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For any square-summable commuting family (Ai)i∈I of 
complex n × n matrices there is a normal commuting family 
(Bi)i no farther from it, in squared normalized �2 distance, 
than the diameter of the numerical range of 

∑

i
A∗

i
Ai. 

Specializing in one direction (limiting case of the inequality 
for finite I) this recovers a result of M. Fraas: if 

∑

�

i=1
A∗

i
Ai is 

a multiple of the identity for commuting Ai ∈ Mn(C) then the 
Ai are normal; specializing in another (singleton I) retrieves 
the well-known fact that close-to-isometric matrices are close 
to isometries.
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0. Introduction

The motivating result for this note is [5, Theorem 1]: commuting n × n matrices 

Ai, 1 � i � � with 

�
∑

i=1

|Ai|2 = 1 are automatically normal, where |Ai|2 = A∗
i Ai. The 

ingenious proof in [5] relies on the decomposition theory (e.g. [3, §§4 and 5]) of completely 

positive [1, Definition II.6.9.1] maps such as

Mn(C) =: Mn � X �−→
�

∑

i=1

AiXA∗
i ∈ Mn.

It seemed sensible, then, to seek for a more directly linear-algebraic proof and perhaps 

generalize the result in various ways in the process. For a positive integer n and A =

(ai,j)n
i,j=1 ∈ Mn write

‖|A‖|2 :=
1√
n

⎛

⎝

n
∑

i,j=1

|aij |2
⎞

⎠

1/2

for the normalized Hilbert-Schmidt norm on Mn and similarly for tuples (Ai)i∈I of 

matrices:

∥

∥

∣

∣(Ai)i∈I

∥

∥

∣

∣

2
:=

(

∑

i∈I

‖|Ai‖|22

)1/2

.

In the sequel, all infinite operator sums signify convergence in the strong topology of 

[1, §I.3.1], but see Remark 1.5; for operators on finite-dimensional vector spaces, i.e. 

plain matrices, this is simply the norm topology on Mn.

Recall that the numerical range [8, Chapter 22] of an operator A on a Hilbert space 

is

C ⊃ W (A) := {〈ξ | Aξ〉 | ‖ξ‖ = 1} . (0.1)

With all of this in place, one possible generalization [5, Theorem 1], to be proven below, 

reads as follows:

Theorem A. If Ai ∈ Mn, i ∈ I commute, there are normal commuting Bi ∈ Mn with

∥

∥

∣

∣(Ai − Bi)i∈I

∥

∥

∣

∣

2

2
� diam W

(

∑

i∈I

A∗
i Ai

)

(0.2)

(said diameter counting as infinite if 
∑

i∈I A∗
i Ai fails to converge).
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The right-hand side of (0.2) should be regarded as a measure of how far 
∑

i∈I A∗
i Ai

is from being a scalar multiple of the identity (henceforth ‘being scalar’, for short).

The following variation of the initial motivating result retains the normality context 

(as opposed to the near-normality of Theorem A) but allows for compact operators 

on infinite-dimensional Hilbert spaces. Recall ([16, pre Theorem 1.5.2], [18, §V.3, post 

Theorem 3.5]) that an operator on a Banach space is quasi-nilpotent if its spectrum is 

{0} (equivalently: its spectral radius [16, §1.5] vanishes).

Theorem B. Let Ai ∈ K(H), i ∈ I be commuting compact operators on a Hilbert space 

with

∑

i∈I

A∗
i Ai = 1 (strong convergence) . (0.3)

There is an orthogonal decomposition H = Hqn ⊕ Hn, invariant under all Ai, such that 

the restrictions Ai|Hn
are normal and Ai|Hqn

are quasi-nilpotent.
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1. Commuting operators square-summable to scalars

We denote the generalized λ-eigenspace [9, p.6-1] of an operator A on a Hilbert space 

by

K∞(λ; A) :=
⋃

n∈Z>0

Kn(λ; A), Kn(λ; A) := ker(λ − A)n, (1.1)

with the subscript “1” on the symbol K1(λ; A) for the plain eigenspace occasionally 

omitted.

Recall [5, Theorem 1], stating that commuting matrices At
i=1 ∈ Mn such that

t
∑

i=1

A∗
i Ai = 1 (1.2)

are automatically normal. That result turns out to be robust under deformation in the 

appropriate sense: roughly speaking, commuting families (Ai)i∈I of matrices that almost

satisfy (1.2) are close to commuting normal families. To make sense of this, recall the 

Lp-norm ‖ · ‖p ([1, §I.8.7.3], [4, Definition XI.9.1]) defined on the ideal
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{compact operators} =: K(H) � L(H) := {bounded operators on a Hilbert space H}

of compact operators (if allowed to take infinite values):

‖T‖p =

⎧

⎨

⎩

(

∑

n∈Z�0
μn(T )p

)1/p

for 1 � p < ∞
μ0(T ) = usual operator norm ‖T‖ for p = ∞

where

(μ0(T ) � μ1(T ) � · · · ) := eigenvalues of |T | := (T ∗T )1/2

rearranged non-increasingly (the characteristic numbers [4, §XI.9] or s-numbers [7, §II.2]

of T ). ‖ · ‖2 is the familiar Hilbert-Schmidt norm [4, Definition XI.6.1]. For an operator 

A ∈ L(H) on a Hilbert space H, write

sw(A) := diam W (A) = sup
z,z′∈W (A)

|z − z′| (numerical spread of A) ,

where W (A) is the numerical range (0.1) and 〈− | −〉 denotes the inner product in the 

ambient Hilbert space, linear in the second variable. Note that sw(A) vanishes precisely 

for scalar operators, so in general it is a measure of the discrepancy from being scalar.

Remark 1.1. The numerical spread sw(·) is what most naturally fits the statement and 

proof of Theorem A, but note that for normal operators it is nothing but the diameter 

of the (convex hull of the) spectrum [8, Problem 216].

The term spread was in fact introduced for that quantity (diameter of the spectrum) 

in [15, §1] in the context of matrices. As for links between the two notions of spread 

(numerical and plain, again for matrices), see e.g. [2, §2]. �

This gives the necessary background for Theorem A above. Before going into the 

proof, note the following immediate consequence; it in turn recovers [5, Theorem 1] by 

restricting to finite families.

Corollary 1.2. Commuting matrices {Ai}i∈I ⊂ Mn with 
∑

i∈I A∗
i Ai scalar are all normal 

and hence generate a commutative C∗-algebra.

Proof. The first statement is an immediate consequence of Theorem A (since the right-

hand side of (1.3) is now assumed to vanish). The second claim then follows from the 

Putnam-Fuglede theorem [8, Problem 192]: commutation with a normal operator entails 

commutation with its adjoint. �

Remark 1.3. Theorem A is an instance of Hyers-Ulam(-Rassias) stability: almost-linear 

operators between Banach spaces are close to linear operators [12, Theorems 1.1 and 
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1.2], surjective almost-isometries on Hilbert spaces are close to surjective isometries [12, 

Theorem 13.4], almost-homogeneous functions between Banach spaces are close to ho-

mogeneous functions [12, Theorem 5.11], etc. �

Proof of Theorem A. Being commuting, the Ai are simultaneously upper-triangular [10, 

Theorem 2.3.3] with respect to some orthonormal basis (ej)n
j=1. The sought-after Bi will 

be the respective diagonals of the matrices Ai:

Bi := diag (λi,j := 〈ej | Aiej〉 , 1 � j � n) , ∀i.

We will verify (0.2) in the rescaled form

∑

i∈I

‖Ai − Bi‖2
2 � n · sw

(

∑

i∈I

A∗
i Ai

)

. (1.3)

To that end, set T :=
∑

i∈I A∗
i Ai and note first that

∑

i∈I

‖Aiej‖2 =
∑

i∈I

〈ej | A∗
i Aiej〉 = 〈ej | Tej〉 , ∀1 � j � n. (1.4)

We claim next that for every 1 � j � n we have

⋂

i∈I

K(λi,j ; Ai) �= {0}. (1.5)

Momentarily taking this for granted, for each fixed j we can simultaneously upper-

triangularize the Ai with respect to a new orthonormal basis with a vector e′
j in (1.5)

listed first, so that

∑

i∈I

‖Biej‖2 =
∑

i∈I

‖Aie
′
j‖2 = 〈e′

j | Te′
j〉 , ∀1 � j � n. (1.6)

(1.4) and (1.6) are at most sw(T ) apart by the latter’s definition, hence the conclusion 

upon summing over 1 � j � n: because the matrices Bi are the respective diagonals of 

the Ais,

∑

i∈I

‖Ai − Bi‖2
2 =

∑

i∈I
1�j�n

(

‖Aiej‖2 − ‖Biej‖2
)

≤ n · sw(T ).

It remains to settle (1.5). Since Ai commute and thus preserve each other’s eigenspaces, 

that assertion is equivalent to the non-trivial intersection of the generalized eigenspaces 

K∞(λi,j ; Ai). Were that intersection trivial, the 1-dimensional module Ai �→ λi,j of the 

commutative algebra A generated by the Ai would not appear as a subquotient in a 

Jordan-Hölder filtration [17, Proposition III.3.7] of either of the two A-modules
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K∞(λi0,j ; Ai0
) and V/K∞(λi0,j ; Ai0

), V := ambient space C
n

for a fixed index i0, so would not appear in such a filtration at all. This is at odds with 

the original triangularization with respect to (ej), hence the contradiction. �

Remarks 1.4.

(1) The commutativity of the family (Ai)i∈I of Corollary 1.2 cannot be relaxed to si-

multaneous unitary upper-triangularizability (as the proof, appealing crucially to that 

commutativity, suggests): every positive operator on Cn is expressible as T ∗T for upper-

triangular T (the celebrated Cholesky factorization [10, Corollary 7.2.9]), so it is enough 

to decompose 1 ∈ Mn as a sum of non-diagonal positive operators, say

1 =

(

1
2

1
2

1
2

1
2

)

+

(

1
2 −1

2

−1
2

1
2

)

,

and express each summand as A∗
i Ai for upper-triangular Ai.

(2) The dependence on n in (1.3) vanishes upon substituting the normalized Hilbert-

Schmidt norm 1√
n

‖ · ‖2 on Mn for ‖ · ‖2, as is customary in the literature on almost-

commutative matrices ([6, §1], [11, §2], etc.). �

It is noted in [5, §4] that the unilateral shift [8, Problem 82]

en
S�−→ en+1, n ∈ Z�0

on a Hilbert space with orthonormal basis (en)n∈Z�0
is a non-self-adjoint singleton giving 

a counterexample to Corollary 1.2 in infinite-dimensional spaces. Corollary 1.2 does, 

however, suggest a more hopeful infinite-dimensional variant: the Ai ∈ L(H) might be 

commuting compact [1, Definition I.8.1.1] operators on a Hilbert space H, with the 

convergence of Corollary 1.2 valid in the strong [1, Definition I.3.1.1] topology on L(H). 

In that context, Theorem B above requires little more than has already been noted.

Remark 1.5. Which of the six standard weaker-than-norm topologies [1, §I.3.1] on L(H)

(weak, σ-weak, strong, σ-strong, strong∗ and σ-strong∗) is explicitly mentioned in (0.3)

is a matter of taste: per [8, Problem 120] (phrased in terms of plain sequences but 

applicable in the present generality), for bounded non-decreasing nets [19, Definition 

11.2] of positive operators those topologies induce the same notion of convergence. �

There is a theory of upper-triangularization for single compact operators: the term for 

what we would here call ‘upper-triangular’ is superdiagonal in [16, §4.3]; other sources 

[4, §XI.10] work with subdiagonal operators instead. That material extends straightfor-

wardly to commuting families of compact operators: the central result driving the theory, 

namely [16, Theorem 4.2.1] the fact that compact operators have non-trivial invariant 
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subspaces, is now well-known ([13, Theorem], [14]) for the commutant of a non-zero com-

pact operator. We take all of this for granted, along with the requisite background on 

compact-operator spectral theory.

Recall [16, Theorem 1.8.1], in particular, that for compact A ∈ L(H) the generalized 

eigenspaces (1.1) attached to λ ∈ C
× := C \ {0} are finite-dimensional. In particular, 

the same goes for the (plain) eigenspaces K(λ; A) := K1(λ; A).

Proof of Theorem B. We isolate a single operator A := Ai0
and fix a non-zero λ ∈ σ(A). 

There is [16, Theorem 1.8.1] a direct-sum decomposition

H = K∞(λ; A) ⊕ R∞(λ; A)

(‘R’ for ‘range’) where, by analogy to (1.1),

R∞(λ; A) :=
⋂

n∈Z>0

Rn(λ; A), Rn(λ; A) := im(λ − A)n = (λ − A)nH.

In an appropriate orthonormal basis for H, compatible with the orthogonal decomposi-

tion H = R∞(λ; A) ⊕ R∞(λ; A)⊥, we have

A =

(

A′ •
0 T

)

with T finite (of width dim K∞(λ; A) < ∞), upper triangular, with diagonal entries λ. 

The argument employed in the proof of Corollary 1.2 will then show that the • block 

vanishes. This is sufficient to ensure that

• for non-zero λ ∈ σ(A) the generalized eigenspaces are in fact eigenspaces:

K∞(λ; A) = K(λ; A), ∀λ ∈ σ(A)× := σ(A) \ {0};

• and those eigenspaces are mutually orthogonal for distinct λ:

K(λ; A) ⊥ K(λ′; A), ∀λ �= λ′ ∈ σ(A)×;

• and finally, said eigenspaces are all orthogonal to the largest A-invariant subspace 

where A is quasi-nilpotent:

K(λ; A) ⊥ R∞(σ(A)×; A) :=
⋂

μ∈σ(A)×

R∞(μ; A). (1.7)

In short: A is an orthogonal direct sum of a quasi-nilpotent compact operator and a 

normal compact operator, operating respectively on the space R∞(σ(A)×; A) of (1.7)

and its orthogonal complement. Finally, setting



18 A. Chirvasitu / Linear Algebra and its Applications 703 (2024) 11–19

Hqn :=
⋂

i

R∞(σ(Ai)
×; Ai)

will do. �
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