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Abstract—Satellite-Airborne-Terrestrial Networks (SATNs) are
expected to provide communication and edge-computing services
for a plethora of IoT applications. However, preserving the
freshness of information is challenging since it requires timely
data collection, bandwidth, and offloading decisions across dif-
ferent administrative domains. In this paper, we aim to optimize
the age of information (AoI) and energy consumption tradeoff
when serving multiple traffic classes in SATNs. A cross-domain
federated computation offloading algorithm (Fed-SATEC-Off) is
presented in which different service providers (SPs) collaborate to
allocate the bandwidth while unmanned aerial vehicles (UAVs)
and satellites make decisions to collect, relay, and offload the
computing tasks. Given the requirements of each traffic class,
the optimum collaborative strategies between SPs, UAVs, and
satellites are obtained together with the computation offloading
topology. Our algorithm is based on multi-agent actor-critic and
incorporates federated learning to improve the convergence of the
learning process. The numerical results show that Fed-SATEC-
Off reduces the AoI by factor 4 and achieves faster convergence
than existing approaches.

Index Terms—Age of Information (AoI), satellite-airborne-
terrestrial network, heterogeneous IoT, multi-agent deep rein-
forcement learning, mobile edge computing.

I. INTRODUCTION

The sixth generation of wireless networks (6G) [1], [2]
is expected to provide services for advanced applications
with massive use of artificial intelligence [3], [4] such as
autonomous driving, industrial Internet of Things (IIoT),
telemedicine, and the metaverse. These applications require
edge computing resources to process data for IoT devices with
limited capabilities. In parallel, aerial access networks consist-
ing of unmanned aerial vehicles (UAVs), balloons, and small-
size Low Earth Orbit (LEO) satellites have been deployed by
several private and public entities, such as SpaceX Starlink
[5]. These platforms are equipped with edge computing and
their integration with the terrestrial network is promising to
expand communication, computing, caching, and sensing at a
global scale.

Preserving the freshness of information is crucial in many
IoT applications [6]. The age of information (AoI) has been
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used as a measure of data freshness [7], which requires a
timely allocation of communication and computing resources
to extract useful features from data. The AoI and energy
efficiency tradeoffs have been researched actively in terrestrial
and airborne networks. In [7], [8], they focus on optimizing
UAV trajectory to reduce the communication latency and
energy consumption of IoT devices and show significant
performance improvements compared to fixed servers. Zhu
et al. [7] utilized both multi-agent reinforcement learning
(MARL) and federated learning (FL) techniques to develop
policies for trajectory planning and resource allocation of
UAVs and resource allocation. However, integrating SATNs
and their AoI and energy efficiency tradeoff analysis is a more
challenging problem due to their multi-domain nature, which
require bandwidth, computing, and relaying decisions among
different operator networks.

Gao et al. [9] decompose the AoI minimization problem
into the terrestrial and satellite networks. They propose an
algorithm for base station-user selection and transmission
power optimization in the terrestrial network and a coalition
formation game among satellites. Zhang et al. [10] jointly
optimize computation decisions and resource allocation to
minimize energy consumption by computing locally, at the
satellite or cloud using a Deep Deterministic Policy Gradient
(DDPG) algorithm, which is centralized. Some works studied
the AoI in SATNs for specific applications [11], [12]. Wang et
al. [11] minimize the AoI of the status updates for vehicular
networks. Therefore, how to make edge computing decisions
to enable IoT data collection and computing across different
domains with heterogeneous computing and caching capabili-
ties is especially relevant in SATNs, given the different traffic
requirements in IoT applications.

In this paper, we present a cross-domain federated computa-
tion offloading algorithm (Fed-SATEC-Off) in which different
service providers (SPs), UAVs, and satellites collaborate to
optimize the AoI and energy efficiency tradeoff. The algorithm
is distributed, and each SP decides on the bandwidth allocation
to UAVs and satellites for data collection, relaying, and
computing. Our approach significantly reduces the AoI and
achieves faster convergence than existing schemes.
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Fig. 1: Computation offloading in SATNs with heterogeneous
traffic classes.

II. SYSTEM MODEL

A. Satellite-Airborne-Terrestrial Network

We consider a SATN architecture, as shown in Fig. 1,
in which terrestrial, airborne, and satellite domains are op-
erated by a different service provider (SP). SPs collaborate
to serve heterogeneous traffic demands from IoT devices
denoted by kc where c is the class index, c = {1, ...., C} and
kc ∈ Kc = {1, ...,Kc}. Examples of service classes include
emergency communications (EC), in-space cellular backhaul
(ICB), remote industrial automation (RIA), and monitoring
and reconnaissance (MAR), which have different AoI require-
ments. We consider that the airborne and satellite SPs deploy a
set I of unmanned aerial vehicles (UAVs), and a set X of LEO
satellites (LEOs), respectively. Each UAV i ∈ I collects data
from IoT devices and performs local computing or offloads
it to an LEO satellite x ∈ X . Similarly, an LEO satellite
x ∈ X collects data from UAVs and performs local computing
or offloads it to a ground station j. Finally, the ground stations
execute the computing tasks received from the LEO satellites.

B. Communication Model

Each SPz in domain z ∈ {1, 2, 3} has a total bandwidth Wz ,
where z = 1 is the terrestrial domain, z = 2 is the airborne
domain, and z = 3 is the satellite domain. Each channel will be
allocated a bandwidth ratio wkc(t), w

c
i (t), and wc

x(t) through
frequency division for communication transmission of IoT
devices, UAVs, and satellites, respectively. Our communication
model is divided into time slots. Thus, the link capacity Rkc,i

between device kc and UAV i, Rc
i,x between UAV i and LEO

x, and the link capacity Rc
x,j between LEO x and GS j are

Rkc,i(t) = wkc
(t)W1log2(1 + Pkc

· hkc,i/ξi)
Rc

i,x(t) = wc
i (t)W2log2(1 + Pi · hi,x/ξx)

Rc
x,j(t) = wc

x(t)W3log2(1 + Px · hx,j/ξj)
(1)

where Wz is the bandwidth of channels in domain z, Pkc ,
Pi, and Px are the transmission power of IoT device kc,
UAV i, and satellite x, respectively. ξi, ξx, and ξj are the
Gaussian noise power at UAV i, satellite x and GSj . hkc,i,
hi,x, and hx,j are the propagation gain between IoT device
and UAV, between UAV and LEO, and between LEO and GS,
respectively.

C. Data Collection, Execution, and Offloading

Each IoT device kc produces data packets of size dkc

independently with an elapsed time ψkc
. The data generation

rate at kc and the data arrival probability are λkc and χkc ,
respectively. Each device generates packets that are stored
locally until collected by a UAV. The UAVs adopt a random
mobility model and collect data from IoT devices that fall
within their collection range denoted by ri on a channel that
is available. Each UAV i has a buffer to store collected data
packets with a maximum size of Bi. The UAVs cache the
collected data packets in their buffer for later processing or of-
floading. The decision to collect data by UAV i is represented
by collectci (t) = [colc1,kc

(t), · · · , colcq,kc
(t), · · · , colcBi,kc

(t)],
where colcq,kc

(t) ∈ {0, 1} represents a binary decision. At each
time t, the UAVs acquire data packets from IoT devices kc.∑Bi

q=1
colcq,kc

(t) = 1 (2)

If the UAV decides to compute the data packet locally,
it will select the data packet from the buffer for execu-
tion. Similarly, when LEO decides to perform the local
computation on a packet, LEO selects a packet from the
buffer for execution. At each time t, the execution deci-
sions of UAV and LEO are denoted as executionc

i (t) =[
exec1,i(t), · · · , execq,i(t), · · · , execBi,i

(t)
]

, executionc
x(t) =[

exec1,x(t), · · · , execq,x(t), · · · , execBx,x
(t)
]

, and∑Bi

q=1 exe
c
q,i(t) = 1∑Bx

q=1 exe
c
q,x(t) = 1

(3)

where execq,i(t), exe
c
q,x(t) ∈ {0, 1}. The computation time

required to execute a packet of size dkc
in UAV i and LEO x

is
τkc(t) = dkc(t)/fi
τkc

(t) = dkc
(t)/fx

(4)

where fi and fx is the CPU frequency at UAV i and satellite
x, respectively. Based on network prediction, when UAV i de-
cides to do offloading, it will select a data packet in the buffer
for offloading and transmit it to the nearest LEO. We assume
that each LEO has a sufficient observation range to receive the
data transmission from the UAV. Similarly, if LEO satellite x
decides to offload a packet it will select it in its buffer for of-
floading and transmit it to the GS j. We denote their offloading
decisions as offloadc

i,x(t) =
[
off c1,x(t), ..., off

c
Bi,X

(t)
]

and

offloadc
x,j(t) =

[
off c1,j(t), ..., off

c
Bx,J

(t)
]

with

∑Bi

q=1 off
c
q,x(t) = 1∑Bx

q=1 off
c
q,j(t) = 1

(5)

Therefore, UAV i will collect data from IoT devices, and then
execute, or offload it to LEO satellites. LEO will collect data
from UAVs, then execute, or offload it to the GSs.
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III. PROBLEM FORMULATION

The freshness of the executed data is measured by the AoI.
The calculation of AoI involves determining the difference
between the current time t and the generation time tg,kc

of the
latest data packet executed from IoT device kc at any of the
devices responsible for performing computing on the received
data.

Akc
(t) = t− tg,kc

(6)

The AoI increases at a constant rate until a new packet is
received. The objective is to minimize the average AoI and
energy consumption. The energy cost costkc

of performing a
task by device kc on a UAV i, LEO x, or GS j is calculated
as follows:

costkc
= dkc

(
γkc,iE

exe
i + (1− γkc,i)

(
Eoff

ix + αkc,xE
exe
x +

(1− αkc,x)(E
off
xj + βkc,xE

exe
j )

))
(7)

which is proportional to the energy cost to execute the data
of IoT device kc of size dkc

and to the energy consumed to
offload the data. Eexe

i , Eexe
x , and Eexe

j is the energy needed
to execute one bit of data by UAV i, LEO x, and GS j,
respectively. Note that if the UAV i does not execute the data
of IoT device kc, it will be offloaded to LEO and Eoff

ix is
the energy cost of offloading one bit of data from UAV i to
LEO x. Similarly, if the LEO x does not execute the data
received from UAVs, it will be offloaded to GS, and Eoff

xj

is the energy cost of offloading one bit of data from LEO
i to GS j. γkc,i, αkc,i, βkc,i are binary indicators in which
γkc,i = 1,αkc,i = 1 or βkc,i = 1 if the computing task of IoT
device is performed by UAV i, LEO x or GS j, respectively; 0
otherwise. The data of IoT device is not split between devices,
so γkc,i+αkc,x+βkc,j ≤ 1. Based on the previous definitions,
the overall AoI and energy cost minimization problem is

min
δ,ϑ,γ,α,β,w

C∑
c=1

Kc∑
kc=1

I∑
i=1

X∑
x=1

J∑
j=1

{ζ1Akc(t) + ϱζ2costkc(t)}/Kc

(8)
subject to

(1)− (5)∑Kc

kc=1
ϑikc ≤ Y, ∀i ∈ I (8.a)∑

i∈I
ϑikc

≤ 1, ∀kc ∈ Kc (8.b)∑I

i=1
δxi ≤ L, ∀x ∈ X (8.c)∑

x∈X
δxi ≤ 1, ∀i ∈ I (8.d)∑

kc∈Kc

wkc
≤W1 (8.e)∑

i∈I
wi ≤W2 (8.f)∑

x∈X wx ≤W3 (8.g)

γkc,i+αkc,x+βkc,j ≤ 1, ∀kc ∈ Kc, c ∈ C, i ∈ I, x ∈ X , j ∈ J
(8.h)

ϑikc , δxi, γkc,i, αkc,x, βkc,j = {0, 1}, ∀kc, i, x, j (8.k)

Akc(t) ≤ Amax
c , ∀k, c (8.l)

where a scaling factor ϱ is used along with weighting factors
ζ1 and ζ2 to represent the importance of AoI and cost, respec-
tively. The association status between IoT devices and UAVs is
represented by a binary variable ϑikc

, where i denotes UAVs
and kc denotes IoT devices. Constraint (8.a) and (8.b) limit
the number of IoT devices that can be associated with each
UAV and Y is a quota that specifies the maximum number
of IoT devices that can be supported by a UAV. Constraint
(8.b) ensures that each IoT device is associated with only
one UAV at a time. The association status between UAVs and
LEOs is represented by a binary variable δxi, where x denotes
LEOs and i denotes UAVs. Constraint (8.c) and (8.d) limit the
number of UAVs that can be associated with each LEO, and
L is the maximum number of UAVs that can be supported by
a LEO. Constraint (8.d) ensures that each UAV is associated
with only one LEO at a time. The available bandwidth in
different service providers is constrained by (8.e)-(8.g) for IoT
devices, UAVs and LEO satellites, respectively. The constraint
(8.e) limits the amount of bandwidth allocated to IoT devices
to be no more than the available bandwidth W1 in SP1. The
constraint (8.f) limits the amount of bandwidth allocated to
UAVs to be no more than the available bandwidth W2 in SP2.
The constraint (8.g) limits the amount of bandwidth allocated
to LEOs to be no more than the available bandwidth W3

in SP3. The constraint (8.l) ensures that the achieved AoI
for each IoT device does not exceed its maximum AoI. The
optimum solution cannot be achieved by solving the previous
optimization problem at each time instant, due to the complex
dynamics and coupling of UAVs, satellites, and SPs in our
system, which makes the problem NP-hard. Therefore, we
propose a new approach to solve the optimization problem
by formulating it as a Markov Decision Process (MDP) and
applying an iterative online algorithm.

IV. FED-SATEC-OFF FRAMEWORK

We reformulate the optimization problem in (8), and model
it as a 3-level Markov Decision Process (MDP) to enable inter-
action between the edge agents (i.e., UAVs and LEO satellites)
and the SPs. A cross-domain Federated SAT Edge Computing
Offloading algorithm (Fed-SATEC-Off) is developed based on
the multi-agent actor-critic learning framework [7] to facilitate
cooperation between the UAVs, LEO satellites, and SPs. Then,
to leverage the knowledge of edge agents and reduce the
exchange of communication messages, we adopt federated
learning. Thus, edge agents share their actor net parameters
periodically and conduct federated updating.

A. MDP Formulation

1) States: The state of each UAV agent si (t) includes
observations of the IoT devices, the buffer state of the UAV,
and the allocated bandwidth proportion. The state of each
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satellite agent sx (t) includes observations of the UAV (all
information about the UAV), the buffer state of the satellite,
and the allocated bandwidth. On the other hand, the state of
each SP sz (t) includes observations of the edge agents.

2) Actions: The action of each UAV i includes executing
the computing tasks of IoT devices locally or offloading them
to the nearest satellite. The action of UAV i is expressed as
aci (t) = [executeci (t), offloadc

i,x(t)]. Likewise, the actions of
LEOs are executing the tasks received from UAVs locally
or offloading them to GS. The action of LEO satellite x is
expressed as acx(t) = [executecx(t), offloadc

x,j(t)]. The action
of the SPs consists of allocating a fraction of the bandwidth
for their devices’ transmissions. Thus, the action of SP1 is
acz=1(t) = [wkc

(t)] which is used by device kc to offload to
an UAV. The action of SP2 is acz=2(t) = [wi(t)] which is
used by UAV i to offload to LEO. Finally, the SP3 allocates
acz=3(t) = [wx(t)] to offload to a GS.

3) Penalty: Due to the cooperation among agents to
minimize AoI and cost, we define a global penalty shared by
all agents. The current penalty in the t-th slot is represented
as pg(t) = ζ1A(t) + ϱζ2cost(t), ∀ g = 1, ..,M + X + Z.
Also, we define Pg(t) =

∑T
l=0 ρ

lpg(t + l) as the long-term
penalty, where T denotes the duration of the time window,
while ρ, which is bounded between 0 and 1, represents the
rate at which the penalty decreases.

4) Transition Policies: We denote the inter-
actions and state transitions for the different
agents as T ({si(t + 1)}, {sx(t + 1)}, {sz(t +
1)}|{si(t)}, {sx(t)}, {sz(t)}, {ai(t)}, {ax(t)}, {az(t)}).

B. Fed-SATEC-Off Algorithm

We adopt a multi-agent actor-critic framework (MAAC) to
facilitate collaboration among edge agents and SPs to allocate
the necessary bandwidth to collect, execute and offload the
data from different classes of IoT devices. This framework in-
cludes dual neural networks per agent with primary actor/critic
nets and target actor/critic nets. Figure 2 illustrates that every
agent (UAV, LEO, or SP) interacts with the environment to
identify the optimal action that results in the lowest system
penalty Pg . To address the issue of approximated Q values
being unstable, we utilize an experience reply buffer (with
capacity B) and target networks. Since UAVs and LEOs
have the same type of actions, we use the same network
architecture to implement them. Edge agents (UAV and LEO)
use a multiple input-output neural network to learn different
actions based on state, including observations of IoT sensors,
offload channel status, and buffer status. At the same time,
we use multilayer perceptrons (MLP) to realize offloading
scheduling and data local execution on UAV and LEO. The
state of SPs contains the status information of all UAVs and
LEOs, and the output is the bandwidth allocation for each edge
agent.

To encourage the agent to perform random exploration, we
implement a ϵ-greedy policy with probability ϵ. For agent g

in the MAAC network, the parameters of the primary actor-
network Ag and the target actor-network A′

g are θg and
θ

′

g , respectively. Similarly, the parameters of the primary
critic-network Cg and target critic-network C′

g are ϕg and
ϕ

′

g , respectively. We use the primary networks to update the
parameters of target actor and critic networks in every period
Tu as

θ′
g = τθ′

g + (1− τ)θg

ϕ′
g = τϕ′

g + (1− τ)ϕg
(9)

The mixing weight, denoted by τ , ranges from 0 to 1. The
actor and critic networks have distinct learning rates, ηA and
ηC , respectively. The critic networks are trained by minimizing
the loss function’s mean squared error

lCg(ϕg) := E[ ||Cg(sg,ag;ϕg)− ŷg||2] (10)

where ŷg = pg+ρC′
g(s

′
g,a

′
g,ϕ

′
g) is the estimated long-time Q

value, and pg is the penalty of each agent g. Thus, we define
the loss function of the actor networks as follows

lAg(θg) := Cg(sg,Ag(sg;θg);ϕg) (11)

Each SP computes the federated learning update strategy for
the devices in its domain and keeps parameters with weight
ω, and mixes the parameters from other SPs, as

Algorithm 1 Federated Satellite-Airborne-Terrestrial Edge
Computing Offloading Algorithm

1: Initialize: The parameters of primary and target net-
works (θUAV )i, (θLEO)x, (θSP )z , (θUAV )′i ← (θUAV )i,
(θLEO)

′
x ← (θLEO)x, (θSP )

′
z ← (θSP )z , (ϕUAV )i,

(ϕLEO)x, (ϕSP )z , (ϕUAV )′i ← (ϕUAV )i, (ϕLEO)
′
x ←

(ϕLEO)x, (ϕSP )
′
z ← (ϕSP )z ,

2: for each t = 1, 2, ....Epochmax do
3: Generate random ν ∈ [0, 1];
4: for each agent g do
5: if ν < ϵ or |B[g]| < B then
6: Select random actions ag(t);
7: else
8: Ensemble local observation and states: sg(t);
9: Set actions: ag(t) = Ag(sg(t); θg)

10: end if
11: Get next state s′(t+ 1) and obtain p(t);
12: Store {s,a, p, s′} into B;
13: if |B[g]| ≥ B then
14: Sample {sg,ag, pg, s

′
g} from B[g];

15: Predict a′
g = A′

g(s
′
g;θ

′
g) and Q-value;

16: Calculate actor and critic losses using (10) & (11);
17: Update the actor and critic weights:
18: ϕt+1

g ← ϕt
g − ηC ▽ϕ l̃Cg(ϕ

t
g)

19: θt+1
g ← θt

g − ηA ▽θ l̃Ag(θ
t
g)

20: end if
21: Every Tu steps, update target networks’ weights by (9);
22: Every Ef steps, update SP-federated according to (12);
23: end for
24: end for

θt+1
SP = θt

SP .Ω (12)
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Fig. 2: Fed-SATEC-Off Collaborative Learning Architecture

where θt
SP = [θt

1, .., θ
t
z, .., θ

t
Z ] is the vector of all SP actor

networks at the t-th learning epoch, and Ω is the federated
learning update matrix of each SP. In Algorithm 1, there is the
corresponding federated update where the agent learns and up-
dates the optimal policy while the system works continuously.
Every Ef epochs, all SPs share their network parameters by
performing joint updates.

The federated learning matrix Ω is obtained by using
weight ω for each SPs own parameters and mixing the
parameters of other SPs when learning as

Ω =



ω
1− ω

N − 1
· · ·

1− ω

N − 1
1− ω

N − 1
ω · · ·

1− ω

N − 1
...

...
. . .

...
1− ω

N − 1

1− ω

N − 1
· · · ω


(13)

where ω is used as the SP federated learning factor. SPs keep
their own actor network with weight ω and exchange the
parameters of other SPs’ actor networks with weight (1− ω).
Based on the federated update, the SPs share their actor
network parameters and update them without exchanging
their data information. Through federated learning, all SPs
can share the network parameters for cooperative model
training, which will help SPs to find the optimal policy and
complete the network training faster. At the same time, it
also helps SPs optimize the bandwidth allocation and, thus,
assist the edge agents in completing data transmission more

efficiently, further improving the communication capability of
the system.

Table I Main parameter settings for simulations
Parameter Value Parameter Value

χkc 0.3 Pkc , Pi, Px 0.4W
rimove 6 ρ, τ , ϵ 0.85, 0.8, 0.2
Bi, ζ1 5, 0.5 Bx, ζ2 5, 0.5
ri 40 Tu, Ef 8

B, ϱ 16, 0.0008 ηA, ηC 10−3, 2 ×10−3

W1, W2, W3 200MHZ u, b 12, 0.135
Map size 100 X 100 ξi, ξx, ξj 10−22 W
λkEC

300b/slot λkRIA
500b/slot

λkMAR
1000b/slot λkICB

800b/slot
kB 1.38×10−23J/K diskc,i 2000 m

φLoS 1 φNLoS 20
fc, G 2.4GHz, 31.6 disi/j,x 160 km

V. NUMERICAL RESULTS

We have performed extensive simulations to illustrate the
performance of our Fed-SATEC-Off algorithm, which is based
on MADDPG (decentralized), and compared it with the con-
ventional DDPG (centralized) [10]. The simulations were
conducted in Python and Tensorflow. The simulation settings
are summarized in Table I unless otherwise stated. We consider
that transmissions are implemented in 2.4GHz frequency band.
We have placed 80 IoT devices per traffic class and 5 UAVs
on a 100×100 map. Given the map size, we have assumed
one LEO can receive packet transmissions from all UAVs.
Four typical traffic classes for satellite networks are studied:
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Fig. 3: Average AoI and Penalty. Fig. 4: Worst AoI vs no. epochs.

Fig. 5: Critic loss function for different agents. Fig. 6: AoI for different classes in Fed-SATEC-Off.

Emergency communications (EC), Remote industrial automa-
tion (RIA), Monitoring and reconnaissance (MAR), and In-
space cellular backhaul (ICB).

The physical layer mode in each domain in SATEN is
described below and the parameters are given in Table
I. The channel gain between UAV i and LEO satellite
x [13] is hi,x = GiGxυ

4πfcdisi,xKB
where Gi and Gx are the

transmitter (UAV i) antenna gain and the receiver (LEO x)
antenna gain, respectively; disi,x is the distance between
UAV i and LEO x, fc is the carrier frequency, KB is
the Boltzmann’s constant and υ is the speed of the light.
The channel gain between LEO x and GS j [14] is
hx,j =

GxGjυ
4πfcdisx,jKB

, and the channel gain between IoT
device kc and UAV i [15] is hkc,i = 10−(Lkc,i/10), where
Lkc,i=PLoS (t) × PLLoS (t) + PNLoS (t) × PLNLoS(t),
where PLoS (t) =

(
1

1+ue
(−b(−12+sin−1((100−u)/diskc,i

) ))

)
is the probability of LoS, PLLoS(t) =(
20log (fc) + 20log

(
4π
L

)
+ 20log (diskc,i(t)) + φLoS

)
is the LoS pathloss, PLNLoS (t) =(
20logfc + 20log

(
4π
L

)
+ 20log (diskc,i (t)) + φNLoS

)
is

the NLoS pathloss, PNLoS (t) = 1 − PLoS (t). u and b are
constants, which depend on the environment.

In Fig. 3, we present the average AoI and the penalty for
Fed-SATEC-Off and DDPG. We can see that our algorithm
reduces the average AoI by factor 3 compared to traditional
DDPG. Similar improvement is obtained in terms of penalty.
Although both algorithms achieved convergence after 1000

epochs, as shown in Fig. 5, our algorithm selects more
efficiently the class of IoT devices to collect data and performs
better allocation of the communication and computing re-
sources. This translates into faster completion of the offloading
tasks. In addition, our algorithm finds the optimum interaction
strategy between edge agents and SPs, which results in the
minimum penalty.

The training loss of the critic network for different agents in
DDPG and Fed-SATEC-Off is presented in Fig.5. We observe
that although the convergence trend of the critic network
training loss for the center agent (a global SP) in DDPG and
any SP in Fed-SATEC-Off is the same, both start to converge
at 5000 epochs, the converged loss function value for Fed-
SATEC-Off is consistently smaller and more stable than that
of DDPG. This indicates that the network predicts the action
taken in the current state more accurately. It also means that
our Fed-SATEC-Off can predict the target more accurately
and choose the optimal solution faster. At the same time, for
the edge agents (UAVs/satellites) in Fed-SATEC-Off, we can
also see that the training loss starts to converge after 4000
epochs. All of these indicate that our Fed-SATEC-Off has
better learning performance.

The worst AoI is shown in Fig. 4. It indicates the maximum
AoI achieved among all IoT devices at a particular time. Our
Fed-SATEC-Off performs the best at all times. We can see
that the AoI grows linearly in time. As the system learns to
select and execute the packets with the largest AoI, there is a
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saw-tooth decline in the worst AoI. By comparing the falling
time, we can see that Fed-SATEC-Off will adjust the strategy
faster to solve the worst case due to the interactive strategies
between agents.

In Fig. 6, we show the average AoI of the four traffic
classes using Fed-SATEC-Off. We can see that EC has the
smallest AoI among these four types of communications
since it has the most stringent AoI requirements. We have
observed that most of EC traffic is executed at the UAVs. On
the other hand, MAR and ICB tolerate a higher AoI, which
results in executing the tasks at LEOs and GS. In addition,
MAR has the highest data generation rate of the four types,
which causes the system to require more resources to process
this type of data. We have observed that when comparing
the performance of MAR in DDPG and Fed-SATEC-Off, the
AoI is four times lower in Fed-SATEC-Off. This is because
when there is more traffic demand finding the best allocation
of resources is more critical, and thus the superiority of our
scheme is more evident. With the other traffic classes, the
improvement was about 3 times as in the overall average
AoI, and it has been omitted for clarity of presentation.

VI. CONCLUSION

In this paper, we presented a cross-domain collaborative
framework to optimize the AoI and energy efficiency trade-
off in SATNs under different IoT traffic requirements. Our
approach facilitates timely data collection, bandwidth, and
offloading decisions across different administrative domains in
a distributed manner. A cross-domain federated computation
offloading algorithm (Fed-SATEC-Off) is developed based on
a multi-agent actor-critic and incorporates federated learning to
improve the convergence of the learning process. Our results
show that Fed-SATEC-Off reduces the AoI by factor 4 and
achieves faster convergence compared to existing approaches.
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