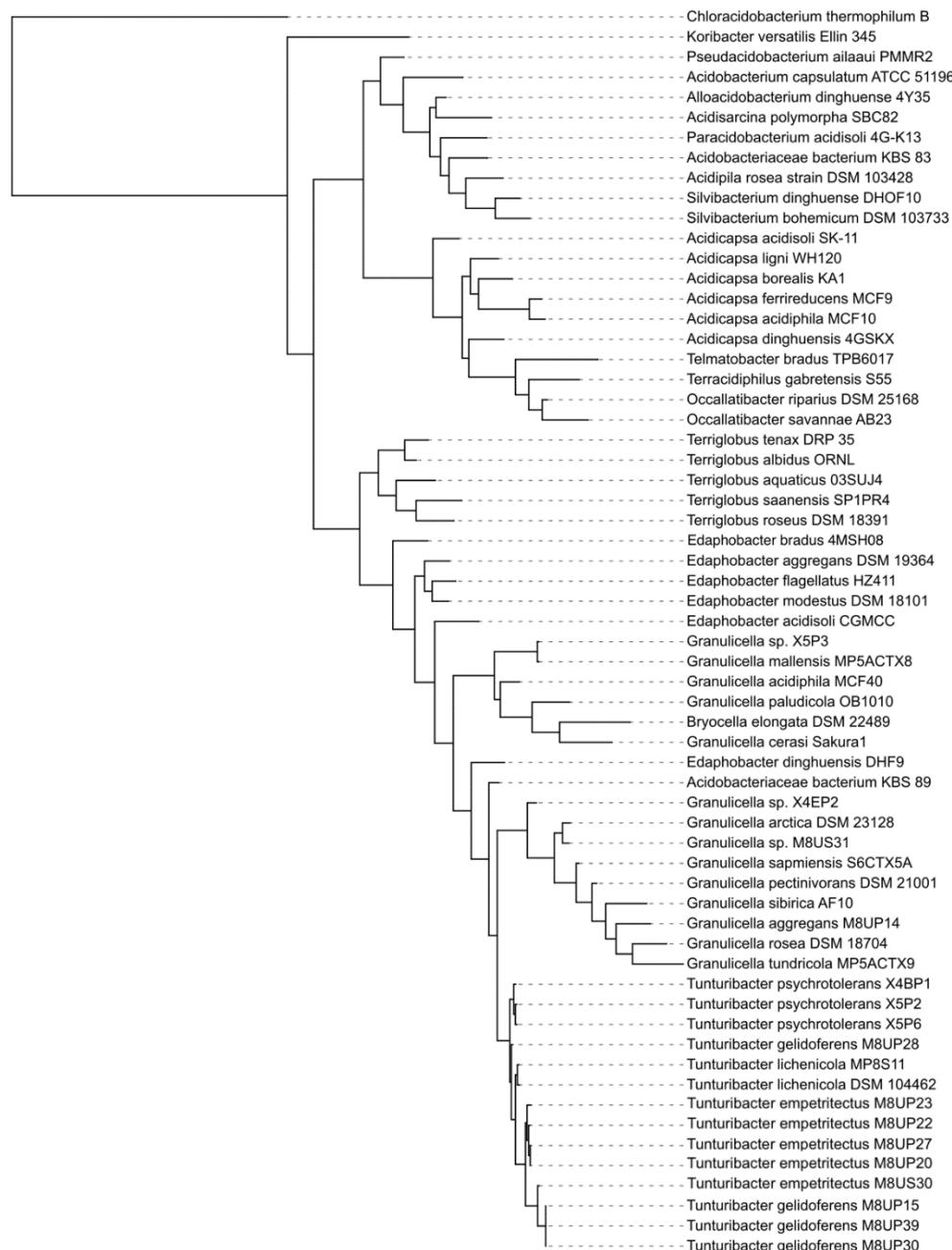

KEGG Module	Accession	Genes
Aromatic amino acid metabolism: Tryptophan metabolism	M00038; M00912	Selenocysteine lyase/Cysteine desulfurase (CsdA); Tryptophan 2,3-dioxygenase (vermillion) (TDO2); Kynurenine formamidase
Amino acid metabolism: Betaine biosynthesis	M00555; M00032; M00135	Acyl-CoA reductase or other NAD-dependent aldehyde dehydrogenase (AdhE)
COG20 Pathway	Accession	Genes
Menaquinone biosynthesis	COG0318	O-succinylbenzoic acid-CoA ligase MenE or related acyl-CoA synthetase (AMP-forming) (MenE/FadK)
Lysine biosynthesis	COG3320	Thioester reductase domain of alpha amino adipate reductase Lys2 and NRPSs (Lys2b)
Cobalamin/B12 biosynthesis	COG1010; COG2243	Precorrin-3B methylase; Precorrin-2 methylase
Pyrimidine salvage	COG0402	Cytosine/adenosine deaminase or related metal-dependent hydrolase
Biotin biosynthesis	COG2226	Ubiquinone/menaquinone biosynthesis C-methylase UbiE/MenG
Molybdopterin biosynthesis	COG0314; COG1977	Molybdopterin synthase catalytic subunit MoaE; Molybdopterin synthase sulfur carrier subunit MoaD

Supplementary Table S6. NCBI Accession numbers for *Tunturibacter* gen. nov. 16S rRNA genes and genomes

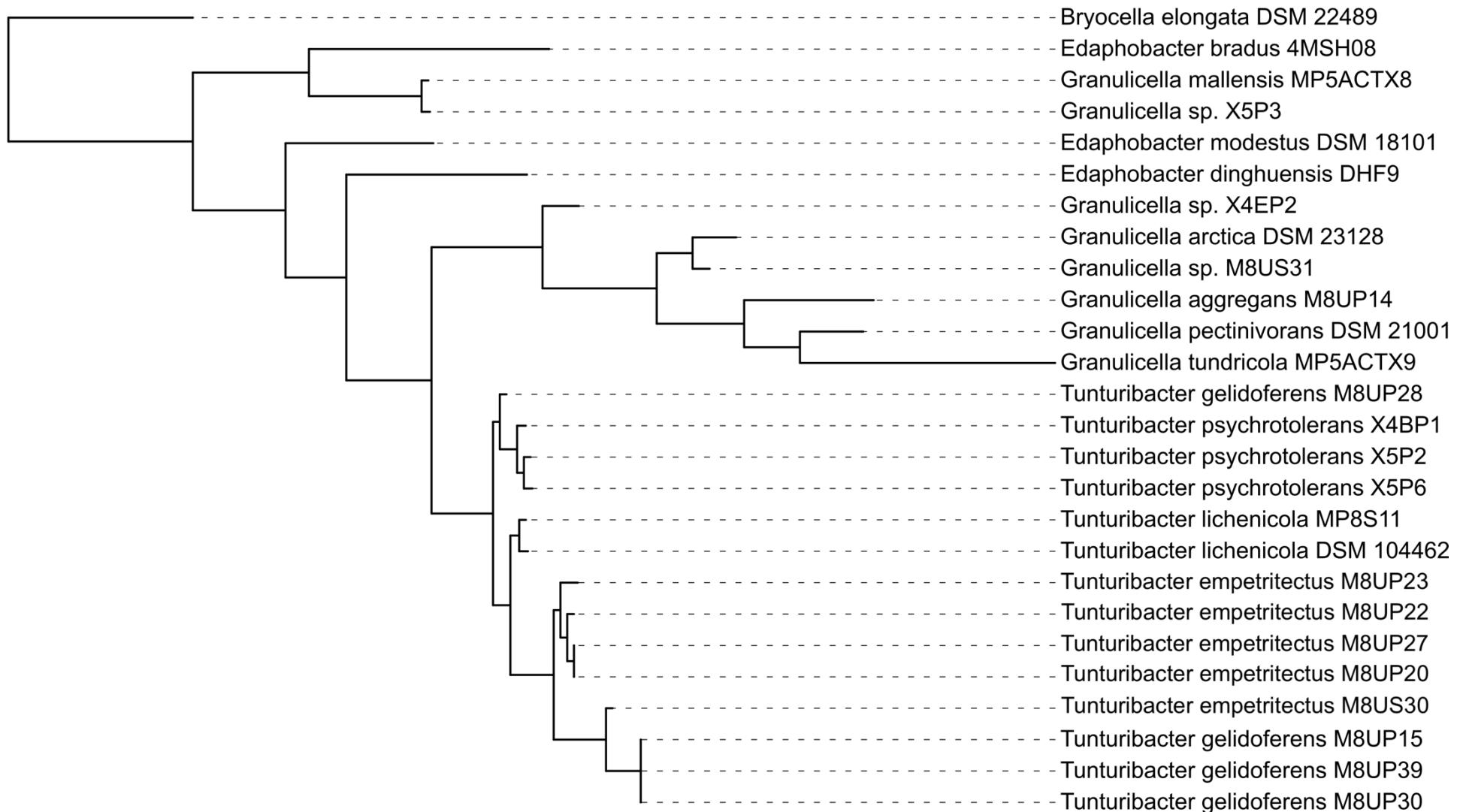
<i>Tunturibacter</i> species	16S rRNA gene accession	Genome accession	Genome Localid
<i>Tunturibacter lichenicola</i> MP8S11	OR449317	CP132944-CP132945	SAMN36939420
<i>Tunturibacter empetritectus</i> M8UP23	OR449309	CP132932-CP132934	SAMN36939426
<i>Tunturibacter empetritectus</i> M8UP20	OR449312	CP132926-CP132927	SAMN36939429
<i>Tunturibacter empetritectus</i> M8UP22	OR449313	CP132930-CP132931	SAMN36939427
<i>Tunturibacter empetritectus</i> M8UP27	OR449314	CP132928-CP132929	SAMN36939428
<i>Tunturibacter gelidoferens</i> M8UP39	OR449311	CP132937-CP132938	SAMN36939424
<i>Tunturibacter gelidoferens</i> M8UP28	OR449315	CP132939-CP132940	SAMN36939423
<i>Tunturibacter gelidoferens</i> M8UP30	OR449316	CP132935-CP132936	SAMN36939425
<i>Tunturibacter psychrotolerans</i> X5P6	OR449310	CP132942-CP132943	SAMN36939421
<i>Tunturibacter psychrotolerans</i> X4BP1	OR449318	CP132941	SAMN36939422


Supplementary Table S7. Operon long read consensus (LRC) data.

Strain	Geneious filtered reads	LRC length (bp)	Closest relative
M8UP22	629	4799	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8UP27	802	4825	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8UP20	773	4828	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8US30	635	4824	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
MP8S11	643	4801	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
X4BP1	795	4825	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8UP28	521	4795	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8UP30	336	4829	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
X5P2	1,005	4808	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
M8UP15	503	4810	<i>Edaphobacter lichenicola</i> DSM 104462 (GCF_025264645.1)
X5P3	786	4800	<i>Granulicella mallensis</i> MP5ACTX8 (GCF_000178955.2)
M8UP14	739	4812	<i>Granulicella aggregans</i> M8UP14 (GCF_014203275.1)
MP5ACTX2	274	4187	<i>Granulicella arctica</i> DSM 23128 (GCF_025685605.1)
M8US31	435	4808	<i>Granulicella arctica</i> DSM 23128 (GCF_025685605.1)
X4EP2	713	4751	<i>Granulicella arctica</i> DSM 23128 (GCF_025685605.1)

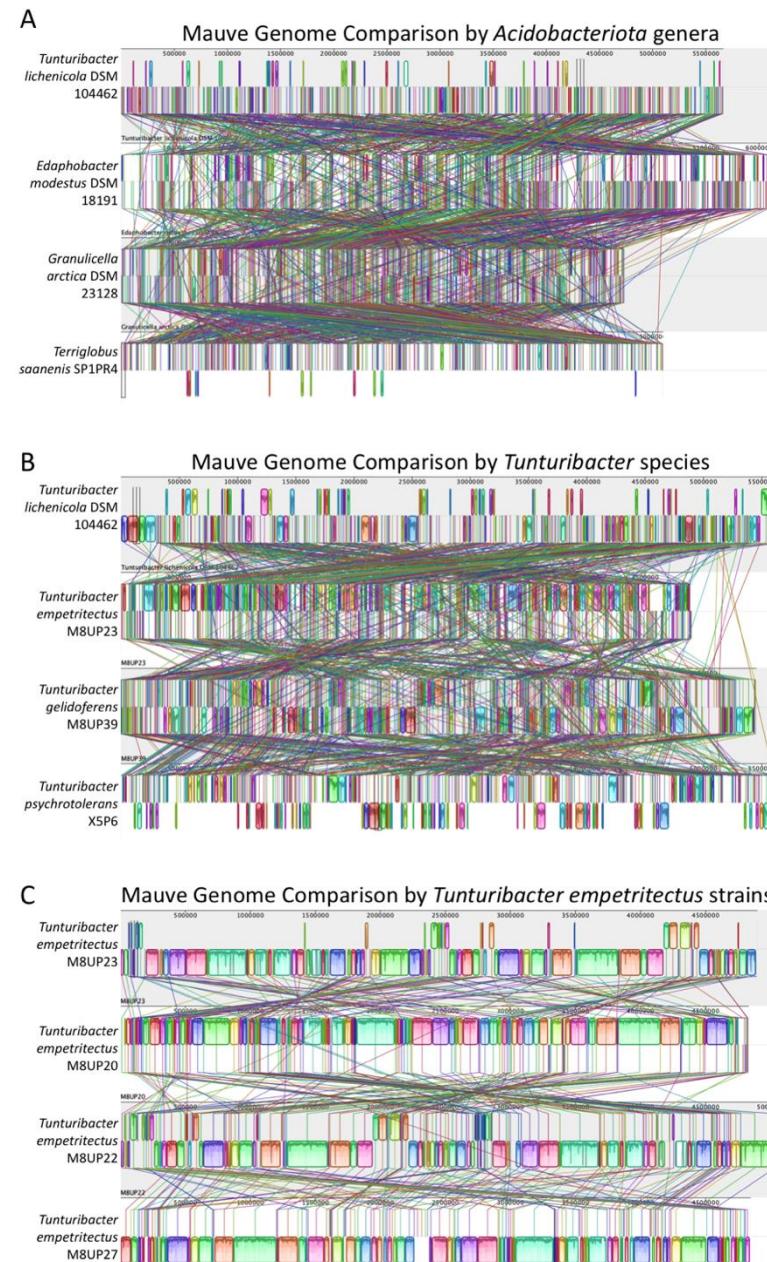

Supplementary Figure S1A. rRNA operon phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).

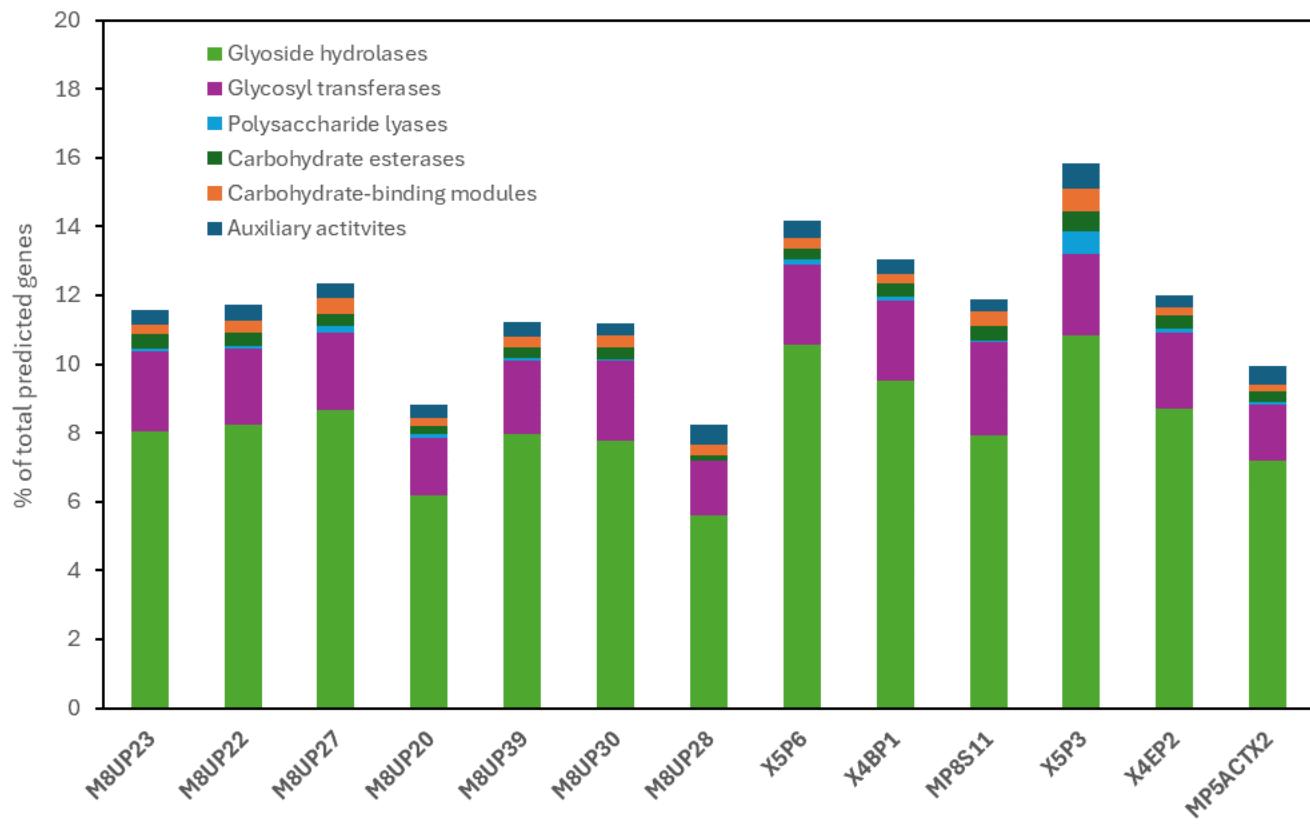
Tree scale: 0.01

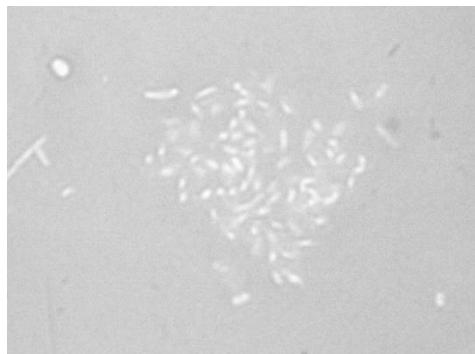

Supplementary Figure S1B. rRNA operon phylogeny of novel *Tunturibacter* genus (accession numbers for genomes taken from NCBI are in Supp. Table S2).

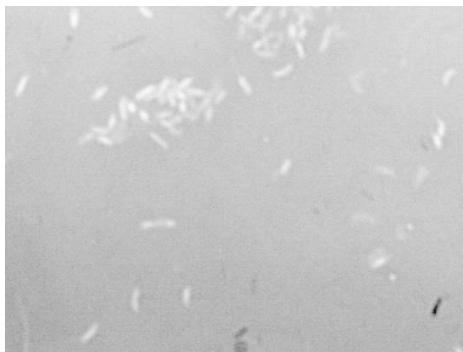
Tree scale: 0.1

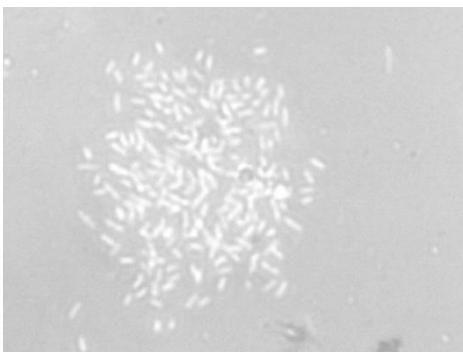
Supplementary Figure S2A. 16S rRNA gene phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).


Tree scale: 0.01


Supplementary Figure S2B. 16S rRNA gene phylogeny of novel *Tunturibacter* species (accession numbers for genomes taken from NCBI are in Supp. Table S2).


Supplementary Figure S3. Orthogroup phylogeny (accession numbers for genomes taken from NCBI are in Supp. Table S2).


Supplementary Figure S4. Mauve genome comparison.


Supplementary Figure S5. Distribution of major CAZy family genes (% of total predicted genes): glycoside hydrolases, glycosyl transferases, polysaccharide lyases, carbohydrate esterases, and noncatalytic carbohydrate-binding modules in the genomes of tundra *Acidobacteriota* strains.

Tunturibacter empetritectus M8UP23^T

Tunturibacter gelidoferens M8UP39^T

Tunturibacter psychrotolerans X5P6^T

Supplementary Figure S6. Colony morphology (left) and photomicrographs (right) of *Tunturibacter* strains.

Cultures were grown for ~1 week on GY medium containing glucose (1 g l⁻¹) and yeast extract (0.5 g l⁻¹) in VL55. Negative staining by eosin-nigrosin and viewed at 1000X magnification.