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Abstract Learning to perform a perceptual decision task is generally achieved through sessions
of effortful practice with feedback. Here, we investigated how passive exposure to task-relevant
stimuli, which is relatively effortless and does not require feedback, influences active learning. First,
we trained mice in a sound-categorization task with various schedules combining passive exposure
and active training. Mice that received passive exposure exhibited faster learning, regardless of
whether this exposure occurred entirely before active training or was interleaved between active
sessions. We next trained neural-network models with different architectures and learning rules

to perform the task. Networks that use the statistical properties of stimuli to enhance separability
of the data via unsupervised learning during passive exposure provided the best account of the
behavioral observations. We further found that, during interleaved schedules, there is an increased
alignment between weight updates from passive exposure and active training, such that a few
interleaved sessions can be as effective as schedules with long periods of passive exposure before
active training, consistent with our behavioral observations. These results provide key insights for
the design of efficient training schedules that combine active learning and passive exposure in both
natural and artificial systems.

elLife assessment

This study reports valuable behavioral and computational observations regarding how passive expo-
sure to auditory stimuli can facilitate auditory categorization. The combination of behavioral results
in mice with a study of artificial neural network models provides solid evidence for the authors'
conclusions. This paper will likely be of broad interest to the general neuroscience community.

Introduction
Active learning of a perceptual decision task requires both expending effort to perform the task and
having access to feedback about task performance. Passive exposure to sensory stimuli, on the other
hand, is relatively effortless and does not require feedback about performance. Since animals are
continuously exposed to stimuli in their environment, the nervous system could take advantage of
this passive exposure, for example by learning features related to the statistical structure of the stim-
ulus distribution, to increase the speed and efficiency of active task learning. For auditory learning in
particular, schedules that effectively combine active training and passive exposure could yield more
efficient approaches for learning to discriminate ethologically relevant sounds (as needed for example
during second-language learning or musical training in humans) compared to active training alone.
A large body of research has demonstrated that exposure to sounds early in life influences the
ability to discriminate acoustic stimuli (Kuhl et al., 2003; Maye et al., 2002; Kral, 2013). However,
the conditions under which passive exposure in the adult can help auditory learning are not well
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understood. In humans, previous work has demonstrated that, under specific conditions, inter-
leaved passive exposure is beneficial for learning, sometimes to the extent that active sessions
can be replaced with passive exposure and still yield similar performance (Wright et al., 2015).
In other animals, which provide greater experimental access for investigating the neural mecha-
nisms of learning, studies have focused mostly on the effects of perceptual learning (the experience-
dependent enhancement in sensory discrimination) from exposure to stimuli during active training
(Bao et al., 2004; Polley et al., 2006; Caras and Sanes, 2017). Although some progress has been
made for other sensory modalities, such as olfaction (Fleming et al., 2019), the question of whether
and how the combination of passive exposure with active training improves auditory learning in
animal models has received little attention, limiting the ability to investigate the neural mechanisms
that might be involved.

Using inexpensive unlabeled data during passive exposure to improve the efficiency of active
training is also of great interest for machine learning, where large quantities of labeled training data
are not always readily available. Recent approaches for training deep networks for speech recognition
have successfully used large quantities of unlabeled data to achieve state-of-the-art levels of perfor-
mance with minimal active training (Baevski et al., 2020, Baevski et al., 2021). Moreover, theoretical
work inspired by neurobiology has argued that unsupervised learning, which may occur during passive
exposure, could modify neural representations in such a way as to later facilitate more efficient super-
vised learning (Nassar et al., 2021). However, optimal ways to combine supervised and unsupervised
learning, as well as the mechanisms that may underlie such benefits from passive exposure, remain
unknown.

As a first step toward addressing these gaps in knowledge, we evaluated whether passive exposure
to sounds improves learning of a sound-categorization task in mice. We found that passive presen-
tation of stimuli enhanced learning speed in mice, either when passive presentation occurred before
any active training or when passive-exposure sessions were interleaved with active training. Then, we
performed a theoretical analysis of learning in artificial neural networks that combine different learning
rules to identify the conditions under which they account for the experimental data. Our theoretical
analysis indicates that the experimentally observed benefits of passive exposure can be accounted for
by networks in which unsupervised learning in early layers shapes neural representations of sensory
stimuli, while supervised learning in later layers uses these representations to drive behavior.
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Figure 1. Two-alternative choice sound-categorization task for mice. (A) Mice initiated a trial by poking their nose into the center port of a three-port
chamber, triggering the presentation of a frequency-modulated (FM) sound. To obtain reward, animals had to choose the correct side port according to
the slope of the frequency modulation (left for positive slopes, right for negative slopes). (B) Training schedule: mice underwent several shaping stages
(S0-S2) before learning the full task; the main learning stage (stage S3) used only the highest and lowest FM slopes; psychometric performance was
evaluated using 6 different FM slopes (stage S4). (C) Daily performance for one mouse during S3. Arrows indicate estimates of the time to reach 70%
correct and the performance at 21 days given a linear fit (black line). (D) Average leftward choices for each FM slope during one session of $4 for the
mouse in C. Error bars indicate 95% confidence intervals.

Schmid, Haziq et al. eLife 2023;13:RP88406. DOI: https://doi.org/10.7554/eLife.88406 2 of 19



e Llfe Research article

Neuroscience

Results

Learning a sound-categorization task

We first designed a two-alternative choice sound-categorization task to allow testing the effects of
passive exposure on categorization learning. In this task, freely moving mice had to discriminate
whether the slope of a frequency-modulated sound was positive or negative. Animals initiated each
trial by poking the center port of a three-port chamber, at which point a 200-ms sound was presented
after a brief silent delay. Mice then had to choose the left or right reward ports depending on the
slope of the stimulus (Figure 1A). Animals were trained once per day using a schedule with the
following stages (Figure 1B): shaping stages (S0-S2), in which animals learned to poke and obtain
water reward; the main training stage with two stimuli (S3), in which animals learned to associate a
stimulus with a reward port; and a psychometrics testing stage (S4), in which mice were tested with
six different stimuli, including the two extremes presented in S3. Figure 1C illustrates the learning
performance for one mouse, showing the time to reach 70% correct trials and the performance at
21 days, as estimated from a linear fit to the daily average performance. Performance starts around
50% correct (chance level for the binary choice) and reaches a level above 80% by the end of stage S3.
During this training stage, animals were limited to 500 trials in each session to facilitate comparisons
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Figure 2. Passive exposure to sounds improves learning speed. (A) Training schedule for each mouse cohort: A-only mice received no passive
exposure; A + P mice received passiveexposure sessions during stage S3; P:A mice received a similar number of passive-exposure sessions before S2.
(B) Distributions of performance at 21 days of S3 given estimates from linear fits to the learning curve for each mouse from each cohort. Solid lines
represent the results from a Gaussian mixture model with two components, separating ‘fast’ from ‘slow’ learners. (C) Distributions of times to reach
70% correct given estimates from linear fits. (D) Average learning curves across fast learners from each cohort. Shading represent the standard error of
the mean across mice. (E) Estimates of the time to reach 70% for fast learners from each group. Each circle is one mouse. Horizontal bar represents the
median. (F) Estimates of the performance at 21 days for fast learners from each group. (G) Actual performance averaged across the last 4 days of S3 for
fast learners from each group. Stars indicate p < 0.05.
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Table 1. Hyperparameters used for shown results.

Model 1 Model 2 Model 3 Model 4 Model 5

v,UL 1410 51077 - - 1107
AvuL 2.4 1 - - 1

v,SL 2107 - 1107 310°° 2107
Av.SL 51072 - 2-107 31072 51072
nw,UL - - 2:10°° 8:10°¢ 6:107°
Aw,UL - - 1 1 4

nw,SL - 11073 - - 1107
Aw,SL - 1.10° - _ 110

across animals. Overall, the number of trials in which animals made no choice after initiating a trial
was negligible (averaging 0.18% of trials across mice). Figure 1D illustrates the performance of the
same mouse during one session of the psychometrics testing stage (S4). As expected, stimuli with FM
slopes closer to zero result in responses closer to chance level (50%).

Passive exposure to sounds improves learning

To test whether passive exposure to sounds enhances acoustic categorization learning of these
sounds, we created three cohorts of mice (Figure 2A). The first cohort, named ‘active training only’ (A
only), followed the training schedule described above with no additional exposure to the sounds. The
second cohort, ‘active training with passive exposure’ (A + P), received additional passive exposure
to sounds during stages S3 and S4. The last cohort, ‘passive exposure before active training’ (P:A),
received passive exposure to sounds before starting the main learning stage S3. Passive exposure for
the A + P and P:A cohorts consisted of additional presentation of all six sounds used in S4, randomly
ordered, while animals were in their home cages inside a sound isolation booth. Animals received
an average of about 3600 passive trials each day, corresponding to 600 daily passive presentations
of each of the six stimuli. The amount of passive exposure for P:A mice matched what A + P mice
received during stage 3. During stage S4, A + P mice received additional passive sessions.

We evaluated the learning performance of animals from each cohort by fitting a straight line to
the daily performance of each mouse during S3 and estimating two quantities from these fits: the
performance at 21 days (Figure 2B), and the number of days required to reach 70% of trials correct
(Figure 2C). The distributions of these estimates suggested that each cohort included two types of
learners: one group of fast learners and one group of slow learners. To test whether this bimodality
was indeed present, we applied a Gaussian mixture model to the data in Figure 2B and compared
the Bayesian information criterion (BIC) for models with k =1 vs. k = 2 Gaussian components. When
comparing BIC, models with lower BIC are generally preferred. We found that, for both cohorts that
included passive exposure, the BIC for k = 2 was lower than for k = 1 (Table 1), indicating that a model
with two components best captured the data. For the cohort with no passive exposure, the BIC was
lower when using a single component. However, to make comparisons across cohorts more equitable,
we applied the two-component Gaussian mixture model to all cohorts and focused further analysis on
the group of faster learners from each cohort. The mice that were categorized as fast learners based
on their performance at 21 days (Figure 2B) were the same mice that were categorized as fast learners
based on the number of days to reach 70% performance (Figure 2C).

As a first test of whether passive exposure influenced learning speed, we quantified the average
learning curve across fast learners from each cohort (Figure 2D). The learning curves show a clear
improvement for animals that had passive exposure compared to those who did not. These curves,
however, suggested no differences between animals that had interleaved passive-exposure sessions
during active-training days (A + P) and animals that had all of their passive exposure occur before
the main learning stage (P:A). A quantification of these effects across animals confirmed these obser-
vations. Specifically, the time to reach 70% correct trials (Figure 2E) was shorter for animals that
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experienced passive exposure to sounds compared to those who did not (p = 0.01 for A only vs. A
+ P, p=10.006 for A only vs. P:A, Wilcoxon rank-sum test), while we found no statistically significant
difference between the A + P and P:A cohorts (p = 0.71, Wilcoxon rank-sum test). A similar result was
observed for the estimated performance at 21 days (Figure 2F), where animals with passive expo-
sure showed better performance (p = 0.01 for A only vs. A + P, p = 0.006 for A only vs. P:A, Wilcoxon
rank-sum test), while we found no difference between the A + P and P:A cohorts (p = 0.47, Wilcoxon
rank-sum test). These observations point to an unexpected result: the performance of animals after a
few interleaved passive-exposure sessions was as high as that for animals that had received all passive
exposures before learning the task, suggesting an interaction between passive exposure and active
learning.

To ensure that the apparent effects of passive exposure were not the result of using a simple linear
fit to the learning data, we also compared the performance of each animal averaged over the last 4
days of the learning stage (Figure 2G). Comparisons across cohorts matched those observed from
the linear fit estimates, where mice with passive exposure displayed higher performance (p = 0.01 for
A only vs. A + P, p =0.006 for A only vs. P:A, p=0.71 for A + P vs. P:A, Wilcoxon rank-sum test). An
analysis of the slow learners from each cohort revealed similar trends, where the performance on the
last 4 days for animals with only active sessions was lower (66.5% across two mice) than for mice with
passive exposure (70.4% across three A + P mice and 76.5% across four P:A mice), although these
differences were not statistically significant (p-values in the range 0.064-0.16, Wilcoxon rank-sum
test). Overall, these results indicate that passive exposure to task-relevant sounds—either before or
during learning—can enhance acoustic categorization learning in adult mice, and they point to a
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Figure 3. Passive exposure improves categorization of intermediate stimuli. (A) Average psychometric performance for the first 4 days of stage S4
across fast learners from each group. Error bars show the standard error of the mean across mice. (B) Performance averaged across all stimuli is better
for mice with passive exposure. Horizontal lines indicate median across mice. (C) Performance for extreme stimuli (included in S3) is better for mice

with passive exposure. (D) Performance for intermediate stimuli (which were not used in the task before S4) is better for mice with passive exposure.
(E) Psychometric slope is not different across groups. (F-J) All groups achieve similar levels of performance after 3 weeks of additional training. Stars

indicate p < 0.05.
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non-trivial interaction between passive exposure and active learning, which we further investigate in
our theoretical analysis below.

Passive exposure influences responses to intermediate sounds not
used during training

To test whether passive exposure influenced the behavioral responses to sounds beyond those used
during the active-training sessions, we evaluated the psychometric performance of animals from each
cohort during stage S4. We first estimated the average psychometric curves across all mice from
each cohort during the first 4 days of S4 (Figure 3A). These curves illustrate that, as expected from
the results of S3, the performance on the extreme sounds is better for animals that received passive
exposure. Moreover, these curves hinted at differences across cohorts in the responses to interme-
diate sounds, which were presented during passive exposure, but had not been part of the active
training during the learning stage. To quantify these effects, we first measured the average perfor-
mance across all stimuli and found that animals that experienced passive exposure achieved a higher
fraction of correct trials overall compared to those that did not experience passive exposure (p = 0.01
for A only vs. A + P, p=0.01 for A only vs. P:A, p =0.27 for A + P vs. P:A, Wilcoxon rank-sum test)
(Figure 3B). This disparity in overall performance was the result of differences in both the responses to
the extreme sounds (Figure 3C) as well the responses to intermediate sounds (p = 0.037 for A only vs.
A+ P, p=0.028 for A only vs. P:A, p = 0.36 for A + P vs. P:A, Wilcoxon rank-sum test) (Figure 3D). To
evaluate the possibility that having no passive exposure resulted in shallower psychometric curves, we
compared the psychometric slopes across cohorts. We found no significant difference in psychometric
slopes across cohorts (p = 0.07 for A only vs. A+ P, p = 1 for A only vs. P:A, p = 0.86 for A + P vs. P:A,
Wilcoxon rank-sum test, Figure 3E). This observation, together with the changes in performance for
extreme stimuli, suggests that the observed effects of passive exposure are not simply captured by
psychometric curves becoming less shallow. Overall, these observations indicate that passive expo-
sure can have an effect on the behavioral responses to stimuli beyond those used during the active
training sessions.

To test whether the asymptotic performance of animals was affected by passive exposure, we
compared the psychometric performance across cohorts after 21 days of S4 sessions. We found
that animals with no passive exposure improved their average performance during these few weeks
(p =0.031 when comparing early and late periods of S4, Wilcoxon signed-rank test), while other
cohorts did not change in any consistent manner, suggesting that most of these mice had already
reached asymptotic performance (p =0.56 for A + P, p=1.0 for P:A, Wilcoxon signed-rank test).
During this period, animals with no passive exposure improved until they were indistinguishable from
those with passive exposure (p > 0.26 for all comparisons, Wilcoxon rank-sum test) (Figure 3F-J).
These results indicate that the differences observed across cohorts were not the result of specific
sets of animals having predisposition for poorer learning, but rather, that passive exposure speeds up
learning performance without an apparent change in final performance.

A one-layer model does not benefit from passive pre-exposure

In the experiments described above, we found that passive exposure to task-relevant stimuli benefits
learning, regardless of whether it occurred before or in-between active-training sessions. In order to
gain insight into the neural mechanisms that might underlie this observation, we analyzed the effects
of active learning and passive exposure in a family of artificial neural-network models combining
supervised and unsupervised learning. Specifically, we evaluated the consequences of different
learning algorithms, learning schedules, network architectures, and stimulus distributions on the
learning outcomes. To simulate frequency-modulated sound inputs, we provided our models with
input representations ¥ = i + ¢, where i deterministically encodes the stimulus, and £ is isotropic
noise with covariance o21. The binary output of the models corresponds to the choice to lick the left
or right port in the experiment. We assumed that one direction in the space of all possible input repre-
sentations corresponds to the FM slope parameter. The sounds with the most extreme FM slopes
presented to the models lie at the points %jip, and, as for the mice in the experiment, the task the
models were tested on was to associate these two most extreme input representations with the labels
+1. We trained the models with combinations of:
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Figure 4. A single-layer model (Model 1) does not benefit from passive pre-exposure. (A) Network architecture
for the one-layer model. (B) The network is trained to find a hyperplane orthogonal to the decoding direction
Afip. (C) Learning performance for different training schedules. Curves show mean accuracy for n = 50 network
realizations, and shading shows standard deviation.

o Active learning: The model was provided with a sample from the extremes of the stimulus distri-
bution and the corresponding sample label.

» Passive exposure: The model was provided with a sample but no label. To replicate the passive-
exposure sessions in the experiment, these passive samples were drawn from normal distribu-
tions with means at six points on the line segment between +jiy and —fiy and noise covariance
3.

We aimed to find models that can replicate the general experimental observation that passive
exposure improves learning speed. Thus, all the models we considered included some parameters
that were trained using unsupervised learning, which does not require feedback about task perfor-
mance, during the active and passive training sessions. Since the models also had to learn the asso-
ciation between labels and stimuli, they also needed to include parameters that were trained during
active sessions using supervised learning, which makes use of feedback about task performance.

Active trials and passive exposures were combined into the following three training schedules:

e Active only (A only): The model was always provided with a sample and its label during 5000
total trials of training.

e Active and passive (A + P): The model also underwent 5000 active trials, but each one was
followed by 9 passive exposures.

o Passive then active (P:A): The model was first presented with 45,000 passive exposures, then
underwent 5000 active trials.

The first model (Model 1) we considered was the simplest possible neural-network model, which
consisted of a single output neuron reading out from an input representation (Figure 4A). In this one-
layer model, the input representation X was multiplied by a weight vector ¥ to produce an output
S(¥-X), where S is the logistic sigmoid function. The task the model had to perform is illustrated in
Figure 4B: the weight vector ¥ is orthogonal to the decision hyperplane, so its optimal orientation
would be along the direction Afiy = +iip — (—fp). Accounting for the experimental data requires a
model that changes even when no labels are provided during passive exposure. Therefore, we trained
the model with both supervised learning (in which the weight ¥ undergoes gradient descent, equiv-
alent to logistic regression) and unsupervised learning (where the weight ¥ is trained with Hebbian
learning with weight decay using Oja’s rule Oja, 1982). The unsupervised learning rule used here
aligns the normal vector to the decision hyperplane with the direction of highest variance in the input
representation, which in this case is the coding direction spanned by Af. For training, we used the
three learning schedules introduced above. During the active sessions, the weight vV was trained by
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Figure 5. Passive-exposure benefits learning in a two-layer model with unsupervised learning in the first layer. (A) Network architecture for Model
2, which has supervised learning (SL) at the input layer, and unsupervised learning (UL) at the readout. (B) Learning dynamics of the hidden-layer

representation of this model for the P:A schedule. (C) Learning performance for different training schedules for Model 2. Curves show mean accuracy
for n = 50 network realizations, and shading shows standard deviation. (D-F) Model 3, which has unsupervised learning (UL) at the input layer, and
supervised learning (SL) at the readout.

both supervised and unsupervised learning, while, during the passive sessions, only the unsupervised
learning rule was used.

As in the experiment, interleaving active trials with passive exposure (the A + P condition) facili-
tated learning and slightly sped up training relative to active-only training (Figure 4C). Long passive
pre-exposure before active learning (P:A condition), however, did not contribute to task learning in
this model. This can be explained by the symmetry of the task: the decision hyperplane oriented
itself in the optimal direction to separate the point clouds, however, because the algorithm did not
know about the data labels, there was a 50% chance it was correctly oriented, and a 50% chance it
was oriented exactly in the wrong direction. These two possible configurations of the model after
the passive pre-exposure sessions averaged out, giving no net benefit to the P:A schedule over the
active-only training. Because of this failure, the one-layer model cannot capture the experimental
observation that passive pre-exposure improves the speed of learning.

Passive exposure is beneficial when building latent representations
with unsupervised learning

To remedy this shortcoming, we studied a simple extension to the above model by adding an addi-
tional layer of hidden neurons. In addition to the readout weights ¥, this two-layer model had initial
weights W mapping the input representation ¥ to a hidden representation & = Wx. The output of the
model was then S(¥ - Wh). For our simulations, the dimension of the hidden layer dhiq was smaller than
the input dimension d. We trained v using the same algorithms as in the one-layer model. In addition,
we have the option to train W with either supervised learning, unsupervised learning, or both. As for
the one-layer model, we needed to include both supervised and unsupervised learning to account for
the experimental observations. The simplest way to incorporate this is to have supervised learning in
one layer and unsupervised learning in the other one.

First, we investigated what happens if we use supervised learning for the input weights W and
unsupervised learning for the readout weights v. This defines Model 2 (Figure 5A). In this model, the
relative learning performance for all schedules was similar to that of Model 1 (Figure 5C). This can be
understood by observing that, since the hidden-layer representation did not change during passive
exposure in the P:A schedule, the active sessions started from a representation that did not allow the
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signal to be decoded, as illustrated in Figure 5B. Thus, there was no benefit from the initial passive
sessions in this model, which contradicts the experimental outcomes. Here, we do not make claims
about the relative performance of the learners in Model 2 with those of Model 1 (since the hyperparam-
eters of each model were chosen independently such that they give rise to similar asymptotic accura-
cies). Instead, the conclusions are drawn by comparing different learning schedules for a given model.

Another possibility (Model 3) to incorporate both types of learning in this network is to learn
the input weights W by unsupervised learning and the readout weights ¥ using supervised learning
(Figure 5D). Doing so allowed the passive exposures to build a representation of the first prin-
cipal component of the input representation, which enhanced the decodability in the hidden layer
(Figure 5E). For this model, the speed of learning for both the P:A and A + P training schedules
increased compared to the active-only case (Figure 5F), accounting for the main feature of behavioral
experiments, namely, that passive exposure enhances learning speeds.

While this general behavior is consistent with the experimental results, two main issues remain to
better account for the data. First, the learning curve for the P:A learners in Figure 5D rises very quickly
compared to the A + P models (which built up the same representation more gradually during the
active trial period). In contrast, these two conditions had similar learning speeds in our experiments.
Second, because of the unsupervised learning rule chosen for Models 1-3, the coding direction of the
neural representation of stimuli must align with the first principal component of the neural represen-
tation for the system to benefit from passive exposure. In general, however, features that are relevant
for learning will not always be encoded along the first principal component. The following section
presents solutions to both of these issues.
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100
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;\3 80
= 70
[}
g 60
é’, 50 = A only
40 mm— A+ P
> = P:A
o 30
PC]_ I T T T T 1
0 1000 2000 3000 4000 5000
Trials
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100
[ [ 7‘ 1 90
U g %
= 70
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g 60
SL Yy &‘;’ 50 A only
uL ﬁ 40 m— A+ P
_ 30 = PA
x I 1 1 T 1 1
0 1000 2000 3000 4000 5000
Trials

Figure 6. An alternative unsupervised learning rule can be used to learn hidden representations of higher principal
components. (A) A non-isotropic input distribution in which the coding dimension does not align with the direction
of highest variance. (B) Learning performance for Model 3 on the non-isotropic input distribution. Curves show
mean accuracy for n = 50 network realizations, and shading shows standard deviation. (C) Network architecture
for a two-layer model (Model 4) that uses the similarity matching algorithm for the input weights and supervised
learning at the readout. (D) Learning performance for Model 4 on the non-isotropic input distributions.
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Building higher-dimensional latent representations improves learning
for more-general input distributions

A limitation of Model 3 is that Hebbian learning only builds a representation of the direction of highest
variance (the first principal component) of the input representation. In real neural representations,
however, the coding direction will not always align with the first principal component. To investi-
gate what happens in this case, we trained Model 3 on a non-isotropic input distribution, setting
Y= diag(alz,a%,ag,...) with o1 > 05. We set the extreme means *jiy = +¢&,, where ¢&; is the unit
vector along the ith dimension. For these inputs, the coding direction represents the second principal
component (Figure 6A). In this case, passive exposure is counterproductive for learning because the
variance in the coding direction is lost in the hidden-layer representation, so it cannot be used to
distinguish the two input distributions, leading to worse performance of A + P and P:A learners rela-
tive to A-only learners (Figure 6B).

To address this issue, we implemented a model that uses the similarity matching unsupervised
learning algorithm (Pehlevan et al., 2015) to build a higher-dimensional hidden representation that
includes higher principal components. To do this, we modified the network to include lateral weights
M connecting the hidden units in our two-layer model (Figure 6C). These new connections were
trained using anti-Hebbian learning and have the function of decorrelating the hidden units.

With these modifications, which define Model 4, the performance (Figure 6D) was similar to that of
Model 3 with the isotropic input distribution (Figure 5F). Specifically, in the P:A schedule, the repre-
sentation built up during passive sessions aided decodability, slightly increased the speed of learning,
and led to a higher final performance relative to the A-only schedule. However, while the P:A learning
performance exhibited some improvement over the A-only performance, the A + P learning perfor-
mance did not show a comparable improvement for any set of hyperparameters that we investigated
(see Methods). This is because, in the P:A schedule, the active training benefits from a representation
that aids decoding, while this representation must be built up over time for the learners in the A +
P schedule. Thus, the P:A curve in Figure 6D initially rises faster than the A + P curve, unlike in the
experimental outcomes shown in Figure 2D. Together, these results show that, in the case where
the task-relevant encoding direction is not aligned with the direction of highest variance in the input
representation, a more-sophisticated unsupervised learning algorithm is capable of accounting for the
enhanced learning due to passive exposure, but not for the similarity in the improvements exhibited
by the A + P and P:A training schedules.

So far, we have only considered input stimulus representations for which the decoding direction
lay in the subspace spanned by the highest principal components, such that unsupervised learning at
the input layer is sufficient to create an optimal latent representation. In a more natural setting, parts
of the decoding direction might be aligned with the highest-variance principal components, but part
of it might not be. To study this case, we created a model (Model 5) with two new features. First,
this model receives an input representation in which the coding direction has a nonzero projection
along the first 30 principal components. Second, because an unsupervised learning rule that finds
leading principal components alone is insufficient to reach an optimal solution when the signal is not
entirely contained within the leading principal components, this model combines both supervised and
unsupervised learning at the input layer (Figure 7A, B). Compared to Models 3 and 4, P:A and A +
P schedules led to similar improvements over A-only training (Figure 7C), consistent with the experi-
mental results shown in Figure 2D.

In addition, when we tested the performance stimulus values for all six stimuli at different points in
learning, this model reproduced the main features of the psychometric curves from the experimental
data. In particular, midway through training we found that the psychometric curves for the A + P and
P:A learners had fully converged and were mostly overlapping, while the A-only learners exhibited
relatively poorer classification performance for all stimulus values (Figure 7D; Figure 3A). At the
end of training, all three curves converged to very similar values for all stimulus values (Figure 7E;
Figure 3F). Thus, Model 5 reproduced all of the key findings from the experiments, including the
behaviors of the learning curves and psychometric curves in all three training conditions.

In Models 3 and 4, we found that P:A learning was initially faster than A + P learning, which we
attributed to the larger number of representation-improving passive exposures that the P:A learners
received in the early phases of training. Somewhat surprisingly, we then found in Model 5 that the
P:A and A + P learning curves rose comparably quickly during the initial phase of active training. We
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Figure 7. A more-general two-layer model accounts for similar benefits of A + P and P:A training schedules. (A) Schematic illustration of Model 5, which
combines supervised and unsupervised learning at the input layer of weights. (B) Input distribution, in which the decoding direction is not aligned with
any particular principal component. (C) Learning performance of Model 5. Curves show mean accuracy for n = 50$ network realizations, and shading
shows standard deviation. (D) Psychometric curves showing classification performance for all stimuli after 1500 trials, where the stimulus parameter p
linearly interpolates between the two extreme stimulus values. (E) Psychometric curves showing classification performance after 5000 trials. (F) Schematic
illustration of the angle between the summed weight updates during active training and passive exposure for A + P (top) and P:A (bottom) learners.

(G) The alignment of active and passive weight updates for n = 50 networks trained with either the A + P or P:A schedule after 1500 trials (star indicates
p < 1073, Wilcoxon rank-sum test; box percentiles are 25/75).

hypothesized that this occurred due to an improved alignment in the weight updates during active
learning and passive exposure in the A + P case (in which these updates occur in alternation) vs. the
P:A case (in which all of the passive-exposure updates occur before the active-training updates). To
test this, we computed the angle of the sum of all active updates relative to the sum of all passive
updates in A + P and P:A learners (Figure 7F). Consistent with our hypothesis, we found that the active
and passive updates were more aligned for the A + P learners than for the P:A learners (Figure 7G).
This result establishes a potential mechanism by which an interleaved schedule of active training and
passive exposure leads to more-efficient learning (in the sense of requiring, for a given number of
active-training steps, fewer passive exposures to achieve a given performance) than a schedule in
which passive exposure entirely precedes active training.

Together, our experimental and theoretical results have shown that the experimentally observed
benefit of passive exposure in both the P:A and the A + P schedules is consistent with neural-network
models that build latent representations of features that are determined by statistical properties of
the input distribution, as long as those features aid the decoding of task-relevant variables.
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Discussion

In this work, we have shown that passive exposure to task-relevant stimuli increases the speed of
learning during active training in adult mice performing a sound-categorization task. Specifically, for
the amount of passive exposure used here, we found similar increases in cases where the passive
exposure occurred before active training or interleaved with active training, even at early points where
the cumulative number of passive exposures in the latter case was far smaller. Using artificial neural
networks, we showed that these results are consistent with a multi-layer model in which unsuper-
vised learning in an early layer creates a latent hidden representation that reflects the statistics of the
input stimuli, and supervised learning in a later layer is then used to decode the stimulus properties
and map them onto appropriate behaviors. Finally, we found that improved learning efficiency when
passive exposure is interleaved with active training rather than occurring entirely before active training
can be accounted for by active and passive weight updates adding together more constructively in
interleaved training—a result that may have implications for designing optimal training schedules in
humans, animals, and artificial neural networks.

Various lines of research have investigated the idea that exposure to stimuli may influence percep-
tual judgments. Multiple studies have demonstrated that the statistics of sensory stimulation during
an animal’s development have a strong influence on the perceptual abilities (and associated neural
correlates) in the adult (Hensch, 2004). Other studies in adults have focused on perceptual learning,
generally defined as experience-dependent enhancements of the ability to perceive and discriminate
sensory stimuli during perceptual decision tasks (Gold and Watanabe, 2010). These studies have
shown decreases in the strength, quality or duration of a stimulus needed to obtain a particular level
of accuracy, as animals get more exposure to the task stimuli. A key observation from these studies
is that these effects can be disambiguated from other forms of learning, such as those that establish
task rules. In addition to these perceptual enhancements, learning related to specific stimulus features
can occur even when subjects are not told of the relevance of these features for a given task. Studies
of this phenomenon, usually called ‘incidental learning’, have shown for example that subjects can
incidentally learn categories of complex acoustic exemplars that occur before visual stimuli, even
when the instructed task is visual detection (Gabay et al., 2015). Beyond these effects of incidental
learning, studies in humans have found that, under specific conditions, passive exposure to sounds
interleaved with training can be beneficial for learning, sometimes to the extent that active sessions
can be replaced with passive exposure and still yield similar performance (Wright et al., 2015)—an
effect that was later replicated for olfactory learning in mice (Fleming et al., 2019). Our experimental
results complement these observations by demonstrating that passive exposure in adult mice (either
interleaved with training or before training) enhances the learning of acoustic categories, opening
new avenues for the detailed investigation of the neural mechanisms of the improvements that result
from passive exposure in audition.

One important question to address in future studies is to which extent the passive stimuli need
to be related to those presented in the task. Related to this point, previous work has shown that
sensory enrichment alone can change cortical sensory maps (Polley et al., 2004) and improve task
performance (Mandairon et al., 2006; Alwis and Rajan, 2014). Beyond the effects on learning and
perceptual judgment, studies in rodents have shown that the effect of stimulus pre-exposure in clas-
sical conditioning paradigms can vary depending on test procedures, the similarity of pre-exposure
and training procedures, and the choice of response measure (de Hoz and Nelken, 2014; Holland,
2018). This suggests that learning associations related to reward or punishment and the perceptual
enhancements that come from passive exposure may rely on different mechanisms and, under some
conditions, compete with each other (McLaren et al., 1989). Therefore, the design of schedules
that benefit optimally from passive exposure must take these mechanisms into account. Given these
constraints, a better understanding of the neural mechanisms underlying the influence of passive
exposure, achievable through a combination of theoretical approaches and experiments in animals
that provide sufficient experimental access, have the potential to guide the design of appropriate
schedules in a more efficient manner compared to behavioral experiments alone.

In our experiments, we found that providing animals with passive exposure before task training
vs. interleaved with task training led to comparable benefits. This unexpected result could be a
consequence of the large number of passive-exposure trials provided to the animal on each day. A
comprehensive evaluation of the effects on learning performance as a function of number of passive
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exposures may be needed to test this hypothesis. Our models, in contrast, most often found that
exposure before task training led to larger gains (Models 3 and 4), compared to interleaved expo-
sure, although we also found a model that led to comparably large gains in these two cases (Model
5). These theoretical results suggest that different schedules of passive exposure and active training
might lead to significant differences in learning performance, and future experimental work could test
whether this in fact occurs.

Our models make the experimental prediction that stimulus features should become more easily
decodable from neural representations following frequent exposure to those stimulus features, even
before those stimuli have occurred within the context of a learned task. Related to this idea, previous
work has shown that neural responses in primary sensory cortices exhibit within-session adaptation to
stimulus statistics (Dean et al., 2005; Sharpee et al., 2006; Garcia-Lazaro et al., 2007, Gutnisky and
Dragoi, 2008). However, less is known about how such within-session adaptation relates to long-term
plasticity occurring across days. Future experiments that include recording throughout task learning
could test whether neural representations evolve in a manner consistent with our models.

In the machine-learning literature, various approaches to combine labeled and unlabeled data in
a semi-supervised learning classification algorithm have been put forward (van Engelen and Hoos,
2020), including some biologically plausible implementations (Gu et al., 2019; Genkin et al., 2019).
In most of these, unlabeled data are either used for regularization (e.g., Belkin et al., 2005) or are
assigned pseudo-labels and then used for training (Triguero et al., 2015). In contrast, in our model we
used unsupervised learning in an early layer to create a useful representation for supervised learning
downstream, a simple form of semi-supervised feature learning.

One limitation of our modeling approach is that the set of models that we consider does not
include some features that may be important for fully capturing the mechanisms of unsupervised
learning during passive exposure in the brain. More-sophisticated approaches beyond learning rules
that implement linear dimensionality reduction will be required for cases in which relevant stimulus
features are encoded in highly nonlinear ways, as would likely be the case for natural sound stimuli.
If the input statistics are very complex, simple forms of initial unsupervised learning such as the ones
that we used might not be helpful for improving hidden-layer representations and learning (lyer et al.,
2020). Recent years have seen tremendous advances in addressing this challenge by the use of self-
supervised learning to learn complex stimulus features in deep neural networks (e.g., Devlin et al.,
2018; Avd et al., 2018; Grill et al., 2020). While the models that we have presented make simplifying
assumptions about the stimulus statistics and learning rules, we conjecture that the principle they are
meant to illustrate—namely, that unsupervised learning can make subsequent supervised learning
more efficient by improving neural representations—applies broadly across different stimulus statistics
and learning rules.

Methods

Animal subjects

Atotal of 27 wild-type C57BL/6J adult mice (RRID:IMSR_JAX:000664) of both sexes, ages 2.5-4 months
at the beginning of behavioral training, were used in this study. All mice were housed in groups of
same-sex littermates in a 12:12-hr light-dark cycle. Experiments were carried out during the dark
period, when mice are most active. Mice were water restricted to motivate them to perform the
behavioral task. Mice were weighed and their health checked after each behavioral session, and they
were provided with a water supplement if their weight was below 80% of their baseline. Except for
these supplements, access to water was restricted to the time of the task during experimental days.
Free water was provided on days with no experimental sessions. All procedures were carried out
in accordance with National Institutes of Health Standards and were approved by the University of
Oregon Institutional Animal Care and Use Committee (Protocol #21-26).

The behavioral data were collected using the taskontrol software platform (https://taskontrol.
readthedocs.io) written in the Python programming language (https://www.python.org/). Freely
moving mice were trained to discriminate whether the slope of a 200-ms frequency-modulated sound
was positive or negative. Animals initiated each trial by poking the center port of a three-port chamber,
at which point the sound was presented after a brief silent delay (150-250 ms, uniformly distributed).
Mice then had to choose the left or right reward port depending on the slope of the stimulus: left
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for an upward frequency sweep and right for a downward sweep. Animals were allowed to withdraw
before the end of the sound to make a choice, and had up to 4 s after the end of the sound to enter a
side port. If a mouse did not respond in this period of time, the trial was aborted and not considered
during data analysis. Correct choices were rewarded with a 2-pl water, while incorrect choices yielded
nothing and animals had to start a new trial by poking again in the center port.

Animals were first trained with frequency-modulated sounds that spanned the frequency range
from 6 to 13 kHz, resulting in an FM slope of +5.6 oct/s. To evaluate psychometric performance, the
frequency range was varied to achieve intermediate FM slopes (3.4 and 1.1 oct/s), while keeping the
duration of the sounds and the middle frequency constant. All sounds were presented at an intensity
of 70 dB SPL.

Training stages

Mice were trained to perform the task through a sequence of shaping stages and having a single 1-hr
behavior session each day. In stage O, the goal was to familiarize animals with the reward delivery
ports. During this stage, whenever an animal poked in the side port corresponding to that trial (the
port was randomized on each trial), water was delivered immediately. Animals stayed in this stage
for 2 days. The goal of stage 1 was to teach animals that a trial starts by poking in the center. During
this stage, whenever the animal poked in the center port, water was delivered immediately in the
corresponding side port for that trial. Animals stayed in this stage for 4 days. The goal of stage 2 was
to teach animals to wait for the beginning of the sound and only then make a choice by reaching the
correct reward side port. If animals reached the incorrect port, they still had a chance to get a reward
by going to the other side port within 4 s of the end of the sound stimulus. During this stage, the delay
between the center poke and the stimulus was increased by 10ms every 10 trials, starting at 10ms.
Animals stayed in this stage until 70% of the mice achieved 300 rewarded trials in a session (corre-
sponding to 12 days for ‘A only” and ‘A + P’ cohorts, and 9 days for the ‘P:A" cohort).

Stage 3 was the main learning stage in which animals only got rewarded if they made the correct
choice in their first attempt on each trial. During this stage, we implemented a bias-correction method
as follows. If the percentage of correct choices on either side was lower than 20%, the next session
was set in a mode where error trials were followed by identical trials, until the mouse made the correct
choice. Animals were taken off bias correction when the percentage of correct choices for both sides
was above 30%. Bias-correction sessions were not included in the analysis of learning speed. Learning
performance during stage 3 was evaluated for 26 days.

After the main learning stage, animals transitioned to stage 4 where we evaluated their psycho-
metric performance by introducing four new sounds of intermediate FM slope, for a total of six sounds
per session. Which sound was presented on each trial was randomized according to a uniform distri-
bution. The three sounds with positive FM slope were rewarded on the left port, while those with
negative FM slope were rewarded on the right port.

Passive exposure

Mice were grouped into three cohorts: an ‘active training only’ (A only) cohort, an ‘active training with
passive exposure’ (A + P) cohort, and a ‘passive exposure before active training’ (P:A) cohort. Animals
that eventually formed the first two cohorts were trained simultaneously in stages 0-2. This group was
then split into the ‘A only’ and ‘A + P’ by selecting animals to match as closely as possible the average
initial performance after shaping between the two cohorts. The ‘P:A’ mice were trained as a separate
cohort. Animals in this cohort had free access to water until their active-training sessions started. One
mouse that did not perform enough trials in stage 2 was removed from the study and excluded from
further analysis. The total number of animals included in each cohort was therefore: eight A only mice,
nine A + P mice, and nine P:A mice.

Passive exposure consisted of the additional presentation of all six sounds used in stage 4, randomly
ordered, while animals were in their home cages inside a sound isolation booth. Animals received an
average of about 3600 passive trials each day, corresponding to 600 daily passive presentations of
each of the six stimuli. Stimuli were presented every 4.5 s. During these sessions, animals showed both
periods of activity (running, climbing, etc.) and periods of inactivity. For animals in the A + P cohort,
passive-exposure sessions took place the same day as active-training sessions, usually a few hours
after training.

Schmid, Haziq et al. eLife 2023;13:RP88406. DOI: https://doi.org/10.7554/eLife.88406 14 of 19



e Llfe Research article

Neuroscience

Analysis of behavioral data

To characterize the learning performance of each animal, we calculated the percentage of correct
trials for each behavioral session during stage 3 and fit a straight line (without constraints) to these
data. Using these linear fits, we determined the performance at 21 days and the number of days
required to reach 70% of trials correct for each animal. To test for bimodality of the distributions of
these estimates, we used a Mixture Gaussian Model (implemented in the scikit-learn Python package:
Pedregosa et al., 2011).

The psychometric performance for each mouse was estimated by fitting a sigmoidal curve to the
percentage of trials with leftward choices for each stimulus averaged across all sessions of interest
(days 1-4 or 21-24 of stage 4). The psychometric slope presented in Figure 3 was determined from
the maximum slope of this sigmoidal fit. The average psychometric performance for each cohort was
calculated by first estimating the average performance for each stimulus for each animal, and then
averaging across animals. To test differences between cohorts we used the non-parametric Wilcoxon
rank-sum test. The behavioral data collected in this study are publicly available on Zenodo (Schmid
et al., 2023).

Modeling

The neural-network models described in this article were implemented in JAX (Bradbury et al.,
2018); their source code is available at https://github.com/cschmidat/behaviour-models (Schmid,
2023). The networks were trained on inputs drawn from normal distributions N(i, ¥), parameterized
by the mean [i. We assume these means all lie on a line segment, ending at the values +fi. We trained
the models in three different settings: With isotropic input, non-isotropic input, and a non-aligned
input, in which the decoding direction is only partially aligned with the highest principal components.
For the isotropic input, we chose an input dimension d = 50, and means along fip = 1.5¢€; , where ¢;
denotes the unit vector along the ith direction. Because the model is linear, this choice entails no loss
of generality. The covariance matrix was chosen to be 3 = I. For the non-isotropic input, we set d = 50
and fip = 1.4&,, and the covariance to = diag(a%,a%,o%, ...), with ¢ = 1 and o, = V/8. For the non-
aligned input, we set d = 100,

15 30
- _ L z.
Ho /—30 Zl: i

and

. 2 2 2 2
E:dlag(ol,...,01,02,...,02),
20 80

where o1 = /2 and oy = 1. With this choice of parameters, the decoding direction is only partially
aligned with the first 20 principal component directions of the input distribution. For all three of these
input distributions, the optimal performance for a classifier is about 95%.

The models were trained in discrete steps, corresponding to either:

e One passive exposure, where the models were supplied with a sample drawn from N({, ),
with p randomly chosen from six regularly interspaced points on the line segment from —fij to
+fip.

o One active trial, where the models were supplied with either (1) a sample drawn from N (+y, )
with target output y = 1 (corresponding to label +1) or (2) a sample drawn from N(—fi, ) with
target output y = 0 (corresponding to label —1).

Active trials and passive exposures were combined into the following three training schedules:

e A only: The model underwent 5000 active trials.

e A + P: Each of 5000 active trials was followed by 9 passive exposures.

o P:A: The model was first presented with 45,000 passive exposures, then underwent 5000 active
trials.

With these input representations and learning schedules, we trained five models with distinct archi-
tectures and learning rules. Model 1 was a one-layer model with supervised and unsupervised learning

Schmid, Haziq et al. eLife 2023;13:RP88406. DOI: https://doi.org/10.7554/eLife.88406 15 of 19



e Llfe Research article

Neuroscience

for the readout weights V. Supervised learning corresponds to stochastic gradient descent on the
binary cross-entropy as the loss function, which results in the learning rule

Av; = nx;(y — 3(0)) — 2Avy),

where 7 is the learning rate, ¥ is the model output, and \ is the weight-decay parameter. Unsupervised
learning corresponds to Hebbian learning with learning rule:

Av; = (29 — 1) — M29 — Dvy),

where, as before, 7 is the learning rate and X\ is a weight-decay constant. In Model 1, we trained v
using unsupervised learning during all passive exposures, and using both unsupervised learning and
supervised learning during active trials.

The two-layer architecture introduces additional weights W to map the input X to a latent represen-
tation 7 = W&, which is used by the readout weights ¥ to produce the output § = S(7- Wx). As for ¥,
the input weights W can be trained by supervised learning and unsupervised learning. For supervised
learning, we again used stochastic gradient descent on the binary cross-entropy, while, for unsuper-
vised learning, Hebbian learning with weight decay was used:

AWy =1 (xih; — MRPW;)

In Model 2, we trained ¥ using unsupervised learning during all passive exposures and active trials,
and W using supervised learning during the active trials. In Model 3, we trained W using unsupervised
learning during all passive exposures and active trials, and ¥ using supervised learning during the
active trials. In Model 4, we expanded Model 3 by introducing an additional lateral set of weights M
between the hidden-layer neurons, which was trained during the passive exposures and active trials
using anti-Hebbian learning:

AMj; = n(hihj — AMy).

Assuming that the neurons in the hidden layer quickly settle to a steady state, the effect of the
lateral weights can be taken into account by using the hidden-layer representation at this equilibrium
(Pehlevan et al., 2015):

h=M"wx

In Model 5, we used the same architecture and learning rules as in Model 4, but additionally trained
W using supervised learning during active trials.

We chose the hyperparameters 7 for all supervised learning rules such that the learning curve for
the learners in the A-only schedule approximately matched the learning performance of the mice in
the experiments. The learning rate for the unsupervised algorithms determines the separation of the
learners with passive exposure and was chosen such that it maximized the separation while main-
taining stability of the learning algorithm (the instability occurs when the learning rate for the unsu-
pervised algorithms is set too high). The weight-decay parameters determine the asymptotic size of
the weights when the learning algorithms converge. They were chosen such that the asymptotic norm
of all weights matched the norm at initialization. The values for all hyperparameters can be found in
Table 1.
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