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ABSTRACT

Riparian woodlands in drylands are critically important to human society, global biodiversity, and regional water
and energy budgets. These sensitive ecosystems have experienced substantial degradation over the last several
decades from climatic change and direct human activity. Nevertheless, quantifying long-term change in dryland
riparian woodlands remains a major challenge, and much uncertainty exists in their remaining extent, historical
breadth, and likely future trajectories. Dryland landscapes show large, fine-scale spatial heterogeneity in sea-
sonal greenness patterns, driven in part by spatial variation in water availability. Riparian woodlands occur
where water is concentrated in the landscape, either as aboveground streamflow or subsurface groundwater. In
arid and semi-arid climates, this renders them phenologically distinctive from upland ecosystems. However,
despite their importance and distinctiveness, there are currently no automated methods for delineating dryland
riparian woodlands across regional extents in the cloud. Here we designed and implemented a cloud-based al-
gorithm to retrieve dryland land surface phenology patterns from multispectral satellite imagery and conducted
sensitivity analyses using real and simulated data to demonstrate that the approach is robust for MODIS,
Sentinel-2, and Landsat over realistic ranges of noise and cloud cover. We then designed a series of random forest
vegetation classifiers that integrate phenological and spectral information, vegetative structure from LiDAR, and
topography from LiDAR or the Shuttle Radar Topography Mission. We implemented classifiers for three local
study sites and then generalized our model to run regionally across the southwestern United States, with
balanced accuracy for the riparian woodland class ranging from 94.5% to 97.5% when validated with local to
regional datasets. Generally, phenological information proved more important than any other data source for
mapping riparian woodlands, which showed more stability in interannual phenology than did upland vegetation
types. To our knowledge, ours is the first regional, annual, automatically-generated and updated approach for
mapping dryland riparian woodlands in the southwestern United States, paving the way for improved modeling
and management efforts on watershed to regional scales. We also provide one of the first operational, exclusively
cloud-based methods to extract dryland land surface phenology patterns using Landsat, Sentinel-2, MODIS, or
other sensors, providing a framework for future studies investigating other aspects of long-term or spatial
variation in dryland vegetative seasonality across the globe.

1. Introduction

defines drylands as regions where the aridity index, or the ratio of
precipitation to evaporative demand, is <0.65 (Safriel et al., 2005). In

Drylands are defined as regions with relatively high evaporative drylands, riparian woodlands cover a small percentage of land area
demand in comparison to water supply. For example, the United Nations (Sands, 1980; Katibah, 1984; Swift, 1984; Salo et al., 2016) but are
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responsible for a disproportionately large fraction of landscape-scale
primary productivity and evapotranspiration (Jenerette et al., 2009;
Swetnam et al., 2017; Ma et al., 2018; Doody et al., 2023). Riparian
woodlands also support numerous ecosystem services including water
filtration, nutrient cycling, local microclimate regulation, and recrea-
tion, and they provide habitat to many threatened and endangered
species (Ballard et al., 2004; Ranalli and Macalady, 2010; Gunawardena
et al., 2017; Palmer and Ruhi, 2019; Nagler et al., 2020; Nagler et al.,
2021). At the same time, these ecosystems are vulnerable to climate
change, groundwater extraction and damming, invasive species, and
land-use change (Rood et al., 2003; Jenerette et al., 2009; Stella et al.,
2013; Ma et al., 2018; Albano et al., 2020; Mayes et al., 2020; Nagler
et al., 2020; Nagler et al., 2021; Nagler, 2022b). Dryland riparian
woodlands have already declined to a small fraction of their historical
extent (Katibah, 1984; Swift, 1984; Salo et al., 2016; Albano et al., 2020;
Nagler et al., 2020; Nagler et al., 2021). Mapping their remaining area
and their spatial distribution through time is important for conservation
but is challenging because riparian woodlands are complex and diverse,
temporally dynamic (with regular flood disturbance), and narrow in
spatial extent.

Although considerable amounts of time and funding are spent
managing riparian woodlands and their associated fauna (including
numerous threatened and endangered species), most riparian wood-
lands are mapped manually through some combination of field work
and/or interpretation of aerial imagery. For example, more than a dozen
rivers in the Lower Colorado River Basin in Arizona have had riparian
extents manually digitized (Nagler, 2022b). Manual approaches can
provide species-level information, high accuracy, and spatial precision.
These maps can be used alongside time series data for monitoring
ecosystem process, including evapotranspiration change. However,
manual delineation is extremely laborious, which limits coverage and
typically precludes regular updates or incorporation of change in
woodland extent over time. Substantial effort has been made to auto-
mate riparian woodland delineation using manually delineated datasets
as training alongside various remotely sensed data (Rusnak et al., 2022),
including multispectral satellite imagery (Townsend and Walsh, 2001;
Dennison et al., 2009; Johansen et al., 2010; Jia et al., 2020; Melichar
et al., 2023; Rabanaque et al., 2021), fusion of aerial and multispectral
imagery (Nagler et al., 2022a), hyperspectral aerial imagery (Godfrey
et al., 2023), digital elevation models and LiDAR (Johansen et al., 2010;
Salo et al., 2016; Rabanaque et al., 2021; Godfrey et al., 2023), un-
manned aerial systems (Dunford et al., 2009), and collaborative
frameworks involving a combination of remote sensing data sources and
expert stakeholders (Doody et al., 2017). In application, these efforts are
limited mainly by the spatial and temporal availability of LiDAR,
hyperspectral imagery, and drone surveys, or by the need to continually
re-train multispectral satellite classifiers in new regions with different
vegetation types. No general approach currently exists to automatically
and annually map dryland riparian woodlands across regional or greater
extents using widespread and frequently updated imagery (Rusnak
et al., 2022).

Across global drylands, water availability is a major seasonal
constraint on primary productivity (Huxman et al., 2004; Jenerette
et al., 2009; Ma et al., 2018). Because of this, vegetative leaf phenology
and the timing of precipitation are also related, particularly in upland
settings (Smith et al., 2019; Albano et al., 2020; QGIS Geographic In-
formation System, 2021; Warter et al., 2021, 2023; Currier and Sala,
2022; Melichar et al., 2023). Some upland plant species exhibit drought
avoidance strategies with perennial summer-deciduous or short-lived
annual life histories, matching their growth seasons to water availabil-
ity (Huxman et al., 2004). Other dryland trees and shrubs are evergreen
and resist water scarcity via strong stomatal regulation, highly resistant
xylem, or deep roots to access persistent water in deeper soil layers
(Cooper, 1922; Stromberg, 1993; Smith et al., 2019; Manning et al.,
2020; Maestre et al., 2021).

By contrast, well-watered shallow

streams usually have
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groundwater, which is constantly available to phreatophytic plants. This
encourages establishment of trees adapted primarily for light and tem-
perature limitation, rather than water limitation (Doody et al., 2023). In
drylands, dense woodlands of winter-deciduous broadleaved trees —
with short-lived leaves, low water use efficiency, and vulnerable xylem,
but fast growth and high efficiency in light use — are therefore primarily
limited to riparian environments and other groundwater-dependent
ecosystems (Rood et al., 2003; Stromberg and Merritt, 2015; Manning
et al., 2020; Melichar et al., 2023). The tree species characteristic of this
habitat type are both vital for a suite of threatened and endangered
species (Ballard et al., 2004; Hatten et al., 2010; Johnson et al., 2017)
and are especially vulnerable to loss of streamflow or groundwater
under human mediated hydrologic and climatic change (Rood et al.,
2003; Sands, 1980; Stromberg, 1993; Stromberg and Merritt, 2015;
Albano et al., 2020; Nagler et al., 2020; Nagler et al., 2021; Manning
et al., 2020; Mayes et al., 2020; QGIS Geographic Information System,
2021; QGIS Geographic Information System, 2021; Melichar et al.,
2023).

Multispectral satellite imagery can be used to estimate phenology
patterns on landscape scales, allowing identification of plants by
phenological type (Jonsson and Eklundh, 2004; Verbesselt et al., 2010;
Smith et al., 2019; Nietupski et al., 2021; Melichar et al., 2023). Most
existing approaches involve collecting all imagery from one or several
years, evaluating a vegetation index such as the normalized difference
vegetation index (NDVI; Rouse et al., 1973), filtering to remove cloud-
contaminated values, and then fitting a parametric function to the
remaining data. Popular functions include double logistic (Nietupski
et al., 2021) and piecewise polynomial or Fourier (harmonic) fits (Ver-
besselt et al., 2010; Brooks et al., 2012; Xin et al., 2013; Zhou et al.,
2023). Most phenology retrieval algorithms are designed to run offline
on downloaded data, rather than in the cloud, which limits their
applicability over large areas (e.g. Melichar et al., 2023). Additionally,
many authors have focused on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) or other sensors with very frequent return in-
tervals but coarse spatial resolution (Jonsson and Eklundh, 2004;
Verbesselt et al., 2010; Kong et al., 2019; QGIS Geographic Information
System, 2021), which is problematic in dryland riparian environments
where the entire woodland corridor is usually narrower than a single
250 m MODIS pixel. Some authors have attempted to circumvent this
problem by fusing data from multiple sensors with different imaging
properties, such as Landsat and MODIS (Gao et al., 2006; Dennison et al.,
2009; Doody et al., 2017; QGIS Geographic Information System, 2021).
However, algorithmic complexity and spatial assumptions in such
models limit their rapid extensibility over broad areas, particularly on
an annual basis. Others aggregate seasonal data from across multiple
consecutive years (Melichar et al., 2023) or aggregate over space to the
reach or regional level (Nagler et al., 2020; Nagler et al., 2021), which
increases the effective number of samples but reduces ability to detect
change, disturbance, or spatial patterns.

In this paper, we introduce a rapidly-scalable, cloud-based local
regression algorithm to retrieve pixel-scale annual greenness phenology
patterns from multispectral satellite imagery with 10 to 30 m spatial
resolution, focusing on Landsat and Sentinel-2. We conduct sensitivity
analyses with simulated data representing these and several other sat-
ellite constellations to investigate the effects of sensor noise, cloud
fraction, and return interval on our phenology retrievals. We also
compare our Landsat- or Sentinel-2-derived phenology estimates to es-
timates based on MODIS, which has a coarser spatial resolution but
much faster return interval.

We then build random forest vegetation classification models to map
vegetation types in drylands. We integrate phenology, summer spectral
characteristics, canopy height from LiDAR, and topographic informa-
tion, and focus on mapping the most groundwater-dependent riparian
woodlands of phreatophytic, winter-deciduous trees. We initially
trained and tested models locally at three focal sites and then built a
regional classifier trained in California and tested across the
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southwestern United States. Finally, we used random forest variable
importance (VIP) to interrogate the relative value of different input
variables for mapping vegetation types in this context. Our approach
represents the first regional method for mapping riparian woodland
extent and phenology in the cloud, and our phenology and classification
approaches are straightforwardly extensible and could be applied to
global dryland regions and a diverse suite of sensors, including data
sources other than greenness.

2. Methods

We developed an approach for mapping seasonal change in plant
greenness on landscape scales using multispectral satellite imagery,
temporal and spectral cloud filters, and moving-window polynomial
regression (Fig. 1). We validated our phenology retrievals using inter-
sensor comparisons and simulation-based sensitivity tests. We then
used random forest classifiers and phenology combined with other in-
formation to map land cover classes at focal test sites and regionally
across the southwestern United States.

Because mapping seasonality requires repeated measurements
through time, satellite imaging return interval is critically important.
Simultaneously, because riparian woodlands are typically narrow in
spatial extent, spatial resolution is also very important to our applica-
tion. Unfortunately, these two factors usually trade off in satellite
datasets due to technical limitations in sensor and orbit design. For
reference, we list the properties of several satellites discussed in this
paper in Table 1.

We built our classifiers on satellite imagery from either the Landsat
(Wulder et al., 2019) or Sentinel-2 (Copernicus Sentinel Data, 2022)
datasets, which have relatively high spatial resolution (30 and 10 m,
respectively) but relatively infrequent return intervals (16 and 5 days) —
a challenge that has limited their use in other studies on land surface
phenology. Landsat has a longer data record, with continuous observa-
tion by a series of similar satellites since 1984, while the first Sentinel-2
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satellite was launched in 2015, and the launch of a second satellite in
2018 halved the sampling interval (from 10 to 5 days). Landsat thus has
the advantage in data record length, while Sentinel-2 has a relatively
short record but generates more scenes each year with higher spatial
resolution. Because the Landsat program has included a series of satel-
lites partly overlapping in temporal coverage, there are periods within
its four-decade record when two or even three satellites were simulta-
neously collecting imagery — for example, Landsat 8 and 9 are both
operational at the time of writing. Combining data across multiple
Landsat satellites during periods of overlap can decrease the imaging
return interval, providing two or even three times as much imagery.
In the absence of on-the-ground phenology data, we also provided a
cross-sensor comparison for our Landsat and Sentinel-2 models against
phenology curves derived from MODIS, which has daily imagery but a
much coarser spatial resolution (250 m), rendering it inappropriate for
all but the broadest dryland riparian woodlands. Finally, in simulation-
based sensitivity tests we included a fourth satellite constellation,
PlanetScope, which has near daily imagery at very high spatial resolu-
tion (nominally 3 m). In contrast to Landsat, Sentinel-2, and MODIS,
PlanetScope is not globally available for free within Earth Engine, so we
included only simulated data from that constellation for comparison.

2.1. Site descriptions

We focused on three study areas, each centered on a United States
military base: Vandenberg Space Force Base (VSFB) in Santa Barbara
County, California, including the Santa Ynez River and portions of the
Santa Ynez Mountains; Marine Corps Base Camp Pendleton (MCBCP) in
San Diego County, California, including the Santa Margarita River; and
Fort Huachuca Army Installation (FH) in Cochise County, Arizona,
including the Huachuca Mountains and the nearby San Pedro River. Our
study sites span a range of climates and include both large lowland rivers
and small montane tributaries, as well as a diversity of upland vegeta-
tion types (Fig. 2).
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Fig. 1. Overall framework for phenology retrieval. In sub-plots 1 and 3, orange windows indicate zoomed-in extents for sub-plots 2 and 4. 1) Surface reflectance
satellite imagery is collected and converted to a vegetation index (here the Normalized Difference Vegetation Index, NDVI); 2) Temporal filters are applied to remove
pixels contaminated by clouds and other atmospheric effects; 3) Sampling steps are fixed at regular intervals in time (here, monthly); 4) Phenology values are fit using
a quadratic, linear, or median value within time windows around each target timestamp; 5) Values are fit at each timestamp to produce a regularly-spaced seasonal
NDVI curve; 6) The process is repeated for each pixel to produce spatial maps of seasonality.
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Table 1
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List of multispectral satellite platforms used in this paper. PlanetScope is generated by a large constellation of small satellites which together produce variable imaging
timelines over both space and time. In some cases, PlanetScope imagery are available on a daily basis, but in our simulations we treat PlanetScope as having a regular 2-

day return interval for simplicity.

Period of Record Data Properties

Use in This Paper

Start End Res. (m) P (days) Sensitivity Tests Cross-validation Veg. Classifiers
Landsat 5 (TM) 1984 2013 30 16 X X
Landsat 8 (OLI) 2013 - 30 16 X X
Landsat 8 + 9 (OLI) 2022 - 30 8 X X X
Sentinel-2a 2015 - 10 10
Sentinel-2a + 2b 2018 - 10 5 X X X
MODIS 1999 - 250 1 X X
PlanetScope 2014 - 3 2% X

Both VSFB and MCBCP in coastal Southern California have Medi-
terranean climates characterized by cool, wet winters and warm, dry
summers, with MCBCP being slightly warmer and receiving slightly less
overall precipitation. By contrast, FH is located in an interior desert with
a monsoonal climate, cold winters, hot summers, and rain primarily
from intense storms in late summer, with smaller rain events in winter
which often do not lead to surface flows (Sabathier et al., 2021, 2023).
Temperature and precipitation across these dryland sites therefore differ
sharply in both magnitude and seasonal timing (Fig. 2), driving differ-
ences in timing of vegetative phenology for upland plant species, which
acquire most of their water from rainfall and shallow soil layers. By
contrast, the phenological patterns of groundwater-supported riparian
woodlands are much less variable across this region, typically featuring
low greenness in the winter and consistently high greenness through the
entire warm period (winter-deciduous trees).

2.2. Land cover classes

We used satellite observations to map land cover classes, including
both functional vegetation types and abiotic surfaces. In each classifier,
we sought to include as many surface classes as could be reasonably
discriminated from one another, given the limits of both training data
and salience among classes. For local classifiers, we were able to
discriminate and map many fine class designations because the local
contexts included relatively little within-class variability and fewer
phenologically similar classes. When we generalized our three local
models to a single regional model, we were also forced to generalize and
simplify the upland class list to account for the diversity of vegetative
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types that occur on regional scales. This was also necessary because of
limitations in the regional training data, which could not be crosswalked
to some of the finer upland class types that were straightforward to
delineate manually for local classifiers (Section 2.6). Classes are listed in
Table 2, and additional detail on each is provided in Table S1 in the
supplement.

In all cases, including both local and regional models, we focused
primarily on obligately riparian woodlands of deciduous riparian
woodlands (DRW): shallow-rooted phreatophytic trees dependent on
constant access to shallow groundwater during the summer growing
period (e.g. Salix, Populus, Acer, Alnus, Platanus, Fraxinus, etc.). We also
mapped trees in evergreen woodlands (EW), which are often faculta-
tively riparian in our region, particularly at higher elevation (Sands,
1980), and can also contribute to some of the ecosystem services pro-
vided by DRW. We included the option to combine riparian EW and
DRW into an overall riparian woodland class (RW). When doing so, we
used relative elevation (rooting height above the nearest thalweg point)
to distinguish between evergreen trees with or without access to stream-
associated groundwater, including evergreen trees as ‘riparian wood-
land’ only when their relative elevation with respect to the stream
channel was <10 m. In our region, DRW trees are typically very shallow-
rooted (e.g. 0.5 to 2.5 m) and only grow on sites with shallow ground-
water, typically close to the channel. In contrast, many of our evergreen
tree species can root more deeply, up to 10 m, and therefore may still
access riparian groundwater when further from the channel (Cooper,
1922; Stromberg, 1993; Canadell et al., 1996).

In each classifier we also included some non-riparian vegetation
types. In local classifiers we mapped a variety of natural upland

p.) |

Fig. 2. Geographic, climatic, and habitat context for this study. At left: focal sites from the American Southwest with differences in climate (climatograph inset; lines
are mean temperature and bars are precipitation) but similar riparian woodland composition and seasonality (phenology inset). Colors in the inset graphs correspond
to the three focal sites — blue for VSFB, green for MCBCP, and orange for FH. At right: representative example of Fremont cottonwood (Populus fremontii) gallery
woodland along an intermittent reach of the San Pedro River near FH. Climatographs are based on areal averages of long-term normal PRISM data across each study
extent (PRISM Climate Group, 2014). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



C.A. McMahon et al.

Table 2

Land cover classes (and associated acronyms) used in various classifiers. All
models included DRW, which was the focus of this study, alongside at least one
evergreen woodland class and various non-woodland classes. The geographic
contexts in which each class was used are indicated with an X for the following
focal sites: Fort Huachuca Army Installation (FH); Marine Corps Base Camp
Pendleton (MCBCP); Vandenberg Space Force Base (VSFB); and the regional
southwestern United States (R). Class descriptions are provided in the supple-
ment (Table S1). Example phenology curves are provided in Figs. 4, 5, S1, S4,
and S5.

FH MCBCP VSFB R
DRW X X X X Deciduous Riparian Woodland
EwW X X Evergreen Woodland
RW X Riparian Woodland
RS X Riparian Scrub
EOW X X Evergreen Oak Woodland
ENW X Evergreen Non-native Woodland
MB X Mesquite Bosque
CH X X Chaparral
SS X X Sage Scrub
DS X Desert Shrubland
GR X X X Grassland
WET X Wetland
NV X X X Non-Vegetated
CR X X X Crops
UR X X X Urban
w X X Water
ONV X Other Natural Vegetation

vegetation types, as well as crops, urban areas, bare sediment or rock,
and open water. In our regional classifier we lumped most upland
vegetation, resulting in four classes that retain functional meaning and
phenological salience across the southwestern United States: DRW, EW,
other natural vegetation (ONV), and crops (CR), again with an option to
combine DRW and near-stream EW as a single RW class. In each case, we
retained as many upland classes as could be reasonably discriminated
from one another using the data sources available. This reduces confu-
sion by improving representation of rare classes, and allows determi-
nation of which upland classes are most frequently confused with
riparian woodland.

2.3. Greenness phenology and surface reflectance retrieval

To facilitate regional mapping of greenness phenology and land
cover classes, we implemented a generalized phenology retrieval algo-
rithm to estimate continuous seasonal NDVI curves using the Google
Earth Engine platform (Gorelick et al., 2017). We used this algorithm to
produce separate seasonal greenness time series for each pixel and year
(Fig. 1).

First, for each year and pixel, we aggregate all surface reflectance
data from a given multispectral satellite constellation (for example,
Landsat, Sentinel-2, or MODIS), removing any data covered by the cloud
mask for that imagery. Despite the use of existing spectral cloud filters
distributed with each product, some pixels affected by clouds, cloud
shadows, or other localized atmospheric contaminants were not reliably
removed (Fig. 1). To account for this, we applied an additional temporal
filter, which compares each pixel value to the values immediately before
and after in the time series and masks pixels when the NDVI of the target
image was >0.1 below the prediction of a linear regression in time be-
tween neighbor values. Clouds and cloud shadows tend to have much
lower greenness than healthy vegetation. Consequently, pixels that are
even partly obscured by cloud cover show a strong reduction in green-
ness vs. the previous and following scenes, even when the overall mixed
pixel spectrum is still sufficiently plant-like to be missed by the spectral
cloud filter. We applied this temporal cloud filter twice in series to
remove cloudy pixels even when multiple consecutive images were
contaminated in this way.

Next, we applied an adaptive local regression to smooth the data and
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estimate NDVI values at arbitrary points in time. Our approach needed
to be flexible across a greatly varying range of imaging frequencies, both
because of variation in return interval across sensors and because even
within a given data archive, cloud impacts lead to strong variation in
clear scene count between years, locations, and even seasons within a
year. We used a local regression around each time step to allow each
modeled NDVI value to be estimated independently across both space
and season, substantially increasing the capacity for parallelization in
Google Earth Engine. We used an adaptive regression order (a quadratic,
linear, or median fit) because higher-order fits prevent clipping of local
maxima and minima within the timeseries, but the large variation in the
number of cloud-free scenes for individual fitting windows causes
variation in the efficacy of higher-order fits. A regression will only
smooth noise when the number of data points used in the fit is mean-
ingfully higher than the order of the regression — otherwise, the fit will
respond strongly to noise and provide inaccurate estimates — so we
included linear or median fits for instances with few cloud-free scenes in
the sample window. The algorithm we developed is as follows (and is
illustrated visually in Fig. 1):

1. Specify the number of annual time steps to use (e.g. 12 for monthly
estimates or 52 for weekly estimates of greenness, etc.) and evenly
sample time steps through the year. Resampling from scene dates to
fixed time steps allows the same set of temporal predictors to be used
across variation in cloud cover and the edges of image tiles.

2. Aggregate all cloud-free NDVI data within a 60-day window centered
on each time step. For example, imagery with no cloud cover and a 1-
day return interval (MODIS) will have about 60 scenes in each
window, while imagery with 40% cloud cover and a 16-day return
interval (Landsat) will have only about 2 scenes.

3. Calculate an estimated NDVI value for each time step, using the
following decision framework:

a. First, find the median NDVI value of samples in the 60-day win-
dow, and also apply both a quadratic regression and a linear
regression in the window to estimate the NDVI value at the
sampling time.

b. For sampling windows with n > 6 scenes, if the quadratic
regression predicts a physically reasonable NDVI value (—1.0 to
1.0), and the absolute value of the z-score of the prediction with
respect to the distribution of values in the sample window is <1.5
standard deviations (i.e., not a statistical outlier), use the
quadratic prediction.

c. OTHERWISE, for sampling windows with n > 3 scenes, if the
linear regression predicted a physically reasonable NDVI value
(—1.0 to 1.0), and the absolute value of the z-score of the pre-
diction with respect to the distribution of values in the time
window is <1.5 standard deviations, use the linear prediction.

d. OTHERWISE, use the median NDVI value of the neighborhood.

4. Finally, after each time step is filled with an NDVI estimate in this
way, use linear interpolation to fill any gaps (which only occur when
no cloud-free observations occurred in the 60-day sampling
window).

We also considered other vegetation indices (VIs) as alternatives to
NDVI, including the Soil Adjusted Vegetation Index (SAVI - Huete,
1988) and Enhanced Vegetation Index (Huete et al., 2002). In compar-
ison to NDVI, SAVI partially addresses soil background effects for areas
with low plant cover (such as drylands) (Qi et al., 1994; Huete, 1988).
Similarly, EVI partially corrects for the atmosphere and soil background;
it also continues to respond to increases in leaf area index (LAI) over
very dense canopies, after NDVI has saturated (Huete et al., 2002).

However, because both SAVI and EVI introduce terms which are not
simple band ratios (the L term for soil brightness), they are both sensi-
tive to overall changes in illumination from shadowing or topographic
effects (Matsushita et al., 2007; Galvao et al., 2011; Liao et al., 2015;
Chen et al., 2020; Yin et al., 2022). This is problematic over montane
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and valley sites with substantial variation in slope and aspect, particu-
larly for phenology retrieval, as the solar angle changes seasonally. In
contrast, NDVI is less sensitive to topographic effects (Chen et al., 2020).
Additionally, while EVI has greater sensitivity than NDVI at high LAI
values, NDVI has greater sensitivity at low LAI (Huete et al., 2002), and
dryland landscapes develop LAI mostly on the lower end of this
sensitivity-response continuum (Stromberg et al., 1993). Soil back-
ground effects may lead to problematic variation in annual minimum
NDVI for sites with the same vegetative cover but different soils. Anal-
ogously, saturation can lead to similar peak NDVI values at sites with
differing maximum LAI. However, because our classifier is based on
phenology, peak and minimum values are less impactful than the timing
of shifts in greenness, which are captured very similarly by all three
vegetation indices, albeit sometimes with slight differences in timing of
senescence (Fig. S1, Huete et al., 2002; de Silveira et al., 2007; Wardlow
et al., 2007). As a result, other studies comparing phenological vegeta-
tion classifiers show negligible or inconsistent differences in accuracy
when the VI is changed between NDVI and EVI (Huete et al., 2002; de
Silveira et al., 2007; Wardlow et al., 2007; Wardlow and Egbert, 2010;
Halabuk et al., 2015; Yan et al., 2015; Melichar et al., 2023). Finally, EVI
requires inclusion of a blue band in addition to the red and NIR bands in
SAVI and NDVI. Some sensors (e.g. AVHRR) do not include a blue band;
others (e.g. MODIS) include a blue band with coarser spatial resolution
than the red and NIR bands. This means that for many potential appli-
cations, including portions of our analysis, NDVI or SAVI can be pro-
duced at finer spatial resolution than EVI, which is important in narrow
riparian areas.

We performed comparisons using NDVI, SAVI, or EVI. We found that
spatial patterns in seasonality were consistent across the three indices
(Fig. S1). Additionally, pixel-wise correlation between monthly values
of these indices was high (0.97 median correlation for NDVI vs. SAVI
and 0.96 for NDVI vs. EVI). We found no difference in riparian class
accuracy when switching between indices, and slight reductions in
overall class accuracy for both SAVI and EVI in comparison to NDVI
(Fig. S2). Consequently, we proceed with NDVI to minimize topographic
effects in montane catchments and maximize spatial resolution. How-
ever, we have also included EVI and SAVI as outputs in our Earth Engine
library for other users to apply in other contexts.

To validate the consistency of our phenology algorithm across

G: NDVI,yy

MODIS

(250m, available 2000 — present)
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sensors and differences in cloud cover, we used it to extract weekly NDVI
from 2022 imagery in the Sentinel-2, Landsat, and MODIS archives
around San Antonio Creek on VSFB (Fig. 3). We selected this site because
it is one of our broader and more contiguous riparian areas, facilitating
accurate riparian phenology retrievals even when using MODIS. We
extracted phenology samples for Salix lasiolepis riparian woodland
(DRW), maritime chaparral (CH), annual grassland (GR), and bare beach
sand (NV), totaling about 0.6 km? of area, and directly compared mean
phenology curves for each class across sensors (Fig. S3). We also
aggregated the Sentinel-2 and Landsat imagery up to mean values at the
250 m spatial scale of MODIS and directly compared weekly greenness
values from each sensor pair for individual MODIS pixels (Fig. S4).

We then applied our phenology algorithm to extract seasonality at
each focal site (FH, MCBCP, and VSFB) and at the sample points used to
train and validate the regional-scale classifier (Section 2.6). Although
our algorithm allows phenology curves to be sampled at arbitrary time
intervals, we built all classifiers using monthly greenness fits, using
imagery from the same year as the training / validation data.

Finally, we also generated mean summer spectra images (“leaf-on”
conditions for DRW) in the blue, green, red, NIR, SWIR1, and SWIR2
bands for each site using Earth Engine. We calculated the mean surface
reflectance across all cloud-free imagery (either Landsat or Sentinel-2
depending on the classifier, see section 2.7) between June 1 and
August 31 in each test year for each band. For Sentinel-2, we dis-
aggregated the two SWIR bands from their native 20 m resolution to
match the 10 m resolution used for all other bands.

2.4. Phenology retrieval — Sensitivity simulations

We developed simulations to test our ability to accurately retrieve
land surface phenology through partial cloud cover, sensor noise, and
variation in atmospheric correction quality. In doing so, we sought to
determine where in space and time each of our focal sensors could be
relied upon to retrieve surface phenology, given regional variation in
cloud cover. We assumed the surface was covered by a combination of
leafy vegetation and soil, and used a double-logistic function to estimate
leaf fractional cover as a function of day-of-year, varying from 0 to 100%
leaf cover, with parameter definitions given in Table 3:

G:NDVI,

Landsat
(30m, available 1984 — present)

Sentinel-2
(10m, available 2015 — present)

Fig. 3. Example phenology imagery produced for San Antonio Creek on VSFB, comparing results when using different sensor platforms. Clockwise from the upper
left: Google Earth truecolor satellite imagery; phenology falsecolor from Landsat 8; phenology falsecolor from Sentinel-2a + 2b; phenology falsecolor from MODIS.
Colors in phenology images are displayed with October, June, and January NDVI loaded as RGB. Based on these colour loadings, riparian woodland dominated by
Salix lasiolepis (DRW) displays as yellow-orange because it is winter-deciduous and has high greenness in October and June but not in January. By contrast, sur-
rounding uplands that are covered mostly by grasses and forbs (GR) are blue because they are senesced in June and October. Evergreen Eucalyptus globulus trees
(ENW or EW) on the north bank of the stream are white. Google satellite background: Imagery ©2023 Airbus, Imagery ©2023 Airbus, CNES / Airbus, Landsat /
Copernicus, Maxar Technologies, USDA/FPAC/GEO, Map data ©2023. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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Table 3
Definitions of parameters and range of values used in phenology simulations.

Range of Values Description

Fegr  0.0t01.0
0.00, 0.05, 0.10, .... 0.85, 0.90,
f 0.95
T 1,2,5,8,16, 30
SNR 2,5, 10, 20, 100
Ofxed  0.01,0.02, 0.05, 0.10

Driven by double-logistic function

Fraction of cloudy days

Sensor return interval
Signal-to-noise ratio

Fixed noise term

Width of sampling window for local

n 10, 20, 30, 40, 50, 60 regression

Exponential rate of greenness change in
kegring 2, 5, 10, 20, 30 spring

Exponential rate of greenness decline in
Kfau 2,5, 10, 20, 30 fall

Timing of spring inflection point (day of
Espring 90 year)

Timing of fall inflection point (day of
tran 150, 180, 210, 240, 270, 300 year)

1 1
Fleqt = (€9)

1+ e*kwmg(iﬂ.\pnng) 1+e*kﬁ'll(’*’7£111)

We chose fixed spectral endmembers for pure vegetation with red
reflectance at 0.05 and near infrared (NIR) reflectance at 0.5, and soil
with red reflectance at 0.24 and NIR reflectance at 0.4. At each time
sample, we estimated overall reflectance as a linear combination of the
endmember reflectance, weighted by fractional cover:

Reg =024 0 (1 —Fly) +0.05 0 Fry (&)

Ryig = 040 ® (1 — Figr) +0.50 ® Foyy 3

Varying kspring Kfail, tspring and tsq across the values shown in Table 3
resulted in 150 different underlying seasonal phenology curves. We
sampled these curves at 52 weekly time steps to build a reference time
series of ‘true’ seasonal NDVIL.

Next, we simulated sensor retrieval of NDVI by sampling R4 and
Rnir at a separate fixed interval (sensor return interval, T) and adding
random Gaussian noise N(0, ¢) with mean 0 and standard deviation ¢ to
each reflectance value. We broke ¢ into two noise terms: a term based on
the signal-to-noise-ratio (SNR) proportional to the reflectance, which we
varied across simulations to model variation in radiometric sensor
quality, and a constant noise term for errors in atmospheric correction
and surface reflectance retrieval:

R
0 = Ofixea + SNR 05

Rnai:y =R + N(07 G) (3)

We then calculated NDVI at each sensor return date based on the two
noise-contaminated reflectance values. The range of values we used for
the fixed and signal-dependent noise terms were based on Okin and Gu
(2015) who used varying SNR from 15 to 355 for various Landsat sensors
and bands, and who report RMSE values between known surface
reflectance and simulated reflectance retrievals following atmospheric
correction which vary from 0.0269 for Landsat OLI to 0.0656 for Landsat
5 TM.

In each test, we assumed a variable fraction, f, of cloudy days, and
randomly removed that fraction of sample points from the vector of
simulated sensor values for each test case, resulting in final simulated
time series with 365(1-f)/T samples, each point representing a single
distinct cloud-free image acquisition. For example, a Landsat-like 16
days for T provides 22 samples in the year, and with f = 0.5 for cloud
cover half of those were randomly removed, leaving 11 cloud-free ob-
servations. Finally, we applied our moving-window polynomial regres-
sion algorithm to retrieve weekly greenness estimates based on the
simulated sensor values, using a time window radius of N days.

All permutations of the parameter values in Table 3 were generated,

Table 4

Variables used for each random forest classifier. Summer spectral values (6) and monthly phenology values (12) were extracted from either Sentinel-2 (S2) or Landsat (L). Reflectance values were cloud-free averages from

June 1 to August 31. Topographic and hydrologic variables (4) were computed using either SRTM or LiDAR - these include elevation (DEM), terrain slope, and vertical and horizontal distance to the nearest stream flowline

(respectively Rel. Elev. and Creek Dist.). Canopy height (CHM) was only included in models which included LiDAR variables.

Regional

Pendleton - Local Classifier Vandenberg - Local Classifier

Huachuca - Local Classifier

Site

2013 2015 2017 2019

SRTM

No Li. Sp. Ph. Li.

S2
S2

All

SRTM

No Li. Sp. Ph. Li.

S2
S2

All

Model

Lor S2
L or S2
LorS2
LorS2
Lor S2
L or S2

S2

S2
S2

S2
S2

S2

Blue

S2

S2

Green

S2
S2

S2
S2

S2
S2

S2
S2

S2
S2

S2
S2

Red
NIR

Spectra

S2 S2

S2

S2
S2

S2
S2

S2

S2

S2

SWIR1

S2

S2

SWIR2
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resulting in 432,000 simulated phenology retrievals. For each test, we
computed the R? and root mean square error between underlying
phenology and the retrievals from our curve-fitting algorithm.

2.5. Vegetation structure and topography

We mapped topography using LiDAR or the Shuttle Radar Topog-
raphy Mission (SRTM - Farr and Kobrick, 2000), and vegetation struc-
ture using LiDAR. When working with LiDAR, we first extracted ground
returns by selecting local minima among last-returns and filtering for
points with locally-smooth surface normals (<0.5 rad average deviation
with respect to neighboring surface angles within 1 m). We extracted
vegetation as points that were >0.5 m higher than a Delaunay trian-
gulated irregular network fit to the ground returns. We rasterized the
terrain point cloud to a digital elevation model (DEM) and digital sur-
face model by taking the minimum and maximum values within 10 m
pixels (the native resolution of our Sentinel-2 NDVI imagery), and then
computed the local terrain slope (0). Maximum vegetation height in
each pixel (CHM) was determined as the difference between the digital
surface model and digital elevation model. This simple difference will
overestimate vegetation height for sloped terrain due to differences in
the maximum vegetation height and minimum ground height at oppo-
site edges of a pixel, so CHM values were normalized to account for
terrain:

CHM = CHM, — tan (6) ® Wy 3)

Where Wiixel is the pixel width (10 m) and CHM is the uncorrected
canopy height. Finally, we evaluated relative elevation as the vertical
distance between each terrain point and the nearest stream flowline
mapped in the National Hydrography Plus dataset (USGS, 2019). The
source files, example scripts, and more details on the methods used to
run these analyses are available in the Dirt or Leaf (McMahon, 2022a)
and LiDAR Raster Stats (McMahon, 2022b) C++ packages. LiDAR for
the two military bases was provided confidentially by the bases and is
not publicly available; however, an additional new LIDAR survey was
flown along the San Pedro River (McMahon, 2022), which is now
available online.

LiDAR was processed in this way for FH and MCBCP, but not for
VSFB, where LiDAR was not available (Table 4). However, topographic
information was also generated for all sites using SRTM, either to
replace LiDAR in comparative tests for FH and MCBCP (Tables 3, S2), or
as the sole source of terrain information at VSFB and the regional clas-
sifier. While SRTM is not able to map vegetation structure, it requires
much less preprocessing, consumes far smaller data volumes, and is
available globally. When using SRTM for locally-trained models, we
repeated the above analysis, but instead of processing point cloud data
we worked directly from the 10 m DEM provided by SRTM, and we did
not include structural information on vegetation.

For our regional model, we relied upon existing topographic infor-
mation in the Google Earth Engine data catalog, again including the
SRTM digital elevation model and terrain slope, as well as an existing
global map of relative elevation at 30 m (Donchyts et al., 2016), dis-
aggregated to the 10 m scale of Sentinel-2 for any analyses using that
satellite constellation.

2.6. Extraction of training points

For each of our locally-trained models, we used the QGIS and QField
apps (QGIS 2021) to manually delineate polygons representing exam-
ples of each vegetation type. We labeled polygons from each class using
field visits, high-resolution aerial imagery, and LiDAR for vegetative
structure and topography. For each test site, we assigned half of the
available polygons in each class to training and half to validation, to
ensure an independent validation (individual stands of vegetation were
never represented in both training and validation datasets). We then
randomly sampled pixels without replacement from each polygon until
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each class had the same number of points in the training and validation
sets (equal to one half as many points as the rarest class, for a class-
balanced test). We sampled the phenology, summer surface reflec-
tance, SRTM, and LiDAR rasters for each pixel and aggregated the result
into a dataframe. This produced approximately 500 total samples for
each class in each test site for both the training and validation datasets.

We based the training data for our regional model on CALVEG
(McClellan 2004), which provides maps of existing vegetation across
California, classified with the National Vegetation Classification System
(NVCS). Since our analysis was focused on drylands, we removed mesic
ecoregions by subsetting the dataset to include only the following
ecoregions: the South Coast, South Interior, Central Coast, Central Val-
ley, South Sierran, and Great Basin. We aggregated all NVCS divisions
representing four target classes: DRW, EW, ONV, and Crops (Table 2).
We sampled 3000 points for training and validation from DRW and 1000
each for the other classes (Fig. S5). We stratified our sampling within
each class by NVCS division to ensure representation of the diversity of
subtypes within each vegetative class. For example, NVCS division
D193, “Vancouverian Flooded & Swamp Forest Division”, and D013,
“Western North American Interior Flooded Forest Division”, were given
equal representation in the DRW sample sets. Within each division, we
randomly sampled polygons without replacement, with sampling
probability weighted by polygon area, then buffered polygons inward by
15 m and sampled a point in the buffered polygon. This ensured that a
30 m Landsat pixel centered at that point would not overlap other
polygons, and that no polygon would contribute more than one point.
We used Google Earth Engine to extract Landsat phenology, summer
surface reflectance, SRTM topographic information, and latitude at each
training or validation point as described in Sections 2.3 and 2.4 using
data from the same year as the source products for each CALVEG
polygon.

Some CALVEG polygons are mapped over sparse vegetation, which
covers a small fraction of the polygon’s overall area — for example,
portions of a stand mapped in CALVEG as ‘evergreen woodland’ might
have <50% overall tree cover, with the rest taken up by herbaceous
plants or bare soil. To account for this, we subset the training data to
reject points where the target class was a minority of the actual overall
cover. For DRW, we removed points where the June-August average
NDVI was lower than 0.5 or where the increase in average NDVI for
summer (June-August) over winter (January-February) was <0.1. For
EW, we removed points where June-August NDVI was lower than 0.5 or
where the standard deviation in monthly NDVI across the year was
>10% of the mean annual NDVI.

2.7. Model training and validation

We trained 18 random forest classifiers using different combinations
of data sources and training sites (Table 4). For each classifier, we
trained a random forest model using a combination of structural or
topographic information, phenology data, and training / validation
polygons, with different datasets used in each classifier (Table 4).
Whenever used, individual band values for summer surface reflectance
and individual monthly greenness values from the phenology curve
were treated as separate predictors in the random forest model. Topo-
graphic and structural models were also included as individual
predictors.

At both FH and MCBCP, we used Sentinel-2 for optical imagery, and
built models on the following data sources (number of predictors for
each category in parentheses):

. Phenology (12) + Summer Spectra (6) + LiDAR (5)
. Phenology (12) + Summer Spectra (6) + SRTM (4)
. Phenology alone (12)

. Summer Spectra alone (6)

. LiDAR alone (5)

. SRTM alone (4)

AUl A WN -
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LiDAR was not available at VSFB, so we built models using SRTM for
topographic information and Landsat for phenology and summer
spectra. However, to test the models’ performance over time as
phenology varied between years, we tested four different years of im-
agery from VSFB with divergent water availability: 2013, 2015, 2017,
and 2019. Annual rainfall at the nearby Lompoc rain gauge (Santa
Barbara County Flood Control District, 2023) was 184, 203, 563, and
519 mm during these four rain years, compared to a long-term average

Table 5

Remote Sensing of Environment 305 (2024) 114056

of 367 mm. We trained four different classifiers on imagery from each of
the four years, then used each classifier to predict validation datasets in
each year, resulting in 16 total validation assessments (e.g. trained in
2013 + validated in 2013, trained in 2013 + validated in 2015, etc.).
Our regional model was built using SRTM (4 predictors), latitude (1
predictor), summer surface reflectance (6 predictors), and phenology
(12 predictors). We validated the regional model both by comparing it
directly to an independent validation dataset extracted from CALVEG

Summary of results for all classifiers. Each row represents a different classifier test. Lo and Re designate locally vs.
regionally trained models. All scales are in meters (either 10 m or 30 m, depending on which optical sensor was used).
FH is Fort Huachuca, MCBCP is Marine Corps Base Camp Pendleton, VSFB is Vandenberg Space Force Base, and SBC is
Santa Barbara Creeks. Struct., Sp., and Ph. respectively refer to the data source for canopy or terrain structure, average
summer reflectance, or vegetative phenology. S2 is Sentinel-2 and L is Landsat. Sens., Spec., and BA are respectively
sensitivity, specificity, and balanced accuracy for the riparian class (the Target column denotes the riparian class used
— either DRW or RW, depending on the test). Acc. and Kappa are the overall accuracy and kappa statistic for the
classifier across all classes. All accuracy statistics are reported as percentages (%). Colors are scaled from 70% (red) to

100% (blue).

Context Data Riparian Overall
Exten Sp Ph Acc  Kapp
t Scale (m) Site Year | Target St. Spec. BA a
202
Lo 10 FH 1 DRW LiDAR  S2
202
Lo 10 FH 1 DRW SRTM  S2
202
Lo 10 FH 1 DRW - S2
202
Lo 10 FH 1 DRW - -
202
Lo 10 FH 1 DRW LiDAR -
202
Lo 10 FH 1 DRW SRTM -
MCBC 202
Lo 10 P 1 DRW LiDAR  S2
MCBC 202
Lo 10 P 1 DRW SRTM  S2
MCBC 202
Lo 10 P 1 DRW - S2
MCBC 202
Lo 10 P 1 DRW - -
MCBC 202
Lo 10 P 1 DRW LiDAR -
MCBC 202
Lo 10 P 1 DRW SRTM -
201
Lo 30 VSFB 3 DRW SRTM L
201
Lo 30 VSFB 5 DRW SRTM L
201
Lo 30 VSFB 7 DRW SRTM L
201
Lo 30 VSFB 9 DRW SRTM L
201
Re 10 FH 5 DRW SRTM  S2
MCBC 201
Re 10 P 6 RW SRTM  S2
202
Re 10 SBC 1 RW SRTM  S2
201
Re 30 CLVG 9 DRW SRTM L
201
Re 30 CLVG 9 DRW SRTM L
201
Re 30 CLVG 9 RW SRTM L
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Fig. 4. Seasonal NDVI phenology, average summer spectra, canopy height (CHM), relative elevation, and terrain slope for training data extracted at Fort Huachuca
and the San Pedro River, separated by surface class. Key to classes: deciduous riparian woodland (DRW), evergreen woodland (EW), mesquite bosque (MB), desert
shrubland (DS), grassland (GR), non-vegetated terrain (NV), cropland (CR), and urban (UR). For more detail on classes see Table S1.
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and by predicting classes for manually-delineated vegetation polygons
from each of our study sites. When training the model and when vali-
dating with CALVEG, we used Landsat for surface reflectance and
phenology data, because some CALVEG polygons predate the launch of
Sentinel-2. When validating with our local polygons we used Sentinel-2
imagery to predict class values because of its finer spatial resolution and
to provide an additional cross-sensor comparison.

For each classifier, we trained a random forest model using the
training datasets, with 50 classification trees and a bag fraction of 0.5.
We report relative variable importance (VIP) for each classifier with
each combination of variables (Table S2, S3). We then predicted classes
at the independent validation pixels and report error matrices (Table S3
- S6). Finally, we calculated overall accuracy and Cohen’s kappa sta-
tistic (Cohen, 1960) across all classes, as well as sensitivity, specificity,
positive prediction rate (PPV), negative prediction rate (NPV), and
balanced accuracy (BA) for each individual class (Table 5):

Sensitivity = TPS—% @
Specificity = TNTiJIrVFP %)
PPV = % (6)
NPV = TNT+7NFN @
BA — Sensitivity + Specificity (8)

2

Where TP is the number of true positive cases, TN is true negatives,
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FP is false positives, and FN is false negatives.
3. Results
3.1. Phenology and terrain retrievals

Phenology trends differed between classes (Figs. 4, 5, S1, S4, S4),
particularly for DRW, which was usually the only class with low
greenness in winter and high greenness through the entire warm season.
In Arizona, xeroriparian mesquite bosque (MB) also had a winter-
deciduous phenology, but it greened up later in spring than DRW and
had a much lower canopy height (Fig. 4). Some evergreen classes like
evergreen oak woodland (EOW) and chaparral (CH) also had similar
phenology but were separable by LiDAR or SRTM metrics (Fig. S6).

Classes showed some variability in magnitude of greenness and
timing of phenological events between years (Fig. 5). However, broad
phenological patterns still separated most classes — especially for DRW,
which had lower interannual variability in phenology than the other
vegetative classes. For DRW in dry vs. wet years, onset of spring
greenness and fall senescence both occurred slightly earlier, and peak
greenness values during summer were slightly lower (by about 0.025
NDVI). The largest differences in wet vs. dry years were for the annual
grassland class (GR), which senesced much earlier in the two dry years
compared to the two wet years. The evergreen classes also showed some
reduction in late-season greenness during dry years relative to wet years.

Phenology retrievals were consistent when the algorithm was
applied separately to data from different sensors, building confidence in
the robustness of the method. At coastal sites around San Antonio Creek
on VSFB, estimates of mean weekly phenology in 2022 were similar
between MODIS, Landsat, and Sentinel-2 for DRW, chaparral, and
grassland (Fig. S3). Phenology retrievals from Landsat and Sentinel-2
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Fig. 5. Variation in Landsat-derived phenology at VSFB across four years, separated by vegetation type (Table 2). In upper plots, lines show the mean monthly NDVI
across all training points in each class, with bars denoting one standard error around the mean. Line colour shows the year; total water year precipitation in mm
(during the previous wet season) is given for each year in an inset. Lower plots show the average increase in monthly greenness in wet (2017, 2019) minus dry (2013,
2015) years. Classes are deciduous riparian woodland (DRW), evergreen oak woodland (EOW), chaparral (CH), sage scrub (SS), evergreen non-native woodland
(ENW), and grassland (GR) - for more information on classes see Tables 2 and S1.
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Fig. 6. Examples of phenology retrievals for simulated noisy and cloud-contaminated data. In each plot, the black curve represents the simulated “true” phenology
curve of the surface. Blue dots represent satellite samples injected with noise and subsampled due to cloud cover. The red line shows the phenology curve retrieved
from the noisy and cloud-contaminated data; good model fits are those where the red and black curves are similar. For each plot, the R? and root mean square error
between the retrieved (red) and true (black) lines are given in the top right and bottom right corners, respectively. Columns show variation in the fraction of scenes
obscured by clouds, from 0% to 90% of all scenes. Rows correspond to tests with varying noise (SNR, 6gxeq) and imaging return interval (RI). Each row is intended to
qualitatively correspond to an actual satellite platform. From top to bottom: MODIS; PlanetScope; Sentinel-2a + Sentinel-2b; Landsat 8 + Landsat 9; Landsat 8 alone;
and Landsat 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

had greater cross-sensor correspondence than MODIS had with either
other sensor — for example, the Pearson correlation coefficient between
weekly Landsat and Sentinel-2 estimates of greenness was 0.966, 0.985,
and 0.987 for DRW, chaparral, and grassland, respectively. The analo-
gous values for comparisons between MODIS and Landsat or Sentinel-2
ranged from 0.907 to 0.982. Root mean square differences in paired
weekly estimates of NDVI varied from 0.028 to 0.080, depending on the
sensor pair and surface class. After aggregating Landsat and Sentinel-2

12

to the resolution of MODIS, pairs of weekly NDVI estimates at individ-
ual pixels were also highly repeatable across sensors (Fig. S4), with r
between Landsat and Sentinel-2 of 0.99.

At FH and MCBCP, we used linear regressions to compare LiDAR vs.
SRTM estimates of absolute elevation, relative elevation, and terrain
slope. At the relatively coarse spatial resolution of 10 m, we found that
the two methods produced similar terrain metrics. At training points on
FH, the Pearson correlation coefficient between LiDAR vs. SRTM
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Fig. 7. Comparison of R? values between simulated “true” greenness and greenness retrieved from the phenology estimator after injection of cloud cover and noise,
with n = 30 and 6fx.q = 0.02 (Table 3). Black lines are the median R? value across all simulations for each test case. Blue and red lines are respectively the upper and
lower 5th percentiles of R? values for all tests. Multiple iterations were tested at each combination of imaging parameters because the shape of the phenology curve
was varied even as imaging parameters were held constant. Plots are split by return interval (horizontal, from 1 to 30 days return interval) and the signal to noise
ratio (vertical, factors of 2 to 100 times as much signal information content as noise). A horizontal dotted line marks R? = 0.8. For help interpreting the quality of a
phenology retrieval based on its R? value, see example plots in Fig. 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

estimates of absolute elevation and relative elevation were 0.999 and
0.990, respectively. The relationship was weaker for terrain slope (r =
0.933), implying a greater sensitivity to fine-scale variation in terrain
not captured by the 30 m SRTM product. The analogous r values at
MCBCP were 0.999 for absolute elevation, 0.973 for relative elevation,
and 0.865 for terrain slope.

3.2. Phenology retrieval simulation

We compared simulated phenology retrievals from a fixed underly-
ing phenology curve and variable sensor parameters (Fig. 6), and also
across all combinations of sensor parameters and phenology curves
(Fig. 7). Errors are stochastic, and the importance of cloud contamina-
tion varies depending on when it occurs during the growing season; for
this reason, some retrievals with lower cloud cover failed even as some
retrievals with higher cloud cover succeeded (e.g. the bottom row of
Fig. 6). Overall patterns of relative performance emerge when
comparing across all tests with each parameter set (Fig. 7). The local
polynomial regression consistently retrieved the underlying phenology
when cloud cover was low even in the presence of substantial noise, but
retrievals failed increasingly often with higher cloud cover, or with
moderate cloud cover and very high noise (Figs. 6, 7).

There were strong tradeoffs in performance between return interval,
cloud cover, and noise. For example, simulations with a 2-day return
interval modeled the underlying phenology fairly well even with 90%
cloud cover, but with a Landsat-like 16-day return interval the same
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amount of cloud cover was much more impactful. Increases in noise
reduced the cloud cover thresholds at which phenology retrieval became
unreliable. However, within the currently realistic range of values for
return interval and noise in surface reflectance data, return interval and
cloud cover were the most important predictors of phenology retrieval
efficacy.

3.3. Classification results

When comparing classifier effectiveness at FH and MCBP with
different input parameters (Tables 3, S2), we found that accuracy was
highest at both test sites when all data sources were included (LiDAR,
summer reflectance, and phenology). When we excluded canopy height
and derived terrain metrics from SRTM instead of LiDAR, we had lower
overall classification accuracy (86.2% vs. 99.3% at FH and 79.5% vs.
84.6% at MCBCP). However, the balanced class accuracy for the riparian
woodland class changed much less when LiDAR was replaced with
SRTM (95.5% vs. 95.6% at FH and 97.2% vs. 98.2% at MCBCP).

When comparing classes derived from a single data type, the best
results in both overall accuracy and balanced DRW accuracy occurred
when using phenology data, and the worst results were found when only
using SRTM. Results were intermediate and similar when using only
summer reflectance or LiDAR.

When all data types were used, the most important variables at FH
(Table S2) were canopy height (VIP = 100), January greenness (41.3),
February greenness (40.7), horizontal distance to the nearest stream
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(37.2), April greenness (35.7), and elevation (34.2). When using SRTM
instead of LiDAR, the most important variables were again February
greenness, April greenness, horizontal stream distance, January green-
ness, and elevation (although importance and order changed slightly).
The most important spectral reflectance bands were generally the SWIR
wavelengths, plus green for the test with all data except LiDAR. The
most important phenology bands were in winter and early spring
(December to April). Most class error was urban pixels misclassified as
GR, or MB misclassified as DS and vice versa (Table S3). The highest
balanced class accuracies were for agriculture (99.4%), deciduous ri-
parian woodland (97.4%), and evergreen woodland (96.4%), and the
lowest were for urban areas (86.0%) and shrubland (88.8%).

At MCBCP, when using all data together, the top four and the sixth
most important variables (Table S2) were structural or topographic:
elevation (VIP = 100), canopy height (47.3), slope (45.9), relative
elevation (26.5), and stream distance (20.3). The next most important
variables were all phenology — from most to least important these were
November, August, September, October, January, and February green-
ness. When LiDAR was replaced with SRTM, the importance list changed
substantially, and the most important variables were elevation (100),
NIR reflectance (30.7), November greenness (28.1), September green-
ness (24.5), July greenness (21.7), and horizontal stream distance
(19.7). The most important spectral reflectance band was usually NIR,
and red was consistently the least important. The most important
phenology bands were in late winter (January to March) and in late
summer or fall (September to November). Most class error was between
urban and non-vegetated bare soil pixels, or sage scrub misclassified as
riparian scrub, evergreen oak woodland, or chaparral (Table S4). The
highest balanced class accuracies were for water (100%), deciduous ri-
parian woodland (98.2%), and grassland (96.5%), and the lowest were
for non-vegetated bare soil patches (68.2%, again because of confusion
with urban pixels), and sage scrub (73.4%).

At VSFB, we used the same set of input data (SRTM, surface reflec-
tance, and phenology) to classify four years with different precipitation
(Tables S2, S5). When classifiers were trained and tested in the same
year, overall accuracy and riparian balanced class accuracy were fairly
consistent across years (respectively ranging from 87.4% to 91.9% and
from 97.4% to 99.1%). The most important metrics on average were
elevation (average VIP = 100), green reflectance (64.8), terrain slope
(61.6), SWIR1 reflectance (55.7), NIR reflectance (54.3), March green-
ness (51.2), and February greenness (42.9). Generally, the most
important phenological data were from late winter to early spring, and
late summer to early fall. NIR and SWIR1 reflectance both had sub-
stantially higher importance during the two dry vs. the two wet years
(average VIP of 62.5 vs. 46.1 for NIR and 70.9 vs. 40.5 for SWIR1 in dry
and wet years, respectively). Class confusion on VSFB was qualitatively
similar to MCBCP, which also has a Mediterranean climate (Table S5).
Most confusion was between upland classes, particularly those which
are evergreen and show little greenness change through the year.

To test the stability of phenology-based classifications through time,
we also trained and tested classifiers on imagery from different years
(Table S6). Differences in training vs. validation year affected classifier
performance by a modest amount. When the model was trained and
tested in different years, overall class accuracy declined from an average
of 89.8% to 83.9%, while balanced riparian class accuracy declined from
98.5% to 96.3% (both p < 0.05, two-sample t-test). The decline in ac-
curacy was greater when the data were trained in wet and tested in dry
years, or vice versa, and this difference was more pronounced for upland
than for riparian classes.

3.4. Regional riparian mapping

In addition to the accuracy statistics presented in Table 5, variable
importance and confusion matrices for our regional classifier are pro-
vided in the supplement (Table S7). Example maps are included for focal
sites (Fig. 9). We initially performed site-level validation of the regional
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model on the San Pedro River, testing our ability to discriminate DRW
from other vegetative classes using Sentinel-2 and SRTM. With the
coarser class designations in the regional model, cottonwood-willow and
mesquite were lumped into a single DRW class. Given that constraint,
the model performed with high overall accuracy (96.8%) and was able
to map the combined deciduous riparian class with 97.2% balanced class
accuracy. DRW pixels that were mislabeled as upland included 7.1% of
all cottonwood pixels and 4.3% of all mesquite pixels.

We next tested the Google Earth Engine model on Marine Corps Base
Camp Pendleton, and this time evaluated its ability to map any type of
riparian woodland (RW, evergreen or deciduous) vs. other types of
vegetation. Here, the overall accuracy was again high at 97.0%. The
riparian woodland specificity was lower at 91.2%, with some non-
woodland area lumped into the riparian woodland output. Most of the
upland vegetation that was confused for riparian woodland at this site
was chaparral (83.6% of all such errors).

Our final site-level validation focused on small creeks in the Santa
Ynez Mountains just outside the boundaries of Vandenberg Space Force
Base, again using Sentinel-2 imagery. In this context, we first tested the
model’s performance at mapping any type of riparian woodland (RW,
evergreen or deciduous) vs. non-woodland or non-riparian vegetation
types. For that test, the balanced riparian accuracy was 95.6%. How-
ever, in these narrow mountain streams there was substantial confusion
between deciduous and evergreen canopies within the riparian wood-
land class. Most forest canopies that were manually labeled deciduous
were classified as evergreen (62%), whereas fewer were classified as
deciduous (36%). Nevertheless, deciduous areas classified as evergreen
still had higher summer than winter greenness based on the phenology
algorithm (mean NDVI increase of 0.186), whereas truly evergreen
canopies showed no change or declines in greenness during summer
(mean change of —0.1); this difference rendered the two canopy types
consistently separable with manual inspection of phenology imagery.

Additional validation using the regional CALVEG dataset and Land-
sat imagery produced accuracy ranging from 92.5 to 97.9% (Tables 4,
S7). When evaluated at the highest level of taxonomic precision
computed by the regional model (to classes of DRW, EW, ONV, or CR)
the overall accuracy was 91.0%, and the riparian sensitivity and speci-
ficity were respectively 99.3% and 93.7%. The lower overall accuracy
compared to riparian accuracy reflects the fact that for this test, most
confusion was between non-riparian classes (ONV and CR). When
mapping DRW vs. all other vegetation types the overall accuracy was
higher (97.1%), and riparian user’s and producer’s accuracy remained
high. The same trend was repeated with the validation for any type of
riparian woodland (RW vs. Other, 97.5% overall accuracy).

4. Discussion
4.1. Phenology retrievals

We developed a cloud-based utility to retrieve land surface
phenology which is generalizable across sensors and can be applied
rapidly across broad spatial extents. The approach allows direct com-
parison across data sources with substantial variation in sampling den-
sity. This enables inter-comparison of seasonal trends across different
satellite archives, different geographical areas on Earth, and/or analysis
of interannual or seasonal time series at the same location. Advantages
of the approach include its computational efficiency and its large ca-
pacity for parallelization, which enables rapid scaling in space and time.
We are not aware of other operational, cloud-based phenology retrieval
algorithms which can be applied over large extents (e.g. > 10,000 km?),
in short time periods (e.g. < 30 min) at arbitrary dryland locations or for
arbitrary multispectral sensors, including Landsat and Sentinel-2 at their
native resolutions.

We tried to compare our phenology retrievals to another open-
source, cross-sensor platform which was recently released on Earth
Engine — HANTS-GEE (Zhou et al., 2023). HANTS-GEE has a user
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interface which facilitates point-based estimates of phenology using a
Fourier transform method, and also allows extraction of phenology
images similar to those which we produced. The authors used their al-
gorithm to create a global dataset of MODIS land surface phenology at 5
km resolution, and also presented a small set of point-sampled
phenology curves from Landsat and Sentinel-2, but they did not pub-
lish information on the computational speed or the maximal extent over
which the algorithm could be run to reconstruct images at fine spatial
resolution, which was our focus. We tried to use HANTS-GEE to extract
10 m monthly phenology data from Sentinel-2 over an area of approx-
imately 12,600 km? over Santa Barbara County (corresponding to our
VSFB site). Unfortunately, we were not able to do so — the program failed
during four consecutive runs, timing out after >900 min in each case, as
it exceeded its computational resources and was canceled by the Earth
Engine server. By contrast, our algorithm extracted phenology from the
same area, sensor, and spatial resolution on the first attempt in 18 min of
real-world runtime (93,503 Earth Engine Compute Units). In compari-
son to other existing methods, we believe that our approach represents a
substantial step forward in computational power for retrieval of fine-
scale phenology patterns across broad spatial extents.

Our phenology retrievals were consistent when compared across
satellites with different spatial and temporal resolution (Figs. 3, S1, S2).
Because of differences in overpass timing, imagery from each sensor was
occluded by clouds on different dates. The consistent phenology re-
trievals across sensors despite variable cloud impacts suggests that the
algorithm is robust to moderate cloud cover and differences in sensor
design and imaging geometry. Simulations showed that cloud cover,
return interval, and measurement or algorithmic error are each impor-
tant constraints on effective phenology retrieval. However, within the
range of current realistic parameters for satellite surface reflectance,
cloud cover and return interval dominated and showed strong tradeoffs
(Fig. 7), while random algorithmic and radiometric noise was partially
smoothed out.

Return interval and sensor noise are fixed for a given satellite, while
cloud cover varies regionally and temporally. Our simulation results
help to constrain the maximum level of cloud cover through which a
given satellite can reliably retrieve surface phenology. Generally, for the
ideal case with low cloud cover and rapid return intervals, all tests
showed good correspondence between the underlying and retrieved
phenology curves. As either of these parameters degraded, the
phenology retrievals became less reliable (with lower average R? and
greater variability in R? between modeled and underlying phenology
curves). Standards for acceptable accuracy should be adopted to deter-
mine when and where phenology retrievals can be relied upon. In Fig. 7
we illustrate multiple quantiles for each test case to help identify the
worst conditions at which these phenology retrievals will meet the user’s
judgment and needs. For example, to preserve 95% of pixels with R >
0.8, a sensor like Landsat 8 OLI (with low noise and a 16-day return
interval) could not tolerate more than approximately 30% overall cloud
cover. However, jointly using two Landsat satellites with overlapping
coverage (e.g. Landsat 8 and 9) decreases the return interval to 8 days, as
does working in the overlap zone between two adjacent Landsat tiles;
either approach would allow the model to perform well with up to
approximately 50% cloud cover. Sentinel-2, with a 5-day return inter-
val, could reliably retrieve phenology curves even at 60% cloud cover.
And finally, a system with higher radiometric noise and algorithmic
uncertainty but near-daily imagery, like the PlanetScope constellation,
could provide estimates of phenology at >80% cloud cover.

The simulation results are especially important for users considering
extension of our methods at mesic sites with greater cloud cover. We
focused on drylands, which typically have relatively low cloud cover.
For example, in 2021 and 2022, approximately 27% and 28% of Landsat
pixels were occluded by clouds at our San Pedro River test site in inland
Arizona, which permitted reliable phenology retrievals even with a
single Landsat satellite (Fig. 7). Although differences in water avail-
ability, temperature, and elevation could drive differences in cloud
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cover, we checked for and did not observe any difference in cloud cover
between riparian areas and adjacent uplands. However, fog may be a
concern for some coastal dryland sites. The Santa Ynez River runs 145
km from inland Santa Barbara County to the Pacific Ocean. At its mouth,
clouds and coastal fog in 2021 and 2022 affected 37% and 38% of ob-
servations (Fig. S8). By contrast, the city of Lompoc (14 km inland along
the same river) is less affected by marine fog and had only 15% and 22%
cloud cover in the same two years. In this setting, a single Landsat sat-
ellite might struggle to map phenology immediately along the coast but
would be sufficient a short distance inland, while Sentinel-2 or two
Landsat satellites would be sufficient even at the coast.

Cloud cover can be seasonally autocorrelated. For example, in
coastal Southern California, clouds are most common during the months
of June and July, while in Southern Arizona monsoon rainstorms bring
the greatest cloud cover in August and September. Clouds are most likely
to affect phenology retrievals during times of greenness shift, rather
than during periods when little change is occurring (whether that be in
the leaf-off or leaf-on condition). Consequently, users interested in the
effects of clouds on phenology retrieval should consider the cloud cover
during periods of leaf flush and senescence. For deciduous riparian
woodlands, that means that cloud cover during the early spring and late
fall is most critical (e.g. April-May and October—November). As a result,
in our focal region, the cloudiest seasons are not aligned with the pri-
mary periods of change in riparian leaf cover, reducing the importance
of temporal autocorrelation in cloud cover. However, other users are
advised to consider the interaction between cloud seasonality and
observed phenology carefully. We suggest that users interested in
extending our phenology algorithm to new regions use our simulations
to determine the required temporal interval to achieve adequate sam-
pling. Users should conservatively reference cloud fractions which are
typical of the cloudiest periods coincident with phenological shifts in
their region.

4.2. Land surface classification

One advantage of random forest models is the ability to directly
report the relative importance of each variable in differentiating be-
tween classes (Table S2, S7). Higher importance is afforded to variables
which contribute more to the separation of land cover classes. In our
analysis, relative variable importance differed across sites and test cases.
Vegetation height from LiDAR had high variable importance when it
was included, but riparian class accuracy decreased only slightly when
topographic information was sourced from SRTM instead and canopy
height was excluded (Figs. S6, S8), which is encouraging because SRTM
is available globally and LiDAR is not. In all tests except at VSFB,
including the regional model, phenological variables had higher
importance than summer spectra, and tests using only phenological in-
formation outperformed tests using only summer spectra — especially for
the DRW class — showing that phenological data have substantial value
for mapping vegetative types in drylands. However, this trend in relative
importance may not generalize to non-dryland ecosystems, where leaf
phenology may vary less across functional vegetation types — for
example, in mapping tropical forest in Puerto Rico, Martinuzzi et al.
(2012) saw declines in accuracy when replacing LiDAR with SRTM, and
did not see an improvement when using multi-temporal Landsat imag-
ery (two vs. one scene). In our analysis on drylands, accuracy was
highest when topographic, phenological, and reflectance information
was included together, indicating that the three data types are
complementary.

For the local models, variable importance was greatest for phenology
bands corresponding to periods with rapid shifts in landscape-scale
greenness — for example, late winter and late summer at the two sites
with Mediterranean climates, and late winter through the monsoon at
FH (Table S4). By contrast, the importance of phenology bands was
lower during periods with steady and uniformly high or low greenness
across vegetation types (including portions of the winter and summer).
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Seasonal timing differs regionally and can also shift between years,
particularly for upland vegetation in drylands, which often has
phenology tied directly to precipitation. At VSFB, summer NIR and SWIR
reflectance had higher importance in particularly dry years. These two
bands are respectively important in mapping healthy green vegetation
and in discriminating dead or senesced vegetation from soils, which may
be especially useful under drought conditions. We also saw clear dif-
ferences in seasonality between dry and wet years, with lower peak
greenness and earlier onset of late-season senescence for most vegeta-
tion types during dry years (Fig. 5). Deciduous riparian woodlands and
some other vegetative types showed differences in the timing of spring
greenup between dry and wet years, which could be related to the
covariation between temperature and precipitation in winter and spring.
Spring leaf out date in many deciduous tree species varies in response
partly to winter temperatures, so warm winters under drought could
lead to earlier leaf out. Additionally, we observed differences in
phenological timing across ecoregions — for example, riparian wood-
lands in interior desert sites greened up later, senesced earlier, and fell to
lower minimum winter greenness values in comparison to coastal eco-
systems (Fig. S7). However, broad patterns still separated vegetation
types across ecoregions, and our phenology-based classifiers were
repeatable and consistently effective even when trained in one year or
location and tested in another (Table S6). This was especially true for
DRW, which showed less interannual change in phenological timing
than the other vegetation types we classified. In most models, error
matrices showed that DRW class accuracy was the highest or near
highest among all classes, demonstrating the phenological distinctive-
ness and consistency of this land cover type in dryland environments
(Figs. S3 — S5, S7). We suspect that this difference results from the
reduced dependence of riparian woodlands on rainfall, because in
contrast to most of the landscape, riparian trees are able to access
stream-associated groundwater even during the dry season. Year-round
access to water means these plants show seasonal cycles constrained
primarily by temperature and photoperiod, which are less variable be-
tween years than precipitation.

In comparison to previous automated riparian mapping efforts, our
classifiers had similar or favorable performance. For example, Salo et al.
(2016) used only topographic information to map montane riparian
zones, and for all Strahler stream orders they had a maximum kappa
statistic across several methods of 0.38, which is similar to our kappa
values using only SRTM (0.40 at FH and 0.49 at MCBCP) but much lower
than the models using all available data (0.87 and 0.83, respectively).
Other authors using multispectral satellite imagery, sometimes in com-
bination with LiDAR, achieved classification accuracies ranging from
87% to 97%, which are similar to the results we report here (Townsend
and Walsh, 2001; Jia et al., 2020; Rabanaque et al., 2021). Melichar
et al. (2023) also used Landsat-based phenology metrics to map vege-
tation types in the southwestern United States. They did so offline, and
aggregated samples across 8 consecutive years to increase the effective
sampling frequency. In comparison to our annualized phenology clas-
sifier, their approach was effective for mapping long-term vegetation
cover, but is less able to resolve interannual change in cover. This may
be important for riparian woodlands, which are frequently disturbed by
floods. They achieved similar class accuracy for some riparian vegeta-
tion types (F-score of 0.91 for “North American Warm Desert Riparian
Mesquite Bosque™) but lower accuracy for other, rarer and more
sparsely-distributed riparian classes (F-score of 0.45 for “North Amer-
ican Warm Desert Lower Montane Riparian Woodland and Shrubland™).
Our work demonstrates the regional scalability of annual phenology-
based classifiers, while their broad focus across plant functional types
demonstrates the utility and potential for extension of cloud-based
phenology methods to map other, non-riparian vegetation types
throughout dryland regions.

With local classifiers, we were able to map a broad diversity of
classes, including more detailed vegetation classes than were used in the
more general regional model. In particular, local classifiers permitted
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more subtypes of riparian vegetation to be differentiated, including
cottonwood-willow gallery woodland, mesquite bosque, riparian scrub,
and wetlands. Some widespread species like the Fremont cottonwood,
Populus fremontii, differ in phenological timing by as much as several
months across their range. To account for seasonal variability resulting
from regional differences in climate and photoperiod, we included
latitude and elevation in the regional model, which are linked to
photoperiod and climate. However, local classifiers can refine the results
for focal sites by entirely excluding this range-wide variability.

Local classifiers are generally not extensible outside of the region
where they were trained, however, and the laborious process of
retraining the classifier for a new site makes them of limited use to
application-oriented users such as land managers and conservation
planners, who may not have the time or expertise to build a new model
specifically for their focal site. In contrast, the regional classifier
included fewer vegetative classes, but was still able to map them with
accuracy of 92.5% or greater even when tested on regions not included
in the training set (e.g. trained in California and tested in Arizona). A
major advantage of the regional model is that it can be automatically
updated and applied in new areas, which could substantially lower the
barrier to use for a greater set of geospatial information users.

The regional model was effective at mapping pure stands of DRW
along lowland rivers, and at mapping RW of any type, despite months of
variation in the timing of spring and fall across our study area (Fig. S5).
However, in complex mixed forests it struggled to separate small, iso-
lated patches of deciduous woodland embedded in larger evergreen
forests. This is noteworthy because in drylands, lower-order montane
streams often feature a very narrow band of deciduous woodland along
the channel surrounded by a larger woodland of evergreen broadleaved
and coniferous trees; in many cases, evergreen trees can even occur in
the midstory growing under a canopy of deciduous trees (Sands, 1980).
In such contexts, our regional model often labeled the ribbon of decid-
uous woodland along the channel as evergreen woodland along with the
surrounding matrix. However, consistent differences in phenology still
separated isolated deciduous or mixed areas from purely evergreen
stands, and our locally-trained models were able to separate those forest
types (e.g. along Huachuca Creek in Fig. 8). Therefore, apart from
locally-trained models, another potential solution for handling complex
woodlands with sub-pixel mixing among classes is to rely directly on the
continuous phenological information itself instead of using discrete class
labels — mapping phenometrics such as start and end of season and
magnitude of greenness change. Alternatively, fractional cover by de-
ciduous or evergreen species could be mapped at the sub-pixel scale by
applying a method like spectral mixture analysis to the phenology data,
although this may require design of spectral libraries with temporally
varying endmembers (Dudley et al., 2015). These extensions may be
especially useful when using spatially coarser sensors like Landsat in
environments with particularly narrow riparian areas, like small
montane streams. Finally, users could focus on datasets with even finer
spatial resolution, such as PlanetScope imagery.

4.3. Contributions and continuing work

By implementing a rapid, open-source, entirely cloud-based
phenology retrieval algorithm for Landsat and Sentinel-2, we hope to
substantially lower the barrier for ongoing research on phenological
patterns, particularly in dryland environments. The climatic, hydro-
logic, and photoperiod drivers of variability and long-term change in
plant phenology have been much studied in deciduous woodlands in
mesic environments (Morisette et al., 2009; Piao et al., 2019; Zohner
et al., 2023). By contrast, phenology patterns in drylands are relatively
poorly characterized because dryland ecosystems tend to have both very
fine-scale spatial heterogeneity and extremely flashy, irregular seasonal
patterns which are tied to rainfall and streamflow events (Broich et al.,
2014; Smith et al., 2019); the former problem is particularly salient in
riparian environments. We recommend ongoing work to investigate
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Fig. 8. Mapped vegetation types from local classifiers applied to study sites. Clockwise from upper left: the confluence of the San Pedro and Babocomari Rivers near
Fort Huachuca; Huachuca Creek on Fort Huachuca; San Antonio Creek and the Santa Ynez River flowing through Vandenberg Space Force Base; the Santa Margarita
River flowing across Marine Corps Base Camp Pendleton. In each set of images, the riparian woodland class is highlighted in red, and other vegetation types are
grayscale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

phenological patterns using our method, particularly for vegetation
types (such as riparian woodland) which are typically too narrow to
effectively model using MODIS.

Our phenology algorithm could also be extended to operate on
products other than NDVI. These could include raw surface reflectance
values, other spectral indices, fractional cover from spectral mixture
analysis, land surface temperature, or any other temporally continuous,
numeric product which varies on seasonal timescales and which is
mapped on daily to weekly intervals by satellites. Additionally, other
functions could be explored for use in the regression, including har-
monic fits, which have been used elsewhere for phenology estimates (e.
g. Verbesselt et al., 2010; Brooks et al., 2012; Qinchuan, 2013; Zhou
et al., 2023). The algorithm could also be extended to directly estimate
phenometrics like seasonal start and end dates and annual minima and
maxima. As noted above, these could then be used to provide finer detail
on complex, mixed habitats such as montane streams, where individual
pixels may include multiple different phenological types.

As new vegetation and satellite products become available, other
opportunities will emerge for extending our work, as well. VegCAMP is a
new field-based vegetation mapping protocol which could be used to
augment or replace the older CALVEG data we used here, particularly
once current issues are resolved related to lack of unified classification
across surveys. Our maps could also be compared to other existing ri-
parian woodland maps which have been generated for specific regional
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contexts (e.g. those mapped on the Little Colorado River - Nagler et al.,
2022a). Our classifiers which use SRTM or MODIS could be extended to
use newer products from platforms like TerraSAR-X and VIIRS. Finally,
we believe that over the next decade, the upcoming Surface Biology and
Geology Mission and other spaceborne hyperspectral sensors will pro-
vide particularly key opportunities for continued application of our
phenology retrieval methods.

Our simulations comparing the influence of sensor parameters and
cloud cover on phenology retrieval could also be expanded in future
work. We assumed that cloud cover was distributed evenly through the
year, but researchers working in a particular area may benefit from
using temporally autocorrelated cloud distributions which match local
meteorological patterns. The simulations could also be extended to
feature more robust representations of atmospheric effects and the noise
they engender, including via use of the MODTRAN radiative transfer
software to separately estimate noise levels in each band (Berk et al.,
2014).

Our maps of riparian woodland extent could support diverse lines of
scientific inquiry and land or watershed management on local to
regional scales. Much recent attention has focused on the remote sensing
data record as a tool to demonstrate the adverse effects of climate
change, damming, and groundwater extraction on riparian woodlands
and their associated fauna (Mayes et al., 2020; Kibler et al., 2021). Our
maps complement this existing literature both by allowing future
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¢

Santa Margarita River

Fig. 9. Examples of riparian woodland maps for each study region. All images show Google truecolor satellite imagery, with areas classified as riparian woodland in
the regional Google Earth Engine model overlain in red. The left image tile shows southwestern Cochise County, Arizona, including the San Pedro and Babocomari
Rivers, and small streams throughout the Huachuca Mountains. The upper right tile shows Marine Corps Base Camp Pendleton in San Diego County, California,
including the Santa Margarita River. The lower right tile shows southern Santa Barbara County, California, with a focus on the Santa Ynez River in the north and
small montane creeks throughout the Santa Ynez Mountains to the south. Background: Imagery ©2023 Landsat / Copernicus, Imagery ©2023 TerraMetrics, Map Data
©2023 Google, INEGI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

analyses to focus on particular vegetative types (e.g. DRW vs. other
vegetation, such as riparian scrub, wetlands, and bare riverwash, each of
which responds to hydroclimatic drivers and disturbance in different
ways) and by allowing change in riparian woodland extent to be directly
tracked over time. Despite their small spatial area, riparian woodlands
in drylands also feature prominently in landscape water and carbon
budgets (Jenerette et al., 2009; Swetnam et al., 2017; Ma et al., 2018), so
improved maps are also likely to improve the characterization of land
cover and vegetation dynamics in watershed- to regional-scale climate
and hydrological models. Finally, dryland riparian woodlands are crit-
ical habitat for a long list of threatened and endangered species (), and
simple estimates of the mean and variability in NDVI are currently uti-
lized by management professionals to map priority habitat for certain
listed species (Hatten et al., 2010; Johnson et al., 2017). Our maps
present a powerful new tool to inform and improve such habitat-
mapping efforts on a regional scale.

5. Conclusion

We developed a new tool for estimating seasonal greenness patterns
in vegetation from multispectral satellite imagery, which is relatively
insensitive to sensor type and temporal sampling interval, and can be
rapidly applied in the cloud to retrieve phenological patterns over large
areas at fine spatial scale. We tested the effects of cloud cover by
interrogating both real and simulated data and conclude that our
approach is applicable to Landsat or Sentinel-2 data in most dryland
regions, where cloud cover is relatively low, allowing access to 40 years
of phenology patterns at 30 m scale, or 6 years at 10 m scale. We used
phenology data, summer surface reflectance, and topography to map

18

riparian woodlands at several focal sites, and then generalized the
approach to a regional model which we trained in California and tested
in both California and Arizona. We provide rapidly extensible, cloud-
based methods for retrieving phenology patterns and mapping decidu-
ous riparian woodlands in drylands using Landsat and Sentinel-2. We
believe these methods improve substantially upon contemporary work
in terms of processing speed and the scope over which they can be
applied without exhausting computational resources. Phenological
timing is critical in deciduous riparian woodlands for migratory wildlife
and hydrological budgets, and to ensure alignment of vegetative cycles
with water availability for primary productivity, seed dispersal, and
establishment of new woodlands. Dryland riparian woodlands have
already declined to a small fraction of their historic area, and they
continue to face threats from ongoing climate change, groundwater
extraction, and river management, so mapping long-term changes in
their health and extent is now more important than ever (Katibah, 1984;
Swift, 1984; Rood et al., 2003; Jenerette et al., 2009; Stella et al., 2013;
Salo et al., 2016; Ma et al., 2018; Albano et al., 2020; Nagler et al., 2020;
Nagler et al., 2021; Mayes et al., 2020). We believe that our maps and
phenology algorithms provide powerful new tools for both academic
study and management of riparian woodlands across global drylands.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2024.114056.
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