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HIGH POWERS IN ENDOMORPHISM RINGS OVER DEDEKIND DOMAINS

ALEXANDRU CHIRVĂSITU

Let A be a Dedekind domain and T an endomorphism of a finitely generated projective A-module. If T is

an s-th power in EndA(M) for s ranging over an infinite set S of positive integers, then (a) T decomposes

as a direct sum of the zero operator and an invertible operator on a summand of M and (b) that summand

is semisimple or of finite order if S is appropriately large (what this means depends on the structure of the

additive and multiplicative groups of A). This generalizes a result of Cavachi’s to the effect that the only

nonsingular integer matrix that is an s-th power in Mn(Z) for all s is the identity.

Introduction

The original impetus for the note was provided by the remark in [5] that the only nonsingular integer-

valued matrix that is an n-th power of an integer matrix for every n is the identity. Very short proofs exist,

e.g., [7, pp. 934–935], but the problem suggests numerous follow-up questions:

(a) Is it enough to assume the matrix is an n-th power for just infinitely many n? (No, −1 is a power

with arbitrary odd exponent.)

(b) How about an n-th power for all but finitely many n? (Yes, most proofs generalize in this fashion.)

(c) Assuming only infinitely many exponents, and taking a cue from (a) above, does it follow that the

matrix is of finite order in the general linear group? (Yes, a consequence of Theorem 1.3.)

(d) If so, how does the order relate to the exponents in question? (The order is coprime to those primes

dividing the exponents with arbitrarily high powers: Theorem 1.3 reformulates this in terms of

supernatural numbers.)

(e) What can one say if the matrix is singular? (It is diagonalizable over Z to diag(0 · · · 0, 1· · ·1);

a consequence of Theorem 1.3 again, but see also [20] for idempotence.)

More generally (and vaguely), it is tempting to abstract some of the arithmetic driving the phenomena

above away from the specifics of the situation. To that end, the discussion below substitutes a Dedekind

domain A for the integers and an endomorphism T of a finitely generated projective A-module for the

matrix. The main result, Theorem 1.3, disentangles several threads that appear entwined in the original

problem:
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Theorem 1. Let A be a Dedekind domain and T ∈ EndA(M) an endomorphism of a finitely generated

projective A-module M.

(1) If an endomorphism T is an s-th power in EndA(M) for arbitrarily large s ∈Z>0, then T is the direct

sum of the zero operator and an invertible operator on a summand of M.

(2) Consider an infinite set S of positive integers such that

char(A)= 0=⇒ the group (A,+) has no nontrivial elements divisible by every s ∈ S;

char(A)= p > 0=⇒ {n | pn divides some s ∈ S} is unbounded.(0-1)

If T = T s
s , where Ts ∈ EndA(M) for every s ∈ S, then the invertible summand of the preceding point

is semisimple.

(3) Consequently, if the only elements of the multiplicative group A× that are s-th powers for all s ∈ S

are roots of unity, said invertible summand is in fact of finite order.

Moreover, that order is coprime to every prime p satisfying the right-hand condition in (0-1).

This makes it clear, in particular, that

• the direct sum decomposition of part (1) is a rather general phenomenon, reminiscent of Fitting-type

results (e.g., [12, (19.16)]);

• the semisimplicity of item (2) stems from an “additive” constraint on the exponents;

• while finally, the finite-order result in (3) is a byproduct of a constraint on the multiplicative group A×

of units (this group is particularly simple when A = Z).

All of this specializes well to rings of integers in algebraic number fields (see Example 1.6 and

Corollaries 1.9 and 1.10), in positive characteristic global fields (see Corollary 1.11), and in local fields

of either positive (see Example 1.8) or vanishing (see Example 1.7) characteristic.

1. Highly divisible semisimple operators

We assume some background on Dedekind domains (noetherian integrally closed domains of Krull

dimension at most 1 [18, §I.3, definition following Proposition 4]), and refer the reader to [1, Chapter 9],

[6, §16.3], [18, §I.3], [14, Chapter 3], etc. Moreover, [3, §VII.2.2, Theorem 1] and [13, Theorem 6.20]

provide extensive lists of alternative characterizations.

Remark 1.1. As defined here, the class of Dedekind domains includes that of fields; sources differ on

this: [1, Chapter 9], [18, §I.3], [14, Chapter 3] and [16, §I.3, Definition 1.3] agree, since they phrase the

requirement via universal quantification over nonzero prime ideals, of which fields have none. On the

other hand, because [1, sentence following Theorem 9.3], [6, §16.3] and [9, §I.3, definition following

Theorem 6.2A] (for instance) require that the Krull dimension be exactly 1 (rather than only ≤ 1), the

resulting Dedekind domains cannot be fields.

Nothing below hinges crucially on the matter; having to make a choice for definiteness, we count fields

among Dedekind domains.
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Recall, in particular [6, §16.3, Proposition 21 and Theorem 22], that for a Dedekind domain A,

an A-module M is

(1-1) finitely generated projective [6, §10.5, definition preceding Corollary 31]

⇐⇒ it is finitely generated torsion-free⇐⇒M∼=
r

⊕

s=1

Is for ideals Is⊴A⇐⇒M∼=A
r−1⊕(I1 · · · Ir ),

where the last summand is the product of the r ideals. If the Is of (1-1) are nonzero, r is the rank [6,

§12.1, definition preceding Theorem 4] of M .

It will be convenient to use the language of supernatural numbers ([8, §22.8], [19, §1.3], etc.): formal

products
∏

p pn p over primes p, with exponents n p ∈ Z≥0 ⊔ {∞}. For these, one can make sense in the

obvious fashion of products, least common multiples

lcm
{
∏

pn p,i | i ∈ I
}

:=
∏

psupi n p,i

and greatest common divisors

gcd
{
∏

pn p,i | i ∈ I
}

:=
∏

pinfi n p,i

and other such arithmetic notions. The usual p-adic valuation νp [8, Example 2.2.1 (a)] attached to a

prime number p extends to supernatural numbers in the obvious fashion

νp

(
∏

p

pn p
)

:= n p.

We also borrow a piece of notation / terminology from [17, §10.1]: for a set 5 of primes, a (supernatural)

5-number is one whose prime divisors all belong to 5, whereas a (supernatural) 5′-number is one whose

prime divisors all lie outside of 5.

Finally, we introduce some language in line with the standard terminology on divisible groups (or

modules) [6, §10.5, discussion preceding Proposition 36 and Example 4 following it].

Definition 1.2. Let x ∈M be an element in a multiplicatively written monoid.

(1) The element x is s-divisible (in M) for a positive integer s if there is y ∈M with ys = x .

(2) Similarly, for a set S of positive integers, x is S-divisible (in M) if it is s-divisible for every s ∈ S.

(3) The element x is an arbitrarily high power or arbitrarily highly divisible if it S-divisible for some

infinite set S of positive integers.

Theorem 1.3. Let A be a Dedekind domain and M a finitely generated projective A-module.

(1) If T ∈ EndA(M) is an arbitrarily high power, then M = ker T ⊕ im T and T |im T is invertible.

(2) Consider an infinite set S of positive integers such that

char(A)= 0=⇒ the group (A,+) has no nontrivial S-divisible elements;(1-2)

char(A)= p > 0=⇒ p ∈5S := {primes p | νp lcm(s | s ∈ S)=∞}.(1-3)

If T ∈ EndA(M) is S-divisible in EndA(M), then the restriction T |im T of (1) is semisimple.

(3) If , in addition, (A×/torsion(A×), · ) also has no nontrivial S-divisible elements then for an S-

divisible T ∈ EndA(M) the restriction T |im T is of finite 5′
S

-order.

(4) Conversely, if T is a direct sum of the zero operator and an operator of finite order d , then T is an

n-th power in EndA(M) for every n coprime to d.
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The statement of Theorem 1.3 (2) is phrased so as to have (1-2) plug directly into the proof, but that

condition has an alternative, perhaps more transparent (because more directly numerical) description.

Definition 1.4. The set of local characteristics of a domain A is

lchar(A) := {char(A/p) | {0} ̸= p⊴ A prime}.

Proposition 1.5. For a Dedekind domain A the conditions (1-2) and (1-3) are jointly equivalent to

(1-4)
∑

p∈lchar(A)

sup
s∈S

νp(s)=∞.

Proof. In positive characteristic p, the set lchar(A) is the singleton {p}, and (1-4) obviously rephrases (1-3).

Assuming henceforth that char(A)= 0, note that every prime p ∈ Z>0 ⊂ A belongs to only finitely many

prime ideals. For that reason, (1-4) can also be rendered as

(1-5)
∑

primes p⊴A

sup
s∈S

νchar(A/p)(s)=∞.

Or, in words, (at least) one of the following two conditions holds:

(a) there is some prime ideal p⊴ A with

{νp(s) | s ∈ S} unbounded, where p := char(A/p);

(b) the set of prime ideals p⊴ A containing some s ∈ S is infinite.

(1-2) =⇒ (1-5): The joint negation of (a) and (b) means that there is a positive integer n such that

s/gcd(s, n), where s ∈ S belong to no prime ideals of A, and hence are invertible. Then n ∈ Z⊆ A will

be S-divisible.

(1-5) =⇒ (1-2): If (b) holds, we are done; for an S-divisible element x ∈A would then belong to infinitely

many prime ideals, as no nonzero x can (since for x ̸= 0 the principal ideal (x) decomposes uniquely as a

product finitely many prime ideals [16, §I.3, Corollary 3.9]).

Assume (a) holds instead. An S-divisible element is then pn-divisible for every n, hence belongs to

the trivial [1, Corollary 10.18] intersection
⋂

np
n ⊴ A. □

The setup of Theorem 1.3 might appear somewhat contrived, but it covers (for appropriate S) the

Dedekind domains of most interest in number theory: the rings of integers in either local or global fields.

Example 1.6. A number field K is a finite extension of the rationals [14, first sentence of Chapter 2],

which we may as well assume embedded in C. These are also the global fields of characteristic zero of [4,

§II.12]. The corresponding number ring [14, following Corollary 1 to Theorem 2] OK ⊂K, consisting of

the algebraic integers in K, is a Dedekind domain [14, Theorem 14].

Any infinite S will do: (1-2) obviously holds in its alternative incarnation as (1-4), since lchar(OK)

consists of all primes. As for the infinite-power property in the statement of Theorem 1.3 (3), it follows

from the fact that O
× is finitely generated as an abelian group (this is Dirichlet’s celebrated Unit Theorem,

usually stated much more precisely than we have any need to [14, Theorem 38]).

Example 1.7. For a prime p, consider a finite extension K of the field Qp of p-adic numbers [16, §II.1].

It is complete with respect to the unique extension | · | to K [16, §II.4, Theorem 4.8] of the p-adic

norm | · |p of [16, §II.2]. Such K are precisely the characteristic-0 local fields of [16, §II.5] (or [4,

Chapter VI, Introduction]).
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The corresponding discrete valuation ring

OK := {x ∈ K | |x | ≤ 1}

is a principal ideal domain [18, §I.1, Proposition 1] (so in particular Dedekind). An infinite S ⊆ Z>0

satisfies (1-2) if and only if p ∈5S (i.e., we can find s ∈ S divisible by arbitrarily high powers of p), in

which case the hypothesis of Theorem 1.3 (3) also holds.

The first claim follows immediately from the fact that positive integers coprime to p are invertible

in OK. To verify the second, recall the direct-product decomposition, [15, §III.1, Proposition 1.1] or [10,

§15.1, (2’)],

(1-6) O
×
K
∼= (finite cyclic group)×U

(1)
K

,

where the groups

U
(i)
K
:= 1+mi , with i ≥ 1, m⊂ OK is the unique maximal ideal ,

are introduced in [15, §III.1] (also [18, §IV.2] or [10, §15.1]; in the latter, Hi = U
(i)
K

and H = H1).

Similarly,

U
(1)
K
∼= (finite cyclic p-group)×Z

[K:Qp]
p

by [18, §XIV.4, Proposition 10] or [10, §15.5, one-unit theorem], where Zp = OQp
is the ring of p-adic

integers, regarded here as a group with its additive structure. All in all,

O
×
K
∼= F ×Z

[K:Qp]
p , F finite abelian,

whence the conclusion.

Example 1.8. The substance of the discussion in Example 1.7 goes through ( that is, Theorem 1.3 (3) ap-

plies precisely when p ∈5S) for rings of integers in positive-characteristic local fields: per [4, Chapter VI,

Introduction], the fields K = k((t)) of Laurent power series over finite fields k (whereupon OK = k[[t]],

the ring of formal power series).

The decomposition (1-6) holds just as before, since the cited references are characteristic-blind on that

count. As for U
(1)
K

, it is this time simply a free Zp-module [10, §15.4, one-unit theorem] (albeit one of

infinite rank this time).

An application of Theorem 1.3 to Example 1.6 yields

Corollary 1.9. Let M be a finitely generated projective module over a number ring OK and S an infinite

set of positive integers.

An S-divisible one-to-one T ∈ EndOK
(M) is of finite order coprime to every p ∈ 5S. In particular,

T = 1 provided for every prime p, there are elements of S divisible by arbitrarily high powers of p.

Proof. Example 1.6 notes that parts (2) and (3) of Theorem 1.3 apply to any infinite S, and the nonsingu-

larity condition disposes of ker T . □

Specializing Corollary 1.9 further to M := O
m
K

provides the following generalization of [5] (which in

turn can be recovered by setting K =Q):

Corollary 1.10. Let OK be a number ring and m a positive integer. The only nonsingular matrix in Mm(OK)

that is an n-th power therein for all but finitely many n is the identity.



262 ALEXANDRU CHIRVĂSITU

We will also consider Dedekind domains A whose quotient fields are finite extensions of k(t) (the

fields featuring in the definition of an abstract smooth curve [9, §I.6, following Corollary 6.6]), for

positive characteristic k. When k is finite these are also the positive characteristic global fields [4, §II.12],

“globalizing” Example 1.8 akin to the passage from Example 1.7 to Example 1.6.

Corollary 1.11. Let A be a Dedekind domain whose field of fractions K is a finite extension of k(t) for

p := char(k) > 0, and M a finitely generated projective A-module.

(1) If T ∈ EndA(M) is S-divisible for an infinite S⊆ Z>0 with p ∈5S, then T is diagonalizable over

the algebraic closure k of k.

(2) In particular, T = 0⊕T ′ with T ′ of p-coprime finite order if the only S-divisible roots of unity in k
×

are roots of unity (e.g., if k is finite or, more generally, algebraic over its prime field).

Proof. All of this follows from Theorem 1.3 (and its proof) upon noting that the arbitrarily highly divisible

elements of K× must be algebraic over k⊂ k(t) ⫅ K. □

The direct sum decomposition of Theorem 1.3 (1) is fairly easily dispatched. It relies in part on the

following simple general remark, itself a variant of the Fitting lemma (variants of which appear as [6,

§15.1, Exercise 5], [11, §3.3, preceding Theorem 3.7], etc.):

Lemma 1.12. Let M be a noetherian module over a commutative ring A and T ∈ EndA(M).

If the endomorphism T induced by T on M/ ker T n is onto for some n, then M = ker T m ⊕ im T m and

T |im T m is an automorphism for m≫ 0.

Proof. The already cited [6, §15.1, Exercise 5] shows that

• the nondecreasing chain of submodules ker T m stabilizes;

• the sum

(1-7) ker T m + im T m ≤ M, m≫ 0,

is direct; and

• T is in fact an automorphism of M/ ker T m , m≫ 0.

The conclusion follows immediately:

ker T m + im T m/ ker T m = im T m = im T = ker T m + im T/ ker T m = M/ ker T m,

so (1-7) cannot be proper. □

Lemma 1.13. Let A be a Dedekind domain with quotient field K, M , T and S as in Theorem 1.3, and

assume (1-2) (1-3). Denote also by A ⊆ A ⊂ K the integral closure of A in the algebraic closure K ⊇ K.

If T ∈ EndA(M) is unipotent and S-divisible in End
A
(M ⊗A A), then it is the identity.

Proof. Set E :=EndA(M) and denote by subscripts modules obtained by scalar extension: MK :=M⊗A K,

E
A
:= E ⊗A A ∼= End

A
(M

A
),

and so on.

Fix Ts ∈ E
A

with T s
s = T and s ∈S. The eigenvalues of Ts are roots of unity (since those of T are 1: this

is what unipotence [2, §I.4] means). It follows that the semisimple factor Rs in the multiplicative Jordan
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decomposition [2, §I.4, Corollary 1 to Proposition 4.2] Ts = RsUs belongs to E
A
⊂ EK = EndK(MK)

along with its inverse, so that Us ∈ E
A

as well. Working with Us in place of Ts , we may now assume the

latter unipotent.

We argue inductively on the minimal n with (T − 1)n = 0, with the inductive step consisting of

substituting M ′ := M/ ker(T − 1) (also torsion-free) for M and replacing T and Ts with the operators

induced thereon. It will thus be enough to assume that (T − 1)2 = 0 (the base case of the induction).

Since M ′ (because it is finitely generated torsion-free) is projective, there is a (noncanonical) decompo-

sition M ∼= ker(T − 1)⊕M ′ that transports over to M
A

and gives block upper-triangular decompositions

T =

(

1 S

0 1

)

, Ts =

(

1 Ss

0 Us

)

, U s
s = 1.

Consider the two cases:

(a) In characteristic 0, the Us are identities (being both unipotent and of finite order) so that

T s
s = T =⇒ sSs = S

=⇒ S is S-divisible in Hom
A
(M ′

A
, ker(T − 1)

A
)∼= HomA(M ′, ker(T − 1))

A
.

Since the morphism space is projective finitely generated over A, the latter’s assumed S-nondivisibility

implies that S vanishes and hence T = 1.

(b) In characteristic p > 0, we still have

U pνp (s)

s = 1, ∀s ∈ S,

since those powers of Us are both unipotent and roots of unity of orders s/pνp(s) (coprime to p).

Because the Us all operate on the same finite-dimensional vector space MK, there is some m such that

U pm

s = 1, ∀s ∈ S.

Our assumption that p ∈5S implies that νp(s) > m for at least one s ∈ S; S then vanishes, being

a multiple of the p-divisible s/pm .

This concludes the proof. □

Proof of Theorem 1.3. Theorem 1.3 (4): This is immediate. If M ∼= ker T ⊕ P with T |P of order d , then

T = (T m)n whenever mn = 1 mod d; if n and d are coprime then such an m always exists, hence the

conclusion.

Theorem 1.3 (1): Note first that if T ∈ EndA(M) is nilpotent and arbitrarily highly divisible, then it

vanishes. Indeed, the operators T and

Ts ∈ EndA(M), T s
s = T, ∀s ∈ S

on the r -dimensional (r := rank(M)) vector space MK := M ⊗A K over the quotient field K of A are all

nilpotent, so [6, §12.3, Exercise 32] T r
s = 0, ∀s. But then T = T s

s vanishes as soon as s ≥ r .

In general, the preceding argument shows that the restriction of T to the generalized kernel

kergen T := {v ∈ M | T nv = 0 for some n}
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vanishes, so that kergen T = ker T . But then ker T and im T already intersect trivially and the sum

ker T + im T ≤ M

is direct. We will then be able to conclude via Lemma 1.12 (and its proof) as soon as we argue that the

operator T induced by T on M := M/ ker T is onto (and hence invertible).

To see this, note that M is again projective finitely generated, so that one can speak of determinants of

operators thereon. Now, the principal ideal (det T ) ⊴ A is an arbitrarily high power in the multiplicative

group of fractional ideals [16, §I.3, Definition 3.7]:

(det T )= (det Ts)
s ⊴ A, s ∈ S.

That group being free abelian on the set of prime ideals [16, §I.3, Corollary 3.9], it follows that det T is

invertible in A.

Restricting T and all of the Ts to the summand im T ≤ M , we can (and throughout the remainder of

the proof will) assume T invertible.

Theorem 1.3 (2): Assuming invertibility, we prove semisimplicity. Extend K to an overfield L by

adjoining the eigenvalues αi of T . Those eigenvalues are integral over A, by the familiar argument (via

[1, Proposition 5.1], say): EndA(M) is finitely generated as an A-module, hence so is the A-submodule

generated as an A-algebra by T . In other words αi ∈ B, the integral closure of A in L , itself a Dedekind

domain [16, §I.12, Proposition 12.8].

Observe next that the hypothesis of Theorem 1.3 (2) transports over from A to B: for (1-3) this is clear,

since the two rings have the same characteristic, while for (1-2) the claim follows from Proposition 1.5

and the fact that every prime p⊴ A is contained in (and the intersection of A with) finitely many Pi ⊴ B;

see [16, §I.8, following Proposition 8.1] or [1, Chapter 5, Exercise 15].

The upshot of all of this is that we may substitute B and L for A and K respectively, or, what is more

alphabetically economical, simply assume that αi ∈A. But then the factors of the multiplicative Jordan de-

composition T = RU both belong to EndA(M), those of the analogous factorizations Ts = RsUs belong to

End
A
(M ⊗A A), where A := integral closure of A in the algebraic closure K ⊇ K,

and we can conclude by applying Lemma 1.13 to the S-divisibility U = U s
s , s ∈ S of the unipotent

operator U (in place of T ) that U = 1.

Theorem 1.3 (3): Because we are assuming that the only S-divisible elements of A× are roots of unity,

so is det T and hence also the eigenvalues of T . But then T is also semisimple by part (2), hence the

finite-order claim.

As to the constraint on the order of T : for every p ∈5S there is some s for which lifting to the s-th

power annihilates the entire p-primary component of torsion(A×) (i.e., the group of elements whose

order is a power of p [6, §4.5, Example 2 following Corollary 20]), and hence the order of every s-th

power is coprime to p. The conclusion follows from

(det Ts)
s = det T, ∀s. □

It is perhaps worth noting that occasionally, the multiplicative constraint of Theorem 1.3 (3) follows

from the hypothesis of part (2):
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Proposition 1.14. Let S ⊆ Z>0 and A a Dedekind domain with at least one finite residue field of

characteristic p ∈5S.

The hypotheses of Theorem 1.3 (2) and (3) are then met.

Proof. The positive characteristic branch (1-3) is obvious, (1-2) holds also by Proposition 1.5, and the

hypothesis of Theorem 1.3 (3) (the fact that the S-divisible elements of A× are roots of unity) follows from

the corresponding claim for integer rings of local fields (see Examples 1.7 and 1.8) and the embedding

A ↪−→ localization Ap ↪−→ p-adic completion Âp := lim
←−−

n

A/pn

for some prime ideal p ⊴ A with finite characteristic-p residue field A/p [1, Remark 1 following

Theorem 10.17]. □
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