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Abstract— Enhancing human user performance in some com-
plex task is an important research question in many domains
from skilled manufacturing to rehabilitation and surgical train-
ing. Many examples in the literature explore the effects of
both haptic assistance or guidance to complete a task, as
well as haptic hindrance to temporarily increase task difficulty
for the ultimate goal of faster learning. Studies also suggest
adaptively changing guidance based on expertise may be most
effective. However, to our knowledge, there has not yet been
a conclusive study evaluating these enhancement modes in
a systematic experiment. In this study, we evaluate learning
outcomes for 24 human subjects in a randomized control trial
performing a Fitt’s law reaching task under various haptic
feedback conditions including: no haptics, assistive haptics,
resistive haptics, and adaptively changing haptics tied to current
performance measures. Subjects each performed 400 trials total
and this paper reports results for 40 pre-test and 40 post-
test trials. While most conditions did show improvements in
performance, we found statistically significant results indicating
that our adaptive haptic feedback condition leads to faster and
more effective learning as evidenced by metrics of movement
time, overshoot, performance index, and speed when compared
to the other groups.

I. INTRODUCTION

As interest in human-robot interaction continues to grow,
a number of researchers have become interested in how
robots can physically assist human movement. Movement
assistance, which results in the user gaining a skill that can
ultimately be accomplished independently, is a particularly
challenging and desirable goal for applications in motor
rehabilitation settings, as well as in surgical training, and
general human-robot interaction [1]. Conventionally, motor
learning in areas such as physical therapy, rehabilitation,
surgical training, vocational training, and sports is initiated
through instruction and is solidified through repetition [2].
However, the need for movement repetition can cause in-
efficiencies in the motor learning process, demanding time
and effort from the instructor and allowing for human error
along desired movement paths. In addition, if subjects are
not engaged in deliberate practice, there could be a risk of
learning repeated mistakes rather than the intended skill [3],
[4]. The use of robotic intervention or haptic guidance can
provide consistency during repetition, and has even yielded
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promising results to accelerate motor or skill learning, when
compared to conventional methods [5], [6].

While robot-aided motor learning has shown potential
as a whole, how to implement these learning strategies
in a controlled and effective way is still unknown. Prior
literature has predominantly focused on two major forms
of feedback: (1) haptic guidance to improve performance,
and (2) haptic hindrance to degrade performance [7]. Haptic
guidance helps users along a path or toward an endpoint
through demonstration [8], [9], physical assistance [10]-[15],
or cueing/signaling [16]-[18], limiting the extent of user
error. Haptic hindrance encourages error through noise [19],
resistance [20], or amplification of mistakes [21]-[23].

Haptic guidance has shown limited success in aiding
motor learning but fails to provide consistent improvement
across all levels of expertise. A study on teaching Chi-
nese handwriting found that haptic guidance improved line
smoothness, but only for beginners [10]. In a steering task,
it was observed that less-skilled subjects saw a particular
increase in long-term retention with haptic guidance that
was not noticeable for more highly skilled subjects [11].
These studies demonstrate the feasibility of using haptic
guidance to improve motor learning in novices, but suggest
that an alternative control method may be better for more
experienced users. To account for differences in expertise,
some studies have proposed adaptive guidance controllers
with promising results. In a follow-up to the steering study,
the same author compared training with no feedback, static
assistance, and guidance that fades with user experti. The
study found that users saw the most significant benefit
from an adaptive guidance condition [12]. This study, along
with similar work on adaptive feedback for surgical skill
training [17], suggest that haptic learning is more effective
when the feedback is adaptive to user expertise, rather than
static. However, the specific benefit of adaptive guidance is
still unclear. Another study on surgical training showed that
in a complex motor task, adaptive guidance increased the rate
of learning but did not significantly effect performance [15].

Haptic hindrance has also shown promise as an effective
motor learning tool but encounters a similar issue related to
expertise or ability. In a path-tracing study involving subjects
with arm impairments, error amplification enhanced motor
learning for a group of subjects with less severe impairment
but showed no benefit for the remaining subjects [21]. Rather,
these subjects saw improvement through active assistance
therapy, suggesting that some threshold of ability exists
above which hindrance becomes more effective than guid-
ance. Similarly, in a virtual pinball task, error amplification
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Fig. 1: Experimental setup with a subject interacting with a Geo-
magic touch to perform Fitts’s Law-inspired point-to-point tasks.

generated significantly greater learning for subjects with high
initial performance, while guidance showed more benefit for
subjects with low initial performance [22]. These results
indicate that optimal motor learning may occur when a user
experiences a mix of haptic guidance or haptic hindrance
according to their current level of expertise.

Based on these findings, we propose an adaptive haptic
feedback condition for motor learning that gradually tran-
sitions from maximal guidance to zero guidance and then
from zero hindrance up to maximal hindrance as the user’s
measured expertise grows. This solution provides haptic
guidance for beginners, involves gradual change with exper-
tise, and employs haptic hindrance once users reach a certain
threshold of skill, all strategies which have shown particular
benefit for accelerated motor learning [11], [12], [15], [21],
[22]. In addition, the proposed haptic feedback condition
is closely aligned with the challenge point framework, a
prominent motor learning theory which states that optimal
learning occurs when the level of task difficulty correlates to
the subject’s expertise [24].

The aim of this study is to compare motor learning out-
comes when training with no haptic feedback, static haptic
guidance, static haptic hindrance, and our novel adaptive
feedback approach. Our experiment uses a simple point-to-
point movement test in a 3D virtual environment (Fig. 1)
inspired by Fitts’s Law, which states that the time necessary
to move a pointer to a target area is a function of the
distance to the target divided by the width of the target
[25]. Fitts’s Law has been well-established in the literature
as a metric of task difficulty [1], [26] and has been utilized
in a similar study on the effect of discrete haptic feedback
modalities on task success in a 3D virtual environment [18].
We hypothesize that adaptive feedback will lead to greater
improvements in task learning when compared to the other
feedback modes.

II. HAPTIC FEEDBACK DESIGN

The haptic feedback in this study uses virtual springs to
provide guidance or hindrance depending on the distance
between the user’s current cursor location and another point
in the reachable workspace. Virtual springs are a natural
choice to either push the user towards (guidance) or away
(hindrance) from a goal position and are often used for haptic
force feedback. In this study, we evaluate four feedback
conditions: Null, Resistive, Assistive, and Adaptive. Figure 2
demonstrates the implementation of the haptic feedback
conditions along with their respective equations. F is the
force to apply to the user, k is the spring constant (10 [%]
for each condition), gjeqrn i the learning rate (a measure of
user performance), p,, is the coordinates of the user’s cursor,
p; 18 the coordinates of the current target, and p;;” , is the
coordinates of the previous target. The following sections
describe each haptic feedback option and its motivation.

A. Null Condition

Null is the feedback mode that does not apply any guid-
ance or hindrance to the user. The user will only experience
free space with no virtual fixture implemented. This is
visually shown in Figure 2a with no spring between the
user and another point in space. The Null control group
represents how the user would improve naturally at the task
by simply repeating the proposed task without robotic/haptic
intervention.

B. Assistive Feedback Condition

The Assistive haptic feedback condition implements a
virtual spring between the user and the current target, such
that the user experiences a guidance force pulling them
toward the goal. This feedback scheme is shown in Figure 2b.
The gjeqrn variable is set to a constant +0.5 since this
condition will not adapt to the user’s performance, similar
to prior work evaluating constant guidance.

C. Resistive Feedback Condition

The Resistive haptic feedback condition always hinders
the user’s movement. It simulates a virtual spring between
the user and the previous target (which is always a different
point than the new target). As the user moves away from the
previous target, they must resist the spring while moving to
the new target point. Figure 2c visually shows the spring’s
location. Similar to the Assistive condition case, gjeqrn 1S
held constant at —0.5 and does not adjust based on the user’s
performance. The Resistive group represents previously stud-
ied control designs that provide constant hindrance regardless
of the human’s changing performance.

D. Adaptive Feedback Condition

Adaptive, the final haptic feedback condition, is the ex-
perimental condition that we hypothesize will accelerate the
user’s motor learning. This condition continuously adjusts
the strength of the virtual spring and toggles from guidance
mode to hindrance mode only when the user is performing
above a set performance threshold. This option uses metrics
from Fitts’s Law to adapt the haptic feedback based on the
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Fig. 2: Haptic algorithm implementation guide. The U ser sphere represents the user’s location in the virtual environment. T'arget; is the
goal position for the Fitts’s Law-inspired point-to-point task. Then T'arget;—1 is the previous point-to-point goal target. Variables required
to calculate the force back to the user, F', are the coordinates of the user (p,), current target (p¢,), and previous target sphere (P, ,),
the spring constant (k), and the learning rate (geqrn). @ displays the implementation of the Null condition which applies no feedback
to the user. b is the pure guidance case that attaches the virtual spring between the user and the current target. c is the pure hindrance
that attaches the spring between the user and the previous target point. d displays the proposed haptic feedback condition that changes

between guidance and hindrance modes based on, I Fq.g4.

user’s performance history. These metrics are the Index of
Difficulty, I D, which measures the task’s difficulty, and the
Index of Performance, I P, which quantifies how well the
user performed the task. These metrics can be calculated after
each point-to-point movement trial is executed. Equation 1
shows how ID is calculated as a function of the distance
from the starting position to the center of the target, D,
and the target’s tolerance, W. D and W are illustrated in
Figure 3, with W being the radius, r, of a sphere. Once the
user’s cursor is within the allowable radius, they can end
the trial and proceed to the next trial. Once a single point-
to-point movement is completed, the Index of Performance
can be calculated for that movement, following Equation 2,
which is a function of the trials’s total movement time, MT'.

2D
ID = log, (W) (D
1D

A moving average of the IP metric was utilized to
determine the virtual spring’s appropriate feedback mode and
strength. The moving average of the previous twenty-five
calculated I P values was defined as IF,,,. The feedback
condition adjusts the spring by comparing I F,,, against a
set threshold, IP,,;q, which is the midpoint between the
initial TP, IP;,;, and a target IP, IPqrg. IPiqrg can
be interpreted as the level of performance the user might
wish to achieve but cannot currently achieve before task

training. IP,,;q is defined as the level of performance at
which the feedback condition switches from guidance to
hindrance. The exact methodology for determining IP;,
IP;4g, and IP,,;q is explained in the following section.
If IP,,q is below IP,,;;, then guidance is given to the
user, setting the virtual spring between the user and the
target point. If IP,,, is above IFP,,;4, the user is given
hinderance, setting the spring between the user and the
prior target point. Figure 2d portrays the Adaptive feedback
condition implementation with the spring location switching
depending on the IF,,, value. Finally, the effective spring
stiffness is the baseline stiffness, k, multiplied by the variable
Jiearn, Which adjusts the strength of the spring depending
on the user’s performance. The gj.q., Variable is calculated
with Equation 3. The spring constant increases as the 1P,
diverges from the I P,,;q constant.

Figure 4 shows a set of hypothetical results for the progres-
sion of the moving average IP throughout a series of point-
to-point movements. The user receives guidance in the lower
zone, while in the upper zone, they receive hindrance. We
hypothesize that users will follow the trend shown in Figure 4
in which they spend the first portion of the experiment
within the guidance zone and the second portion within the
hindrance zone. This figure shows how the condition will
adjust to the user’s high performance by making it more
challenging or to the user’s lowered performance by easing
up on the task difficulty. We hypothesize that by adapting to
the user’s proficiency, this condition will accelerate the user’s



motor learning as compared to the other three condition.
The following section describes how these conditions were
assessed through a human user study.
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Fig. 3: Example of user motion for a single trial. The starting point
is shown in red and the target is in black. The blue path represents
subject motion and the black line is the linear path from the starting
point to the target point, also known as D from the Fitts’s Law
equation. The green sphere with radius r is the allowable threshold
for the subject to be within range of finishing the trial, W of Fitts’s
Law.
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Fig. 4: Example of I P,,4 and gicqrn changing over repetitive point-
to-points for the Adaptive haptic feedback condition. The figure has
two different zones that visually show that if I P, is within that
zone, then that type of feedback is applied to the user. Then, as the
1P,,q moves away from I P,,;q4, then the effective spring stiffness
increases.

III. EXPERIMENTAL METHODS

We conducted a human user study with twenty-four partic-
ipants (age 25.4 £ 4.8, five female). All participants, except
one, were right-handed, and none suffered from any physical
or cognitive impairment that could affect their ability to
perform the study. The methods and procedures described
in this paper were carried out per the recommendations of
the Institutional Review Board of the University of Texas at
Austin (UT Study #00000278), with written informed con-
sent obtained from all subjects. The participants interacted
with a virtual environment using a haptic device (Geomagic
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Fig. 5: Visual diagram of a point-to-point trial. The user moves
their cursor, the red sphere, toward the target (the back sphere),
a. To convey depth, each sphere is given a shadow that is cast
onto the floor of the workspace. As they move and approach the
target their color changes from red to yellow, b, then yellow to
green. The green color signifies that they are within the target’s
allowable tolerance and can complete the trial, c. After completing
the point-to-point motion, the target moves to the opposite side
of the reachable workspace, d. The arrows represent the direction
the user is traveling while the transparent objects show the user’s
previous motion.

Touch, 3D Systems) with their dominant hand. The virtual
environment was created in C++ utilizing the open-source
library Chai3D [27] to manage the haptic rendering and
record user data (sampled at 60 [hz]). The subjects com-
pleted a pre-experiment survey to check if they had any
current impairments that could hinder their ability to perform
the experiment and to gauge their familiarity with human-
machine interactive devices and virtual-reality environments.
To measure their background, the survey asked questions by
providing a scale from one to four, one being this is their
first interaction and four being they feel comfortable enough
to program one. After the subject finished the survey, the
experimenter explained the task and experiment.

A. Experimental Task

Figure 5 visually describes the task. The user interacted
with the haptic device, and the position of the device’s end-
effector was represented by the red sphere in Figure 5a. The
user’s goal was to move the red sphere toward the target
point, the black sphere. As the user’s sphere approached
the target, the color of the user’s sphere gradually changed
from red to yellow to portray to the user that they were
approaching the goal point, Figure 5b. As the user continued
moving towards the target sphere, the color again gradually
changed from yellow to green, Figure 5c. This green color
indicated to the user that they were within the allowable
threshold, W which was set to 0.025 [m], of the target point.
Finally, the subject pressed the dark grey button on the
Geomagic Touch’s stylus to complete the trial. After each
trial, a new target point was randomly placed on the opposite
side of the workspace while the previous target was removed
from the screen (illustrated in Figure 5d). The coordinates of



the new target were generated from a uniformly distributed
random number generator that was limited to the reachable
area of the haptic device and forced the new target to be
on the opposite side of the screen. The subjects were also
allowed to make mistakes while they performed the task.
These mistakes included passing the target and pressing the
dark grey button on the Geomagic Touch while outside
the allowable threshold. If the subject made a mistake it
did not result in a failed attempt, as they were allowed to
continue the current task until they successfully completed
it. There was also no imposed time limit on the task. Lastly,
subjects were instructed to complete the trials as quickly and
accurately as possible and were prompted to adjust the seat,
monitor, and Geomagic Touch for comfort before beginning
the experiment.

B. Experiment

The experiment was divided into three sections. The first
section was the pre-test, which contained forty trials. In the
pre-test, every subject used the Null condition so there was
not any robot interaction. This section allowed the user to
get accustomed to the haptic device and the virtual reality
environment. At the end of this section, the user’s average
IP value throughout the pre-test was calculated. This was
the baseline for the subject’s proficiency at the start of the
experiment. For the Adaptive condition only, this average IP
value is the initial IP, I P;,,;;, and is then used in Equation
4 to calculate the target IP, IP;4.4c;. The target IP was
determined following Equation 4, which was a relationship
that was determined through pilot testing. The pilot testing
determined that this relationship sets that I P;4,ge; at a high
enough value to challenge the user while being low enough
to ensure that the user can reach the resistive zone within
the time limits of the experiment.

IPrgrger = 10 — 0.3 % (10 — I Pipyt) “)

Following the pre-test the first of several break phases.
During each break phase, the virtual environment displays
the break screen, which removes the target sphere, shows the
user’s position as a black sphere, and indicates the amount of
time spent in the current break phase. The users must pause
for at least ten seconds at every break phase to prevent arm
fatigue. The experimenter then reminds the subjects to take
a longer break if needed. After this break, they can move on
to the next section of the experiment.

After the pre-test and first break phase, the subjects moved
on to the training phase. Each subject is randomly assigned
to one of the four haptic feedback conditions: Null, Assistive,
Resistive, or Adaptive. The haptic feedback condition does
not change throughout the training phase. The subjects are
unaware of which haptic condition they are receiving and
only know that the device may assist or resist them from
reaching the current target. The training phase contains
sixteen sets of twenty trials, with a break phase between
each set for a total of three hundred and twenty trials.

Once the training phase is completed, the subjects moved
into the final section, the post-test. This section reapplied

the Null condition to all subjects, and they performed forty
consecutive trials. After the final trial, the subjects com-
pleted a post-experiment survey. It had two questions: if
they had noticeable arm fatigue and whether they believed
their performance improved from the pre- to post-tests. The
experiment took approximately twenty minutes to complete
a total of four hundred point-to-point trials.

C. Statistical Analysis

The collected data for each metric was first checked for
normality. This check confirmed that none of the collected
data was normally distributed. That result meant we had
to use non-parametric tests for the statistical analysis of
the results. Then the Mann-Whitney U Test was used to
determine if there was a difference between the pre and
post-test for each haptic condition. If the resulting p-value
was less than 0.05, the two samples were considered to be
statistically different. Next, we inspected if any of the groups
statistically differed from each other in the post-test. The
Kruskal-Wallis test was used instead of a more traditional
ANOVA to test for a difference between the groups. The
results from this test are in Table II. When the Kruskal-
Wallis test resulted in a statistically significant result, Dunn’s
post hoc test was utilized to display which haptic conditions
differed statistically.

IV. RESULTS AND DISCUSSION

The responses from the two surveys were collected and
compiled. The pre-experiment survey that gauged the back-
ground experience of each subject had an average response of
2.8+1.1 for human-machine interactive devices and 2.5+1.0
for virtual-reality environments backgrounds. This indicates
that the majority of the subjects had some prior experience
using a human-machine device to interact with a virtual
environment. Then for the post-experiment survey, every
subject believed they improved during the experiment when
comparing the pre-test to the post-test. Only three subjects
reported light arm fatigue (two in the Resistive condition and
one in the Adaptive condition).

To verify the effectiveness of each condition, we used
five specific metrics. These metrics are M7, Error, 1P,
Overshoot, and Speed. MT is the Movement Time, which
is the total time to complete a single trial and is used to
calculate I P. The MT was selected as a performance metric
because as the subjects train and improve at the task their
MT should decrease. Error is the absolute linear distance
from the final user position to the target point. /P is the
Index of Performance described in section II with Equation
2. Overshoot is the difference between the total distance
traveled by the user and the linear distance, D, from the
starting point to the center of the target. Figure 3 displays D
and the user’s path, the blue line, of a single trial. Finally,
Speed is the average speed for the trial and was calculated
as the total distance traveled by the user divided by the
MT. Speed was calculated along with M7 to act as an
isolated version of MT. Since MT is influenced by target
distance, D, to confirm that subjects were improving, we
also selected to calculate average speed since that would



TABLE I: Post-Test Metric Means with Standard Deviation

Metric Error MT Overshoot 1P Speed
Mean + Std Dev. [m] [s] [m] bits (]
Null 0.012 4+ 0.006 | 0.977 £ 0.265 | 0.0345 4+ 0.040 | 4.594 £ 1.034 | 0.287 £ 0.065

Resistive 0.013 £ 0.006 | 0.931 & 0.300 | 0.0373 + 0.048 | 5.127 + 2.006 | 0.325 % 0.120

Assistive 0.012 & 0.007 | 0.968 & 0.427 | 0.0387 & 0.073 | 5.173 & 2.034 | 0.316 + 0.114

Adaptive 0.014 + 0.006 | 0.784 £ 0.197 | 0.0226 4+ 0.040 | 5.713 £ 1.190 | 0.348 £ 0.080
not depend on the travel distance. In total, 9,600 trials were
recorded (2,400 for each condition). Our main goal was to 5.0
measure how performance changed from pre-test to post-test,
rather than instantaneous improvements during the training 4.51
phase. The instantaneous improvement during training would
include the effects of the haptic condition and would not 8 4.01
reflect the motor learning of only the subject. This means =2
only eighty trials from each subject were analyzed (forty 2 35
trials for the pre-test and forty for the post-test). For the
analysis none of the filtered trials were removed if a mistake 304
was made. This was because subjects were allowed to make ' C—1 Null Bl Assistive
a mistake during the experiment and had to complete each . I Resistive [ Adaptive
trial in order to continue with the experiment. The data 2.51 . ; ;
analysis was completed in Python. Results are displayed Pre STra_in Post

ection

in Figure 7 with boxplots showing each condition’s mean
(the white dot), median, and quartiles. Each boxplot was
divided by pre and post-test and separated between each
haptic condition. This allowed us to determine if (1) there
was an improvement from pre-test to post-test and then (2)
see which feedback condition had the best results in the post-
test. Also, Table I displays the mean value from the post-
test for each metric with its standard deviation. Finally, to
confirm that the values were affected purely by the training,
the ID for each section of the experiment and each haptic
group were inspected to verify that each group received a
similar difficulty distribution.

Figure 6 shows the distribution, rather than the quartiles,
for the ID distribution for each section of the experiment
and haptic feedback condition. This figure confirms that
each haptic condition received a similar ID throughout the
experiments. The ID variable was only a function of target
distance, D. Since the ID variable was similarly distributed
for each group, this confirms that each group was provided
an equivalent difficulty of target positions.

Statistical analysis was used to determine significance in
the data. Due to the large number of significant results,
the results are described generally and the corresponding p-
values are reported in the various tables.

TABLE II: Krustal Wallis Results for All Metrics

Metrics: Error MT Overshoot 1P Speed
p-value: | 1.07e-01 | 1.97e-15 2.99¢-07 6.44e-18 | 7.90e-13
Hy Accept Reject Reject Reject Reject

a) Error: As seen in Figure 7a, the error metric did not
significantly change from pre-test to post-test for the Null
and Resistance conditions. For the Adaptive and Assistive
conditions, however, error increased from pre-test to post-
test, meaning that users finished each trial further away from

Fig. 6: ID Distribution

the target’s center during the post-test. None of the haptic
conditions were statistically significantly different from one
another for the post-test error results, Table II. This result
is expected as the mean values and standard deviations
in Table I are almost identical. This result is likely due
to experimental design in that a threshold was used to
allow subjects to advance the trial. Subjects in the adaptive
and assistive conditions may have exploited the allowable
threshold to optimize some other performance metric over
the course of the experiment.

b) Movement Time: All haptic conditions resulted in
statistically significant changes to M1 from pre-test to post-
test (illustrated in Figure 7b). In other words, every condition
effectively decreased the duration required for subjects to
finish each trial. As shown in Table II, the Kruskal-Wallis test
confirmed that at least one of the haptic conditions differed
from the others. The post hoc test (Table III) revealed that the
Adaptive condition differed from all of the other conditions
and had the lowest mean value M7T. Hence, the Adaptive
condition was the best haptic condition in training the user
to decrease MT'.

TABLE III: Dunn’s Post-Hoc Test Results for MT

Adaptive | Assistive Null Resistive

Adaptive 1.08e-06 | 3.32e-15 | 3.88e-11
Assistive | 1.08e-06 2.69¢-03 | 8.33e-02
Null 3.32e-15 | 2.69e-03 2.04e-01

Resistive | 3.88e-11 8.33e-02 | 2.04e-01

c) Overshoot: For Overshoot, the Mann-Whitney U
Test returned that the Assistive and Resistive conditions did
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Fig. 7: Boxplots for each calculated metric. Each subfigure contains the resulting boxplot for one metric. The boxplots are split between
pre and post-tests along with each haptic feedback condition. Inside each boxplot is a white dot representing that conditions’ mean value.

not produce statistically different results from the pre-test
to the post-test while Adaptive and Null did. This result
is visually confirmed in Figure 7c. The Kruskal-Wallis test
resulted in rejecting the null hypothesis so at least one of
the haptic conditions differed from the other in the post-
test results. Table IV shows that only the Adaptive condition
differed from the other conditions while the other conditions
were statistically comparable. Table I shows that the Adap-
tive condition resulted in the lowest mean Overshoot in the
post-test, meaning that subjects trained with this condition
had the best performance for this metric.

TABLE IV: Dunn’s Post-Hoc Test Results for Overshoot

Group Adaptive | Assistive Null Resistive
Adaptive 7.32e-04 | 6.49¢-07 | 2.14e-07
Assistive | 7.32e-04 1.10e-01 7.04e-02

Null 6.49¢e-07 | 1.10e-01 8.33e-01
Resistive | 2.14e-07 7.04e-02 | 8.33e-01

d) Index of Performance (IP): All haptic conditions
resulted in statistically significant increases to the I P metric
from pre-test to post-test. In other words, each haptic con-
dition resulted in improved task performance (IP), which
stayed elevated after the haptic feedback was removed from
the subjects. The Kruskal-Wallis test also found that at least
one of the haptic conditions differed from the others in the
post-test. Table V shows that the Adaptive condition differed
from the others while Table I shows that the Adaptive
condition had the highest mean [P value. This means that
the Adaptive condition resulted in the greatest improvement
in task performance when compared to all other condition
conditions.

TABLE V: Dunn’s Post-Hoc Test Results for IP

Group Adaptive | Assistive Null Resistive
Adaptive 1.95e-07 | 9.17e-18 | 3.45e-12
Assistive 1.95e-07 7.26e-04 | 7.95e-02

Null 9.17e-18 | 7.26e-04 1.04e-01
Resistive | 3.45e-12 | 7.95e-02 1.04e-01

e) Speed: Finally, all conditions resulted in statistically
significantly increased speed from pre-test to post-test, visu-
ally confirmed in Figure 7e. The Kruskal-Wallis and Dunn’s
post hoc analysis showed that each condition was statistically
significantly different from one another except for Assistive
and Resistive. Table VI confirms that, again, the Adaptive
condition outperformed all other conditions in increasing the
subject’s speed after training.

TABLE VI: Dunn’s Post-Hoc Test Results for Speed

Group Adaptive | Assistive Null Resistive
Adaptive 3.76e-04 | 4.17e-14 | 8.33e-07
Assistive | 3.76e-04 6.35e-05 1.70e-01

Null 4.17e-14 | 6.35e-05 8.58e-03
Resistive | 8.33e-07 1.70e-01 8.58e-03

V. CONCLUSION

With these results, we can confidently state our proposed
Adaptive haptic control algorithm was more effective at ac-
celerating motor learning for the point-to-point task than the
other feedback conditions of no guidance, resistive guidance,
or assistive guidance. The Adaptive algorithm eliminates the
concerns with pure haptic guidance of the user becoming
dependent on the device to perform the task and reduces the
likelihood that the user loses interest in the task because it



has become too easy. The Adaptive condition also addresses
the problem inherent to applying only haptic hindrance in
that it allows the user to become familiar with the task and
keeps the difficulty low enough to keep frustration at bay.
Then, allowing the amount of guidance, or hindrance, to
actively adjust based on the performance history ensures that
the users were receiving the correct amount of feedback to
complement their current performance. Our study’s results
can conclude that allowing feedback to actively adapt to user
performance leads to a higher level of motor learning than
pure repetition, pure guidance, or pure hindrance.

In future work, we will explore methods to predict future
user motion and infer the user’s intent for future motion
targets as this will enable adaptive haptic guidance to any
type of task, not just point-to-point reaching tasks [28], [29].
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