2024 |EEE Cloud Summit | 979-8-3503-7006-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/CLOUD-SUMMIT61220.2024.00032

2024 |IEEE Cloud Summit

Poster: A Fast Monitor for Slow Network Attacks

Cuidi Wei
George Washington University

Shaoyu

K. K. Ramakrishnan
University of California Riverside

Abstract—Recent work has demonstrated how programmable
switches can effectively detect attack traffic, such as denial-of-
service attacks in the midst of high-volume network traffic.
However, these techniques primarily rely on sampling- or sketch-
based data structures that can only be used to approximate the
characteristics of dominant flows in the network. As a result,
such techniques are unable to effectively detect slow attacks
such as SYN port scans, SSH brute forcing, or HTTP connection
exploits, which do so by stealthily adding only a few packets to
the network.

In this work we explore how the combination of programmable
switches, Smart network interface cards (sNICs), and hosts can
enable fine-grained analysis of every flow in a cloud network,
even those with only a small number of packets. We focus on
analyzing packets at the start of each flow, as those packets often
can help indicate whether a flow is benign or suspicious, e.g., by
detecting an attack which fails to complete the TCP handshakein
order to waste server connection resources. Our approach
leverages the high-speed processing of a programmable switch
while overcoming its primary limitation — very limited memory
capacity — by judiciously sending some state for processing to
the sNIC or the host which typically has more memory, but
lower bandwidth. Achieving this requires careful design of data
structures on the switch, such as a bloom filter and flow logs, and
communication protocols between the switch, sNIC, and host, to
coordinate state.

Index Terms—Traffic monitor, slow network attacks, pro-
grammable switches, smartNIC

I. INTRODUCTION

To understand and counter threats, cloud operators deploy
infrastructure to monitor systems and network traffic, to detect
anomalies, and identify specific attacks in a timely manner.
The infrastructure may directly protect against some attacks
or provide alerts that trigger intervention, either automated or
by an operator, to block or ameliorate the impact of those
attacks. Designing a cost-efficient traffic monitoring and
analysis infrastructure that can detect a range of network
attacks within a high-rate traffic stream can be very valu-
able. Implementing a robust security monitor is crucial for
both wide area networks and cloud environments to defend
against diverse and sophisticated network attacks, ensuring
the integrity and reliability of hosted services. Programmable
data planes and monitoring environments built out of a variety
of programmable devices, including P4-capable programmable
switches (P4switches), smart network interface cards (sNICs,
that may also be P4-capable), and hosts can be exploited to

Tu

University of California Riverside

Junji Takemasa
Osaka University

Yuki Koizumi
Osaka University

Toru Hasegawa
Shimane University

Timothy Wood
George Washington University

achieve this capability to find the proverbial ‘needle-in-the-
haystack’.

Programmable networking technologies developed in the
last few years are adding tremendous power to the network
data plane. However, they have varying capabilities. Pro-
grammable switches are capable of much higher data plane
throughput, while programmable sNICs have more computing
capability and memory capacity. Programmable switches are
increasingly being suggested for monitoring, using queries
processed at Terabit link rates [1], [2]. At the same time,
sNICs also increasingly support programmability beyond sim-
ple protocol offloading. Switches and sNICs both provide
programmability, with a malleable data path driven by the
capabilities of the P4 programming language. sNICs enable
end-hosts to handle to fairly high-speed traffic, at 40-100
Gbps, rates [3], [4], although not quite at a Terabit scale. Since
sNICs support more general computations [5] than switches,
it is very beneficial to use them for stateful packet processing, to
complement the coarse-grained query processing of pro-
grammable switches. In this project we seek to combine 1)
the scalability of programmable switches, 2) the reasonably
high-speed packet processing, programmability, and significant
amounts of computational capability and state (compared to
switches) of sNICs, and 3) the flexible processing capabilities
and storage of host-based CPU processing.

This combination of approaches is critical to support the
large variety of attacks that target modern communication
networks. There is a need to detect not only relatively crude
volumetric attacks that overwhelm the network through sus-
tained network activity (e.g., denial of service), but also more
sophisticated attacks that probe for system weaknesses (e.g.
SSH Brute forcing, port scan [6]), or attacks that exploit
protocol dynamics (e.g. low-rate TCP attacks [7]).

Prior work has demonstrated how sketch data structures
can be used to approximate flow-level statistics [8]. However,
these approaches are only capable of monitoring the heaviest
flows in the network. The data structures they use, such
as NitroSketch [9], are focused on detecting heavy hitters,
operating within the limits of the available amount of memory.
However, their ability to detect slow attacks that send only a
few packets is quite limited. Other works seek to complement
programmable switches that count packets from a class of
flows (e.g., a range of IP addresses) with sNICs and host
that receive only a subset of traffic considered suspicious for

979-8-3503-7006-5/24/$31.00 ©2024 |EEE 153
DOI 10.1109/Cloud-Summit61220.2024.00032
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2024 at 20:59:47 UTC from IEEE Xplore. Restrictions apply.

5]

Bloom
Filter

Programmable Switch

Fig. 1. Architecture of Monitoring Model

further detailed analysis [10]. However, slow attacks may still
evade detection by [10], as attack flows may not be classified
as suspicious when they comprise a relatively small number
of packets.

In this poster we describe our ongoing work that seeks to
harness heterogeneous data plane devices in order to build a
network monitoring system that can efficiently and accurately
observe all flows in the network. Similar to previous work,
we focus on out-of-band monitoring, i.e., monitoring that is
performed on a mirrored stream of traffic which does not incur
additional latency or impose bandwidth constraints on the real
traffic. Nevertheless, our monitoring system must be carefully
designed to ensure it can keep up with traffic rates of 100s of
gigabits or Terabits per second.

Our primary contributions include:

1. Leveraging programmable network devices for stateful
monitoring of traffic with high accuracy and efficiency.

2. Proposing efficient data structures that operate on
switches using only a few Megabytes of memory, significantly
reducing the traffic volume between the programmable switch
and the sNIC/host.

3. Developing efficient protocols to facilitate communica-
tion between the programmable switch and the sNIC/host.

Il. HIGH SPEED MONITORING DESIGN CHALLENGES

In networks operating at Terabit speeds, it is extremely chal-
lenging to monitor traffic at line rate. Even a host running state
of the art Network Function Virtualization (NFV) software,
can typically only handle 10-100Gbps, meaning ten to one
hundred such servers would be needed to accurately monitor
a Terabit speed link.

We focus on analyzing the start of each network flow (i.e.,
examining the first X packets). This has the potential to
greatly reduce the volume of traffic that must be inspected, but
requires mechanisms to filter traffic from flows that have been
deemed benign versus those that require additional analysis.
To accommodate such a high volume of traffic at low cost, we
propose a hierarchical data plane that makes the best use of a
P4 switch, sNIC, and host.

As shown in Figure 1, packets first go through a Bloom
Filter on the P4 switch, which provides an efficient way to
determine if they come from a flow that has been marked
as benign. If so, then no further analysis is needed and the
packet can simply be sent out of the switch. If the packet
is for a flow not stored in the Bloom Filter, then it must be

154

analyzed by the host to determine if it is suspicious. Instead
of immediately sending the packet to the host, its meta-data is
stored in a Flow Log stored on the switch. Logs from this are
periodically flushed out to the sNIC/ host in a batch to reduce
cost. The sNIC maintains a cache of currently active flows, but
it does not have sufficient memory to track all flows over a
long period of time. When the sNIC faces memory pressure,
flows are evicted to the host, which has significantly more
memory available to store flow state. Once the sNIC or host
have gathered sufficient information about a flow to determine
that it is benign, then it must update the Bloom Filter stored on
the switch. At this point the flow information no longer needs to
be stored by either the sNIC or host, allowing memory in the
sNIC and host to be reclaimed.

In the following, we discuss the design challenges for the
key components in our system.

A. Aging Bloom Filter

Our design requires a way to white list flows which have
been deemed benign. However, there may be millions of
such flows in a Terabit scale network. The (relatively) tiny
amount of memory available on a switch cannot effectively
track such a large list. Bloom Filters offer a good trade-off by
significantly reducing the memory usage for set membership
tests, with only a small sacrifice in accuracy. However, there
are several challenges with implementing a Bloom Filter on a
P4 switch. First, a Bloom Filter cannot do removal operations
for inactive flows, which means that the filter’s bitmap will
quickly become full, reducing its accuracy. Yoon et al [11]
propose an A2 buffering Bloom filter to clear the inactive
entries while retaining most of the active entries. However,
their design does not fit cleanly to the programmable model of
a P4 switch, and would require several recirculations which
hurts performance. We are investigating the use of an Aging
Bloom Filter that adapts their design to the limited memory
and pipeline stages available in a P4 switch.

B. Host/SmartNIC Flow Tables

The host and SmartNIC have more memory than the switch,
allowing them to maintain state about a larger number of
flows. Our design maintains the primary flow table with
information about all flows on the host, with a subset of these
entries cached on the SmartNIC. When the P4 switch sends a
suspicious packet for analysis, the sNIC receives it and checks if
it is from a flow stored in its cache. On a cache miss, the Host
becomes involved to analyze the packet. As we only care
about the start of flows, once the sNIC or Host has been able
to successfully analyze X packets for that flow, it will
communicate with the P4 switch to update the Bloom Filter
with the packet’s flow marked as safe. We expect X to be a
small number such as 3 if the monitor only seeks to check
if a full TCP handshake has been completed, or 7 if it must
observe the first few packets exchanged to detect application-
level behavior like an HTTP request or SSH login attempt.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2024 at 20:59:47 UTC from IEEE Xplore. Restrictions apply.

[In Switch
60 [In Host
T
@
50
[
[v]
040
o
% 30
3
820
o
X10
0 BF-Only BF-Cache BF-Log

Fig. 2. Packets ratio checked in Switch vs Host

C. Switch/Host Coordination

Our design requires efficient coordination between the
switch and sNIC/host. We employ a dynamic bloom filter
to identify good flows without sending these flows to the
sNIC/host. The bloom filter must be updated by the sNIC/host,
making efficient real-time communication crucial. The typical
approach for updating switch state is via its control plane
interface; however, we find that its update rate is too low. Prior
work reports that control plane driven updates can take up to 1
ms [12], yet our design will require us to make hundreds of
thousands of such updates every second. To overcome this
challenge, we propose a data plane based coordination scheme
to increase this speed by several orders of magnitude.

D. Flow Log in Switch

With a straightforward design, every packet unknown to
the switch (no information about the flow is available in the
switch) must be sent to the sNIC or host. Truncating these
packets to only include their header information reduces this
cost, but it still can lead to an unacceptably high packet rate
for high speed networks. To further reduce the number of
packets that must be processed by thesNIC or host, we deploy a
Flow Log on the switch. The Flow Log buffers header
information from several packets that need to be analyzed, and
then transmits them to the sNIC only when the buffer is full.
Even a small buffer with space for a few packets can provide
a substantial reduction, e.g., a 3 packet buffer reduces the
outgoing traffic rate by 2/3rds but consumes minimal switch
resources. Since our analysis is not performed in-line with the
traffic, this buffering doesn’t incur any extra delay on user
traffic.

Il. PRELIMINARY EVALUATION

In this section, we evaluate the effectiveness of our design
through simulation. Our simulator implements the switch and
host components of our design, and takes as input PCAP traces
which we acquire from the MAW!I project [13]. In order to
create a higher traffic volume, we merge 750 traces taken from
different days, to reach a total packet rate of about 100 Mpps.
We require the host to analyze the first 7 packets of flows

155

belonging to common protocols like HTTP(s)/SSH, and the
first 3 packets of flows on other protocols. The trace includes a
very large number of port scanning slow attack traffic (about
87% of tcp flows have only one packet, potentially indicating
a port scan attempt).

Without the switch’s help, all packets would need to go to
the host. By adding the Bloom Filter to the switch, we can
make it so that only the first few packets from each flow need to
be analyzed. Figure 2 shows that using only the Bloom Filter
reduces the traffic to the host by about 65%. In this case the
host only needs to process the headers from the first 3 or 7
packets from each flow, which comes out to 35% of the
incoming traffic rate in this trace. We attempt to optimize this
further by using the largest possible flowtables on the switch
itself (BF-Cache bars in Figure 2). The switch can maintain
flow tables that hold up to 262K entries simultaneously. If a
packet does not hit in BF, it will either be added if it is not in
the flow tables, or it will update the existing entry if it is in the
flow tables. If there is a different entry in the flowtables, the old
entry will be evicted out to the SmartNIC and the new packet
entry will be added to the flowtables. If 3 or 7 packets from a
flow hit the cache on the switch, then the switch can directly
update the Bloom Filter without ever having to go to the host.
This lowers the volume of traffic going to the host to about
29%. However it consumes most of the switch’s memory, and
thus has a low cache hit rate. Instead, we find that adding
a packet log of size 3 for batching (BF-Log bars) provides
a better reduction in packets that must be sent to the host,
reaching only about 12% of the incoming packet rate. This
packet log consumes hundreds of bytes of space compared to
several Megabytes for the cache.

IV. CONCLUSIONS AND FUTURE WORK

Our work has demonstrated the potential to allow fine-
grained analysis of every flow in the network by leveraging
a programmable data plane and focusing on the first few
packets of each flow. Our design seeks to overcome the limited
memory of a programmable switch by using an efficient
Bloom filter and packet log data structure, while offloading the
maintenance of flow state to a host or sNIC. In our ongoing
work we are seeking to improve the efficiency of our switch-
based data structures and the coordination protocols between
the host, sNIC, and switch.

This work was supported in part by NICT and NSF Grants
2210380, 2210379.

REFERENCES

[1] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proceedings of Anual Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM, Aug. 2018, pp. 357-371.
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230555

[2] X. Chen, S. Landau-Feibish, M. Braverman, and J. Rexford, “BeauCoup:
Answering many network traffic queries, one memory update at a
time,” in Proceedings of Anual Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM, Aug. 2020, pp.
226-239. [Online]. Available: https://doi.org/10.1145/3387514.3405865

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2024 at 20:59:47 UTC from IEEE Xplore. Restrictions apply.

[3] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
information rich flow record generation on commodity switches,”
in Proceedings of European Conference on Computer Systems,
ser. EuroSys, Apr. 2018, pp. 1-16. [Online]. Available: https:
//doi.org/10.1145/3190508.3190558

[4] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry,
“Achieving 100Gbps intrusion prevention on a single server,”
in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation, ser. OSDI, Nov. 2020, pp. 1083-
1100. [Online]. Available: https://www.usenix.org/conference/osdi20/
presentation/zhao-zhipeng

[5] Netronome, “The joy of Micro-C,” https://cdn.open-nfp.org/media/
documents/the-joy-of-micro-c_fcjSfra.pdf, 2014.

[6] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Proceedings of IEEE
Symposium on Security and Privacy, ser. S&P, May 2004, pp. 211-225.

[7]1 A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proceedings
of Anual Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM, 2003, pp. 75-86. [Online]. Available:
https://doi.org/10.1145/863955.863966

[8] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “{SketchLib}:
Enabling efficient sketch-based monitoring on programmable switches,”
in 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), 2022, pp. 743-759.

[9] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 334-350.

[10] S. Panda, Y. Feng, G. Kulkarni, Sameer, K. K. Ramakrishnan,
N. Duffield, and L. Bhuyan, “SmartWatch: Accurate traffic analysis
and flow-state tracking for intrusion prevention using SmartNICs,” in
Proceedings of ACM International Conference on emerging Networking
EXperiments and Technologies, ser. CONEXT, Dec. 2021. [Online].
Available: https://doi.org/10.1145/3485983.3494861

[11] M. Yoon, “Aging bloom filter with two active buffers for dynamic sets,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 1,
pp. 134-138, 2010.

[12] T. Caiazzi, M. Scazzariello, and M. Chiesa, “Millions of Low-latency
State Insertions on ASIC Switches,” Proceedings of the ACM on
Networking, vol. 1, no. CoNEXT3, pp. 22:1-22:23, Nov. 2023.
[Online]. Available: https://dl.acm.org/doi/10.1145/3629144

[13] “Mawi working group traffic archive.” [Online]. Available: http:
//mawi.nezu.wide.ad.jp/mawi/

156

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 11,2024 at 20:59:47 UTC from IEEE Xplore. Restrictions apply.

