

1 First-principles study of MXene properties with 2 varying hydrofluoric acid concentration

3
4 Yi Zhi Chu,^{1,4} Megan Hoover,² Patrick Ward,³ and Kah Chun Lau^{4,*}

5 ¹Department of Physics, Michigan Technological University, Houghton, MI 49931, USA

6 ²Advanced Modeling and Simulations, Savannah River National Laboratory, Aiken, SC 29803, USA

7 ³Materials Technology and Energy Division, Savannah River National Laboratory, Aiken, SC 29803, USA

8 ⁴Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA

9 *Lead contact: kahchun.lau@csun.edu

10 SUMMARY

11 With varying hydrofluoric acid (HF) concentrations under three etching conditions, we presented a comparative study of the
12 effects of both the ordered and randomly mixed terminated $Ti_3C_2T_x$ surfaces with a wide variation of O/OH/F
13 stoichiometry on the thermodynamic stability and electronic properties. Regardless of the HF concentration, a OH-rich surface
14 is found to be thermodynamically stable and the electrical conductivity of $Ti_3C_2T_x$ is substantially affected by the OH
15 concentration. The charge density difference and electron localization function demonstrated a significant electron localization
16 at the hydroxyl group on the O/OH/F mixed terminated surface, which could yield a locally induced dipole on the surface that
17 renders favorable reaction sites on the functionalized surface. In addition, a large tunability in the work function ($\Delta\Phi \sim 3.5$ eV)
18 is predicted for $Ti_3C_2T_x$. These findings provide a pathway for strategically tuning the electronic and structural properties of
19 Ti_3C_2 MXenes etched with HF.

20 INTRODUCTION

21 The active research of two-dimensional (2D) materials conducted since the successful exfoliation of graphene¹ in
22 2004 has led to the discovery of a new, emerging class of 2D materials consisting of carbides and nitrides of transition metals,
23 known as MXenes². MXenes are two-dimensional materials with the general formula $M_{n+1}X_nT_x$, where M is an early transition
24 metal (e.g., Ti, V, Cr), X is carbon, nitrogen or carbonitride, and T is the surface termination group comprised of O, OH, F,
25 and/or Cl². Due to their compelling physical, electronic, and chemical properties, MXenes have attracted immense theoretical
26 and experimental research interests in a variety of applications, such as Li-ion batteries^{3,4}, gas sensors⁵, hydrogen storage
27⁶, and thermoelectrics⁷. Among those studies, nearly 70 % have been devoted to $Ti_3C_2T_x$, the first ever experimentally
28 synthesized MXene⁸. It is considered the most comprehensively studied MXene to date.

29 $Ti_3C_2T_x$ can be selectively etched from its MAX phase with hydrofluoric acid (HF), where A is an A group element
30 typically from groups 13 and 14 of the periodic table (A=Al for $Ti_3C_2T_x$)⁸. Due to the highly reactive Ti surface after etching,
31 the exfoliated $Ti_3C_2T_x$ often consists of randomly distributed surface functional groups (*i.e.*, O, OH, F), which are collectively
32 expressed as T_x ⁹. However, due to the complexity and computational cost of simulating mixed terminated surfaces, most of
33 the theoretical studies have considered either the bare Ti_3C_2 ^{10,11} or the uniformly terminated $Ti_3C_2T_x$ with a single functional
34 group^{4,7,12-14}. This is often regarded as the first- and second-generation model of MXenes¹⁵. Early experimental efforts such
35 as powder X-ray diffraction (XRD)⁸, high-resolution transmission electron microscopy (TEM)^{8,9,16}, and X-ray atomic pair
36 distribution function (PDF)¹⁷ were used to gain insight into the distribution of the functional group compositions. However,
37 each method was hindered by its insensitivity to hydrogen, which is essential for understanding the surface termination¹⁵.
38 Thus, using the atomic pair distribution function supported by a high-quality neutron total scattering method, Wang et al.¹⁵
39 obtained the first resolution of the $Ti_3C_2T_x$ structure synthesized under different conditions and proposed a multilayered
40 structural model of $Ti_3C_2T_x$ to be the next-generation model of MXenes.

41 Inspired by the work from Wang et al., several theoretical investigations focused on the effect of mixed functional
42 group terminations (O, OH, F). Caffrey¹⁸ proposed an empirical model to study the change in the structural and
43 electrochemical properties of the mixed terminated $Ti_3C_2T_x$ and V_2CT_x structures compared to that of the uniformly terminated
44 surfaces. According to the Caffrey study, the empirical model reproduces the lattice parameter, electron density of states, and
45 work function that are consistent with experimental data. To date, the most comprehensive study on the distribution and
46 composition of the surface functionalization of 2D MXenes employing the cluster expansion method was conducted by
47 Ibragimova et al.¹⁹. In that study, the optimum O:OH:F composition was 50:25:25 under standard hydrogen electrode (SHE)
48 conditions, with similar distribution patterns that were unaffected by thickness and type of MXene.

49 Nevertheless, the design pathway for tuning the mixed surface termination is still absent from the literature. Using
50 energy dispersive X-ray spectroscopy (EDX) in the PDF characterization, Wang et al.¹⁵ estimated the average atomic ratio of
51 O:F in the multilayer $Ti_3C_2T_x$ sample to be 0.85 and 1.4 when etched with 48 wt. % and 10 wt. % HF, respectively. Based on
52 those O:F ratios, Wang et al. derived the stoichiometry of T_x , which is equal to $O_{0.1}(OH)_{0.8}F_{1.1}$ and $O_{0.13}(OH)_{1.04}F_{0.83}$. In addition,
53 the overall crystallinity and ordering are also affected by the concentration of HF. A higher concentration of HF yields higher
54 F composition in the surface termination. Intuitively, this is consistent with an increased probability of F being available to
55 terminate the freshly etched surface of Ti with higher HF concentrations. Hence, inspired by the findings from the Wang et al.
56

1 and the cluster expansion studies ¹⁹, the thermodynamic stability and electronic properties of $Ti_3C_2T_x$ with different surface
2 terminations were investigated.

3 RESULTS AND DISCUSSION

4 Formation energy and thermodynamic stability

5 As a benchmark for comparison with the O-, OH-, F-mixed terminated surfaces, a single-layer $Ti_3C_2T_x$ sheet uniformly
6 terminated with the O, OH, and F functional groups (*i.e.*, $Ti_3C_2T_x$, where T_x is represented by $O_pOH_qF_r$ and $p+q+r = 2.0$), is
7 considered. A $5\times5\times1$ supercell of Ti_3C_2 was constructed, where both surfaces were populated with the functional group
8 adatoms (Figure 1), corresponding to a total of 25 adsorption sites per surface. For a pristine 2D Ti_3C_2 surface, there are three
9 possible high-symmetry adsorption sites for the adatoms, namely Top (on top of the outer layer Ti atoms), face centered cubic
10 (FCC) (on top of the middle layer Ti atoms in the hollow site), and hexagonal close packed (HCP) (on top of the C atoms in
11 the hollow site) as shown in Figure 1a and 1b. The formation energies are calculated as $E_{formation/adatom} =$
12 $(E_{Ti_3C_2T_x} - E_{Ti_3C_2} - nE_{T_x})/n$, where $E_{formation/adatom}$, $E_{Ti_3C_2T_x}$, $E_{Ti_3C_2}$ and E_{T_x} are the formation energy (per adatom), total
13 energy of $Ti_3C_2T_x$, total energy of the bare Ti_3C_2 structure, and the energy of the functional group adatoms in the gas phase.
14 The number of adsorbed adatoms are denoted by n .

15 From the reported literature ^{4,7,10-14}, most of the previous theoretical studies on a homogeneous or mixed-surface
16 termination focused solely on a fully-terminated surface. In addition, they have found that the FCC site is the most favorable
17 adsorption site for the full termination of O/OH/F single species. Complementary to these prior studies ^{4,7,10-13}, a basic
18 understanding of the change in the thermodynamic stability transitioning from the bare Ti_3C_2 structure to fully terminated
19 $Ti_3C_2T_x$ structure provides valuable insight into the influential factors of surface termination. By gradually increasing the percent
20 coverage of adatoms on the bare Ti_3C_2 surface the thermodynamic stability of $Ti_3C_2T_x$ can be systematically evaluated. The
21 preferred binding sites for different single-adatom coverages can aid in constructing the mixed terminated $Ti_3C_2T_x$ surface.
22 Among all the $Ti_3C_2T_x$ distributions considered at different percentage coverages, the adatoms preferred the FCC sites,
23 regardless of the percent coverage on the Ti_3C_2 surface.

24 In this study, an ordered and random distribution is considered when terminating the Ti_3C_2 surface, wherein the
25 surface adatoms are distributed in an orderly manner such that each O, OH and F termination species is located close to each
26 other forming a cluster-like region for the ordered distribution. This is in contrast to the randomly distributed adatoms for the
27 random distribution (Figure 1c). The random model was constructed by assigning the FCC sites adatoms and performing
28 structural optimization. The details of the model construction can be found in the supplemental information (SI). The surface
29 distributions presented here are the representative cases with the lowest energy for each stoichiometry.

30 Table 1 shows the formation energy of various surface terminations under three different etching conditions. The
31 atomic ratio O:F corresponds to the concentration of HF during etching, representing 48 and 10 wt. % for O:F = 0.85 and 1.4,
32 respectively (as adapted from Wang *et. al* ¹⁵). Employing the same terminology, the O:F ratio that mimics a weak acidic
33 environment (~ 5 wt. % HF), is derived from the stoichiometry of $T_x = O_{1.04}(OH)_{0.48}F_{0.48}$. Due to the limitation of the simulation
34 cell, the O:F ratios considered in this work are 0.8, 1.3, and 3.2 for 48, 10, and 5 wt. % HF, respectively.

35 In previous work ¹⁵, the O:F ratio was obtained by considering all oxygen atoms present in $Ti_3C_2T_x$, including those
36 associated with the hydroxyl group (OH). In addition, the OH fraction was explicitly set as a constant in the derivation of the
37 T_x stoichiometry. In this work, to study the effect of varying the OH fraction, the F fraction is fixed, while the O and OH fractions
38 are varied. This results in two different surface coverages: OH fraction that is either higher (OH-rich) or lower (OH-poor) than
39 the O fraction (Table 1).

40 From DFT calculations, the $Ti_3C_2T_x$ stability is more sensitive to the relative stoichiometry of O, OH and F adatoms
41 on the surface rather than the local site distribution of adatoms (Table 1). Using gas phase O_2/F_2 and isolated OH as the
42 reference energy, our calculations show a decreasing trend in the formation energy as the OH fraction decreases. As shown
43 in Table 1, the OH-rich coverages are thermodynamically stable, regardless of the HF concentration. Furthermore, the ordered
44 and random terminated structures are found to be degenerate in terms of formation energy (Table 1). Both the ordered and
45 random distribution of O/OH/F adatoms (Figure 1c) exhibit nearly similar thermodynamic stability, where the structures with
46 random distribution are ~0.01 - 0.04 eV more stable than that of the ordered distribution (Table 1).

47 Based on the thermodynamic stability study of the partially-terminated surfaces, local clustering of O adatoms tends
48 to be less stable (~0.2-0.3 eV/adatom), especially for the lower coverages (*i.e.*, $\leq 60\%$). This trend is less profound in partial
49 surface termination with local clustering of OH and F adatoms, especially for F adatoms (Figure S1 in SI). Hence, the difference
50 in the formation energy between the ordered and random distribution is determined by local O-clustering especially at low
51 concentrations, as seen in the nearest neighbor analysis (see Figure S5-S10 in SI). The O-O fraction is predominantly the first
52 nearest neighbor in the ordered distribution instead of the second and third nearest neighbors, implying a signature of local
53 clustering of O adatoms could be a factor in distinguishing an ordered from a random distribution.

54 Based on the partial termination study, we have found an empirical relationship to predict the relative stability
55 between the structures. The O adatom has a stronger effect on the overall stability of $Ti_3C_2T_x$, with an energy difference of
56 ~0.6 eV/adatom between the bare and full termination surfaces, followed by OH with a ~0.2 eV/adatom difference. In contrast,
57 F adatoms do not significantly vary the thermodynamic stability of the structure, where nearly a constant of -5.3 eV/adatom
58 formation energy is observed when transitioning from the bare to full F-terminated surface. This could explain the subtle
59 difference in formation energy (~0.2 - ~0.3 eV) between the structures etched with different wt. % HF, as the thermodynamic
60 stability is insensitive to the variation of F concentration, but mostly determined by the relative content of O and OH adatoms.
61

1 Due to the fact that MXene surface is highly tunable with a variation possibility on the M, X, and T_x positions, therefore multiple
2 factors can be readily tuned in MXenes surface chemistry. Our partial termination study (shown in Figure S1) also
3 demonstrated the importance of local clustering of O/OH/F species, which motivates the construction of local ordered
4 distribution in surface termination. In Figure S1, it is found that for partial F termination, the ordered and random surface
5 termination are energetically degenerate. For OH termination, a subtle energy difference of less than 0.05 eV/adatom between
6 the ordered and distribution is observed when OH percent coverage is increased, indicating competitive stability between the
7 two types of distributions. While the O termination exhibits a slightly different trend where a local clustering of O at lower
8 percent coverage is less favorable, whereas at higher percent coverage (framed in red), the energy difference between
9 ordered and random surface termination is less than ~0.10 eV/adatom. This observation highlights the importance of studying
10 the different types of surface distributions of termination groups, besides the variation in mixed stoichiometry of surface
11 termination.

12 **Electronic properties**

13 **Electron density of states (eDOS)**

14 To identify the general features of the electronic structure among different O/OH/F terminations on the $Ti_3C_2T_x$
15 structure, the electron density of states (eDOS) is calculated in an energy range near the Fermi level, E_F . Overall, the metallic
16 nature of $Ti_3C_2T_x$ is evident due to the presence of finite electronic states at Fermi level (E_F) regardless of the terminating
17 adatoms and their distribution. From Figure 2, the Ti 3d orbital dominates the electronic states throughout the energy range
18 from -0.5 to 0.5 eV within the vicinity of E_F in all cases. This indicates that the 3d orbital would contribute the most to the
19 tunneling current in STM characterization. The eDOS at E_F , i.e., $N(E_F)$ of all structures is within the range of ~30 to ~50
20 states/eV (see Figure S3-S4). Wang et. al²⁰ studied the surface properties of $Ti_3C_2T_x$ and observed the tunable conductivity
21 with different surface termination species. With uniform termination species, OH termination has the highest electronic states
22 at E_F . Our calculation shows a consistent observation where the $N(E_F)$ of a uniformly O-terminated surface is the highest
23 compared to that of an O/F-terminated surface.

24 Figure 2 shows the partial density of states (pDOS) of $Ti_3C_2T_x$ with ordered surface distribution etched with 48 wt. %
25 HF. Interestingly, $Ti_3C_2T_x$ OH-rich surfaces consist of a larger magnitude of eDOS at E_F , ($N(E_F)$ ~50 states/eV) than that of
26 OH-poor surfaces ($N(E_F)$ ~30 states/eV). Similar results were observed for randomly terminated surfaces. While there are no
27 clear empirical relationships between the O/OH/F concentrations and $N(E_F)$, it is noted that in general, the surface with excess
28 OH concentration has an upper limit of $N(E_F)$ saturated at ~50 states/eV, compared to the lower limit of $N(E_F)$ around ~30
29 states/eV with excess O concentration. Thus, lower electronic conductivity is expected for surfaces with lower OH
30 concentration. Of note, the $N(E_F)$ of the uniformly OH-terminated Ti_3C_2 surface is nearly twice (~90 states/eV) as much as the
31 uniformly F/O-terminated surfaces (see Figure S2 in SI). However, when the mixed terminated O/OH/F surface is present,
32 the $N(E_F)$ is substantially suppressed to fall within the range closer to that of the F/O-terminated surface (i.e., ~40 states/eV).
33 Thus, we believe the increase of the electron states at the Fermi energy level E_F with increasing OH content could be explained
34 by the $N(E_F)$ of the uniformly O/OH/F-terminated surface. Upon full termination of uniform OH species, we observe that the
35 $N(E_F)$ is almost twice as large compared to that of the full O/F termination. Thus, the OH-rich surface should resemble a
36 surface closer to that of the uniformly OH-terminated surface, resulting in an increase in $N(E_F)$. The change in $N(E_F)$ indicates
37 the tunable electronic conductivity of $Ti_3C_2T_x$ via varying the OH/O adatom concentrations on the surface. Higher electronic
38 conductivity, in principle, could potentially be achieved with higher OH concentration.

41 **Charge density difference and electron localization function (ELF)**

42 To further study the charge distribution and the electronic properties of different surface terminations, charge density
43 difference and electron localization function (ELF) calculations were performed. A charge density difference plot was
44 constructed by taking the difference in electron density between the $Ti_3C_2T_x$, pristine Ti_3C_2 , and the adatoms to identify the
45 local charge accumulation at the terminated sites. The ELF is often employed to describe and visualize the chemical bonding
46 in molecules or solids²¹ and is bound between 0 and 1, where ELF = 1 indicates perfect localization and ELF = 0.5 corresponds
47 to uniform electron gas.

48 Figure 3 shows the charge density difference of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$ with an ordered and random surface
49 distribution. In both cases, charge depletion and accumulation tend to happen at the surface adatoms. Large inhomogeneity
50 of charge depletion/accumulation (ranging from ~-0.1 e/Å³ to ~+0.1 e/Å³) was observed, as expected, particularly for OH
51 adatom, due to the high polarity of the hydroxyl group. Overall, the dominant charge depletion region is localized at the
52 hydrogen of the hydroxyl group, whereas the charge accumulation is distributed around the electronegative O and F sites of
53 adatoms. Interestingly, from the charge density difference analysis, the electron accumulation/depletion regions are found to
54 be similar among different surface distributions for the termination O/OH/F adatoms (Figure 3). Therefore, the difference in
55 the local distribution of the functional adatoms (i.e., ordered vs. random) does not contribute significantly to the charge density
56 difference. The plot of ELF in Figure 4 gives further insight into the local bonding nature of $Ti_3C_2T_x$. Similar to the charge
57 density difference distribution, the ELF is very similar to both the ordered and random termination. In contrast to this intriguing
58 similarity, the spatial distribution of electrons in the ELF plot is highly localized at the hydroxyl group (ELF ≈ 1), particularly at
59 the H atoms (Figure 4), but not at the O or F adatoms. This is an intriguing observation since the electron localization at the
60 hydroxyl group, regardless of whether the termination is ordered or random, could give rise to the local imbalance surface
61 charge distribution relative to O and F adatoms on $Ti_3C_2T_x$ surfaces as favorable reaction sites, as also indicated by the charge
62 density difference analysis (Figure 3). As a result, this will generate unique locally induced dipoles on the $Ti_3C_2T_x$ surfaces

1 (Figure 3), which might yield important applications in surface chemistry (e.g., gas adsorption and catalysis) as favorable
2 reaction sites on the functionalized $Ti_3C_2T_x$ surface.

3 **Work function**

4 The effects of the surface distribution of different termination groups on the work function for $Ti_3C_2T_x$ were also
5 studied. The work function, Φ , was calculated by computing the planar average of the electrostatic potential along the surface
6 normal direction, as: $\Phi = eV_{\text{vacuum}} - E_{\text{Fermi}}$, where V_{vacuum} is the vacuum potential and E_{Fermi} is the Fermi level. Regardless of the
7 HF concentration, there was an increasing trend in the work function with increasing O concentration.

8 Among all mixed terminated structures, the minimum work function corresponds to the structures with the most OH
9 content for each HF concentration. As expected, as the acidic environment (or HF concentration) increases, the work functions
10 of $Ti_3C_2T_x$ become gradually higher due to the increase in terminated F content. All the calculated work functions are within
11 the upper (6.04 eV with full O termination) and lower limit (1.81 eV with full OH termination) of the uniformly terminated (O,
12 OH, F) surfaces. With fixed F percentage coverage on surface termination, a high work function of $Ti_3C_2T_x$ is tunable by
13 decreasing OH termination and increasing O termination. As shown in Figure 5, a linear dependence of the work function with
14 respect to O/OH content is found with the varying stoichiometry. This observed trend is consistent with the reported literature
15 18,22.

16 Despite having different types of surface distributions, no noticeable difference is seen in the work function between
17 the ordered and randomly terminated surfaces, analogous to their relative thermodynamic stability (Table 1). Hence, the work
18 function is, in fact, a function of stoichiometry and is insensitive to the surface termination distribution. Thus, it is possible to
19 experimentally estimate the OH/O composition of $Ti_3C_2T_x$ by measuring the work function. Likewise, the work function can be
20 tuned to the desired value by etching with the appropriate HF concentration. The large tunability in work function for $Ti_3C_2T_x$
21 (i.e., $\Delta\Phi \sim 3.5$ eV) due to different wt. % of HF (Figure 5) suggests that $Ti_3C_2T_x$ can be strategically modified to suit future
22 electronic device application needs.

23 **CONCLUSION**

24 A systematic analysis was carried out to determine the effects of varying HF etching concentrations on the
25 thermodynamic stability, electronic properties, and work function of $Ti_3C_2T_x$ based on DFT calculations. Regardless of the HF
26 concentration, surfaces with a larger fraction of OH termination were found to be thermodynamically stable. In addition, the
27 ordered and randomly terminated $Ti_3C_2T_x$ structures are degenerate in their thermodynamic stability, but subtle differences
28 arise from the local clustering of the O functional group, which is found to be less favorable for all cases. Overall, a mixed
29 termination of $Ti_3C_2T_x$ does not alter the metallic nature of Ti_3C_2 but the electronic conductivity varies significantly with OH
30 termination concentration and could be potentially enhanced by increasing its content. In terms of bonding analysis, the charge
31 density difference and ELF demonstrated a significant electron localization at the hydroxyl group, which could yield a locally
32 induced dipole on the surface that could render unique surface chemistry. From DFT predictions, a large tunability in work
33 function for $Ti_3C_2T_x$ (i.e., $\Delta\Phi \sim 3.5$ eV) due to different HF wt.% is found. The work function was found to be a function of the
34 O/OH/F stoichiometry of $Ti_3C_2T_x$ and is independent of the distribution of surface terminations group. For all mixed terminated
35 structures, the minimum work function corresponds to the structures with the most OH content for each HF concentration. As
36 the acidic environment (or HF concentration) increases, the work functions of $Ti_3C_2T_x$ becomes higher due to the increase in
37 terminated F content. For fixed F content on surface termination, high work function of $Ti_3C_2T_x$ is tunable by decreasing in OH
38 termination and increasing in O termination. The authors believe this work provides valuable insight into the fundamental
39 characterization of $Ti_3C_2T_x$ and a useful design pathway to tune the material properties experimentally through the variation of
40 HF concentration during MAX phase etching to produce the $Ti_3C_2T_x$ MXene.

41 **ACKNOWLEDGMENTS**

42 The contribution of computing resources Potassium (through NSF-MRI: NSF OAC-2117956) and Nature HPC cluster at
43 California State University, Northridge is acknowledged. This material is based upon work supported by the U.S. Department
44 of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. We would also
45 like to thank our technical editor, Kent Cubbage, for proofreading the manuscript before submission.

46 **AUTHOR CONTRIBUTIONS**

47 Y.Z.C. and M.H. conducted the calculations and simulations. K.C.L designed the workflow and study. P.W. and K.C.L. secured
48 funding and provided mentoring. Y.Z.C. wrote the manuscript. M.H., K.C.L, and P.W. revised the manuscript.

49 **DECLARATION OF INTERESTS**

50 The authors declare no competing interests.

51 **MAIN FIGURE TITLES AND LEGENDS**

52 **Figure 1. $Ti_3C_2T_x$ crystal structure**

1 (A) Top view of the $Ti_3C_2T_x$ crystal structure, where green: Top Ti, blue: Middle Ti, brown: C.
 2 (B) Side view of the crystal structure of $Ti_3C_2T_x$, where green: Top Ti, blue: Middle Ti, brown: C.
 3 (C) The demonstration of an ordered and random distribution of surface functional group adatoms, where red: O, green: F,
 4 blue: OH.

5 **Figure 2. Electron density of states of $Ti_3C_2T_x$ etched with 48 wt. % HF.**

6 The Fermi level, E_F is set to zero.

7 **Figure 3. Charge density difference of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$**

8 (A) Ordered termination surface of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$.

9 (B) Random termination surfaces of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$.

10 The cyan and yellow regions represent charge depletion and charge accumulation, respectively. Inset shows the 2D slice of
 11 the charge density difference viewed from (100) plane with the isovalue ranging from -0.03 to 0.03 e/ \AA^3 . The region framed
 12 in red in the inset indicates a local-induced dipole on the surface.

13 **Figure 4. Plot of electron localization function (ELF) of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$**

14 (A) Ordered termination surface of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$.

15 (B) Random termination surfaces of $Ti_3C_2O_{0.24}(OH)_{1.28}F_{0.48}$.

16 The right panel shows a 2D slice of ELF viewed from the (100) plane. Red and blue regions in the right panel represent
 17 localized and delocalized charge with an isovalue of 1 and 0 respectively.

18 **Figure 5. Work function of the $Ti_3C_2T_x$ etched with different HF concentrations.**

19 The reference lines correspond to the calculated work function of the uniformly terminated surface. Color code: Red: O-
 20 termination (6.03 eV), Green: F-termination (4.95 eV), Blue: OH-termination (1.81 eV).

21
 22
 23 **Table 1. Formation energy of various mixed terminated $Ti_3C_2T_x$ structures with two different local site distribution of
 24 O/OH/F adatoms (i.e., ordered vs. random).***

System	T_x stoichiometry	Formation energy/adatom (eV/adatom)	
		Ordered	Random
O:F= 0.8	$O_{0.24}OH_{0.64}F_{1.12}$	-5.46	-5.47
48 wt. % HF	$O_{0.40}OH_{0.48}F_{1.12}$	-5.37	-5.39
	$O_{0.64}OH_{0.24}F_{1.12}$	-5.23	-5.25
	$O_{0.80}OH_{0.08}F_{1.12}$	-5.12	-5.14
O:F=1.3	$O_{0.24}OH_{0.88}F_{0.88}$	-5.54	-5.55
10 wt. % HF	$O_{0.48}OH_{0.64}F_{0.88}$	-5.41	-5.43
	$O_{0.64}OH_{0.48}F_{0.88}$	-5.32	-5.34
	$O_{0.88}OH_{0.24}F_{0.88}$	-5.17	-5.19
O:F=3.2	$O_{0.24}OH_{1.28}F_{0.48}$	-5.65	-5.66

5 wt. % HF	$O_{0.48}OH_{1.04}F_{0.48}$	-5.53	-5.57
	$O_{0.72}OH_{0.80}F_{0.48}$	-5.40	-5.45
	$O_{1.04}OH_{0.48}F_{0.48}$	-5.20	-5.22

1 The O:F ratio corresponds to different HF concentrations according to Ref. ¹⁵.

2 *Thermal energy corrections are included in the calculation of the energy values in Table 1. As comparison, another reference
3 energy model considering the experimental conditions following the Ref. ^{19,22} (including thermal energy corrections) is included
4 in Table S1.

5

6

7

8

9 **STAR METHODS**

10

11 **RESOURCE AVAILABILITY**

12

13 **Lead contact**

14

15 Further information and requests for resources should be directed to the lead contact, Kah Chun Lau (kahchun.lau@csun.edu).

16

17 **Materials availability**

18

19 This study did not yield new unique reagents.

20

21 **Data and Code Availability**

22

23

24

- The simulation data that support the findings of this study are available from the lead contact upon reasonable
25 request.
- This paper does not report original code.
- Any additional information required to analyze the data reported in this paper is available from the lead contact upon
26 reasonable request.

27 **METHOD DETAILS**

28

29 To model the 2D $Ti_3C_2T_x$ structures, first-principles density functional theory (DFT) was employed as implemented
30 in Vienna Ab initio Simulation Package (VASP) ^{23,24} for the spin-polarized electronic structure calculations. The projector-
31 augmented-wave (PAW) pseudopotential method, together with the generalized gradient approximation (GGA) and the
32 Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional were used to represent the exchange-correlation effects in
33 the DFT simulation ²⁵. The kinetic energy cutoff for the plane-wave basis was set at 500 eV. For the structural optimization
34 and electronic calculations, the Brillouin zone was sampled using a Γ -centered grid of (3x3x1) where the convergence in the
35 total energy (< 0.02 eV) is achieved with respect to the number of k points, while the electron density of states (DOS) was
36 sampled using a grid of (9x9x1). The electronic self-consistent cycle energy convergence was set at 1×10^{-5} eV and the
37 residual force on each atom is less than 1×10^{-4} eV/Å. The van der Waals interaction was included in all calculations using
38 the semi-empirical approach of Grimme (DFT-D3) ²⁶. For the monolayer structure calculations, a vacuum slab of at least 15 Å
39 along the z-axis was implemented to avoid interactions between mirror images. To further confirm the thermal stability of these
40 $Ti_3C_2T_x$ (Table 1) at room temperature, ab initio molecular dynamics (AIMD) was performed on two selected structures for 10
41 ps in the NVT ensemble employing Nosé–Hoover thermostats, and the results are shown in Figure S11. Our result shows no
42 significant structure deformation or dissociation of termination groups upon heating at $T = 300$ K, confirming the thermal
43 stability of our structures at room temperature. All atomic structures and charge densities are visualized using VESTA²⁷.

44

45 To compute the formation energy of various mixed terminated $Ti_3C_2T_x$ structures with different local site distribution
46 (i.e. ordered vs. random) of O/OH/F adatoms (Table 1), the reference energies of the adatoms are computed by considering
47 the total energy and thermal energy corrections of a single molecule for OH and one-half of the total energy of O_2 and F_2 for
48 O and F, respectively. In gas-phase calculations that employ DFT-GGA, the overestimation of the binding energy often arises
49 due to the limitations in describing the exchange energy of first-row elements, such as molecular oxygen ^{28,29}. To overcome
50 these effects, one could add an empirical correction to the DFT energy ³⁰ or use a more accurate, albeit computationally
51 expensive, hybrid or meta-GGA functional. In this study, we were interested in the qualitative difference between the adatom
52

1 adsorptions, thus, an empirical correction was not included. Since the calculated formation energies depend on the employed
2 thermodynamic equations, to further justify the predicted formation energy of mixed terminated $Ti_3C_2T_x$ structures highlighted
3 in Table 1, another set of reference energies of the O/OH/F adatoms by considering the splitting of H_2O and HF proposed
4 from Ref. 19,22 is adopted (Table S1). Despite using different reference energies of O/OH/F adatoms, some common trends
5 can be found in Table 1 and S1. As indicated in Table 1 and S1, both the ordered and random distribution of O/OH/F adatoms
6 on mixed terminated $Ti_3C_2T_x$ surfaces exhibit nearly similar thermodynamic stability, regardless of different HF wt%.
7 Interestingly in both cases (*i.e.*, Table 1 and S1), OH-rich surfaces are generally found to be thermodynamically stable in
8 different HF concentrations, and therefore one can conclude that the presence of OH-rich surfaces at various mixed terminated
9 $Ti_3C_2T_x$ is highly plausible. For conciseness, we only considered the thermodynamic stability referring to Table 1 in our
10 discussion. The surface distributions presented here (Table 1 & S1) are the representative cases with the lowest energy
11 among 2-3 different models per distribution (*i.e.*, ordered and random) for each stoichiometry.
12
13

14 **SUPPLEMENTAL INFORMATION**

15 Document S1. Supplemental Information, methodology for constructing a random distribution surface, Figures S1–S11, Table
16 S1.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

2 **References**

- 3 1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004).
4 Electric Field Effect in Atomically Thin Carbon Films. *Science* **306**, 666-669. doi:10.1126/science.1102896.
- 5 2. Gogotsi, Y., and Anasori, B. (2019). The Rise of MXenes. *ACS Nano* **13**, 8491-8494. 10.1021/acsnano.9b06394.
- 6 3. Yorulmaz, U., Demiroğlu, İ., Çakir, D., Güleren, O., and Sevik, C. (2020). A systematical ab-initio review of promising 2D
7 MXene monolayers towards Li-ion battery applications. *Journal of Physics: Energy* **2**, 032006. 10.1088/2515-7655/ab9fe3.
- 8 4. Xie, Y., Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Yu, X., Nam, K.-W., Yang, X.-Q., Kolesnikov, A.I., and
9 Kent, P.R.C. (2014). Role of Surface Structure on Li-ion Energy Storage Capacity of Two-Dimensional Transition-Metal
10 Carbides. *Journal of the American Chemical Society* **136**, 6385-6394. 10.1021/ja501520b.
- 11 5. Lee, E., and Kim, D.-J. (2020). Review— Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a
12 Theoretical to an Experimental View. *Journal of The Electrochemical Society* **167**, 037515. 10.1149/2.0152003JES.
- 13 6. Hu, Q., Sun, D., Wu, Q., Wang, H., Wang, L., Liu, B., Zhou, A., and He, J. (2013). MXene: A New Family of Promising
14 Hydrogen Storage Medium. *The Journal of Physical Chemistry A* **117**, 14253-14260. 10.1021/jp409585v.
- 15 7. Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataraman, N.S., Estili, M., Sakka, Y., and Kawazoe, Y. (2013). Novel
16 Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. *Advanced Functional
17 Materials* **23**, 2185-2192. <https://doi.org/10.1002/adfm.201202502>.
- 18 8. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W. (2011). Two-
19 Dimensional Nanocrystals Produced by Exfoliation of Ti₃AlC₂. *Advanced Materials* **23**, 4248-4253.
20 <https://doi.org/10.1002/adma.201102306>.
- 21 9. Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., and Chen, L. (2015). Atomic-Scale Recognition of Surface Structure and
22 Intercalation Mechanism of Ti₃C₂X. *Journal of the American Chemical Society* **137**, 2715-2721. 10.1021/ja512820k.
- 23 10. Er, D., Li, J., Naguib, M., Gogotsi, Y., and Shenoy, V.B. (2014). Ti₃C₂ MXene as a High Capacity Electrode Material for
24 Metal (Li, Na, K, Ca) Ion Batteries. *ACS Applied Materials & Interfaces* **6**, 11173-11179. 10.1021/am501144q.
- 25 11. Shein, I.R., and Ivanovskii, A.L. (2012). Graphene-like titanium carbides and nitrides Ti_n+1C_n, Ti_n+1N_n (n=1, 2, and 3) from
26 de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability.
27 *Computational Materials Science* **65**, 104-114. <https://doi.org/10.1016/j.commatsci.2012.07.011>.
- 28 12. Cheng, Y., Ma, X., Huang, C., Yuan, G., and Liao, J. (2022). The effect of functional groups (O, F, or OH) on reversible
29 hydrogen storage properties of Ti₂X (X=C or N) monolayer. *International Journal of Hydrogen Energy* **47**, 28969-28977.
30 <https://doi.org/10.1016/j.ijhydene.2022.06.214>.
- 31 13. Schultz, T., Frey, N.C., Hantanasirisakul, K., Park, S., May, S.J., Shenoy, V.B., Gogotsi, Y., and Koch, N. (2019). Surface
32 Termination Dependent Work Function and Electronic Properties of Ti₃C₂T_x MXene. *Chemistry of Materials* **31**, 6590-6597.
33 10.1021/acs.chemmater.9b00414.
- 34 14. Li, H., Li, A., Zhang, D., Wu, Q., Mao, P., Qiu, Y., Zhao, Z., Yu, P., Su, X., and Bai, M. (2022). First-Principles Study on the
35 Structural, Electronic, and Lithium Storage Properties of Ti₃C₂T₂ (T = O, F, H, OH) MXene. *ACS Omega* **7**, 40578-40585.
36 10.1021/acsomega.2c05913.
- 37 15. Wang, H.-W., Naguib, M., Page, K., Wesolowski, D.J., and Gogotsi, Y. (2016). Resolving the Structure of Ti₃C₂T_x MXenes
38 through Multilevel Structural Modeling of the Atomic Pair Distribution Function. *Chemistry of Materials* **28**, 349-359.
39 10.1021/acs.chemmater.5b04250.
- 40 16. Karlsson, L.H., Birch, J., Halim, J., Barsoum, M.W., and Persson, P.O.Å. (2015). Atomically Resolved Structural and
41 Chemical Investigation of Single MXene Sheets. *Nano Letters* **15**, 4955-4960. 10.1021/acs.nanolett.5b00737.
- 42 17. Shi, C., Beidaghi, M., Naguib, M., Mashtalar, O., Gogotsi, Y., and Billinge, S.J.L. (2014). Structure of Nanocrystalline Ti₃C₂
43 MXene Using Atomic Pair Distribution Function. *Physical Review Letters* **112**, 125501. 10.1103/PhysRevLett.112.125501.
- 44 18. Caffrey, N.M. (2018). Effect of mixed surface terminations on the structural and electrochemical properties of two-
45 dimensional Ti₃C₂T₂ and V₂CT₂ MXenes multilayers. *Nanoscale* **10**, 13520-13530. 10.1039/C8NR03221A.
- 46 19. Ibragimova, R., Erhart, P., Rinke, P., and Komsa, H.-P. (2021). Surface Functionalization of 2D MXenes: Trends in
47 Distribution, Composition, and Electronic Properties. *The Journal of Physical Chemistry Letters* **12**, 2377-2384.
48 10.1021/acs.jpclett.0c03710.
- 49 20. Wang, S., Liu, Y., Liu, Y., Shi, Z., Zhou, J., Zhu, J., and Hu, W. (2022). Identifying the surface properties of Ti₃C₂T_x MXene
50 through transmission electron microscopy. *Cell Reports Physical Science* **3**, 101151.
51 <https://doi.org/10.1016/j.xcrp.2022.101151>.
- 52 21. Kohout, M., Wagner, F.R., and Grin, Y. (2002). Electron localization function for transition-metal compounds. *Theoretical
53 Chemistry Accounts* **108**, 150-156. 10.1007/s00214-002-0370-x.
- 54 22. Ibragimova, R., Puska, M.J., and Komsa, H.-P. (2019). pH-Dependent Distribution of Functional Groups on Titanium-Based
55 MXenes. *ACS Nano* **13**, 9171-9181. 10.1021/acsnano.9b03511.
- 56 23. Kresse, G., and Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using
57 a plane-wave basis set. *Computational Materials Science* **6**, 15-50. [https://doi.org/10.1016/0927-0256\(96\)00008-0](https://doi.org/10.1016/0927-0256(96)00008-0).
- 58 24. Kresse, G., and Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave
59 basis set. *Physical Review B* **54**, 11169-11186. 10.1103/PhysRevB.54.11169.
- 60 25. Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. *Physical Review
61 Letters* **77**, 3865-3868. 10.1103/PhysRevLett.77.3865.
- 62 26. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *Journal
63 of Computational Chemistry* **27**, 1787-1799. <https://doi.org/10.1002/jcc.20495>.
- 64 27. Momma, K., and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.
65 *Journal of Applied Crystallography* **44**, 1272-1276. doi:10.1107/S0021889811038970.

1 28. Almeida, M.O., Kolb, M.J., Lanza, M.R.V., Illas, F., and Calle-Vallejo, F. (2022). Gas-Phase Errors Affect DFT-Based
2 Electrocatalysis Models of Oxygen Reduction to Hydrogen Peroxide. *ChemElectroChem* *9*, e202200210.
3 <https://doi.org/10.1002/celc.202200210>.

4 29. Sargeant, E., Illas, F., Rodríguez, P., and Calle-Vallejo, F. (2021). Importance of the gas-phase error correction for O₂ when
5 using DFT to model the oxygen reduction and evolution reactions. *Journal of Electroanalytical Chemistry* *896*, 115178.
6 <https://doi.org/10.1016/j.jelechem.2021.115178>.

7 30. Granda-Marulanda, L.P., Rendón-Calle, A., Builes, S., Illas, F., Koper, M.T.M., and Calle-Vallejo, F. (2020). A Semiempirical
8 Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. *ACS Catalysis* *10*, 6900-
9 6907. 10.1021/acscatal.0c01075.

10