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Summary

¢ Observational evidence indicates that tree leaf area may acclimate in response to changes
in water availability to alleviate hydraulic stress. However, the underlying mechanisms driving
leaf area changes and consequences of different leaf area allocation strategies remain
unknown.

* Here, we use a trait-based hydraulically enabled tree model with two endmember leaf area
allocation strategies, aimed at either maximizing carbon gain or moderating hydraulic stress.
We examined the impacts of these strategies on future plant stress and productivity.

o Allocating leaf area to maximize carbon gain increased productivity with high CO,, but sys-
tematically increased hydraulic stress. Following an allocation strategy to avoid increased
future hydraulic stress missed out on 26% of the potential future net primary productivity in
some geographies. Both endmember leaf area allocation strategies resulted in leaf area
decreases under future climate scenarios, contrary to Earth system model (ESM) predictions.

o Leaf area acclimation to avoid increased hydraulic stress (and potentially the risk of acceler-
ated mortality) was possible, but led to reduced carbon gain. Accounting for plant hydraulic
effects on canopy acclimation in ESMs could limit or reverse current projections of future
increases in leaf area, with consequences for the carbon and water cycles, and surface energy

budgets.

Introduction

Forests cover 31% of the Earth, dominate both the terrestrial car-
bon sink and aboveground carbon storage, and play a major role
in the hydrological cycle through transpiring ¢. 40% of land rain-
fall back to the atmosphere (Schlesinger & Jasechko, 2014; Yang
et al., 2023). However, increasingly arid conditions driven by cli-
mate change have increased forest stress and already manifested
in elevated mortality rates world-wide (Allen ez al, 2015).
Understanding how forests acclimate to (or die from) changing
climate conditions is critical for both basic understanding of phy-
siological and ecological function and for conservation and man-
agement practices as humans pursue climate change adapration.
Trees can modulate function in response to changing environ-
mental conditions through a number of mechanisms. Stomarta
are rapid responders, on the order of seconds to minutes, that
open and close to both regulate CO, diffusion into the leaf and
water loss out of the leaf in response to changing environmental
conditions throughout a day and over the course of a growing
season. On climate change-relevant scales — longer than a grow-
ing season but shorter than the lifetime of a tree — carbon alloca-
tional changes have the potential to alleviate stress and allow for
acclimation to novel environmental conditions (Hartmann
et al., 2020). Carbon allocation to tree crowns (i.e. leaf area) is
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one important lever in the context of increasing aridity and con-
comitant increases in tree hydraulic stress. Total tree leaf area
affects both plant carbon assimilation and hydraulic stress by reg-
ulating photosynthetic leaf area, leaf respiration costs, and the
amount of water that flows through the tree and that is lost to
the atmosphere through leaves. Analyses over the last several dec-
ades suggest that increasing the amount of carbon going to leaf
area increases gross primary productivity (GPP) (Q. Li
et al., 2018; Chen ez al, 2019). However, increases in leaf area
are not always beneficial. For example, in particularly dry years or
in seasonally dry forests, trees shed leaves to avoid high water
demand and associated stress (Pivovaroff et al, 2016; Wolfe
et al., 2016; Levionnois et al, 2020; Nadal-Sala ez 4/, 2021;
Sabot er al, 2022). Additionally, across a climate gradient of
aridity, trees in more arid regions have lower total leaf areas (rela-
tive to their stem and root tissues) compared with the same spe-
cies in areas where water is more abundant (Eagleson, 1982;
Baldocchi & Xu, 2007; Pivovaroff et al., 2014; Xu et al., 2016).
First principles (Franklin ez 4/, 2012; Quetin ez 4/., 2023) and
observations (Wolfe et al., 2016; Levionnois et al, 2020) both
indicate that allocation is critical in shaping plant responses to cli-
mate. However, exactly how plants adjust allocation to the envir-
onment is still a major unknown (Hartmann ez 4/, 2018). This
uncertainty is reflected in the diversity of approaches used to
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represent carbon allocation in terrestrial ecosystem models, where
approaches range from a prescribed allocation of carbon to the
leaves, stems, roots, and nonstructural carbohydrate reserves of
the plant based on fixed coefficients, to more complex theory that
balances the benefits from investing carbon in different plant
organs based on fitness (Arora & Boer, 2005; De Kauwe
et al., 2014).

One path forward in understanding tree carbon partitioning is
through a lens of optimality. We expect that trees evolve to allo-
cate carbon optimally to maximize fitness (Héletd ez al, 2011;
Franklin ez al, 2012, 2020; Wolf et al., 2016; Deans et al., 2020;
H. Wang ez al., 2020; Harrison et al., 2021; Joshi ez al., 2022).
This optimality involves both genetically determined differences
in allocation (e.g. macroevolutionary differences among related
species that inhabit different environments (Sanchez-Martinez
et al., 2020)), and plastic changes that allow an individual to tai-
lor its allocation to its growth environment (Rowland ez al,
2023). While optimization of the leaf area to stem area of a tree
has been suggested as a potential improvement in modeling car-
bon allocation (Trugman ez al, 2019), it is a major unknown
exactly what optimality criterion is the best proxy for the maximi-
zation of fitness, particularly whether increased fitness is linked to
increased carbon gain, hydraulic stress mediation, or some com-
bination of the two. For long-lived trees, plastic optimization or
acclimation over the course of years is particularly relevant for
understanding responses to climate change, but particularly
difficult to disentangle observationally thanks to the difficulty of
measuring fitness in trees.

Here, we hypothesize two potential endmember allocation
strategies for climate change acclimation based on principles of
optimality. In one strategy, trees allocate carbon to leaf area to
maximize net primary productivity (NPP) (‘max carbon gain’).
In the other strategy, trees allocate carbon to leaf area to avoid
increases in stress beyond historical levels (‘stress avoidance’)
(Fig. 1). Maximizing carbon gain, a common proxy for overall
plant fitness (Mooney & Gulmon, 1979), may be the riskier
approach to allocation as it does not explicitly account for the
possible increase in hydraulic damage that can reduce a tree’s
function, decrease carbon assimilation, and eventually result in
mortality (Anderegg ez al., 2015). ‘Stress avoidance’ is the less
risky approach and provides acclimation that explicitly avoids
increased hydraulic stress, but may lead to missing out on NPP
of the ‘max carbon gain’ strategy.

To test the impact of these two hypotheses and investigate the
trade-offs between the ‘max carbon gain’ and ‘stress avoidance’
strategies, we use a trait-based model of tree gas exchange that
simulates an individual tree, with hydraulic transport and the leaf
carbon allocation determined by these two optimization strategies
(Trugman et al, 2019; Quetin et al, 2023). We ask (1) How
much carbon do trees miss out on when they optimize for stress
avoidance relative to carbon maximization, considering elevated
aridity and CO, with future climate change? (2) How do projec-
tions of tree leaf area change under our endmember allocation
strategies compare to leaf area change in process-based Earth sys-
tem models (ESMs)? (3) Can observed physiological diagnostics
such as measured CO, fertilization be used to distinguish
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Fig. 1 Carbon assimilation and hydraulic stress are shaped by climate and
linked through canopy demand for water to be supplied from the soil
through shoots and roots. (a) Increasing leaf area (with a fixed tree stem)
can potentially increase net primary productivity (NPP) but also increase
water loss and water potential. (b) Altering the carbon allocation to leaf
area results in a curvilinear change in percent loss of hydraulic conductivity
(PLC, a measure of hydraulic damage) and NPP. Gray lines represent the
sweep of APLC and ANPP relative to current conditions that result from
varying leaf area. The two different lines illustrate different locations with
different underlying tree communities, different climates, and experiencing
different climate change. Present-day allocation almost always results in
nonmaximum NPP and increased PLC in the future (fixed leaf area), but
different endmember allometric strategies that maximize carbon (‘max
carbon gain’) and avoid increased stress (‘stress avoidance') land on
different portions of this line (see key).

etween allocation strategies and improve our understanding o
betw llocat trateg d imp derstanding of
plant function?

Materials and Methods

Hydraulic Optimization Theory for Tree and Ecosystem
Resilience model

The Hydraulic Optimization Theory for Tree and Ecosystem
Resilience (HOTTER) model is a trait-based physiological tree
model that represents individual trees with an explicit representa-
tion of plant hydraulics. The model consists of tree leaf area,
stem, and roots that span the soil-atmosphere continuum to con-
duct water from the soil to the canopy (Supporting Information
Fig. S1). Respiration rates are organ specific to leaves, xylem,
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phloem, and roots based on observed rates and temperature sensi-
tivities (Trugman et al., 2019; Quetin et al., 2023) (Eqns S21-
S28). The leaf-level stomatal behavior employs a cost-gain model
that optimizes the ‘cost’ of percent loss of conductivity (hydraulic
damage, set by the plant’s hydraulic vulnerability curve) with the
‘benefit’ of carbon assimilation as per the Stomatal Optimization
Based on Xylem Hydraulics model (Eller ¢t al., 2018) (Eqns S8—
S20). Transpiration is calculated as diffusion from the interior of
the leaf, based on the stomatal conductance and atmospheric
vapor pressure deficit (VPD) (Eqns S13, S29). Leaf-level carbon
assimilation and transpiration are scaled to the canopy with a lin-
ear relationship with tree leaf area (Eqns S1-S7, $30, S31; Meth-
ods S1; Notes S1). The HOTTER model responds to daily
atmospheric CO, concentrations (CO,, ppm), temperature (7,
°C), VPD (Pa), and soil water potential (¥.;, MPa). Carbon
gain and hydraulic stress are prognostic based on model equa-
tions, traits, and variations in environmental factors.

The model is based on established theory and has been vali-
dated against, among others, the spatial variation of plant struc-
tures that govern water demand and supply (i.e. leaf area:
sapwood area) (Trugman er al, 2019), carbon use efficiency
(Mathias & Trugman, 2022), and mortality patterns across the
continental United States (Quetin ez al., 2023). An expanded list
of model parameters can be found in the Supporting Information
along with a full model description (Methods S1, S2; Table S1).

HOTTER plant hydraulic theory and leaf allocation

The impact of tree leaf area in our model is determined by the
local environment and the balance of GPP, respiration, and
hydraulic stress. Increasing tree leaf area (i.e. the ratio of leaf area
to sapwood area, with sapwood area fixed) increases total carbon
gain but also increases whole-plant hydraulic stress (diagnosed as
percent loss of hydraulic conductivity, PLC) (Fig. S1).
As hydraulic stress increases, stomata close, limiting leaf-level
productivity and eventually leading to the increased leaf and root
respiration surpassing productivity gains (i.e. decreased NPP).
The ‘max carbon gain’ leaf area results from the allocation strat-
egy that maximizes the balance between whole-plant productivity
and respiration (Fig. S1).

Under future conditions, the resulting leaf area from an
allocation strategy may change (Fig. S1b), and we can define
mathematically endmember allocation strategies that either maxi-
mize tree-level net carbon gain (i.e. NPP) in the new environ-
ment or avoid increases in hydraulic stress (i.e. PLC) compared
with the historical simulation (noted symbols in Figs 1, S1).
Through evolution and acclimation, it is theorized that plants
approach a function that maximizes their fitness (Franklin
et al., 2020). However, without knowing the exact function that
relates physiological performance to maximum fitness we
explored two endmember allocation strategies, and a no alloca-
tion change ‘control’ strategy, with a focus on the trade-off
between carbon gain and hydraulic stress.

The leaf area changes with each strategy are governed by
changes in model forcings of atmospheric CO, concentrations,
VPD, and temperature (T) (for this experiment soil moisture is

© 2024 The Author(s).
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held constant). The expected future increase in atmospheric CO,
concentrations could lead to increased GPP and water use effi-
ciency (productivity per water demand) — creating the potential
for increased NPP and reduced hydraulic stress (Ainsworth &
Long, 2005; Battipaglia ez al., 2013; Franks e /., 2013; Domec
et al., 2017; Walker ez al, 2021). However, increases in VPD
tend to increase water loss from plants and act against CO, ferti-
lization by driving stomatal closure to avoid increased stress
(Grossiord et al., 2020). Finally, increases in temperature increase
the respiration cost of the tree in our model, which favors smaller
canopies due to high leaf respiration rates compared with produc-
tivity (Fig. S1). These varying trade-offs have the potential to
alter the tree leaf area for a given tree, under different environ-
mental conditions (Fig. 1b). Depending on the particular ‘end-
member’ allocation strategy and the changing climate, there is
the potential for both increases and decreases in leaf area, with
subsequent impacts of carbon assimilation and stress (Fig. 1b).

Data sources

The HOTTER model was run for forested regions at 0.25° reso-
lution covering most regions of the contiguous United States,
using the environmental data and community/stand attributes of
the US Forest Service Forest Inventory & Analysis plots (Gille-
spie, 1999; Trugman e al., 2020).

Meteorology and atmospheric CO, concentrations The
meteorological daily input for the HOTTER tree model was a
present-day set of data covering a 20-yr time period from 1995
to 2014, and a future scenario covering a 20-yr time period from
2081 to 2100. The meteorology consisted of Wy, 7; and VPD
for the growing season (Table 1). The W; was left fixed at pre-
sent values, given the uncertainty across models in directional
changes in soil moisture compared with that of atmospheric CO,
concentrations, VPD, or T (Yuan ez a/, 2021) and the indirect
effect of soil moisture on vegetation function through the regula-
tion of VPD (Humphrey ez al., 2021).

Ecological data The HOTTER model was parameterized with
tree height derived from maps of canopy height measured by
satellite and a range of P50 values for each model grid cell based
on maps of community-weighted mean and the regional mini-
mum and maximum values based US Forest Inventory data
(Trugman ez al., 2020; Table 2).

Change in leaf area index and GPP from CMIP6 Separate
from the downscaled meteorology from CMIP6 (Table 1), the
leaf area index (LAI) from 20 models and GPP projections from
17 models (Table S2) included in CMIP6 suite of models for the
‘medium’ SSP3-7.0 scenario were used for comparison with the
HOTTER endmember allocation strategy estimates (Eyring
et al., 2016). The LAI and GPP for CMIP6 model data were
downloaded using from Google public storage — https://storage.
googleapis.com/cmip6/pangeo-cmip6.json — using Pangeo in
Python as documented online as the Google Cloud CMIP6 Pub-
lic Data: Basic Python Example (https://gallery.pangeo.io/repos/
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Table 1 Meteorology for the present and future runs.
Name Time Lat/Lon res Time res Variables CO, (ppm)"  Source
Present 1995-2014 0.25° Daily Y., T,VPD 370 GLDAS Catchment Land Surface Model L4 daily
0.25 x 0.25-degree GRACE-DA1 V2.2
(GLDAS_CLSMO025_DA1_D_2.2) (Lietal., 2019, 2020)
Future 2081-2100 Various, regrid  Daily T,VPD 753 Future daily values are modeled as present-daily values plus

to 0.25°

the average monthly change in climate for SSP3-7.0 from a
selection of Coupled Model Intercomparison Project Phase
6 (CMIP6)>

'CO, was held constant during each experimental time periods as averages taken from observations at Mauna Loa (370 ppm) (Keeling et al., 2009, 2017)
for the present day and taken from the CMIP6 SSP 3-7.0 emissions scenario for the future (753 ppm) (O'Neill et al., 2016).

2Models used in creating the average meteorological change were: ACCESS-CM2, ACCESS-ESM1-5, CanESM5-CanOE, MIROC-ES2L, MPI-ESM1-2-LR,
and MRI-ESM2-0THE. Downscaled model products publicly available from (Anderegg et al., 2022).

Table 2 Height and P50 values processed as detailed in (Quetin et al., 2023).

Observation
Name timeframe Lat/Lon res Source
Height 2019 0.00025°, regrid to 0.25° Global Ecosystem Dynamics Investigation (GEDI) instrument and processed by the Global Land

Analysis and Discover team at the University of Maryland (Potapov et al., 2021)

P50 2008-2018 Individual plots gridded to

0.25°

The maps derived from (Trugman et al., 2020)

pangeo-gallery/cmip6/basic_search_and_load.html). The grow-
ing season (June, July, and August) mean was selected for all
models, and each was regridded to 0.25°.

Experimental setup

We ran five sets of experiments to understand the impacts of dif-
ferent allocation strategies on plant function. The first run used
20 yr of present-day climate conditions and retrieved a single leaf
area for each location — including location-specific traits — that
maximized mean NPP for the full run (‘present-day run’). While
real-world leaf area varies on an interannual basis in response to
climate variation and legacy effects, a single leaf area for the 20-yr
span captures the long-term changes due to climate change, the
aim of this study. The second run used 20 yr of future climate
conditions and the leaf area from the ‘present-day run’ (‘fixed leaf
area’). The third run used 20 yr of future climate conditions and
retrieved a leaf area for each location that maximized NPP as in
the ‘present-day run’ but with future climate (‘max carbon gain’).
The fourth run used 20 yr of future climate and retrieved the leaf
area such that PLCg?:;em—PLC?gzre =0, where PLCY" is the
90™ percentile of the daily PLC values that represent relatively
stressed conditions (‘stress avoidance’) (90 percentile refers to
the distribution of daily PLC rather than the PLC units of
percent) (Table 3). Notably, the ‘stress avoidance’ leaf area alloca-
tion strategy is partially dependent on the max carbon gain
hypothesis as it is defined as holding PLC?L?::re constant relative
to the ‘present-day run’ where leaf area was chosen to maximize
mean NPP for the present day. Finally, we tested the effect of the
observed acclimation of canopy efficiency or Va5 (see
Eqns S42-S44) to increased atmospheric concentrations of CO,
by applying a 20% reduction in V, .05 following a ‘max carbon
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Table 3 Endmember allocation strategies investigated.

Name Description

Fixed leaf Allocation strategy to maximize NPP under present-day
area conditions
Max carbon  Allocation strategy to maximize NPP under future
gain conditions
Stress Allocation strategy to avoid change in the 90'" percentile
avoidance PLC between future and present conditions with an
allocation strategy of maximizing NPP

gain’ allocation strategy (‘V_ maxas CO;, acclimation’). In practice,
the maximum NPP for ‘present-day run’ and ‘max carbon gain’
was found using scipy.optimize while the ‘stress avoidance’ end-
member allocation strategy was calculated by incrementing the
tree leaf area around the future ‘max carbon gain’ optimum to
match the no PLC change condition. For a few points, the reso-
lution of the increment used in ‘stress avoidance’ resulted in a
small remainder of negative change in PLC in conditions where
‘max carbon gain’ already resulted in reduced hydraulic stress in
the future (Fig. 2¢).

For computational efficiency, 1500 grid points (i.e. locations)
were randomly chosen from the 9000 grid points in the full map
to test the endmember allocation strategy. The number of points
were chosen to represent a statistically indistinguishable — per the
Mann—Whitney test — distribution of NPP from the full 9000
grid points run for present-day conditions.

We performed an additional run forcing HOTTER with an
ESM-predicted leaf area change under future conditions, which
allowed for a complimentary investigation of the
potential hydraulic stress impacts that could be realized with
ESM-predicted LAI change (as hydraulics are not present in the
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climate change increases water stress in many

regions. Change in water stress (percent loss of
conductance, PLC) and percent change in carbon
gain (net primary productivity, NPP) with an

allometric strategy that (a) maximizes NPP or (c)

avoids change in water stress, (b, d) map and pie

chart of which quadrant each grid point falls in for

(b) ‘max carbon gain’ strategy and (d) ‘stress

avoidance' strategy, and (e) a map of the percent

carbon missed out on by avoiding increased water
stress rather than maximizing carbon gain

(NPPiss). Gray points in (e) are the points where

water stress decreased following a ‘max carbon

gain' strategy (495 of 1500 points). Black
diamonds in (e) are stippling that denotes points
where the NPP ;s is statistically uncertain

(NPP,iss less than the SE of the daily variation)

(693 of 1500 points).

vast majority of ESMs). For this experiment run, we used the
fractional change in LAI from the mean of the CMIP6 models as
a boundary condition.

For each leaf area allocation strategy, we ran a ‘total’ run where
both future climate and future atmospheric concentrations of
CO, was applied and a ‘CO, only’ run where climate is held at
present-day conditions but atmospheric concentrations of CO,
are increased. These CO; only runs were specifically for analysis
of the CO, fertilization effect without climate change but with
the effect of allocation strategies (allocation strategies respond to
both future climate and atmospheric CO, concentrations), ‘fixed
leaf area’, and ESM-predicted leaf area. Previous work with full
factorial runs with ‘fixed leaf area’ — including separate runs for
VPD, temperature, and atmospheric concentrations of CO, —
found the CO, and VPD to be primary drivers of change across
diverse regions (Quetin et 4/, 2023).
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Carbon missed through stress avoidance and uncertainty The
carbon missed out on due to the ‘stress avoidance’ strategy was
calculated as the difference between the ‘stress avoidance’ strat-
egy’s mean daily NPP and the ‘max carbon gain’ strategy’s mean
daily NPP, Eqn 1:

NPP max carbon gain_NPPstress avoidance
x 100
NPP 1nax carbon gain

NPP s = (

Eqn 1

The uncertainty of the carbon missed was calculated based on
the SE from the SD of the daily variance across the 1840 d of
each model run (Eqn 2). This uncertainty represents the statisti-
cal strength of the difference between NPP due to allocation stra-
tegies (i.e. NPP,;.) given the simulated daily variance of NPP,
Eqn 2:
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S.E.=
|NPP max carbon gai“_NPPstress avoidance
Eqn 2
Onpp, max carbon gain 1
+ pp, g %
|NPP max carbon gain | 1840

where G,,p, x is the SD of the daily variance for each endmember
allocation strategy. All points in Fig. 2d are stippled in black
where S.E. > NPP .

Calculating CO, fertilization The CO, fertilization effect was

calculated as the ratio of the log of the change in GPP and atmo-
spheric CO, concentrations (Walker ez al., 2021), Eqn 3:

GPPfuture Ca future
— 1 1 -
f=log <GPPpresem> flog <Ca,presem>

where f is the CO, fertilization effect and C, is the atmospheric
concentration of CO,.

Eqn 3

Results

The effect of avoiding future stress on net primary
productivity

Across the majority of the continental United States, HOTTER
projected increased NPP with climate change for both endmem-
ber allocation strategies. Specifically, NPP for the ‘max carbon
gain’ strategy increased over 84% of forested areas and for the
‘stress avoidance’ strategy over 83% of forested areas (Fig. 2).
However, while ‘stress avoidance’ maintained increased future
NPP (i.e. positive change in NPP in both ‘max carbon gain’
and ‘stress avoidance’ strategies) in 95% of locations compared
with ‘present-day’, it did result in reduced NPP compared with
the ‘max carbon gain’ strategy in many places. Using HOTTER
we quantified the NPP missed out on (NPP, ;) from following
an allocation strategy of ‘stress avoidance’ compared with ‘max
carbon gain’. We found that there was an NPP,,;s of up to 26%
(first percentile of points) of future NPP at some locations
(Fig. 2¢), but that the integrated NPP,;, across the entire United
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gain' endmember allocation strategy, (b) ‘stress
avoidance’ endmember allocation strategy, and
(c) the mean of CMIP6 models. (d) Histogram of
the leaf area change for endmember allocation
strategies, and leaf area index change for the
CMIP6 model mean, and individual CMIP6
models.

States for ‘stress avoidance’ only reduces the continental scale
NPP by 1% because there was a majority of locations where the
difference was minimal (Fig. 2d). In contrast to both endmember
allocation strategies, no acclimation in leaf area under future con-
ditions (i.e. ‘fixed leaf area’) leads to broad areas of NPP ;. above
40% that are also well above the carbon missed of ‘stress avoid-
ance’ and include areas of negative absolute NPP (Figs S2, S3).

The ‘max carbon gain’ strategy increased NPP along with
increased hydraulic stress in 64% of the locations analyzed (i.e.
top right quadrant in Fig. 2a). Only 20% of locations resulted in
increased NPP and decreased stress with projected climate change
(e.g. bottom right quadrant in Fig. 2a).

The effect of climate change on plant carbon assimilation and
stress is also dependent on the species and functional diversity of
the ecosystem. To compare this ‘functional trait’ effect with the
endmember allocation effect, we calculated the NPP,; of ‘stress
avoidance’ for the region’s least drought-vulnerable and most
drought-vulnerable species from (Trugman et al, 2020). We
found that the difference in NPP,;, between functional trait
extremes was similar to the magnitude of NPP, ;. for ‘stress
avoidance’ (using the community-weighted mean P50) across
many locations (trait effect of at least 10% of NPP, ;. for 75% of
the points) (Fig. $4).

Leaf area change predicted by endmember hydraulic
allocation strategies with comparison to Earth system
models

Extensive leaf area decreases are predicted by HOTTER for both
‘max carbon gain’ and ‘stress avoidance’ strategies. When trees
allocated for ‘max carbon gain’, leaf area decreased between his-
torical and future climates for all but 21% of the locations
(Figs 3a, S5), with positive values concentrated along the West
Coast and Southern edge of the United States. In an experiment
where V_ max2s was reduced by 20%, representing potential accli-
mation of V_ ...05 to increased atmospheric concentrations of
CO; (e.g. Ainsworth & Long, 2005; see the Materials and Meth-
ods section), the predicted decrease in leaf area following a ‘max
carbon gain’ allocation strategy was reduced. However, the over-
all trajectory of leaf area decrease reversed in a limited number of
geographies (Fig. S6). Following a ‘stress avoidance’ allocation

© 2024 The Author(s).
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strategy resulted in model-projected decreases in leaf area in all
but 2% of locations under future conditions (Fig. 3b). The dif-
ferent spatial patterns for the two endmember allocation strate-
gies are primarily explained by present-day VPD and the
magnitude of the change in VPD in the future (Notes S2;
Figs S7-S9; Tables S3, S4).

In contrast to the widespread leaf area decrease emergent from
the endmember allocation strategies in HOTTER, ESMs gener-
ally predicted widespread LAI increases in the future. Only five
ESMs predicted an LAI decrease in more than half of grid points
(Table S2). However, while there was large agreement across
ESMs that LAI increases in the future across most of the United
States, the variance across models was large (on the order of the
mean change) and there was a strong heterogeneity across space
and across models in LAI changes (Figs 3, S10, S11). The largest
CMIP6 mean model LAI increases (> +50%) were predicted in
the Mountain West region and central Texas (Fig. 3c). The
Mountain West region and central Texas are notable for arid
conditions in the present-day (including locations with
present-day VPD of 2000 Pa and AVPD of 600 Pa (top right
Fig. S7b)) that favor hydraulically resilient plants. By contrast, a
distinct pattern of LAI loss along the East coast was present in a
set of 11 models (¥’ in Table S2; Fig. S10). The LAI loss
matched patterns of decreased leaf area in both endmember allo-
cation strategies in HOTTER.

Diagnosing potential hydraulic stress consequences of
Earth system modeled leaf area

To evaluate the potential hydraulic stress consequences of
ESM-projected LAI change, we used HOTTER as a complemen-
tary diagnostic for the ESMs and forced HOTTER with
ESM-projected fractional LAI change as a boundary condition
(see the Materials and Methods section). HOTTER model pre-
dictions indicated that the increased LAI in ESMs (realized as leaf
area in HOTTER) would elevate chronic hydraulic stress sub-
stantially with an increased percent loss of conductivity in
HOTTER by ¢ 12% in some places (99 percentile of the
spatial distribution) in comparison with endmember allocation
strategies. Endmember allocation strategies either collapse the
change in hydraulic stress to zero (i.e. ‘stress avoidance’) or are
centered near zero when allowed to maximize carbon gain where
carbon assimilation is regulated by plant hydraulics (Figs 4, S11).

CO, fertilization effect across observations, HOTTER
endmember allocation strategies, and Earth system models

We compared estimates of the CO, fertilization effect using
HOTTER (including the endmember allocation strategies) and
ESMs with observational estimations of the CO, fertilization
effect on GPP in the literature. We found a similar CO, fertiliza-
tion effect on GPP (without changing climate) across all of our
allocation strategies in HOTTER (calculated as in (Walker
et al., 2021), see the Materials and Methods section). The spatial
median of the CO, fertilization effect on GPP in HOTTER ran-
ged from 0.30 (‘stress avoidance’) to 0.45 (‘fixed leaf area’) with
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Fig. 4 Endmember allocation strategies both reduce hydraulic stress
compared with no acclimation and Earth system model (ESM)-predicted
leaf area change. Box plots represent the spatial distribution in the
absolute change in PLC for future leaf area under ‘fixed leaf area’, ‘max
carbon gain’, ‘stress avoidance’ (top), and ‘CMIP6 boundary condition’
(bottom). Run conditions are total climate plus increased atmosphere CO,
(solid line boxplot) and CO, only (dashed line boxplot). Boxplots show the
median (vertical line), 25™-75" quartiles (box), and 5"'-95'" (whiskers).

considerable overlap in their spatial distributions (Fig. 5). Over-
all, endmember allocation strategies tended to decrease the CO,
fertilization effect compared with no acclimation, due to the
widespread reduction in leaf area. Following endmember alloca-
tion strategies also generally increased the variance of the CO,
fertilization effect across space compared with ‘fixed leaf area’ by
strengthening the effect of climate variation on productivity
through the climate effects on leaf area acclimation.

Similarly to HOTTER, the ESMs show a range of CO, ferti-
lization responses across space (here the calculation of CO,
fertilization also includes climate effects), but similar central
tendencies to our optimality-based projections (Fig. 5, blue
shaded box). Our comparison shows that, across techniques
including optimality-derived estimates and ESMs, models pro-
ject a substantially lower CO, fertilization effect on GPP com-
pared with any of the theoretical or observationally derived
proxies (Fig. 5, gray shaded box). However, it is important to
note that caution should be taken in cross-comparing the esti-
mations of the CO, fertilization effect size, especially observa-
tionally, as responses are derived from a diversity of scales and
climate conditions. Furthermore, the range represented by
HOTTER and ESM-projected CO, fertilization is generated by
biogeographic variations in species and climate, while the range
shown for observations is more strongly determined by uncer-
tainty in measurement techniques.

Discussion

Avoiding future hydraulic stress misses maximizing
carbon gain

HOTTER projected increased NPP under future climate condi-
tions for both endmember allocation strategies, which qualita-
tively matches ESM projections, theory, and observed estimates
about the effect of CO, fertilization on plant productivity
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Fig.5 Gross primary productivity (GPP) change is not distinguishable
between leaf area allocation experiments and all overlap observations.
CO, fertilization across endmember allocation strategies, CMIP6 models
(blue shade), and observations ((Walker et al., 2021), gray shade). White
outlines and blue background designate GPP directly from the CMIP6
models with black lines showing the 5'-95" of individual models and the
box plot showing the mean of the models, gray background designates
CO, fertilization leaf level and observational estimates from (Walker
etal., 2021). Run conditions are total climate plus increased atmosphere
CO; (solid line boxplot) and CO, only where available (dashed line
boxplot). Boxplots show the median (vertical line), 25""-75" quartiles
(box), and 5"-95t™ (whiskers).

(Gedalof & Berg, 2010; Piao ez al., 2013; Chi ez al., 2022). How-
ever, concomitant increases in hydraulic stress in the majority of
regions following a ‘max carbon gain’ strategy have the potential
to decrease fitness by increasing the risk of hydraulic failure and
mortality along with co-occurring mortality drivers such as wild-
fire and pest and pathogen outbreaks (Park Williams ez al, 2013;
Anderegg ez al., 2015; Adams ez al., 2017). The real cost in terms
of fitness of an increase in chronic hydraulic stress on order of a
few percent remains unknown but represents a shift in the base-
line, with potential for degraded tree functionality, for example
through ‘cavitation fatigue’ (Hacke ez afl, 2001) (Anderegg
et al., 2015). On the time scales of a single drought, observations
of leaf shedding in response to drought conditions show how leaf
allocation dynamics operate to help avoid hydraulic damage, with
a benefit to overall plant health (Sabot ez al., 2022).

From a carbon cycle perspective, higher NPP could support
increased plant growth and potentially increase fitness if not
accounting for the mortality risk of increased hydraulic stress
(Piao et al., 2020). The relatively small value of NPP, i, in the
context of potentially costly and catastrophic hydraulic damage,
highlights that stress preservation and/or minimization may be
an important plant allocation strategy that should be explored
further through a combined modeling and empirical approach.

HOTTER predicts that acclimation following either endmem-
ber allocation strategy benefits the tree’s carbon balance. This
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suggests that forests could go through major structural changes
regardless of whether they are protecting against hydraulic
damage or seeking to maximize their carbon gain under climate
change conditions. Additionally, model projections indicate that
different leaf area acclimation strategies may have as large of an
effect on plant carbon and water status as a shift in species com-
position (represented here as a shift in the functional trait P50).
The modulation of allocation strategy by hydraulic traits suggests
that changes in forest structure will be dependent on species such
that future conditions have the potential to reshape ecosystems
through both competition and acclimation.

Other carbon allocation optimization could co-limit leaf
area increase

The systematic difference between the widespread leaf area
decreases following endmember allocation strategies in HOT-
TER and the future uncertainty in ESM LAI aligns with the
uncertainty in prognostic leaf area (Zhao et al, 2020; Song
et al., 2021; Yang et al., 2022) and the spread in the sensitivity of
ESM LAl to interannual climate variations (Quetin &
Swann, 2018). The agreement between HOTTER and a weak
majority of ESMs on leaf area decrease is primarily limited to the
relatively wet North East region of the United States where we
would expect processes tangential to plant hydraulics to be limit-
ing (e.g. the biogeochemistry of productivity).

In many of the ESMs showing decrease, we find a common
thread of carbon allocation that is responsive to resource limita-
tions (e.g. soil moisture, nitrogen, and light). For example, model
BCC_BCC-CSM2-MR includes a phenology model with a
dynamic ‘cost-gain’ carbon allocation scheme for canopy leaf area
which shifts carbon allocation to stem or roots depending on
resource limitations such as drier soils (Arora & Boer, 2005; Wu
et al., 2019). This ‘cost-gain’ approach is also used in the two ver-
sions of CanESMS5 that showed LAI decreases. Generally, includ-
ing carbon allocation that is responsive to resource limitation can
limit leaf area increases. In EC-Earth-Consortium_EC-Earth3-
Veg-LR, nitrogen limitation allows for a dynamic shift of carbon
allocation from foliage to roots (Smith er al, 2014) and
MOHC_UKESM1-0-LL includes carbon attribution based on
competition and height (Harper e 4/, 2018).

While our experiments do not include prognostic soil moist-
ure, nitrogen limitation, or competition we offer several hypoth-
eses on how these processes may interact with plant hydraulics
and allocation strategies implemented in HOTTER. We expect
that soil moisture feedback would only accentuate the decrease in
leaf area as both the ‘max carbon gain’ and (to a lesser extent) the
‘stress avoidance’ allocation strategies both predict increases in
transpiration (Fig. S13). This increased transpiration would
decrease soil water potential in the absence of major changes in
precipitation. Including a nitrogen cycle and nitrogen limitation
impacts on per leaf canopy productivity would likely also act to
limit leaf area, potentially also decreasing model-predicted
hydraulic stress where nitrogen is limiting. Finally, investing
more carbon in stem area and height due to competition for light
could both limit leaf area and create a longer hydraulic path
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which would increase stress (or also limit leaf area) (Trugman
et al, 2018; Liu et al, 2019). Indeed, the decrease in future leaf
area projected by our endmember allocation strategies can be
most precisely interpreted as a decrease in the ratio of leaf area to
stem area, not necessarily as solely decreases in leaf area. Increas-
ing the stem area through growth could theoretically support the
hydraulic demand of an increase in leaf area, however, increased
stem area would also increase respiration costs per leaf area —
potentially limiting the benefit to NPP.

Additional mechanisms and forms of acclimation may also inter-
act with changes in carbon allocation to leaf area. For example,
leaf-to-crown scaling and self-shading may be import in high leaf
area regions such as the Northeast. While HOTTER employs a
purposefully parsimonious linear scaling between carbon and water
fluxes and crown leaf area, many ESMs account for increased shad-
ing due to higher leaf area per canopy area (i.e. LAI) (Sellers, 1985)
(Notes S2). Accounting for shading would further reduce the
benefit of increased leaf area, potentially resulting in a co-limitation
with hydraulic stress. This could reduce both the hydraulic stress in
‘present-day’ HOTTER runs and the hydraulic stress under future
conditions. Leaf area is also not the only part of plants that can
acclimate to future conditions. For example, V.5 has been
shown to decrease with increased CO, and temperature (on order
of 10-20% with a doubling of CO, concentrations) (Ainsworth &
Long, 2005; Dong ez al., 2022). Relative to a scenario where V,
max2s does not acclimate, acclimation would reduce the productiv-
ity of trees and likely relieve some hydraulic stress, given that this
would decrease transpiration. We found that a 20% decrease in V_
max25 — applied in HOTTER - allows for a relative increase in leaf
area for a carbon maximization strategy, but does not change the
overall results of a general leaf area decrease (Fig. S6). Finally, accli-
mation of respiration to increasing temperatures and productivity
would likely allow for increased leaf area following a ‘max carbon
gain’ strategy (H. Wang ez al., 2020).

Unexplored Earth system effects with future decreased
leaf area

HOTTER-projected changes allow us to hypothesize about
broader-scale land surface dynamics associated with ESM projec-
tions. The difference between broad-scale leaf area decreases
(HOTTER predicted) or the more commonly studied leaf area
increases (ESM-predicted) could have widespread consequences
for the terrestrial carbon cycle, surface energy budget, and global
circulation patterns. In particular, this would result in a strong
overestimation of plant growth and future terrestrial carbon sto-
rage in the ESMs when the impacts of stress-driven mortality are
not accounted for, as is true of many of the current generation of
ESMs. These implications are not only important from a biologi-
cal perspective, but impact societal strategies to get to net zero
emissions (Coffield ez al., 2021). Meanwhile, vegetation biomass
and leaf area are also key determinants of surface albedo and eva-
porative fraction which are a critical component in the Earth’s
energy balance, water cycles, and atmospheric circulation through
the surface energy budget (Bonan, 2008). In ESMs, a decrease in
leaf area could have impacts on land-atmospheric feedbacks,
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global climate temperature sensitivity, and atmospheric water
vapor (Swann et al, 2010; Alkama & Cescatti, 2016; Zarakas
et al., 2020). Finally, changes in leaf area in the mid-laticudes —
including our study region — have been linked to changes in glo-
bal circulation with teleconnections shifting precipitation in the
tropics (Swann ez al., 2012). Considering the ecological, carbon
cycle, and Earth system implications of these studies — with ESMs
that overwhelmingly predict leaf area increase with climate
change — the understudied impacts of combined high CO, and
concomitant climate change with a weakening land carbon sink
and decreased forest presence are all but guaranteed to be an area
of importance for the future of the Earth system.

Diagnosing potentially lethal hydraulic stress in Earth
system model leaf area projections

While HOTTER does not represent demographic processes such
as growth and mortality, inferences about future allocation strate-
gies and hydraulic stress complement information on the terres-
trial biosphere derived from global-scale ESMs. Though efforts
are underway to include more realistic plant hydraulic and mor-
tality mechanisms in ESMs (Kennedy ez 4/, 2019; De Kauwe
et al., 2020), ESMs have yet to surmount the challenge of scaling
an organ-level understanding of plant hydraulic processes to a
land surface model grid cell that is 50-100 km along one side.
Thus, it remains to be determined what the combined effect of
these stressors will be on mortality and what the net effect will be
on terrestrial carbon storage (Arora & Melton, 2018; Lemordant
et al., 2018; Bonan et al, 2019; Anderegg et al., 2022; Cano
et al., 2022; Wu et al., 2023). However, we can use HOTTER as
a diagnostic to better understand the potential hydraulic conse-
quences of the ESM’s predictions of the terrestrial biosphere. For
example, HOTTER-projected increase in PLC due to increases
in leaf area that are representative of ESMs under climate change
scenarios could accelerate mortality rates, increasing carbon turn-
over and offsetting carbon gains from increased productivity asso-
ciated with CO, fertilization (Anderegg er al, 2015, 2022;
Quetin et al., 2023; Wu et al., 2023).

Results from applying ESM leaf area change as a boundary
condition in HOTTER suggest that the ESM’s projected leaf
increase — responding to higher productivity and available GPP —
would be a strong leaf area overshoot in terms of hydraulic stress
leading to stress-driven mortality (e.g. Quetin ez al., 2023; Figs 4,
S12). While it is possible that some changes in forest structure
could help alleviate hydraulic stress, forest structure is the com-
plex result of decades to centuries of forest management, and eco-
logical factors of recruitment, growth and mortality, and thus
represents additional complexity for all future projections (Eagle-
son, 1982; Bradford John et al., 2022).

Observations of the CO, fertilization effect have limited
ability to distinguish between HOTTER endmember
allocation strategies and Earth system models

The response of plants to increased atmospheric concentrations of
CO, continues to be a large uncertainty for the future carbon cycle
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and a focus of intensive field experiments (King et al, 2004;
O’Sullivan et al., 2022). Model-derived projections for estimating
the CO, fertilization effect on GPP have come under increased
scrutiny for potentially unrealistic and overoptimistic effect sizes
(W. Li er al, 2018; S. Wang ez al.,, 2020). We examined observa-
tional estimations of the CO, fertilization effect on GPP to see
whether these observations could provide a constraint on which —
if either — model-predicted allocation strategy most realistically
reproduce plant responses to environmental and CO, perturba-
tions. Despite being a focus in the literature for its potential to
constrain future model prediction, we found that the strength of
the CO, fertilization effect on GPP has little ability to discriminate
between endmember allocation strategies or between our endmem-
ber approaches and ESM projections (Fig. 5). The comparison
highlights the difficulty of using observationally derived proxies
(and leaf-level theory) — including flux tower measurements, global
carbonyl sulfide from ice cores, and theory for light saturated leaves
— in constraining model projections.

Conclusion

We quantified the carbon gain and hydraulic stress consequences
of two potentially endmember allocation strategies (maximizing
carbon gain or conserving hydraulic stress), implemented in a trait-
based physiological tree model with plant hydraulics under future
climate change conditions. We found that the ‘stress avoidance’
allocation strategy missed out on up to 26% of NPP in some loca-
tions compared with the carbon maximization strategy. Further-
more, the observed fertilization effect on GPP had little ability to
discriminate between endmember allocation strategies or between
our endmember approaches and ESM projections. This fact is
important to consider given that the literature focuses on the CO,
fertilization effect on GPP as a potential constraint on terrestrial
biosphere predictions. We provide evidence that GPP may not be
the most relevant ecological or biogeochemical diagnostic to con-
sider, and also likely does not provide sufficient information about
climate impacts on terrestrial carbon cycle dynamics, given the
importance of both carbon assimilation and respiration. Finally,
ESMs — our state-of-the-science tools for understanding climate
change impacts on the Earth system — overwhelmingly project leaf
area increases due to increased photosynthesis with higher atmo-
spheric CO,. However, our endmember allocation strategies show
that plant hydraulics may play an important role in limiting leaf
area — and ultimately plant biomass — increases. Conversely, if
ESM-projected leaf areas are realized, our results suggest increases
in hydraulic stress connected to increased mortality. Either path
would impact the carbon sink and Earth system, with reduced leaf
area effectively downregulating photosynthesis and changing land-
atmosphere feedbacks, or increased hydraulic stress leading to
increased carbon turnover associated with mortality, disturbance,
and demographic changes.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1 HOTTER integrates tree productivity, water use, and

the hydraulic stress across the soil-atmosphere continuum.

Fig. 82 No leaf area acclimation has a high carbon cost and large
hydraulic stress increases.

Fig. 83 The distribution across the US for GPP, NPP, and PLC
for different allocation strategies.

Fig. S4 The regional range of P50 values significantly impacts

the carbon missed out on for ‘stress avoidance’ in many regions.

Fig. S5 Leaf area predicted by HOTTER for the
continental U.S.

Fig. S6 The percent change in leaf area with a 20% reduction in
Ve maxzs under future conditions for the ‘max carbon gain’ alloca-
tion strategy.

Fig. 87 Maximizing carbon gain limits leaf area more than stress
avoidance in regions with low present-day vapor pressure deficit.

Fig. S8 Histogram of the difference in the percent leaf area
change between the endmember allocation strategies of ‘stress
avoidance’ vs ‘max carbon gain’.

Fig. 89 The model and anomaly for the difference in leaf area
change between endmember allocation strategies of stress avoid-
ance and maximum carbon gain.

Fig. S10 Maps of the percent leaf area index change for each
model included in CMIP6 that was used in the analysis.
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Fig. S11 There is large uncertainty in the percent change in leaf
area across the Earth system models by 2100.

Fig. 812 Net primary productivity and percent loss of conduc-
tance from running HOTTER with the fractional leaf area
change from the mean of the CMIP6 Earth system models.

Fig. 813 Transpiration generally increases under conditions for
most leaf area strategies.

Methods S1 HOTTER-SOX model description.
Methods S2 Software.

Notes S1 Canopy scaling and the difference between HOTTER

leaf area and leaf area index.

Notes S2 Max carbon gain, more than stress avoidance limits
future leaf area in some regions.

Table S1 HOTTER key inputs and outputs. Reproduced from
Quetin et al. (2023).

Table S2 List of CMIP6 models that were analyzed and the per-
cent of grid points with LAI decrease in the future.

Table S$3 The mean environments for different quadrants as seen
in Fig. 2.

Table S4 The variance explained by different combinations of
predictors in a linear model of the difference in leaf area change
between endmember allocation strategies.
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