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Summary. Cyclic loading of fluid-bearing soils often induces excess pore water
pressure leading to accumulation of strain in the solid matrix. Additionally, vari-
ations in material density and volumetric fraction due to gravitational e↵ects cre-
ate momentum forces, subsequently causing deformation in the soil. In this paper,
we present a mathematical framework of poroelasticity that generalizes the simul-
taneous action of gravitational body forces and cyclic loading for analyzing solid
deformation and fluid pressure dissipation in partially-saturated porous media. We
numerically solve a mixed strain-controlled and pressure-prescribed boundary-value
problem using the finite di↵erence scheme as a representative example to examine
the impact of gravity forces quantitatively. Our results indicate that gravitational
compaction impacts both the total settlement and excess pore water pressure, and
that its e↵ect is particularly pronounced at lower water saturations irrespective of
the excitation frequency, soil length, and soil type. Gravity e↵ect is more significant
in soils with a higher compressibility, but appears to be insensitive to the excita-
tion frequency. Notably, gravitational e↵ect correlates linearly with depth of the
soil deposit, and thus, it should be incorporated into the consolidation theory of
poroelasticity.

Keywords. Cyclic load; fluid pressure; gravitational compaction; poroelas-
ticity; solid deformation

1 Introduction

Accurate description of the strong hydro-mechanical coupling in an elastic ma-
trix with immiscible fluids permeating through a network of interconnected



2 Chao et al.

pore spaces has long been a central issue in a wide range of relevant disciplines.
Coupled phenomena are very common in problems such as land subsidence
caused by groundwater abstraction [34], slope failure induced by rainfall [8–
10, 18], dynamic soil-fluid-structure interaction due to seismic events [12], oil
recovery enhanced by seismic wave stimulation [26, 41], and changes in frac-
ture permeability triggered by reservoir production [49], among others. There
is now a broad consensus that many engineering applications can be com-
prehensively understood only when the intricate hydromechanical coupling
between the solid skeleton and the interstitial fluids, now known as poroelas-
ticity, is thoroughly taken into account.

Biot [1, 2, 4] presented a unified mathematical framework within the
thermodynamically-based context that enables simultaneous modeling of de-
formation of the solid skeleton and flow of fluid through the pore spaces. His
formulation applies to a homogeneous and fully saturated porous medium
in which the solid deformation impacts the fluid flow and vice versa. Since
then, many scholars have made contributions further advancing the theory
to variably-saturated porous media. Numerous papers have focused on iden-
tifying an e↵ective stress measure for single-porosity [11, 38, 39] and double-
porosity [7, 15] media, as well as for anisotropic geologic materials [46–48].
Because of the general nature of these theories, analytical solutions are di�-
cult to find, but many of them have found their way into computer codes.

A generalized Biot formulation that includes an extension of the consti-
tutive equations for porosity changes and the linearized increment of fluid
content to a two-fluid system was presented by Lo and co-workers [22, 23, 27]
employing the continuum theory of mixtures [40]. The linearized fluid content
is a crucial poroelasticity parameter that characterizes the fractional volume
of fluids flowing in or out of a given volume element attached to the solid
frame in response to an applied stress; therefore, it involves the solid frame
contraction and the di↵erences in intrinsic volumetric strain between the solid
and each of the fluids [22, 23]. These poroelasticity models feature partial dif-
ferential equations that are coupled through physical terms describing inertial
coupling, viscous damping, and applied stresses. Inertial coupling arises from
the acceleration di↵erences between the fluid phases and the solid matrix,
whereas viscous damping results from their relative velocity. Hence, exact
decoupling of model equations is required to obtain closed-form, analytical
solutions. This was achieved by Lo et al. [25], yielding three Helmholtz equa-
tions featuring complex-valued, frequency-dependent normal coordinates that
correspond physically to three independent kinematical modes.

The poroelastic response of a fluid-bearing medium to cyclic loading is
quite di↵erent from the more typical response of the same medium to a time-
invariant load. Lo et al. [29, 35] and Deng et al. [16] considered cyclic loading
in their formulations by using the technique of Laplace transformation and
developed a set of closed-form analytical solutions that contain the individual
frequency-independent and frequency-dependent components of the poroelas-
tic response. Their solutions apply to quasi-static loading where inertia e↵ects
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may be ignored. Analytical solutions elucidating the transient deformation-
flow mechanism of a vertical, dual-layered poroelastic system with an upper
unsaturated layer and a lower saturated layer under constant loading were
derived by Lo et al. [31, 32] illustrating the e↵ects of two vastly di↵erent
boundary conditions. Lo et al. [28, 33], established a physically-consistent ap-
proach examining changes in the poroelastic behavior as di↵erent fluid fluxes
occur across the boundary surface.

However, geological sediments may undergo compaction under their own
weight caused by gravitational body forces, resulting in a reduction in vol-
umetric fraction of each phase and a change in its material density. This
mechanical process is termed gravitational compaction, which has been con-
ventionally neglected in the theory of poroelasticity; yet, gravity force is shown
to be capable of creating additional momentum exchange. Gibson et al. [20]
conducted a numerical analysis of the nonlinear consolidation behavior of a
saturated compressible soil and concluded that neglecting the body forces
could result in underestimating the excess pore water pressure due to dif-
ferent behaviors occurring for the relationship between void ratio and e↵ect
stress. This oversight has the potential to cause design failures due to the
overestimation of shear strength. Recent studies have further underscored the
crucial role of accounting for body forces for an accurate modeling of the
rate of consolidation and the resulting total settlement in both saturated and
unsaturated porous media [17, 19, 44, 45].

Chao et al. [14] incorporated gravity loading into the model equations
of poroelasticity [28]. The dissipation of excess pore water pressure and the
temporal evolution of the total settlement in unsaturated soils were evaluated
in their study under the condition of a constant load. However, an external
cyclic loading could alter the deformation pattern and pore-water pressure
response of the soil. To date, few studies have been reported that consider the
flow and deformation mechanisms in partially saturated soils incorporating
the combined e↵ects of both gravity force and periodic stress perturbations.

The objective of the present e↵ort is to capture the transient solid-fluid
interactions in unsaturated porous materials subjected to a harmonic stress
compression and relaxation utilizing the theory of poroelasticity [14], while
also accounting for the momentum exchange resulting from the variations in
material density and volumetric fraction due to gravity e↵ects. Our point of
departure is the poroelasticity formulation of Lo et al. [30] that accommo-
dates the e↵ect of cyclic loading. The standard finite di↵erence method with
the second-order accurate symmetric di↵erence in space and the first-order
finite di↵erence in time [13] is used in this work to solve the boundary-value
problem for the dependent variables of displacement as well as pore water
pressure. Sensitivity studies are conducted to identify parameters that have
an important influence on the gravitational compaction, such as water satu-
ration, excitation frequency, soil compressibility, and the thickness of the soil
column.
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2 Model equations

Employing the theory of poroelasticity [1, 23, 28], Lo et al. [30] developed a set
of coupled partial di↵erential equations describing the variation of solid defor-
mation and pore fluid pressure in a homogeneous, isotropic unsaturated soil.
The formulation includes the e↵ect of gravitational compaction arising from
changes in the volumetric fraction and material density of each constituent
under isothermal condition. The conservation equations take the form
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where ⇢↵ denotes the mass density of phase ↵; the subscript ↵ pertain to the
three immiscible phases (↵ = s: solid; ↵ = 1: non-wetting fluid, henceforth
termed “air”; ↵ = 2: wetting fluid, henceforth termed “water”; ✓↵ signifies
the volumetric fraction of phase ↵, which is a physical indicator representing
the total percentage of the volume of phase ↵ relative to the entire volume
of all constituents; e = r · us is the volumetric strain in the solid skeleton;
"⇠ = r · u⇠ (⇠ = 1, 2) are the volumetric strains in the two fluid phases; us

and u⇠ are the corresponding displacement vectors; p⇠ is the excess (incremen-
tal gauge) pore pressure of fluid phase ⇠; R⇠⇠ = ✓2⇠⌘⇠/kskr⇠ are constitutive
coe�cients related to viscous drag caused by velocity di↵erences between the
solid and fluid phase ⇠; ⌘⇠ is the dynamic shear viscosity of fluid phase ⇠; kr⇠ is
the relative permeability; ks is the intrinsic permeability of the porous frame-
work; S⇠ = ✓⇠/� is the relative saturation of the fluid phase ⇠; � is porosity;
g is the gravitational acceleration; ↵ = 1�Kb/Ks represents the Biot-Willis
coe�cient [3, 43]; G is the shear modulus of elasticity of the porous medium
framework; and Kb is the elastic bulk modulus. Equations (1) and (2) are the
equations of linear momentum balance for the fluid phase, whereas Equation
(3) is the linear momentum balance for the whole system. The closure con-
dition S1 + S2 = 1 holds for the system, where S2 is often referred to in the
literature as the degree of saturation.

In Equations (1) through (3), d1 and d4 are dimensionless poroelasticity
parameters, while d2, d3, d5, and d6 have the units of stress inverse, whose
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physical representation in terms of directly measurable variables is detailed
in Appendix A. Furthermore, the gravity parameters ⇥↵ are given by the
equations

⇥s = (⇢1✓1d1 + ⇢2✓2d4 + ⇢s✓s) g, (4)

⇥1 = (⇢1✓1d2 + ⇢2✓2d5) g, (5)

and
⇥2 = (⇢1✓1d3 + ⇢2✓2d6) g. (6)

It should be noted that because of the existence of gravitational body forces,
the total stress does not remain constant, contrary to the conventional theory
of poroelasticity under a time-invariant compaction force, but rather increases
with a depth in soil thickness. This may in turn lead to variations in material
parameters. However, the deformations are considered small enough that the
infinitesimal elastic assumption is valid. Therefore, all physical coe�cients in
Equations (1) through (3) are evaluated in the reference configuration, since
we are dealing with an elastic porous medium undergoing small deformations,
the central problem in the theory of poroelasticity [2, 4]. Thus, the value of a
physical property induced in the current (deformed) configuration is equal to
the value in the reference configuration (denoted by a superscript 0) plus the
di↵erence between the current and reference values (denoted by capital delta
�); e.g. the relative saturation of water S2 in the current configuration is de-
termined by S2 = S0

2 +�S2. It follows that in the small-strain regime, it is ac-
curate to neglect the second-order terms in Equation (3), such as ↵�S2r2p2,
i.e. only the first-order terms (e.g. ↵S0

2r2p2) being retained. The di↵erence in
relative saturation of water evaluated between the current and reference con-
figurations, �S2, is a function of capillary pressure [23]: �S2 = dS1

dpc
(p2 � p1),

where pc = p1 � p2 is the capillary pressure; dS1
dpc

expresses the slope (evalu-

ated in the reference configuration) of the curve relating capillary pressure
to the relative saturation of air (or water since S1 = 1� S2), i.e., the water
retention curve.

Specializing to the 1D constrained deformation case, where exx = eyy = 0,
e = ezz = @w/@z, Equations (1) through (3) reduce to
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where w is the component of the solid displacement vector in the vertical z
direction. Equations (7) through (9) constitute a mathematical model that
provides fundamental insights into the one-dimensional poroelastic behavior
of an unsaturated porous medium including the gravity e↵ects.

3 Initial and boundary conditions

Initial and boundary conditions must be specified for the solution of the phys-
ical problem described in Equations (7) through (9) to be determined. As an
illustrative example for our model problem, let us consider a soil sample with
thickness h whose top surface is at z = h and the bottom surface is at z = 0,
i.e., the positive z-axis is in the upward direction.

An undrained response occurs when the time-dependent surface load q(t)
is suddenly applied at t = 0+ so that the water content of the soil sample
remains unchanged during the load application process. In other words, no
fluid is allowed to flow into or out of the soil element during this short period of
time when the load is applied instantaneously. In this case, the initial condition
incorporating gravitational compaction can be described mathematically by
the following equations [30]:

@w

@z

����
(z,0)

=
q(t = 0)

K(u)
v

exp
h ⇧

K(u)
v

(h� z)
i
, (10)

p1(z, 0) = ��1 ⇥ q(t = 0)⇥ exp
h ⇧

K(u)
v

(h� z)
i
, (11)

and

p2(z, 0) = ��2 ⇥ q(t = 0)⇥ exp
h ⇧

K(u)
v

(h� z)
i
, (12)

where �1 and �2 represent loading e�ciencies whose physical representation

is given in Equations (21b) and (22b) in Lo et al. [28]; K(u)
v is the undrained

vertical bulk modulus [27]; and ⇧ is a parameter related to gravity, defined in
Lo et al. [30]. Gravitational compaction introduces an additional momentum
source, thereby altering the spatial gradient of solid displacement in the z
direction. Consequently, this a↵ects the excess pore air and water pressures.
The physical implications of this mechanical process are captured in Equations
(10) through (12) through the associated gravity parameter ⇧.

Assuming the top and bottom surfaces are permeable with respect to fluid
flow, the appropriate boundary conditions are given by
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at z = 0. Figure 1(a) shows the schematic problem geometry and boundary
conditions for this study. To examine the e↵ect of body force and cyclic surface
cyclic load q(t) on the poroelastic response of unsaturated soils, a triangular
waveform for the cyclic load is chosen in what follows. The mathematical
expression for q(t) is given by the infinite series
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where p⇤ is the stress amplitude, ! is the frequency of the cyclic load, and
the negative sign implies that the load is compressive. Figure 1(b) shows a
graphical representation of Equation (17) for ! = 0.1 Hz and p⇤ = 0.1 MPa.

4 Numerical discretization

We use the finite di↵erence scheme [21] in space and time to numerically solve
the problem described in Section 3. For the spatial discretization, the second-
order symmetric finite di↵erence in space and the first-order finite di↵erence
scheme in time are used. Selecting a uniform grid spacing of �z and a time
increment of �t, the partial di↵erential equations reduce to a system of linear
equations of the form
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where p⇠ n
k and w0 n

k (k = 1, 2, . . . , kT and n = 0, 1, . . . , nT ) are the values of
p⇠ and w0 ⌘ @w/@z at the grid point k and time step n, respectively. The
subscripts k = 1 and k = kT are the bottom and top boundaries of the soil
sample, respectively, i.e. kT = h/�z + 1, whereas the superscripts n = 0 and
n = nT denote the initial and final time steps, respectively.

Similarly, we can recast the initial conditions in Section 3 as a discretiza-
tion of the algebraic equations:
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The boundary conditions in Section 3 can also be represented in the fol-
lowing discretized form. At z = h,
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As for the total settlement s(t), it can be evaluated in the following dis-

cretized form:
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A system of linear equations can be developed after Equations (18) through
(20) are imposed at each grid point and at each time step with the input
of the initial and boundary conditions in Equations (21) through (23), and
Equations (24) through (27). Employing the Gauss-Jordan elimination, we
can then find the inverse of the coe�cient matrix of the simultaneous system
of equations, after which, the solution for excess pore water pressure and total
settlement can be directly computed.

5 Numerical results and discussions

To implement the discretization scheme presented in Section 4, we need to
evaluate the linear elasticity coe�cients di (i = 1, . . . , 6) and relative mobil-
ities R⇠⇠ in Equations (1) through (3). Accordingly, the information about
the water retention curve describing the relationship between the capillary
pressure pc = p1 � p2 and the water saturation S2, as well as the information
about the relationship between the relative permeabilities kr⇠ and the water
saturation S2 are required. The widely-applied van Genuchten-Mualem model
[36, 42] was employed to quantify these relationships:
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2)
1
m ]m}2, (31)

where hc = pc/⇢2g is the matric potential; �, n, and m are model parameters
obtained by fitting experimental data (m = 1�1/n); ⇤ is the pore connectivity
parameter; and ✓r2 and ✓s2 are the residual and saturated volume fractions of
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water, respectively [42]. We set the water saturation S2 equal to the e↵ective
water saturation Se

2 in Equations (29) through (31). We note that the water
retention curve and relative permeability function are dynamic, saturation-
dependent processes. However, when addressing the behavior of an elastic
porous medium undergoing small deformations within the theory of poroe-
lasticity, these relationships are thus evaluated in a reference configuration,
taken here as the unperturbed state prior to application of an external load.

In this section, we present a series of numerical examples demonstrating
the impact of gravity on the solid–fluid interaction in homogeneous, isotropic
unsaturated soils. For the first example, we study the consolidation problem
without gravitational compaction, which reduces to the benchmark model for
the generalization of Biot theory to a two-fluid system [35] that provides the
analytical, closed-form solution for the excess pore water and air pressures to-
gether with the total settlement under time-dependent stress loading. Tables
1 and 2 list the elasticity and hydraulic parameters necessary for numerical
calculation with the fitting coe�cients for the water retention curve and hy-
draulic conductivity function. Figure 2 shows the comparison between the
numerical and analytical solutions for the distribution of the dimensionless
pore water pressure (p2/p⇤) with respect to the dimensionless depth (z/h)
in an unsaturated clayed soil for S2 = 0.7 and S2 = 0.9 at ! = 0.1 Hz and
h = 10 m, respectively. The temporal evolution of the corresponding total
settlement with elapse time is graphically depicted in Figure 3. In the current
study, the finite di↵erence framework is carried out in Fortran with a time
step �t = 1 sec and a spatial increment of �z = 0.05 m. Based on Figures
2 and 3, it is evident that an excellent agreement is demonstrated between
the two solutions, indicating the stability and accuracy of the proposed finite
di↵erence scheme.

Next, we examine the impact of gravity forces on the development of ex-
cess pore water pressure at di↵erent depths of unsaturated soils. Figure 4
shows the relationship between the dimensionless pore water pressure and
elapsed time at the individual dimensionless depths of 0.25, 0.5, and 0.75 in
an unsaturated clayey soil (h = 10 m), with S2 = 0.7 and subjected to an
excitation frequency of ! = 0.1 Hz. The corresponding relative di↵erence is
also given, which is calculated as the di↵erence between the dimensionless pore
water pressure computed with and without gravitational compaction and nor-
malized with respect to the pressure without gravitational compaction. The
relationship is also investigated with a higher saturation S2 = 0.9 in Figure
5. It can be seen from Figures 4 and 5 that the relative di↵erence caused by
gravitational compaction decreases with a decrease in the soil thickness but
with an increase in water saturation. One possible physical cause behind the
observed result may be that soils with less saturation levels under a gravity
field o↵er greater resistance to cyclic loading compared to those with more
saturation levels. Apart from the changes in the pore water pressure, we can
also gain a detailed insight into how gravity forces a↵ect the total settlement,
which is portrayed in Figure 6 for S2 = 0.7 and S2 = 0.9. The increase of set-
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tlement shown in Figure 6 confirms the observations from Figures 4 and 5.
Quantitatively, there is a relative di↵erence in the total settlement owing to
the inclusion of gravity e↵ect of around 1% for this example. As an aside,
we note that the discontinuity occurs in these plots because the denominator
(total settlement without gravitational compaction) approaches zero, leading
to a singularity. Accordingly, with the numerical analyses in the present paper
and our previous study [14, 30], an important inference is that regardless of
whether external stress loads are constant or time-variant, gravity forces have
a more significant impact on unsaturated soils than on saturated soils.

The excitation frequency is the key feature governing the general mechan-
ical behavior of water-permeated soils under the action of cyclic loading. Its
influence on the dependence of the dimensionless pore water pressure on elapse
time and depth is illustrated in Figures 7 and 8 with small excitation frequency
(!=0.001 Hz) for lower (S2 = 0.7) and higher (S2 = 0.9) water saturations,
respectively. Inspection of Figures 4 and 5 as well as Figures 7 and 8 reveals
that the excitation frequency appears not to render an obvious impact on
the pore water pressure as gravitational body forces are taken into account
in the model of poroelasticity. This remark is also true for the total settle-
ment by examining Figures 6 and 9. To show the complete cyclic response
of the excess pore water pressure to two di↵erent frequencies of 0.1Hz and
0.001Hz, distinctive time scales are used in Figures 4-5 (second) and Figures
7-8 (minute), respectively. It is also noted that these two excitation frequencies
fall within the range that ensures the consolidation problem of poroelasticity
to remain su�ciently accurate in a quasi-static analysis so that second-order
time-derivative terms can be neglected in Equations (1) through (3) [35].

Next, we are concerned with whether the length of the soil sample is of
great importance in characterizing changes in the dimensionless pore water
pressure caused by gravity forces. This physical behavior is studied in Figures
10 and 11 for a longer soil sample (h=100 m) with S2 = 0.7 and S2 = 0.9 under
!=0.001 Hz, respectively. A logical inference from comparison of Figures 7
and 8 as well as Figures 10 and 11 indicates that the e↵ect of gravitational
compaction becomes more significant for pore water pressure as the soil sample
has more length. This can be radically understood that the longer the soil
sample, the more its weight, leading to more gravitational compaction. This
conclusion is also consistent with the result as revealed in Figures 9 and 12 for
variations in the total settlement brought about by gravitational compaction.
The relative di↵erence turns out to be very significant, heightened from 1%
to 10% as h is altered from 10 m to 100 m.

Soil compressibility is one of the dominant material properties in response
to mechanical loads. Figures 13 and 14 provide numerical results for the di-
mensionless pore water pressure as function of the dimensionless depth (z/h)
in a more sti↵er soil, sand, with S2 = 0.7 and S2 = 0.9 (h=100 m, !=0.001
Hz), respectively. By contrast to clayed soil, smaller relative di↵erence occurs
in sandy soil. The same observation is also confirmed for the total settlement
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in Figure 15. A straightforward conclusion can be drawn that gravitational
compaction has more substantial influence in more compressible soils.

6 Conclusions

Gravitational compaction results in increased material density and alters the
volumetric fraction of all constituents in variably-saturated porous materi-
als. It is commonly neglected in the theory of poroelasticity partly because
it makes the governing equations more complicated, thereby inhibiting the
formulation of an analytical, closed form solution. In this paper, we con-
sider the e↵ects of gravitational compaction for unsaturated soils subjected to
cyclic loading. Our mathematical model is based on the generalized theory of
poroelasticity for a two-fluid system [30] accounting for the gravitational body
forces. We formulate the solution for a soil deposit subjected to cyclic surface
load with a triangle-waveform. In one-dimensional representation, this requires
the introduction of an additional variable into the formulation, namely, the
gradient of the vertical displacement, @w/@z, in addition to the pore air and
water pressures.

Our solution is based on a load-prescribed boundary-value problem in
which the unsaturated soil deposit is subjected to fully permeable boundary
conditions at both the top and bottom ends. Under a harmonic stress load
on the top surface, the displacement variation is no longer monotonic, but
instead becomes a time-dependent function. A numerical algorithm based on
the finite di↵erence scheme is thus carried out. The results in this paper high-
light for the first time that gravitational compaction has a negative correlation
with water saturation (i.e., the higher the saturation, the smaller the e↵ect of
gravitational compaction). However, the e↵ect of gravitational compaction be-
comes more significant with an increase in the height of the soil column, with
the increase varying linearly with this height. Therefore, gravitational body
forces should be incorporated into the model of poroelasticity for deeper soil
deposits. Lastly, we show that soil compressibility enhances the e↵ect of grav-
itational compactions, which is shown to increase with the compressibility of
the soil.

A Representation of the poroelasticity coe�cients di

Following Lo et al. [28], the poroelasticity coe�cients di for i = 1, . . . , 6 can
be expressed in terms of the volumetric fraction ✓⇠ of fluid phase ⇠ and the
elasticity coe�cients aij (for i, j = 1, 2, 3) defined in Lo et al. [23]:

d1 =
a12a33 � a13a23
a223 � a22a33

, (A1)
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d2 =
✓1a33

a223 � a22a33
, (A2)

d3 = � ✓2a23
a223 � a22a33

, (A3)

d4 =
a13a22 � a12a23
a223 � a22a33

, (A4)

d5 = � ✓1a23
a223 � a22a33

, (A5)

d6 =
✓2a22

a223 � a22a33
. (A6)

In view of Lo et al. [23], aij can be modeled by directly-measurable parameters:

a11 = Ks(1� �� �s), (A7)

a12 = �Ks�1, (A8)

a13 = �Ks�2, (A9)

a22 = � 1

M1
[(K1K2

dS1

dpc
+

K1K2S1

1� S1

dS1

dpc
+K1S1)�1

+
K1K2S1�

1� S1

dS1

dpc
+K1S1�],

(A10)

a23 = �(
�1�2
�s

Ks +
K1K2�

M1

dS1

dpc
), (A11)

a33 = � 1

M1
{[K1K2

dS1

dpc
+

K1K2(1� S1)

S1

dS1

dpc
+K2(1� S1)]�2

+
K1K2 (1� S1)�

S1

dS1

dpc
+K2 (1� S1)�},

(A12)

where K1 and K2 denote the bulk moduli of the air and water phases, re-
spectively. In Equations (A7) through (A12), �s , �1, and �2 are dimensionless
parameters defined to specify the closure equation for porosity change; while
M1 and M2 are two e↵ective non-wetting fluid storativity factors associated
with the capillary pressure curve:

�s =
(1� �� Kb

Ks
)Ks

Ks +
M2
M1

(Kb
Ks

� 1 + �)
, (A13)
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�1 =
K1(S1 +K2

dS1
dpc

+ K2S1
1�S1

dS1
dpc

)(1� �� Kb
Ks

)

KsM1 +M2(
Kb
Ks

� 1 + �)
, (A14)

�2 =
K2(1� S1 +

K1
S1

dS1
dpc

)(1� �� Kb
Ks

)

KsM1 +M2(
Kb
Ks

� 1 + �)
, (A15)

M1 = �(
K1

S1

dS1

dpc
+

K2

1� S1

dS1

dpc
+ 1), (A16)

M2 =
K1K2

�S1(1� S1)

dS1

dpc
+

K1S1

�
+

K2(1� S1)

�
. (A17)
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Table 1. Material parameters for unsaturated clayed and sandy soils. After Rawls
et al. [37] and Lo et al. [24].

Soil Textural Class Clay Sand
Porosity, � 0.475 0.437
Fitting parameter, � (1/m) 1.168 6.258
Fitting parameter, ⇤ 1.165 1.694
Intrinsic permeability, ks ⇥ 10�14 (m2) 1.7 595
Bulk modulus, Kb (MPa) 4.5 35.3
Shear modulus, G (MPa) 2.4 13.3

Table 2. Material parameters for unsaturated clayed and sandy soils after Rawls
et al. [37] and Lo et al. [24]. Maximum applied stress p⇤ = 0.1 MPa.

Material Parameter Value
Bulk modulus of soild, Ks (GPa) 35
Bulk modulus of air, K1 (MPa) 0.145
Bulk modulus of water, K2 (GPa) 2.25
Material density of water, ⇢2 (kg/m3) 997
Viscosity of air, ⌘1 ⇥ 10�6 (Ns/m2) 18
Viscosity of water, ⌘2 (Ns/m2) 0.001
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(a)

(b)

Fig. 1. (a) schematic diagram of the initial boundary-value problem, and (b) graphic
representation of a triangular loading with excitation frequency ! = 0.1 Hz.
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(a) S2=0.7

(b) S2=0.9

Fig. 2. Comparison of the results between the numerical and analytical solutions
[35] for the distribution of the dimensionless pore water pressure (p2/p

⇤) with respect
to the dimensionless depth (z/h) in an unsaturated clayed soil (h=10 m, !=0.1 Hz)
(a) S2 = 0.7 and (b) S2 = 0.9.
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(a) S2=0.7

(b) S2=0.9

Fig. 3. Comparison of the results between the numerical and analytical solutions
[35] for the evolution of the total settlement with elapse time in an unsaturated
clayed soil (h=10 m, !=0.1 Hz) (a) S2 = 0.7 and (b) S2 = 0.9.
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Fig. 4. Variations in the relationship between the dimensionless pore water pressure
(p2/p

⇤) and elapse time (t) at (a) z/h = 0.2, (b) z/h = 0.5, (c) z/h = 0.75 for an
unsaturated clayed soil (S2 = 0.7, h = 10 m, ! = 0.1 Hz) due to gravity forces as
well as the relative di↵erence (RD).

Fig. 5. Variations in the relationship between the dimensionless pore water pressure
(p2/p

⇤) and elapse time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75 for an
unsaturated clayed soil (S2 = 0.9, h = 10 m, ! = 0.1 Hz) due to gravity forces as
well as the relative di↵erence (RD).
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(a) S2=0.7

(b) S2=0.9

Fig. 6. Variations in the relationship between the total settlement and elapsed time
(t) for an unsaturated clayed soil (h = 10 m, ! = 0.1 Hz) for (a) S2 = 0.7 and (b)
S2 = 0.9 due to gravity forces as well as the relative di↵erence (RD).
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Fig. 7. Variations in the relationship between the dimensionless pore water pressure
(p2/p

⇤) and elapse time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75 for an
unsaturated clayed soil (S2 = 0.7, h = 10 m, ! = 0.001 Hz) due to gravity forces as
well as the relative di↵erence (RD).

Fig. 8. Variations in the relationship between the dimensionless pore water pres-
sure (p2/p

⇤) and elapse time (t) at (a) z/h=0.25, (b) z/h=0.5, (c) z/h=0.75 for an
unsaturated clayed soil (S2 = 0.9, h=10 m, !=0.001 Hz) due to gravity forces as
well as the relative di↵erence (RD).
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(a) S2=0.7

(b) S2=0.9

Fig. 9. Variations in the relationship between the total settlement and elapsed time
(t) for an unsaturated clayed soil (h = 10 m, ! = 0.001 Hz) for (a) S2 = 0.7 and (b)
S2 = 0.9 due to gravity forces as well as the relative di↵erence (RD).
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Fig. 10. Variations in the relationship between the dimensionless pore water pres-
sure (p2/p

⇤) and elapse time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75
for an unsaturated clayed soil (S2 = 0.7, h = 100 m, ! = 0.001 Hz) due to gravity
forces as well as the relative di↵erence (RD).

Fig. 11. Variations in the relationship between the dimensionless pore water pres-
sure (p2/p

⇤) and elapsed time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75
for an unsaturated clayed soil (S2 = 0.9, h = 100 m, ! = 0.001 Hz) due to gravity
forces as well as the relative di↵erence (RD).
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(a) S2=0.7

(b) S2=0.9

Fig. 12. Variations in the relationship between the total settlement and elapsed
time (t) for an unsaturated clayed soil (h = 100 m, ! = 0.001 Hz) for (a) S2 = 0.7
and (b) S2 = 0.9 due to gravity forces as well as the relative di↵erence (RD).
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Fig. 13. Variations in the relationship between the dimensionless pore water pres-
sure (p2/p

⇤) and elapse time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75
for an unsaturated sandy soil (S2 = 0.7, h = 100 m, ! = 0.001 Hz) due to gravity
forces as well as the relative di↵erence (RD).

Fig. 14. Variations in the relationship between the dimensionless pore water pres-
sure (p2/p

⇤) and elapsed time (t) at (a) z/h = 0.25, (b) z/h = 0.5, (c) z/h = 0.75
for an unsaturated sandy soil (S2 = 0.9, h = 100 m, ! = 0.001 Hz) due to gravity
forces as well as the relative di↵erence (RD).
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(a) S2=0.7

(b) S2=0.9

Fig. 15. Variations in the relationship between the total settlement and elapsed
time (t) for an unsaturated sandy soil (h = 100 m, ! = 0.001 Hz) for (a) S2 = 0.7
and (b) S2 = 0.9 due to gravity forces as well as the relative di↵erence (RD).
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