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NATURALITY AND INNERNESS FOR MORPHISMS OF

COMPACT GROUPS AND (RESTRICTED) LIE ALGEBRAS

ALEXANDRU CHIRVASITU

(Communicated by Sarah Witherspoon)

Abstract. An extended derivation (endomorphism) of a (restricted) Lie alge-
bra L is an assignment of a derivation (respectively) of L′ for any (restricted)
Lie morphism f : L → L′, functorial in f in the obvious sense. We show that
(a) the only extended endomorphisms of a restricted Lie algebra are the two
obvious ones, assigning either the identity or the zero map of L′ to every f ;
and (b) if L is a Lie algebra in characteristic zero or a restricted Lie algebra

in positive characteristic, then L is in canonical bijection with its space of
extended derivations (so the latter are all, in a sense, inner). These results
answer a number of questions of G. Bergman.

In a similar vein, we show that the individual components of an extended
endomorphism of a compact connected group are either all trivial or all inner
automorphisms.

Introduction

This note was prompted by a number of questions posed in [3]. That paper
revolves around the notion of innerness for automorphisms, endomorphisms, or
other classes of maps between algebraic structures.

One intriguing piece of insight is that innerness (whatever it means it any given
context) is automatic for extended morphisms (auto, endo, etc.): per [3, Definition
4], an extended endomorphism of an object c ∈ C of a category is an endomorphism
of the forgetful functor

(0.1) c ↓ C � (c → d)
Uc,C

�−−−−−−→ d ∈ C

from the comma category c ↓ C consisting of morphisms in C with domain c ([11,
§II.6], [1, Exercise 3K]); the same goes for automorphisms. The paradigmatic results
([3, Theorems 1 and 2, Corollary 3]) say that for the category Gp of groups and
G ∈ Gp:

• The morphism attaching to g ∈ G the natural automorphism of UG,Gp

(notation as in (0.1)) operating as conjugation by f(g) for any

(0.2)
(
G

f
−−−−→ H

)
∈ G ↓ Gp
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is an isomorphism G ∼= Aut(UG,Gp).
• The only other extended endomorphism of UG,Gp is the one operating triv-
ially on H for every (0.2).

The specific questions that motivated this work are concentrated in [3, §8], which
retraces some of this in the context of (restricted [9, §V.7 Definition 4]) Lie algebras
and their derivations. The category C of (0.1) is now that of Lie algebras over a field
(perhaps restricted, when in positive characteristic), and along with endomorphisms
of (0.1) one similarly considers extended derivations [3, Definition 10] of a Lie
algebra L:

• a derivation ∂f of the Lie algebra L′ for every morphism f : L → L′;
• with the ∂f satisfying the obvious compatibility conditions, analogous to
those required of extended morphisms.

With that in place,

(a) (A paraphrase of) [3, Question 11] asks whether the extended derivations
of a Lie algebra in characteristic 0 are precisely those of the form

(0.3) ∂a,f (l
′) := [f(a), l′], ∀f : L → L′, ∀l′ ∈ L′

for a ∈ L;
(b) And, similarly, for restricted Lie algebras in positive characteristic;
(c) While [3, Question 13] asks whether restricted positive-characteristic Lie

algebras have any nonobvious extended endomorphisms (the obvious as-
signing the identity or, respectively, the zero map on L′ to every L → L′).

We answer these in Theorems 1.2 and 1.4:

Theorem. Let L be either a Lie algebra over a field k, or a restricted Lie algebra
when k has positive characteristic.

(a) If char k = 0, the map sending a ∈ L to the extended derivation (∂a,f )f
of (0.3) is an isomorphism between L and the linear space of extended
derivations of L.

(b) The same holds in positive characteristic for restricted Lie algebras.
(c) For Lie algebras (regardless of characteristic) the only extended endomor-

phisms are the two obvious ones:

(L → L′) �−−→ idL′ and

(L → L′) �−−→ 0.

(d) The analogous statement holds for restricted Lie algebras in positive char-
acteristic.

Part (c) is already settled in [3, Theorem 12] and is included here only for
completeness; the other three items answer the various questions of [3, §8] indicated
above.

Section 2 focuses on another instance of this same phenomenon, whereby func-
toriality begets innerness, but this time working in the category CGp0 of compact
connected topological groups (here always assumed Hausdorff). The partial ana-
logue of [3, Corollary 3] is Theorem 2.1, and reads

Theorem. For a compact connected group G, the individual components of a nat-
ural endomorphism of

G ↓ CGp0
UG,CGp0�−−−−−−−−−→ CGp0
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are either all trivial or all inner automorphisms.

While very similar in character to the results discussed above, the proofs are
by necessity quite different. Bergmann’s paper [3] and the citing literature (e.g.,
[8,14,15]) tend to adopt universal-algebra-flavored approaches: the idea is to study
the effect of (say) a natural endomorphism of (0.1) on the morphism

c → 〈c, x〉

into the structure (set, group, etc.) that freely adjoins an element x. Such universal
constructions do exist in the category CGp of compact groups; in category-theoretic
language, CGp is, for instance, cocomplete [1, Definition 12.2]. To construct the
coproduct [1, §10.63] (or free product) G1 ∗G2 of two compact groups one must

• form the usual group coproduct G ∗discrete G2;
• equip it with the coarsest group topology making the canonical embeddings

ιi : Gi → G1 ∗discrete G2

continuous (e.g., [6, introductory remarks]);
• and then take the Bohr compactification ([2, §III.9] or [10, §2.10]) thereof.

It is this last step that disturbs the usual procedure: freely appending an element
x to a compact group G amounts to the above with

G1 = G and G2 = Bohr compactification of Z ∼= 〈x〉.

Words in x±1 and elements of G no longer constitute all of 〈G, x〉, but rather only
a dense subgroup thereof; for that reason, arguments such as those in the proof of
[3, Theorem 1] are no longer available.

It is perhaps also worth mentioning at this point that for groups (plain, as
opposed to topological) there is literature on adjacent problems, seeking to charac-
terize innerness for automorphisms without assuming functoriality. An example: an
automorphism of a groupG is inner precisely if it extends to any groupH containing
an isomorphic copy of G. This appears as [17, Theorem] and also [16, Corollary to
Theorem 3, p.422]; there too, generator-and-relation constructions feature promi-
nently.

1. Lie algebras

We work with Lie algebras over fields, for which [9] is an excellent source. Having
fixed a field k, L will typically denote

• a Lie algebra unless specified otherwise, or
• a restricted Lie algebra in characteristic p, in the sense of [9, §V.7 Definition
4] or [13, Definition 2.3.2].

We further write

• U(L) for the universal enveloping algebra of a Lie k-algebra ([9, §V.1, Def-
inition 1]), and

• Up(L) for the restricted enveloping algebra of the restricted Lie algebra L

in characteristic p (UL in [9, §V.7 Theorem 12]).
• Q(L) to denote either U(L) or Up(L), as appropriate (so as to have uniform
notation to refer to both cases).
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Note that both U(L) and Up(L) are naturally Hopf algebras over k [13, Example
1.5.4, Definition 2.3.2] and hence come equipped with counits ε, comultiplications
Δ, etc. We will assume basic background on Hopf algebras as covered, for instance,
in [13]. The Hopf algebra structure is uniquely determined by the requirement that
the elements x ∈ L be primitive [13, Definition 1.3.4], i.e.

Δ(x) = x⊗ 1 + 1⊗ x.

1.1. Derivations. To streamline the statement of Theorem 1.2, we introduce some
terminology.

Definition 1.1. Let k be a field, and L either a Lie algebra (in characteristic zero)
or a restricted Lie algebra in characteristic p, and 〈L, x〉 the (restricted) Lie algebra
freely generated by L and a formal variable x.

An element a ∈ Q(L)

• is constant-less if it is annihilated by the counit ε : Q(L) → k of the Hopf
algebra Q(L).

• induces a universal derivative (or is universally derivative or a universal
derivative) if, for a formal variable x, the commutator [a, x] ∈ Q(〈L, x〉)
belongs to 〈L, x〉.

Note that L ⊂ Q(L) consists of constant-less universal derivatives. The following
result gives the converse, answering [3, Question 11] negatively. It also proves,
via the arguments in [3, Section 8], parts (a) and (b) of the first theorem in the
Introduction.

Theorem 1.2. Let k be a field and L either a Lie algebra over k (in characteristic
zero) or a restricted Lie algebra (in characteristic p).

(a) If k has characteristic zero then the only constant-less universally derivative
elements of U(L) are those of L.

(b) Similarly, if k has characteristic p then the only constant-less universally
derivative elements of Up(L) are those of L.

Proof. The two statements (and proofs) are very similar, so we treat only the first in
detail. The phenomenon driving both arguments is the fact that L can be recovered
as precisely the space of primitive elements in the Hopf algebra Q(L).

(a) As hinted above, note first that in characteristic zero, the primitive elements
P (U(G)) of U(G) (for an arbitrary Lie algebra G) are precisely those of G ⊂ U(G)
[13, Proposition 5.5.3, part 2)]. Take G = 〈L, x〉. The hypothesis

[a, x] ∈ 〈L, x〉

(for some constant-less universal derivative a ∈ U(L)) implies that the commutator
[a, x] is primitive. This, in turn, implies that a is primitive. To see this, assume
otherwise and write

Δ(a) = a⊗ 1 + 1⊗ a+
∑

i

ai,1 ⊗ ai,2,

where ai,j are

• constant-less elements of U(L),
• with at least one non-zero term ai,1 ⊗ ai,2,
• and linearly independent ai,2 (since we can always group the tensors so as
to arrange for this).
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Expanding Δ([a, x]), the resulting term ai,1 ⊗ ai,2x appears only once, and hence
will not cancel. This contradicts the primitivity of [a, x], concluding that indeed a
must be primitive. But then, by the already-cited [13, Proposition 5.5.3, Part 2)],
a ∈ L.

(b) The argument goes through almost verbatim, the only difference being that
this time around we use the fact that in characteristic p the primitive elements
P (Up(L)) of Up(L) are those of L. This is not quite what [13, Proposition 5.5.3,
Part 3)] says, but that proof can be adapted. The claim (that P (Up(L)) = L) also
follows from [18, Proposition 13.2.3]. �

1.2. Endomorphisms. There is an endomorphism (as opposed to derivation) ver-
sion of Theorem 1.2, which in turn answers [3, Question 13]. Before stating it, some
more terminology.

Definition 1.3. Let L be an object of a category C. A universal endomorphism of
L in C is an endomorphism of the forgetful functor

L ↓ C → C.

These are the extended inner endomorphisms of [3, Definition 4]. The announced
universal-endomorphism version of Theorem 1.2 now reads

Theorem 1.4. Let k be a field and L either a Lie algebra over k (in characteristic
zero) or a restricted Lie algebra (in characteristic p).

(a) The only universal endomorphisms of L in the category Liek of Lie k-
algebras are 0 and id.

(b) Furthermore, if k has characteristic p then the only universal endomor-
phisms of L in the category Liek,p of restricted Lie k-algebras are 0 and
id.

Proof. As explained in [3, discussion preceding Theorem 12], a universal endomor-
phism as in the statement is determined by elements a, b ∈ Q(L), acquiring the
expression

(1.1) M � m �→ ϕ(a)mϕ(b),

where

• ϕ : L → M is a (restricted) Lie algebra morphism as well as the corre-
sponding morphism Q(L) → Q(M) it induces, and

• it is understood that for all such ϕ, the right-hand side of (1.1) belongs to
M .

One can package all of this into its universal (or generic) instance: take ϕ : L → M
to be the inclusion

L ⊆ 〈L, x〉

for a formal variable x, and require that axb ∈ 〈L, x〉. Denote by ε the counit of
the Hopf algebra Q(L), and decompose

a = ε(a) + a, b = ε(b) + b

for constant-less a and b; the goal is to show that these two latter elements must
vanish.

The argument is now similar to that in the proof of Theorem 1.2

Δ(a) = a⊗ 1 + 1⊗ a+ · · ·
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and similarly for b, where the missing summands indicated by ‘· · · ’ are simple
tensors with constant-less tensorands.

Because Q(〈L, x〉) is the coproduct (over k) of Q(L) and k[x], if a and b are both
non-vanishing then the term a ⊗ xb of Δ(axb) ∈ Q(〈L, x〉)⊗2 will not cancel out,
contradicting the fact that

axb ∈ 〈L, x〉 ⊂ Q(〈L, x〉)

is primitive, i.e.,

Δ(axb) = axb⊗ 1 + 1⊗ axb.

It follows that at least one of a and b is scalar. Suppose it is b, so that we can
absorb the constant into a and work with ax in place of the original axb. Now
repeat the argument: if a �= 0 then the term a⊗ x will be present in Δ(ax), again
contradicting the primitivity of ax.

In conclusion a and b are both scalar, as claimed. �

Remark 1.5. Alternatively, once we find that one of a and b is scalar we can conclude
using the fact that, according to [3, proof of Theorem 12], ba = 1; this was not used
above.

Part (a) of Theorem 1.4 recovers [3, Theorem 12], while part (b) answers [3,
Question 13] negatively.

Remark 1.6. Finite-dimensional (rather than arbitrary) Lie algebras are much more
interesting, as extended endomorphisms or automorphisms go.

By [4, §III.6.1, Theorem 1] the category LAlgf,k of finite-dimensional Lie alge-
bras over the real or complex field k is equivalent to that of simply-connected Lie
groups over k. Consequently, for any finite-dimensional Lie algebra L ∈ Lalgf,k,
the corresponding simply-connected Lie group GL with Lie algebra L gives a wealth
of “inner” automorphisms of the forgetful functor

L ↓ Lalgf,k
UL−−−−→ Lalgf,k :

an element g ∈ GL operates on the codomain L′ of a morphism

(1.2) L
f

−−−−→ L′ in Lalgf,k

via the adjoint action of f̃(g), where

GL
f̃

−−−−→ GL′

is the lift of (1.2) to simply connected Lie groups (once more, [4, §III.6.1, Theorem
1]).

2. Compact groups

Some notation:

• CGp the category of compact (Hausdorff) topological groups;
• CGp0 that of connected compact groups;
• And in general, for an object c ∈ C and a full subcategory C′ ⊆ C, we write

(2.1) c ↓ C′
Uc,C′

−−−−−−−→ C′

for the respective forgetful functor (as in (0.1), with C′ in place of C).
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The present section is concerned with the following (almost) “automatic inner-
ness” for extended automorphisms of compact connected groups.

Theorem 2.1. Let G ∈ CGp0 be a compact connected group and α ∈ End(UG,CGp0)
a natural endomorphism of the forgetful functor defined as in (2.1), assigning an
endomorphism αf ∈ End(H) to

(2.2) f : G → H, H compact connected.

One of the two following possibilities obtains:

• α is trivial, in the sense that αf is the trivial endomorphism of H for every
(2.2);

• or every αf is an inner automorphism of H.

The proof requires some preparation.

Remarks 2.2.

(1) Consider a full subcategory C′ ⊆ C (as in (2.1)). The application

C � c �−−→ End(Uc,C′)

is functorial (albeit taking values, in principle, in the category of set-
theoretically large monoids).

In the sequel we use this repeatedly, and mostly tacitly. This func-
toriality will usually make an appearance (with, say, C = C′ = CGp or
C = C′ = CGp0) in the following form: given an endomorphism

α ∈ End(Uc,C′)

and a morphism f : c → d with codomain d ∈ C′, the component αf is
itself the identity component

βid = αf of some β ∈ End(Ud,C′)

induced by α.
(2) Ideally, one would expect a stronger version of Theorem 2.1, along the lines

of [3, Theorems 1 and 2]: every extended automorphism of G is presumably
of the form αf = conjugation by f(g) for a unique g ∈ G.

I do not know whether this is the case; the problem appears to require
a more careful analysis of commutators in pushouts in the category CGp

than could be carried out here, and is the subject of future work.

Proposition 2.3.

(a) For a compact connected group G ∈ CGp0, a non-trivial natural endomor-
phism of the forgetful functor

G ↓ CGp0
UG,CGp0−−−−−−−−−→ CGp0

is automatically a natural automorphism.
(b) The same goes for the forgetful functor UG,CGp.

Proof. We focus on (a) to fix ideas; the other proof is largely parallel.

(1) Each αf is either trivial or injective. Per Remark 2.2 (1), we may as
well take f = id.

Let g ∈ G be an element not annihilated by αid, and consider a morphism

(2.3) G
f

−−−−→ H in CGp,
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chosen judiciously (more on this momentarily). We have a commutative
diagram.

(2.4) G

G

H

H.

αid f

f αf

Suppose now that
• f(αid(g)) is nontrivial;
• as is f(g′) for an arbitrary 1 �= g′ ∈ kerαid;
• and H is a compact, connected, simple Lie group: one with no non-
trivial proper normal subgroups or equivalently [7, Theorem 9.90], no
such subgroups that are closed.

That such f exist is easily seen, and relegated to Lemma 2.4. The upper
path in (2.4) fails to annihilate g ∈ G, hence so does the lower. H being
simple, αf must be one-to-one (because it cannot be trivial). But this means
that the lower composition in (2.4) fails to annihilate g′, contradicting the
fact that the upper path does.

The contradiction stems from our assumption that there are non-trivial
g′ ∈ kerαid, so that map must in fact be injective.

(2) Each αf is either trivial or surjective. Once more, take f = id.
Assume, this time around, that αid is neither trivial nor onto.

The subgroup αid(G) ≤ G is then proper but nontrivial. Because com-
pact groups are inverse limits of their Lie quotients [7, Corollary 2.36], we
can find such a quotient (2.3) so that the image

(2.5) αf (H) = f(αid(G)) ≤ H = f(G)

is both proper and nontrivial (the first equality follows from the commuta-
tivity of (2.4)). But then

• αf cannot be trivial, since its image is not;
• hence must be injective by part (1);
• and thus also surjective, because it is a one-to-one map of compact Lie
groups: it restricts to an isomorphism on every connected component
for dimension reasons, and a compact Lie group has finitely many
connected components.

This latter remark contradicts the properness of (2.5), and the contradiction
concludes the proof of part (2).

This, so far, shows that the individual components αf of α are each either
trivial or bijective. It remains to argue that we cannot have a mixture of
these: if αid is trivial (bijective) then so, respectively, is every αf .

(3) If

αid ∈ End(G) and αtriv ∈ EndH
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are not both trivial, then the former is injective and the latter
surjective. We will make repeated use of the diagram

(2.6)
G

G

G×H

G×H

H

H

ι π

ι π

αid αι αtriv

(with ι and π the obvious inclusion and projection). By claims (1) and (2),
if at least one of αid and αtriv is nontrivial, then αι must be bijective. This,
in turn, entails the claimed injectivity and surjectivity.

(4) αid and αf are simultaneously (non)trivial. Assuming not, there are
two cases to consider:
(I) αid is trivial, while αf isn’t. By parts (1) and (2) αf is bijective,

so the commutativity of (2.4) shows that f : G → H itself is trivial.
It follows that αf is the αtriv of (2.6), and hence

αid = triv is injective by part (3).

But then G itself is trivial, so that αid = triv is itself bijective.
(II) αf is trivial, while αid isn’t. Similar to the preceding: (2.4) and

the bijectivity (by (1) and (2)) of αid force f = triv, so that

αf = αtriv = triv is surjective by (3).

But this means that H itself is trivial, so αf = triv is also bijective.
This settles claim (4), and hence also the proposition as a whole.

�

The following result is presumably well known, but we isolate it here for reference
in the proof of Proposition 2.3.

Lemma 2.4. For any finite set F ⊆ G of nontrivial elements of a compact group
there is a morphism f : G → PSU(n) to some projective special unitary group with
f(g) �= 1 for g ∈ F .

If G is Lie then f can be chosen injective.

Proof. Because G is the inverse limit of its Lie quotient groups [7, Corollary 2.36],
we certainly have a morphism f to a unitary group with these properties; it is thus
enough to assume that G = U(m).

Next, U(m) further embeds into SU(2m) via

U(m) � x �→

(
x 0
0 x

)
∈ SU(2m)

(with the overline denoting complex conjugation), so that we can in fact set G =
S(N).

Denoting by ρ the N -dimensional defining representation of SU(N), the repre-
sentation ρ⊕ ρ⊗2 gives an embedding

SU(N) −−→ SU(n), n := N +N2

with the property that the center Z/N ⊂ SU(N) intersects that of SU(n) trivially,
so that further surjecting onto PSU(n) finally gives the desired embedding (of G,
now assumed Lie, into PSU(n)). �
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We will take it for granted that the automorphism groups of the unitary U(n)
are

(2.7) Aut(U(n)) ∼= PSU(n)� Z/2,

where

• the projective special unitary group PSU(n) is

PSU(n) = U(n)/(central circle S
1) ∼= SU(n)/(central Z/n)

is the inner automorphism group, acting on U(n) by conjugation;
• and the generator of Z/2 is complex conjugation.

This is fairly standard, though a statement specifically to this effect seems diffi-
cult to locate in the literature. The proof is certainly no more difficult that that of
the analogous result for SU(n), which in turn follows from the classification of the
automorphisms of the complexified Lie algebra

sl(n) = su(n)⊗R C,

described, say, in [9, §IX.5].

Proposition 2.5. Let G ∈ CGp0 be a compact connected group and α an auto-
morphism of the forgetful functor UG,CGp0

For f : G → H the automorphism αf ∈ Aut(H) is inner.

Proof. Note that it is enough to prove αid itself inner: every αf as in the statement
is the identity component of an automorphism of UH,CGp0 induced by α.

The proof runs through a number of intermediate steps.

(1) The circle: G = S
1. In this case αid is either the identity (which we

claim is the case) or the other automorphism: z �→ z−1. Consider, now,
the central embedding

S
1 f
−−−−→

∼=
(diagonal matrices) ⊂ U(n)

into a unitary group and the corresponding element αf of Aut(U(n)).
Because the image of f is central in U(n), further composition with an

arbitrary conjugation

Adu := u(−)u∗ ∈ Aut(U(n)), u ∈ U(n)

will leave f invariant, so the naturality of α gives a commutative diagram

U(n)

U(n)

U(n)

U(n).

αf Adu

Adu
αf

In other words, αf lies in the centralizer of PSU(n) in (2.7). That cen-
tralizer is easily seen to be trivial, so that αf = id and αid = id by the
commutativity of (2.4).

(2) Unitary groups. We are assuming now that G = U(n). The preceding
point shows that the automorphism αdet associated to the determinant
morphism

U(n)
det

−−−−−→ S
1
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is trivial. But then, once more by the commutativity of (2.4) (with G =
U(n), H = S1 and f = det), this means that αid ∈ Aut(U(n)) fixes deter-
minants (rather than inverting them), and hence must be inner by (2.7).

(3) Arbitrary connected compact G. We know from the preceding discus-
sion that every

αf ∈ Aut(U(n)), f : G → U(n)

induced by α is inner, i.e. conjugation by some uf ∈ U(n). But then the
commutativity of

G

G

U(n)

U(n).

αid
f

f αf

,

means that uf , regarded as an automorphism of the carrier space V ∼= C
n

of the G-representation f , implements an isomorphism between f and the
αid-twisted representation f ◦ αid.

This holds for arbitrary representations f of G, so αid is an automor-
phism of the latter leaving invariant (the isomorphism classes of) all of its
irreducible representations. For connected G this implies that αid must be
inner [12, Corollary 2].

This concludes the proof. �

Remark 2.6. While I do not know whether Theorem 2.1 holds for disconnected
compact groups, the argument in the proof of Proposition 2.5 certainly does not go
through: it uses the connectedness of G crucially, in concluding via [12, Corollary
2] that automorphisms that preserve the isomorphism classes of all (or equivalently,
all irreducible) representations are inner.

For finite groups, for instance, the automorphisms with this preservation prop-
erty are precisely the ones termed class-preserving in the rich literature on the topic:
an equivalent characterization is that they leave every conjugacy class invariant.

The reader can consult, for instance, [5] and their references ([19, 20], and so
on) for extensive discussions and examples of finite groups which admit outer class-
preserving automorphisms.

At this point, not much is left to do.

Proof of Theorem 2.1. By Proposition 2.3, the statement reduces to the already-
proven Proposition 2.5. �
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