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Abstract

We propose an analytic dual-cone accretion model for horizon-scale images of the cores of low-luminosity active
galactic nuclei, including those observed by the Event Horizon Telescope (EHT). Our model is of synchrotron
emission from an axisymmetric, magnetized plasma, constrained to flow within two oppositely oriented cones that
are aligned with the black hole’s spin axis. We show this model can accurately reproduce images of a variety of
time-averaged general relativistic magnetohydrodynamic simulations and that it accurately recovers the black hole
spin, orientation, emission scale height, peak emission radius, and fluid flow direction from these simulations
within a Bayesian inference framework using radio interferometric data. We show that nontrivial topologies in the
images of relativistic accretion flows around black holes can result in nontrivial multimodal solutions when applied
to observations with a sparse array, such as the EHT 2017 observations of M87*. The presence of these
degeneracies underscores the importance of employing Bayesian techniques to adequately sample the posterior
space for the interpretation of EHT measurements. We fit our model to the EHT observations of M87* and find a
95% highest posterior density interval for the mass-to-distance ratio of θgä (2.84, 3.75) μas, and give an
inclination of θoä (11°, 24°). These new measurements are consistent with mass measurements from the EHT and
stellar dynamical estimates and with the spin axis inclination inferred from properties of the M87* jet.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663)

1. Introduction

In 2017, the Event Horizon Telescope Collaboration (EHTC)

observed the supermassive black hole, M87*, at the center of
the elliptical galaxy, Messier 87 using a seven-element Very
Long Baseline Interferometry (VLBI) array operating at
λ= 1.3 mm. The resulting Event Horizon Telescope (EHT)

images of M87* revealed a dark central brightness depression,
consistent with expectations for accretion flows within a Kerr
spacetime (EHTC et al. 2019a, 2019b, 2019c, 2019d, 2019e,
2019f, 2021a, 2021b, 2023, hereafter M87* I–IX). More
recently, the EHTC has also published images of the super-
massive black hole Sgr A* at the center of the Milky Way
(EHTC et al. 2022a, 2022b, 2022c, 2022d, 2022e, 2022f,
2024a, 2024b, hereafter Sgr A* I–VIII). These images now
provide the most direct evidence for the existence of
supermassive black holes.

A crucial question is what insights into the properties of
both supermassive black holes and their immediate environ-
ments are possible through the EHT measurements and the
resulting images, a question that falls under the broader
science of photogrammetry. For instance, the 2017 campaign
allowed the EHTC to constrain the diameter of the bright
emission ring in M87* to be d= 42± 3 μas. However, mass
measurements from the diameter of the emission ring on an
image (often called the diameter of the “apparent shadow”)
are dependent on assumptions about the emission geometry
(see, for example, M87* V, M87* VI; and Gralla et al. 2019).
To relate the measured diameter of the emission ring to the
black hole mass-to-distance ratio (or angular gravitational

radius), θg≡GM/(c2D), the EHTC introduced an unknown
scaling factor, α (M87* VI):

( )d . 1ga q=

The EHTC estimated α and its associated uncertainty using a
suite of general relativistic magnetohydrodynamic (GRMHD)

simulations (M87* V). These ab initio simulations self-
consistently evolve a magnetized fluid in the Kerr spacetime
and have been successful in producing a broad range of
phenomena seen in LLAGN, from horizon-scale image
structures and variability seen with the EHT to powerful,
large-scale jets with multiwavelength emission. This approach
resulted in a reported mass measurement for M87* of
M= 6.5± 0.2|stat± 0.7|sys× 109M

e
(M87* VI). In this esti-

mate, the dominant uncertainty corresponds to that of α (i.e.,
systematic uncertainty associated with the unknown emission
properties and spin).
Apart from the EHTC’s mass measurement, there is a rich

literature of other methods to infer the mass of M87* from
observations on much larger length scales. These methods
model the resolved emission spectra of the region surrounding
M87* with different components of origin, usually either from
the dynamics of gas in the circumnuclear disk around M87*

(see, for example, macchetto et al. 1997; Walsh et al. 2013) or
from the stellar velocity dispersion in the bulge (σ*; see
Gebhardt et al. 2011; Liepold et al. 2023; Simon et al. 2023).
There has historically been a discrepancy in the measured
mass, both between and within these two methodologies. The
gas dynamical mass measurements are typically only ∼ half the
value of the smallest stellar dynamics measurements. More-
over, different modeling choices may result in large systematic
uncertainties (see, e.g., Jeter & Broderick 2021; Simon et al.
2023).
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The EHTC results thus provide a crucial input to assess these
alternative mass measurements, but the α-calibration approach
may also have unknown systematic errors and is dependent on
the selection of GRMHD models (M87* V). More recent
analyses using semianalytic models have found that this type of
calibration can provide estimates for the mass-to-distance ratio
with ∼10% systematic uncertainty (Özel et al. 2022; EHTC
et al. 2022f; Younsi et al. 2023a). Nevertheless, even for
GRMHD simulations, some models in the EHTC library that
are consistent with the 2017 EHT observations would give
significantly different mass inferences but were excluded based
on additional constraints on the observed jet power and X-ray
luminosity of M87* (M87* V). Hence, other approaches to
black hole parameter inference from EHT data are of significant
value in substantiating these conclusions and could provide
sharper estimates of the black hole properties.

Palumbo et al. (2022) provided one such alternative: a mass
inference scheme that involves fitting EHT data using a model
whose parameters are described by both the black hole
spacetime and a flexible emission geometry. The emission
model was taken to be purely equatorial and optically thin.
Using time-averaged GRMHD simulations, the authors show
that this approach gives accurate mass measurements for
magnetically arrested disk (MAD; Narayan et al. 2003)
simulations, albeit with a modest (∼10%) underestimate in
some simulations. However, the approach gives poorer mass
estimates for standard and normal evolution (SANE; Narayan
et al. 2012) simulations. Although the authors did not infer a
mass from the true EHT data, which favor MAD models, their
work shows the potential for using simple emission models to
derive information about a black hole mass and emission
geometry from EHT data.

In this paper, we develop a simple, flexible model for images
of accretion flows around supermassive black holes. We show
that the model is capable of not only inferring spacetime
parameters but also measuring the 3D structure of the inner
emission geometry—effectively enabling photogrammetry
within a curved spacetime. Our model extends the equatorial
version defined in Palumbo et al. (2022) to a biconical region
aligned with the spin axis, motivated by optically thin emitting
material concentrated within a jet sheath or accretion disk near
a Kerr black hole as seen in a variety of numerical simulations
(e.g., Dexter et al. 2012; Mościbrodzka et al. 2016; EHTC et al.
2019f; Wong et al. 2021). The primary advantage of our model
relative to more sophisticated physical approaches is that it is
analytic and differentiable. These features allow the model to
be suitable for performing Bayesian inference of black hole
spacetime and emission parameters directly from interfero-
metric measurements, such as those of the EHT. In addition,
the model captures the salient features in GRMHD images for
both MAD and SANE simulations and allows a crisp
exploration of degeneracies in images that can arise between
the parameters of the black hole and those of the synchrotron-
emitting plasma.

The paper is outlined as follows. In Section 2, we introduce
our emission model and describe how it is used to produce
images. In Section 3, we assess the ability of this model to
reproduce the images seen in a variety of GRMHD simulations.
In Section 4, we use this model to fit EHT observations of
M87*. In Section 5, we summarize our results.4

2. Description of the Model

2.1. Motivations and Assumptions

The standard anatomy of active galactic nuclei (AGN) is of a
rotating supermassive black hole accreting a disk of magne-
tized plasma. AGN are often associated with collimated
relativistic jets with observed spectra ranging from radio to
X-ray (see Blandford et al. 2019, for a review on AGN jets).
The bolometric luminosities of AGN are typically low when
compared to the Eddington luminosity, LEdd= 4πGMc/κes,
where κes is the electron scattering cross section, which can be
related to the accretion rate through L M c0.1Edd Edd

2= (Yuan
& Narayan 2014). Low-luminosity AGN (LLAGN) feature
luminosities substantially below LEdd. For instance, M87* and
Sgr A* are estimated to have luminosities of 3.6× 10−6LEdd
and 2× 10−9LEdd, respectively (Prieto et al. 2016; EHTC et al.
2022e), implying that these systems are greatly underfed.
LLAGN are thus thought to be well described by hot

accretion flows that are radiatively inefficient. These flows
often rise to relativistic jets and feature characteristically
geometrically thick accretion disks that are optically thin at
radio wavelengths (Yuan & Narayan 2014). Many authors have
previously used simple geometric models that feature these
assumptions to describe the inner accretion flow around
supermassive black holes. These efforts include a series of
works that developed semianalytic models of a radiatively
inefficient accretion flow (Broderick et al. 2009, 2011, 2014,
2016; Pu et al. 2016; Pu & Broderick 2018; Broderick et al.
2020) and of emission from jets (e.g., Broderick & Loeb 2009),
which report constraints on the spin, inclination, and position
angle (p.a.) of M87* and Sgr A*.
These simple models complement the more complex

GRMHD simulations that are the basis for most theoretical
interpretations of the EHTC. Both types of models have been
used to show that some image features, such as the black hole’s
apparent shadow, are largely independent of the underlying
accretion physics when observed at millimeter wavelengths (for
example, the conservative fluid models of Özel et al. 2022;
Younsi et al. 2023; Papoutsis et al. 2023; and general
relativistic particle in cell models of Galishnikova et al. 2023
yield similar results). GRMHD simulations have the additional
benefit of self-consistently modeling source variability. The
2017 observations of Sgr A* by the EHT, however, imply that
the observed variability is in tension with the predictions of
GRMHD (see, e.g., Sgr A* IV).
In creating this model, we are guided by the time-averaged

emission structure observed from GRMHD simulations. This
approach allows us to efficiently achieve physically relevant
image structures from physically motivated parameters, with-
out the long computational times required to realize them in
GRMHD simulations.
With the previously discussed considerations in mind, we

take the following features as guiding assumptions for the
design of our model:

1. The emission is synchrotron radiation from a magnetized
plasma.

2. The accretion flow is relatively optically thin to millimeter
wavelengths (Falcke et al. 1998; Duschl 1999).

3. The emission region is compact and lies within a few
gravitational radii of the black hole, with the bulk
millimeter wavelength emission often being produced in

4 A repository of scripts used in this analysis are open source and are
available for download (Chang 2024).
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regions along the jet sheath and near the jet base (Dexter
et al. 2012; Emami et al. 2023).

4. The flow is taken to be axisymmetric since it should
reflect the time-averaged structure of the accretion flow.

5. The emission is restricted to lie on two oppositely
oriented conical surfaces that are centered about the spin
axis of the black hole.

The last assumption is motivated from observed locations of
the peak mean emission within GRMHD simulations, which
are seen to typically lie in the jet/disk boundary region.
GRMHD simulations, with thermal electron distribution
functions in particular, are seen to span a wide range of peak
emission opening angles (see for example Figures 3 and 4 of
Emami et al. 2023) that range from either being flushed to the
equatorial plane, a characteristic of low Rhigh MAD simula-
tions, or significantly off the equatorial plane, as observed in
high Rhigh SANE simulations (M87* V).

2.2. The Emission Model

Figure 1 is a schematic of the emission model. Our model
can be described as a compact, axisymmetric, linearly polarized

emissivity that is constrained to lie on a dual-cone with opening
angle θs. The emissivity is determined by the interactions of a
magnetic field with a plasma flow around the black hole. The
plasma flow is constrained to move along the surface of the
cone, while the magnetic field can orient freely.
Following Palumbo et al. (2022), we impose a compactness

constraint on the emission by choosing a radially dependent,
double power-law profile on the emissivity given by

( )
( )
( )

( )r R p p
r R

r R
, , ,

1
, 2

p

p p1 2

1

1 2

=
+ +



where r is the emission radius, R is the characteristic radius of
the profile, p1 is the exponent of the inner power law, and p2 is
the exponent of the outer power law. When given a magnetic
field, B, and plasma fluid velocity, u, we can write our spectral
intensity function as

( ) ( ) ( ) ( )I r R p p B u r R p p P B u, , , , , , , , , , 31 2 1 2µn n

where Pν is the linear polarization intensity of synchrotron
emission (we provide a simple power-law prescription for Pν

below). We ignore the missing proportionality constant and
electron number density dependencies for this study since our
analyses in Sections 3 and 4 are independent of the overall flux
of the image.
As with the emission models of Gelles et al. (2021), Narayan

et al. (2021), and Palumbo et al. (2022), the calculation of Pν is
reliant on transformations to the frames of the asymptotic
observer (Boyer–Lindquist frame), a zero angular momentum
observer (ZAMO), and the fluid frame. Although our
construction of these frames is qualitatively similar to that of
Narayan et al. (2021) and Gelles et al. (2021), we will
summarize the procedure here since some differences are
introduced by the nonequatorial emission geometry.
The Kerr line element in Boyer–Lindquist coordinates is

given by (Chandrasekhar 1984)

[ ]

( )

ds dt dr d d dt
sin

,

4

2 2 2 2
2

2q
q
f w= -

DS
X

+
S
D

+ S +
X
S

-

where

( ) ( )

( ) ( )

r r Mr a r r a

aMr
r a a

2 , , cos ,

2
, sin . 5

2 2 2 2 2

2 2 2 2 2

q q

w q

D = - + S = +

=
X

X = + - D

The transformation for covector components from the global
Boyer–Lindquist frame to the local ZAMO frame is then
described by the tetrad, e(m)

μ , where we have used Greek indices
to label components with respect to the global Boyer–Lindquist
basis, and parenthesized Latin indices to label components with
respect to the local ZAMO basis. The components of the tetrads
are (Bardeen et al. 1972)5

( ) ( )( )e , 6a
s

t0
s

s
sw=

X
S D

¶ + ¶f

Figure 1. Schematic depiction of our dual-cone emission model. The full
model consists of a Kerr black hole (black sphere) surrounded by synchrotron-
emitting plasma (green arrows) confined to a cone of opening angle θs and
threaded by a magnetic field B (red field lines). The magnetic field and plasma
are taken to be axisymmetric about the equatorial plane. The emission is
concentrated at a characteristic radius, R, with the profile determined by a
double power-law distribution with exponents p1 and p2 (translucent blue
cone). The polarization from the synchrotron radiation is parallel transported
along null-geodesics (yellow and orange ticked trajectories) to generate an
image on the screen of an observer at radial infinity. The image generated from
the model is the sum of multiple subimages corresponding to the different
trajectories light can take from the source to the observer.

5 Our definition of the tetrad basis ordering matches the definitions in Gelles
et al. (2021), Narayan et al. (2021), and Palumbo et al. (2022), but not the
traditional basis ordering. The negation of e(3) from its traditional definition
ensures that the basis is always right-handed.
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( )( )e , 6b
s

r1
s=

D
S
¶

( )( )e
1

sin
, 6c

s

s

2
s q

=
S
X

¶f

( )( )e
1

, 6d
s
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S
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where Ξs, ωs, Σs, and Δs are the values of Ξ, ω, Σ, and Δ

evaluated at the emission radius, rs and emission inclination, θs.
The ZAMO frame is labeled with directions { ˆ ˆ ˆ ˆ }x x x x, , ,0 1 2 3 ,
which form a nonholonomic basis. This choice of ZAMO basis
orientation ensures that x̂1 and x̂2 lie in the tangent space of the
emission cone.

The fluid frame is defined from the fluid velocity vector,

( )( ) ( )u 0, cos , sin , 0 , 7m
v

mb c c= á ñ

which depends on an azimuthal angle χ, that winds from the
ˆ( )x 1 direction to the ˆ( )x 2 direction, and fluid speed βv. Since
ˆ ∣∣ ˆ( )x 2 f, then we take the following cases to define whether the
fluid is in prograde or retrograde motion with respect to the
hole:

⎧⎨⎩
( ) ( )
( ) ( )

( )
a

a

sign sign Prograde

sign sign Retrograde.
8

c
c
=
¹

Both, χ and βv are measured in the frame of the ZAMO. Our
definition of the fluid velocity vector constrains it to lie in the
tangent space of the dual-cone. The fluid velocity vector can be
used to construct a fluid frame through Lorentz transformation
from the ZAMO frame,

( )( ) ( )
( )

( )f f , 9m m
n

n= L¢ ¢

where we have used the parenthesized primed Latin indices to
label the fluid frame components.

We assume that the polarization intensity scales as a power
law,

∣ ∣ ( )BP l sin . 10p
3 1 1d zµ s s s+ + +

This precise relationship can arise from power-law distributions
for the electron number densities and energies, but it is
approximately true under much more general cases (Narayan
et al. 2021). The resulting polarization intensity is then
determined by a spectral index (σ), Doppler factor (δ; which
includes gravitational redshift and velocity effects), and the
magnetic field in the fluid frame ( ( )B m¢ ). The remaining
quantities are lp, which is a proxy for the path length through
a cone of width H that depends on the emitting photon four
momentum ( )p m¢ as

( )
( )

( )
l

p

p
H, 11p

0

3
=

¢

¢

and ζ, the angle associated with the cross product of ( )p m¢ and
( )B m¢ in the fluid frame,

∣ ∣
∣ ∣∣ ∣

( )
p B

p B
sin . 12z =

´

Here, the vector quantities p and B are the purely space-like
components of ( )p m¢ and ( )B m¢ .

We parameterized the direction of ( )B m¢ in terms of the fluid
frame polar angle, ι, and the fluid frame azimuthal angle η as

( ) ( ) ( ) ( ) ( ) ( )( ) ( )B 0, sin cos , sin sin , cos . 13m mi h i h iµ á ñ¢ ¢

The polarization direction is taken to be orthogonal to the
magnetic field at the point of emission. We will require that the
radial and azimuthal components of the magnetic field in each
cone have opposite signs as a proxy for the lines being dragged
by the plasma flow or black hole, and to ensure that the global
magnetic field remains divergence free. That is, for a given η
and ι, then the magnetic fields can be written as6

∣ ( ) ∣ ( ) ( )B B, , . 14cone cone1 2
i h i h= -

The polarized emission is then raytraced, and parallel
transported to a distant observer through conservation of the
Walker–Penrose constant (Walker & Penrose 1970; Chandra-
sekhar 1984),

( )( ) ( )A iB r ia icos , 151 2k q k k= - - º +

where

( ) ( ) ( )A P p p P a P p p Psin , and 16r t r t
s

r r2 q= - + -f f

[( )( ) ( )]
( )

B r a p P p P a p P p P sin ,

17

t t2 2 q= + - - -f q q f q q

pμ
= (p t, p r, p θ, pf) is the photon momentum in Boyer–

Lindquist coordinates, and P
μ
= (P

t, P
r, P

θ, P
f
) is the

polarization vector. Although our model naturally produces
images with polarized emission structure, the rest of this work
will be focused on studies of the total intensity.

2.2.1. Raytracing

The construction of our model allows us to produce images
using analytic solutions of the Kerr geodesic equations. This
fact makes the evaluation of our model extremely efficient, a
necessary condition for performing posterior explorations of
fits to realistic data, which will be discussed in Section 4. Our
raytracing procedure is similar to that of Gelles et al. (2021),
with the exception that the presence of nonequatorial emitters
requires (i) the inclusion of vortical trajectories to the geodesic
solution space, and (ii) a new definition of subimage indexing
that is different from ones used by previous authors (e.g., Bao
et al. 1994; Johnson et al. 2020; Wong et al. 2022). We will
briefly outline how we use the solutions to the geodesic
equations to raytrace our model; Appendix A.3 provides details
on our image indexing definition.
The solutions to the geodesic equations can be found by a

reduction to quadratures through the Hamilton–Jacobi
approach (Carter 1968; Dexter & Agol 2009; Gralla &
Lupsasca 2020; Himwich et al. 2020). The four-momenta,
p g

dx

d
=m mn t ¢

m
, of the photons for an affine parameter t¢ are then

written as

( )

( )
( ) ( )p dx dt

r

r
dr d d , 18r q q l f= - 

D
 Q +m

m
q



where ±r and ±θ are chosen appropriately for photons that are
outgoing/ingoing and inclining/declining. The other terms in

6 We have relaxed the assumption of Narayan et al. (2021) and Palumbo et al.
(2022) that relates η and χ, and have chosen instead to make them independent.
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Equation (18) are the radial potential of the photon given by

( ) ( ) [ ( ) ] ( )r r a a a , 192 2 2 2l h l= + - - D + -

the θ-potential,

( ) ( )a cos cot , 202 2 2 2q h q l qQ = + -

the energy reduced azimuthal momentum, λ, and the energy
reduced Carter integral, η.

When expressed in this form, it is typical to parameterize the
solutions to the geodesic equations in terms of the Mino time, τ
(Mino 2003):

( ) ( )r d d, . 21q t tS = ¢

The Mino time can then be expressed as integrals in terms of
either r or θ, which both have solutions in terms of elliptic
integrals (for a review of the solutions to the Kerr geodesic
equations, see Rauch & Blandford 1994; Gralla & Lup-
sasca 2020):

ð22Þ

The elliptic integrals can be inverted to allow their amplitudes
to be expressed in terms of Jacobi elliptic functions. It is
therefore possible to write expressions that relate the emission
radius of a null-geodesic in terms of emission inclination, θs,
observation inclination, θo, observer screen coordinates, (α, β),
and the order of subimage, n,

( ) ( )r r n, , , , , 23s s oq q a b=

without the need for a numerical raytracing algorithm to solve
the second order geodesic equations (e.g., Mościbrodzka et al.
2016; Bronzwaer et al. 2018). We use Equation (3) with
Equation (23) to calculate the intensity received at pixel with
coordinates α, β as

( ) ( ( ) ) ( )I r n R p p, , , , , , , , . 24
n

s s o 1 2

s

ååa b q q a bµn
q

n

3. Image-domain Comparisons with GRMHD

We test the feasibility of using the dual-cone model to
represent the horizon-scale structure of LLAGN cores by
studying its ability to reproduce images of time-averaged
GRMHD models of Sgr A* and M87*. These include GRMHD
simulations of MAD and SANE (standard and normal)
accretion flows, which are described by the strength of their
magnetic flux across the midplane. MAD models typically
feature high magnetic pressure, with ordered field lines, and
greater jet power, while SANE models feature higher fluid
pressure and more turbulent flows. The MAD accretion flows
are of particular interest since they exhibit more jet power than
their SANE counterparts, and are largely more consistent with
EHT data (see analyses of M87* VI, Sgr A* V). For our study,
we use time-averaged iHARM and KHARMA GRMHD models
of MAD and SANE accretion flows from the Illinois simulation
library (EHTC et al. 2019f; Prather et al. 2021; EHTC et al.
2022e), whose emissivities are extracted and imaged with the
ipole general relativistic radiative transfer code in the
PATOKA pipeline (Mościbrodzka & Gammie 2018; Wong
et al. 2022). The emission from these models is dependent on a
simple prescription for the ion-to-electron temperature ratio of

the fluid:

( )
T

T
RR

1

1

1
, 25

i

e

p

p p

high

2

2 low 2

b

b b
=

+
+

+

where βp= Pgas/Pmag gives the ratio of the gas-to-magnetic
pressure. The two tuning parameters Rhigh and Rlow tend to
describe the temperature ratios in the (weakly magnetized) disk
and the (strongly magnetized) jet, respectively.
The analyses in this section were performed using a template

matching algorithm implemented in VIDA.jl (Tiede et al.
2022) to generate image-domain representations of GRMHD
from a set of three different model classes. Our analysis
requires the definition of a loss function between images, which
we take to be the log of the magnitude of the normalized cross
correlation (NxCorr) between two N×N images. The NxCorr
between two images A and B is given by

( )( )

( ) ( )
( )

A B

A B
NxCorr , 26i

i A i B

i

i A

j

i B
2 2

å

å å

m m

m m
=

- -

- -

where μA and μB are the average intensity of the two images,
and i, jä {1,K,N} labels their pixels. We use Black-

BoxOptim.jl, a julia implementation of a differential
evolution algorithm, to minimize the loss function between
images of our model and GRMHD. We will refer to the models
that generate the best-fit images as “representative models,”
which we will use to perform photogrammetry on the images of
the GRMHD simulation and infer its 3D emission structure.

3.1. Image-domain Fit: Simulations of M87
*

We compare the performance of three different classes of
analytic models with different emission geometries. These are
(i) an equatorial model, similar to the one described in Palumbo
et al. (2022), (ii) our dual-cone model described in Section 2,
and (iii) a “combination” model whose emission is the sum of
the two. These models are used to generate images that are
similar to those produced by time averaging an a= 0.94,
prograde, Rhigh= 10, MAD GRMHD simulation and an
a= 0.94 spin, prograde, Rhigh= 160, SANE simulation. Both
simulations are taken to have mass-to-distance ratios of
3.83 μas, matching EHT measurements of M87* (M87* V).
An equivalent fit to an a= 0.5 Rhigh= 20 MAD and an a= 0.5
Rhigh= 160 SANE is shown in Figure 15 in Appendix B. The
parameter search range used to find the representative images
of our models is detailed in Table 4.
Figure 2 shows a summary of images of our representative

models. These are all compared to the GRMHD model they
were fitted to in the first row. The general effect of Rhigh is to
tune the relative emission contribution from the jet and the
disk. Although trends with respect to Rhigh differ in MADs and
SANEs, due to their different magnetic field strengths in the
inner accretion flow (compare, for example, the emissivities
between models in EHTC et al. 2019f; Emami et al. 2023), the
simulations in the top row of Figure 2 are typical of the extreme
cases of emission scale heights seen in GRMHD. In particular,
low Rhigh MAD simulations tend to have emission geometries
with lower scale heights (more disk dominated), and high Rhigh

5

The Astrophysical Journal, 974:143 (24pp), 2024 October 10 Chang et al.



SANE simulations tend to have emission geometries with high
scale heights (more jet dominated).

The increased emission contribution from the forward jet in
the images of the SANE model of Figure 2 manifests as a
smaller secondary ring feature. The morphology of this feature
is difficult for simple equatorial models to produce, as is
evident when comparing the true images to the images of the
equatorial model (second row in Figure 2) to the true images of
the GRMHD. The existence of such features is, however,
captured by models capable of producing jetlike emission, as is
apparent in the images of the geometric models with off-
equatorial components (the dual-cone and combination models
of the third and fourth rows).

Of interest are the inferred bulk parameters of the accretion
flow and spacetime from our models. We note, for example,
that the fitted mass-to-distance ratio, spin, and observer
inclinations of all our models are correct to within 3%, 5%,
and 10%, respectively. The left and right panels in the last row
of Figure 2 show the emission geometries of each of the
representative models overlayed on the true emissivity contours
of the MAD and SANE GRMHD simulations, respectively. All
representative models capture the compactness of the peak
emission, but only the dual-cone and combination models are
able to capture the scale height of the true emission geometries.
Thus, the dual-cone models appear capable of performing
accurate photogrammetry of the emission geometry from
images of GRMHD.

3.2. Image-domain Fit: Simulations of Sgr A*

In models of M87*, such as those in Figure 2, the low
observer inclination allows for 2D emissivities to adequately
represent the screen projection of the 3D structures seen in
GRMHD. Images of simulations viewed at higher inclinations,
in contrast, may be more sensitive to edge-on effects that are
not captured by our model. We evaluate the performance of our
models at fitting images taken at varying observer inclinations
by fitting images of Rhigh= 160 GRMHD simulations of
Sgr A* from the Illinois simulation registry. These simulations
were raytraced to produce images at inclinations of 30°, 50°,
70°, and 90° (see Figure 3).
All models are again able to recover the true θg values of the

source within good accuracy, fitting values within 1% of the
truth, but tend to have a bias toward inferring lower masses as
the tilt of the source increases. The models tend to be less
accurate on spin inferences at high inclinations but perform
well at low and moderate inclinations of 30°, 50°, and 70°,
capturing the true spin to within 5%. The decreased accuracy of
our model at recovering the true black hole parameters at
moderate and high inclinations is likely a result of it providing
worse image representations of structures seen at higher
inclinations.
We also study the effects of limited resolution on the

inference capabilities of our model. We perform this study by
executing the same comparison as done in Figure 3, but after
convolving both the GRMHD images and the model images
with a Gaussian beam of 10 μas FWHM during the fitting
process. This blurring kernel approximates the results of
imaging EHT sources. A summary of the results is shown in
Figure 4.
The inverse relationship between the model’s NxCORR

scores and inclination still remains, although the overall
performance of the model has improved. This indicates that
our model accurately reproduces the structures in the images of
time-averaged GRMHD that can be accessed with the
resolution of current instruments. However, while the effect
of blurring improves the NxCORR in the best fits, the
parameter inference is worse, especially for θg and spin. This
decrease in inference performance at lower resolutions
indicates that our model’s ability to infer mass and spin is
likely sensitive to fine scale image structures that are no longer
present after blurring. One possibility is the tendency for spin
to cause small asymmetries in the black hole shadow (e.g.,
Takahashi 2004) and to introduce shifts in the photon ring with
respect to the direct emission (e.g., Papoutsis et al. 2023).
These effects are diminished once the GRMHD models are

Figure 2. Comparison of time-averaged MAD (left) and SANE (right)
GRMHD simulations of M87* (top row) with the best-fitting equatorial (second
row), dual-cone (third row), and combination (equatorial + dual-cone) models
(fourth row). These two simulations are representative of the minimal and
maximal emission scale heights that are typically seen in GRMHD simulations
of M87*. The best-fitting models are determined by maximizing the normalized
cross correlation in the image domain. The text in each panel gives the opening
angle of the cone (θs), the viewing inclination (θo), the black hole spin (a), and
the mass-to-distance ratio (θg). The bottom row compares the fitted emissivity
functions of our models (colored lines) to the true emissivity of the GRMHD
(grayscale). The predicted emissivities are consistent with those of the
GRMHD, as is evident by their overlap, which illustrates our model’s ability to
perform photogrammetry in black hole spacetimes.
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blurred to EHT resolutions. Features that largely survive
blurring include the brightness asymmetry and apparent
shadow diameter. The shadow diameter is mostly consistent
at all inclinations, which suggests that the model’s ability to
infer the true inclination is likely dependent on the morphology
of the brightness distribution in the image. A discussion on our
sensitivity of the model’s parameters to various image features
can be found in Appendix A.1.

We emphasize that these simple dual-cone emission models
provide accurate representations of the image-domain morph-
ology of time-averaged GRMHD, even when blurred to EHT
resolution. Figure 5 shows two representative examples of a
best-fit NxCORR dual-cone model along with its truth image at
native resolution and after being blurred by a 10 FWHM
Gaussian beam. The intensity profiles of the dual-cone model
are strikingly similar to the truth, especially along the photon
ring region. This is an interesting result since the dual-cone
model is taken to be completely optically thin, and thus would
be expected to produce generically brighter photon rings than
what would be seen from a more accurate model with optical
depth effects, such as GRMHD. These considerations indicate
some degeneracy between the optical depth effects of radiative
transfer and the emission physics of our models. For example,
our optically thin model may exploit the anisotropy of
synchrotron emission to replicate the impact of optical depth

on tuning the relative flux between the photon rings of models
with different emission physics. It is then possible for
anisotropy effects to partition the flux of emitters away from
the n= 1 direction, causing the n= 1 ring to appear dimmer
than would be expected (see Gates et al. 2021 for an example
of how emission anisotropy can affect the total flux seen by an
observer at infinity from equatorial emitters; and Figure 3 of
Bardeen & Cunningham 1973 for an example of how flux in
the n= 0 and n= 1 images are partitioned by emission
direction).

4. Bayesian Inference in the Visibility Domain

VLBI observations of a source give rise to sparse data
products in the Fourier domain of an image. Thus, interpreting
VLBI data is reliant on a source model, regardless of whether
the model’s purpose is imaging or parameter extraction. The
EHTC has used many approaches to produce images from
VLBI observations (see, e.g., M87* IV, Sgr A* IV). While
flexible, these algorithms are only able to constrain the image-
domain structure and not the physical source parameters (e.g.,
black hole mass and spin) directly. Therefore, converting
simple geometric properties of the data/images, such as ring
size, shape, and width, to intrinsic properties of the physical
system requires calibration.

Figure 3. Best-fitting equatorial, dual-cone, and combination (equatorial + dual-cone) models to a time-averaged retrograde Rhigh = 160 MAD GRMHD simulation of
Sgr A* viewed at inclinations of 30°, 50°, 70°, and 90° (from left to right). The NxCORR score for all models is above 0.85 and increases as the black hole is viewed
more face-on. In addition, the parameters of the best-fitting models are within a few percent of the true parameters for both mass and spin at low-to-modest
inclinations. As expected, the dual-cone model (13 parameters) outperforms the equatorial model (12 parameters) despite having only a single additional parameter. In
contrast, the combination model (23 parameters) provides only marginal additional improvement despite nearly doubling the number of parameters. Table 4 lists the
parameters for each model.
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In M87* (VI), Sgr A*
(IV), and Sgr A*

(VI), a calibration
procedure called α-calibration was used to move from the ring
size to the mass of the central black hole. By creating a large
number of synthetic data sets of GRMHD snapshots, each
imaging or geometric modeling pipeline was able to relate the
reconstructed diameter d̂ to the intrinsic gravitational radius of
the system θg using the equation

( )d , 27gaq=

recovering a GRMHD-based calibration for α, and relating the
measured ring size of M87*/Sgr A* to the mass of the central
black hole.

However, this analysis is not ideal. In particular, it is likely
that significant information from the black hole’s influence on
its image is not incorporated into the calibration procedure
since it only uses the single parameter for the ring diameter.
Any imposed constraints from additional relativistic features
are not translated through the α-calibration into the GRMHD
solution space.

An ideal analysis would involve directly fitting dynamic
accretion models to data, for example, directly fitting GRMHD
and all of its accretion and emission parameters. Unfortunately,
the ability to conduct such an analysis with GRMHD was and
is likely infeasible due to the computational complexity of
directly sampling the solution space.

Following Palumbo et al. (2022), we avoid the two-step
procedure of imaging followed by α-calibration by using our
dual-cone model as a method to infer physical parameters
directly from VLBI data. We first perform a Bayesian inference
study of the dual-cone model, using two different data sets. The
first is generated from a synthetic observation of an instantia-
tion of the dual-cone model. For this test, we use the model that
has the best NxCORR when fit to the Rhigh= 160 SANE
GRMHD of Figure 2 whose flux had been normalized to that of
the GRMHD simulation that it was fitted from. A study on this
data is important for understanding degeneracies that may exist
when performing inference on realistic data. The second data
set comes from a synthetic observation of the Rhigh= 160
SANE GRMHD simulation that was used to create the
previously mentioned model instance. This data set allows us
to compare the visibility-domain fits to the image-domain
NxCORR analysis to understand how the limited coverage of
the EHT affects inferred parameters. Finally, we use data from
the public release of the EHT 2017 April 6 observations of
M87* to perform a Bayesian parameter inference study on
M87*. This sequence of tests allows us to assess the successes
and shortcomings of our model under a variety of increasingly
challenging (and realistic) circumstances, with increasing
degrees of known and unknown model errors. We report
corner plots of the parameter posteriors for all fits, and report
the highest probability density interval (HPDI) of each

Figure 4. Same as Figure 3, but when the ground truth image and model image are both blurred by a 10 μas FWHM Gaussian kernel before comparison. The resulting
NxCORR values are higher than for the unblurred case, with excellent fidelity for all model types. However, despite the improved image fidelity at this resolution, the
best-fitting parameters have significantly larger discrepancies than for the unblurred fits, showing the strong degeneracies that are present when restricted to the current
EHT resolution, especially because the photon ring cannot be distinguished from the direct emission.
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parameter, which is the smallest interval of a parameter that
contains 95% of the posterior mass.

4.1. Data Products

The ideal visibilities of a source are related to image
intensities, P(x, y), through a Fourier transform,

∬( ) ( ) ( )( )u v P x y dx dy, e , , 28ij ij ij
i u x v y2 ij ij= p- +

where i, j indexes the two sites that make up the baseline at the
point (uij, vij) in visibility space, and (x, y) are the horizontal
and vertical screen coordinates. However, the ideal visibilities
differ from the observed visibilities due to the additional effects
of noise and site-specific corruptions (called “gains”). In
particular, the observed visibilities, Vij(uij, vij) are related to the
ideal visibilities through the relationship

∣ ∣ ( )V g g V e , 29ij i j ij ij ij
i ij= + = f*

where gi is the site-specific gain corruptions (Thompson et al.
2017). The gain corruptions, gi, are effectively modeled as
complex numbers that act independently at each site.7 One can
then define gain invariant quantities from closed triangles and
quadrangles of visibilities. These gain invariant quantities are
the closure phases,

( ) ( )V V Varg , 30ijk ij jk ki ij jk kiy f f f= = + +

and log closure amplitudes,

( )c
V V

V V
a a a aln . 31ijkl

ij kl

ik jl

ij kl ik jl= = + - -

The fij and aij are the visibility phases and log visibility
amplitudes, respectively, and are related to the observed
complex visibilities by

( ) ( )V a iexp . 32ij ij ijf= +

These closure quantities have been used by many authors in
past analyses of EHT data (e.g., Chael et al. 2018; EHTC et al.
2019a, 2019b, 2019e; Narayan et al. 2021; Lockhart &
Gralla 2022; Medeiros et al. 2023).
We generate the visibilities for the data sets used in the self-

fit and GRMHD fits with the observe_same functionality of
eht-imaging to mimic EHT-like coverage from the April 6
observations of M87*. All data used have been averaged over
each scan using the scan_average functionality of Pyeh-
tim, a julia wrapper of the Python library eht-imaging.
Since the large-scale structure around M87*, which we do not
model, is over-resolved by the EHT array, we flag visibilities
with u− v distances shorter than 0.1 Gλ. All visibility data
products of the dual-cone model in this section are generated
from 180× 180 pixel images on a 120× 120 μas field of view.

4.2. Log-likelihoods

The likelihoods for a set of nonredundant closure quantities
can be constructed under the assumption that they are
characterized by a multivariate Gaussian distribution (Black-
burn et al. 2020). The closure amplitude likelihoods, in

Figure 5. Comparison of a time-averaged GRMHD image with the best-fit dual-cone model, both at native resolution (top) and after being blurred by a 10 μas FWHM
Gaussian beam (bottom). The simulation corresponds to a retrograde, Rhigh = 160, MAD simulation of Sgr A*. Columns show the GRMHD image (left), the best-fit
model (left center), horizontal and vertical intensity cross sections (right center), and residual images as a fraction of peak intensity (right).

7 Interestingly, site-specific corruptions allow for an interpretation of the
observed visibilities as a discontinuous field with a local ( )GL 1,  symmetry
(Thyagarajan et al. 2022).
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particular, can be written as

⎡⎣ ⎤⎦( ∣ ˆ) ˜ ˜ ( )c c cc exp
1

2
, 33c

1Sµ - - 

where ˜ ˆc c c= - are a vector of residual closure amplitudes
between the measured c and the model hypothesis ĉ, and Σc is
the covariance matrix of c. The likelihood for closure phases
can be constructed similarly from their complex exponentials.
We define

( ) ( ) ( )ie exp 34Y Y=

to be a vector of complex exponentials formed from its
element-wise action on vector of closure phases Ψ. The
likelihood is then

⎡⎣ ⎤⎦( ∣ ˜ ) ˜ ˜ ( )†e eexp
1

2
, 35e

1Y Y Sµ - -

where we have chosen this form to account for the phase
wrapping in ψ. We do not include the data-dependent
normalization coefficients of the likelihood functions since
they contribute an overall constant to our posterior densities
and, thus, do not influence inference.

4.3. Priors

We generally take broad, flat priors on our model to reflect
our ignorance of the source. Mass estimates of M87* from
stellar dynamics and gas dynamics methods are typically
dependent on the distance from the Earth to M87*. The quantity
constrained by each method is the mass-to-distance ratio, θg.
We, therefore, choose to report the measured θg of the source
instead of its mass.

The literature features widely discrepant measurements for
θg. These measurements range from their smallest value of
∼2 μas, from the gas dynamics methods to their largest of
∼6 μas, and from the largest stellar dynamics measurements.
We therefore adopt wide priors on θg to encompass all of these,
ranging from 1 to 8 μas.

Priors on the spin of M87* can be taken from properties of
the large-scale jet and horizon-scale images of M87*. We will
assume that the orientation of the spin axis is related to the
inclination and p.a. of the large-scale jet. Studies of the jet
dynamics of M87* suggest an inclination of ∼17° from the line
of sight, while images of the large-scale jet imply a p.a. of 288°
from north (e.g., Mertens et al. 2016; Walker et al. 2018).
Horizon-scale images of M87* show a peak brightness in the
south, indicating that the spin of M87* points away from our
line of sight (M87* V). We incorporate these observations into
our prior by fixing the observer’s inclination to lie strictly
within a range of ∼20° around the observed large-scale jet
inclination, θo ä [1°, 40°], and fixing the spin to take on only
negative values with the full range of magnitudes, a ä [−1, 0).
Since the large-scale jet is observed to point in a westerly
direction on sky, the p.a. shift is restricted to lie at a range of p.
a. ä [−π, 0]. A description of all the priors used in the analyses
of this section is given in Table 1.

4.4. Sampling

Our Bayesian analysis was performed within Comrade.

jl, a VLBI statistical inference framework (Tiede 2022).
Posterior sampling was performed with Pigeons.jl

(Surjanovic et al. 2023), a Julia (Bezanson et al. 2017)
implementation of a nonreversible parallel tempering algo-
rithm (Syed et al. 2021). We use the default slice sampler for
the kernel of the exploration step (Neal 2003).

4.5. Visibility-domain Fit: Dual-cone Model

This section features the results of a self-fitting exercise to
synthetic data generated from our model. The fitted HPDI of
each parameter of this analysis is shown in Table 2. The
synthetic data are generated using the coverage and the
measured thermal noise of the 2017 April 6 EHT observations
of M87*. Figure 6 shows a corner plot of the mass-to-distance
ratio, spin, spin axis inclination, jet opening angle, spin axis p.
a., and characteristic radius of the emissivity function (θg, a, θo,
θs, p.a., and R) of samples from the posterior.
The true image of the model used in this analysis features

two disjoint ring features, which are blended together at the
nominal resolution of the EHT. This blending introduces

Table 1

Model Parameters and Prior Ranges Used in the Bayesian Analyses with the
Dual-cone Model (Section 4)

Parameter Description Units Prior

θg Mass-to-distance ratio μas ( )1.5, 8
a Black hole dimensionless spin K ( )1, 0-
θo Observer inclination rad ( )1,

40

180
p

θs Cone opening angle rad ( ),
40

180 2
p p

p.a. Position angle of projected spin axis rad ( ), 0p-
R Characteristic radius of intensity profile GM

c2
( )1, 18

p1 Inner exponent of intensity profile K ( )0.1, 10
p2 Outer exponent of intensity profile K ( )1, 10
χ Fluid velocity azimuthal angle in ZAMO

frame
rad ( ),p p-

ι Magnetic field orthogonality angle in
fluid frame

rad ( )0,
2

p

β Fluid speed in ZAMO frame c ( )0, 0.9
σ Spectral index of emission K ( )1, 3-
η Magnetic field tangential angle in fluid

frame
rad ( ),p p-

Table 2

Highest Probability Density Interval (HPDI), the Smallest Interval Containing
95% of the Posterior Weights, of Modes 1 and 2 from the Posterior Samples of
Our Dual-cone Model Fitted to a Time-averaged, Prograde, SANE GRMHD

Simulation with Rhigh = 160

Param. Cluster 1 Cluster 2

Low High Low High

md 1.50 2.93 3.23 5.21
a −1.00 −0.06 −1.00 −0.28
θo (deg) 10 30 9 29
θs (deg) 40 62 45 60
p.a. (deg) 275 306 283 332
R 4.76 15.10 1.00 4.91
p1 0.87 9.71 0.10 9.46
p2 4.77 7.34 3.75 6.36
χ (deg) −140 −56 −104 32
ι (deg) 10 90 37 90
βv 0.36 0.90 0.18 0.82
σ 0.48 4.96 0.46 4.80
η (deg) −142 93 −131 80

10

The Astrophysical Journal, 974:143 (24pp), 2024 October 10 Chang et al.



degeneracies in the posterior when fitting. We study these
degeneracies by collecting the samples into two clusters with a
k-means algorithm on θg. The clusters defined by k-means
minimizes the sum of the squared distances from the cluster’s
mean for each point in the cluster. Since θg acts as a scaling
parameter on the image, the panels of Figure 6 depicting the
joint posterior with θg (leftmost column) show the influence of
various modeling parameters on the image size. Other than θg,
the parameter that appears to have the most direct effect on
the image size is the characteristic radius R, as is evident
from the inverse relationship between the two parameters seen
in the bottom left panel of the plot. A similar trend is seen in
the posterior fits of Palumbo et al. (2022). We also note that
the clusters with smaller values of θg are biased toward larger
values of spin. The biasing is likely due to the contribution of
the photon ring to the overall flux of the image since spin can
have a small effect on the photon ring’s size. The contribution,
however, appears to be weakly constrained since the spin
distributions in each cluster are still broad.

4.6. Visibility-domain Fit: GRMHD

In this subsection, we study the fit of our dual-cone model to
synthetic observations generated from the prograde, SANE
GRMHD model of Figure 2. The main results of this section
are summarized in Figure 7, which shows the posterior samples
for some parameters of interest, which we have classified into
two distinct clusters on θg with the k-means clustering
algorithm. The true “on-sky” GRMHD image is shown in the
first column of Figure 8, while the second and third columns
show representative images from each cluster at their true
resolution (upper row) and at the EHT nominal resolution of

20 μas (lower row). A corner plot of all parameters with their
posterior samples can be found in Figure 17.
Most images generated from the posterior samples feature

two disjoint rings as also seen in the true image. An inspection
of the lower left panel of Figure 7 indicates that Cluster 1 is
associated with black holes of smaller mass and larger emission
radii while Cluster 2 is associated with black holes of larger
mass and smaller emission radii. For the first cluster, the
decomposition of n= 0 and n= 1 emission matches the ground
truth image better and is visually similar to the results from
Section 3. For the second cluster, the n= 1 emission of the
dual-cone model focuses on the emission from the jet funnel of

Figure 6. Partial corner plot showing the posterior for a subset of the parameter
space of a dual-cone fit to itself using EHT 2017 coverage. The shown
parameters are the mass-to-distance ratio (θg), the black hole spin (a), the
observer inclination (θo), the jet opening angle (θs), the projected position angle
of the spin axis on the observer’s screen (p.a.), and the characteristic radius of
the emissivity function (R). The true values of the model used to generate the
data are shown with black lines. The posterior features two distinct clusters,
depicted in blue and yellow, which we isolate using the k-means clustering
algorithm. Figure 16 shows the full corner plot for this fit.

Figure 7. Partial corner plot showing the mass-to-distance ratio (θg), the black
hole spin (a), the observer inclination (θo), the jet opening angle (θs), the
projected position angle of the spin axis on the observer’s screen (p.a.), and the
characteristic radius of the emissivity function (R). The true values of the
GRMHD simulation are shown with black lines; the values inferred from by
the model in our image-domain NxCORR fit of Section 3 are shown in red.
Figure 17 shows the full corner plot for this fit. The posterior features two
distinct clusters, depicted in blue and yellow, which we isolate using the k-
means clustering algorithm.

Figure 8. True image of the GRMHD simulation (left) with samples from the
GRMHD posterior from each mode of the posterior (center and right). The top
row shows images at the native resolution used to generate the data; the bottom
row shows the same images after being blurred to the nominal EHT resolution
of 20 μas. All images feature a disjoint double ring structure that is not
discernible when seen at the EHT nominal resolution.
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the SANE simulation. These two clusters illustrate a degen-
eracy that occurs between the emission radius and black hole
mass that is consistent with the results from Palumbo et al.
(2022).
This multicluster posterior is a consequence of the finite

angular resolution of the EHT array, as is demonstrated by the
lower row of Figure 8. After blurring to the nominal EHT
resolution of 20 μas, both clusters appear identical and
consistent with the blurred true image. We note that the
image-domain fit of our model to the GRMHD simulation in
Section 3 should act as a proxy for a visibility-domain fit at sub
1 μas resolution (matching the pixel resolution of the fitted
images); in this case, the fit converges to a model whose image
features a photon ring of the same size as the underlying
GRMHD. Thus, we expect that arrays with sharper angular
resolution than the EHT, sufficient to distinguish the primary
emission ring and the photon ring, would resolve the multi-
cluster degeneracy seen in the EHT fits.

Finally, despite the differences in appearance, both clusters
predict a prograde inflow accretion with a significant scale
height on the emission surface. These features are consistent
with the image-domain analysis of Figure 2 and with the true
simulation.

As in GRMHD simulations, the accretion flows in LLAGN
are composed of turbulent plasma and are observed to be
highly variable (see the conclusions of EHTC et al. 2019f).
This variability introduces a source of misspecification for our
model, and means that fits to “snapshots” will differ from fits to
time-averaged images. Because the variability timescale for
M87* is ∼ days, snapshot fits to GRMHD are an appropriate
proxy for fits to EHT data from M87* over a single night.

To assess the effects of this time-variable structure, we fit our
model to snapshots of both MAD and SANE simulations using
our dual-cone model (see Figure 9). Figure 10 shows density
plots for these fits. The results of these fits suggest that the
systematic errors expected in our model could be dependent on

the underlying accretion flow, with fits to snapshots of the
SANE model showing less variance than the MAD fits.
Notably, both snapshot fits to the SANE simulation contain the
values of the best NxCORR representative model in the bulk of
their posteriors. The MAD fits, in contrast, have a larger
variance between the two posteriors, with only one posterior
containing all values of the best NxCORR representative model
in its bulk.

4.7. Visibility-domain Fit: EHT Data

We also used our model to fit EHT observations on M87*. In
this case, the limitations of model errors are unknown, but we
can still evaluate the ability of the model to reproduce actual
measurements. Nevertheless, while we have shown that our
model accurately represents time-averaged GRMHD with
reasonable parameters, realistic data will include degrees of
freedom not included in the dual-cone model. For instance,
GRMHD simulations show significant structural turbulence in
snapshots. These turbulent structures are not captured in our
dual-cone model and may introduce systematic errors, as
previously discussed in Section 4.6.
We conduct our analysis on the April 6 observations of

M87*, following M87* V. Figure 11 summarizes our results;
the full posterior samples can be found in Figure 18. The 95%
HPDI for the parameters of our model is shown in Table 3. We
infer a relatively narrow posterior for the mass-to-distance ratio
θgä (2.84, 3.75) from our fits, consistent with the stellar mass
estimates of Gebhardt et al. (2011), EHTC et al. (2019b), and

Figure 9. Snapshots of an Rhigh = 20 simulation of a MAD accretion flow (top)
and an Rhigh = 160 simulation of a SANE accretion flow (bottom). These
snapshots were used to produce data for the model fits shown in Figure 10.

Figure 10. Marginalized posteriors for snapshot fits to a Rhigh = 160 SANE
simulation (left) and Rhigh = 20 MAD simulation (right). The distributions of
two snapshot fits to each simulation are shown in blue and yellow. The
parameters shown are the mass-to-distance ratio (θg), spin (a), spin axis
inclination with respect to the observer (θo), and the spin axis position angle (p.
a.). For each parameter, the true values and the best NxCORR values that were
taken from fits to the time-averaged model in Section 3 are shown with red and
black vertical lines, respectively.
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Liepold et al. (2023). In contrast to θg, our spin inference is
weakly constrained, a result that is consistent with the results of
the previous self-fit and GRMHD fit. Our inability to constrain
the black hole spin with our model, even when performing self-
fits, suggests that spin measurements with the 2017 EHT array
are infeasible. Furthermore, restricting the priors on the
emission geometry would not improve the spin constraints
significantly since the emission parameters are uncorrelated
with spin for Stokes I. The lack of correlation of spin, at EHT
resolution, with any of the model parameters is evident from
the structure of the posteriors in the spin columns of Figures 17
and 18, and holds even in the self-fit of Figure 16.

A spin measurement that relies on Stokes I quantities will
likely require improved resolution or sensitivity to dynamical
signatures to discern the effects of spacetime from accretion.
Future proposed VLBI arrays, such as extensions of the EHT to
space with the Black Hole Explorer, will aim to measure the
n= 1 photon ring directly, providing an avenue to Stokes I spin
measurements. At the resolution of the EHT, including
polarization data may improve the prospects of spin constraints
due to frame-dragging effects on the polarization pattern
(Palumbo et al. 2020; Palumbo & Wong 2022; Chael et al.
2023) and improved astrophysical constraints (e.g., M87* VIII,
M87* IX, Sgr A* VIII).

Although we are unable to constrain the magnitude of the
spin from our model, we measure a spin axis inclination that is
consistent with the direction of the large-scale jet, θoä (11°,
24°) (Walker et al. 2018). In contrast, the EHTC analysis of

M87* was performed by assuming that the spin axis is aligned
with the large-scale jet. Misaligned disks are, however,
believed to be a generic feature of many AGN, with some
authors arguing for a tilted flow in the M87* system from the
wobbling of the large-scale jet (e.g., Cui et al. 2023), so this
independent measurement of inclination is both encouraging
for the EHTC conclusions and nontrivial.
We emphasize, however, that our model makes this

inference under the assumption that the spin axis is aligned
with the symmetry axis of the horizon-scale accretion flow.
One can expect an alignment of the horizon-scale accretion
flow with the spin axis of the black hole from the Bardeen–
Petterson effect, which applies a torque to misaligned viscous
flows (Bardeen & Petterson 1975; Thorne et al. 1986).
GRMHD simulations often do not include a viscosity term in
their evolution, but the presence of the magnetic field appears
to introduce an effective viscosity to the fluid that has been
seen to align flows in simulations that feature tilted disks (see,
for example, the tilted disk simulations of Liska et al. 2019).
This effect is typically seen to occur within a few tens of
gravitational radii of the hole, where the bulk of the emission
observed by the EHT originates.
Despite the forced alignment, the presence of a tilted flow

can still leave imprints on images of GRMHD through its effect
on the jet, although some of these features are suppressed at the
230 GHz frequencies observed by the EHT (Chatterjee et al.
2020). In particular, the shape of the photon ring appears
largely unaffected. It is thus reasonable to expect that our
model should still be sensitive to the inclination of the spin of
the black hole, rather than the inclination of the large-scale
accretion.
We also infer a projected p.a. of the spin axis that points

more northerly than would be expected if it was aligned with
the large-scale jet (see Figure 11). Studies on additional

Figure 11. Partial corner plot for a dual-cone fit to the 2017 April 6 EHT
observations of M87*. The shown parameters are the mass-to-distance ratio
(θg), the black hole spin (a), the observer inclination (θo), the jet opening angle
(θs), the projected position angle of the spin axis on the observer’s screen (p.a.),
and the characteristic radius of the emissivity function (R). Vertical lines show
other mass measurements of M87* in red (Gebhardt et al. 2011), blue (Walsh
et al. 2013), black dotted M87* (VI), yellow (Liepold et al. 2023), and green
(Simon et al. 2023). We also show the measured position angle and inclination
of the large-scale jet in M87* (Walker et al. 2018). The inset images show the
consensus April 6 image of M87* reported by the EHTC and a random sample
drawn from the posterior, blurred with a 20 μas FWHM Gaussian beam. Both
images have their peak brightness in the southeastern quadrant.

Table 3

95% Highest Probability Density Interval (HPDI) of Our Dual-cone Model
Fitted to Closure Quantities of M87* Taken from the EHTC Observations on

2017 April 6

Param. Low High

θg 2.84 3.75
a −0.90 −0.01
θo (deg) 11 24
θs (deg) 40 56
p.a. (deg) 200 347
R 1.00 8.46
p1 0.71 9.99
p2 1.47 7.27
χ (deg) 35 140
βv 0.08 0.55
ι (deg) 10 49

Cluster 1 Cluster 2 Cluster 3

Low High Low High Low High

σ 1.73 5.00 1.29 3.95 2.98 5.00
η (deg) −19 27 151 180 −180 −149

Note. The posterior features three modes in η. These modes have largely
similar HPDI except for their spectral indices, which are shown separately.
Although the HPDI reports a broad interval for the inferred p.a. of the projected
spin axis, the distribution has two separate clusters in p.a., as can be seen in
Figure 6, which excludes the truth.
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observing epochs will be necessary to clarify whether this
could be driven by a transient emission structure.

The design of our model allows us to infer the 3D emission
geometry of our source. We infer an emission profile with a
characteristic radius Rä (1, 8.46), inner exponent p1ä (0.71,
9.99), and outer exponent p2ä (1.47, 7.27). From Equation (2),
we can infer a peak radius,

⎜ ⎟⎛
⎝

⎞
⎠

( )R R
p

p
, 36peak

1

2

p p
1

1 2

=
+

which corresponds to a peak radius in the range Rpeak ä (0.84,
10.40) that is similar to GRMHD simulations (Dexter et al.
2012; EHTC et al. 2019f; Emami et al. 2023). Our fitted
emissivity parameters suggest that the emission geometry has a
half-opening angle of θs ä (40°, 56°). The inferred accretion
flow is inferred to be slow-to-moderately relativistic and
retrograde, βv ä (0.08, 0.55), although we are unable to
constrain whether it is inflowing or outflowing. Finally, we
are unable to constrain aspects of the spectral index and
magnetic field geometry tightly. There are many opportunities
to verify these broad conclusions through additional data,
including EHT observations of M87* in other years M87*-
2018-I, as well as fits using multifrequency data and
polarization information (M87* VII, M87* VIII, M87* IX).

5. Summary

We have introduced a semianalytic model for emission
concentrated within a conical region near a black hole. Despite
its simplicity, we have demonstrated that this model provides
excellent approximations to a wide variety of time-averaged
GRMHD simulations. Moreover, our model successfully
achieves the goal of photogrammetry by capturing the proper-
ties of both the black hole and the surrounding emission when
fit to high-resolution images or interferometric data.

Our model is highly efficient, both in terms of the expense to
generate images (e.g., we are able to generate 400× 400 pixel
images in ≈10 μs with the integrated GPU on a laptop with the
Apple M1 architecture) and in providing a low-dimension
representation of horizon-scale images from LLAGN. For
instance, our dual-cone model has only 13 parameter; for
comparison, the xs-ringauss geometric model used by the
EHT for their mass measurement of M87* requires 26
parameters (M87* VI). A further benefit of dual-cone model
fits is that they directly measure physically relevant parameters
(e.g., the black hole mass and spin, and properties of the
emitting plasma), while the geometric model fits require an
additional layer of analysis to interpret their parameters (e.g.,
the α-calibration procedure used in the EHTC; see Section 1).

We show that our model is capable of reproducing time-
averaged images from a wide class of GRMHD simulations.
Unlike previous semianalytic models that were restricted to
equatorial emission, our model reproduces characteristic image
morphologies that are seen in both SANE and MAD GRMHD
simulations; they produce emission geometries that are broadly
consistent with the true emission geometry of the underlying
simulation, and are often able to discern the fluid direction
(prograde or retrograde) from images.

We assess the suitability of our model for interpreting VLBI
measurements using a series of tests that fit mock EHT
observations of simulated images. We explore “self-fits” of the

dual-cone model (Section 4.5) as well as fits to mock
observations of both time-averaged and snapshot GRMHD
images (Section 4.6). In both cases, the model fits give accurate
mass measurements but do not meaningfully constrain the black
hole spin, although we do see more significant biases from
model misspecification in snapshot fits. These tests reinforce the
EHTC conclusions that the spin cannot be measured from the
current data without strong model assumptions.
We also used our dual-cone model to fit real EHT

observations of M87*. As for the snapshot fits, we expect
additional systematic errors from time-variable image structure
(in addition to systematic errors from imperfections in the model
specification). Nevertheless, these fits give estimates for the mass
and inclination that are consistent with EHT measurements.
However, we do see some evidence for systematic errors in the
fits, including a p.a. for the black hole spin axis that differs from
the direction of the large-scale jet.
Future extensions of the model could include linear and

circular polarization, both of which provide important con-
straints in EHT analyses. They could also relax the assumption
of axisymmetry, to directly model time-variable structures.
Alternatively, a comparison of model fits over many gravita-
tional timescales in M87* (e.g., over multiple years of EHT
observations) will provide an empirical estimate for the
systematic uncertainties associated with model misspecification
and may provide guidance into what physical parameters can
be confidently inferred from these fits.
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Appendix A
Model Definition

A.1. Interpreting Model Parameters

Much of the interpretation of the dual-cone model
parameters is gleaned from studies of the model’s image
structure. Here, we summarize some key features of the model
to provide additional background and intuition. Figure 12
shows an example of what images of the model can look like
for a random sample of emission parameters. The mass, spin,
observer inclination, and p.a. are fixed. Two classes of images
are generically formed whose classification depends on the
observer’s relative orientation with respect to the emission
cone. These two classes fall broadly into the categories of
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“inside the cone” or “outside the cone” and match that of
Papoutsis et al. (2023). Observers who view the black hole with
a configuration that satisfies ∣ ∣ ∣ ∣cos coso sq q> see images in
the “inside the cone” category, while observers viewing the
black hole with a configuration ∣ ∣ ∣ ∣cos coso sq q< see images in

the “outside the cone” category. Figure 12 shows example
images from each class, all featuring both n= 0 and n= 1
emission. Some of the “inside the cone” images depict only a
single ring-like feature instead of multiple, which is emble-
matic of the flexibility of our anisotropic synchrotron-emission

Figure 12. Random sample of images from the dual-cone model seen by a distant observer. All images shown are comprised of n = 0 and n = 1 subimages. In all
images, the mass-to-distance ratio is the same, the observer inclination is 30°, the spin is −1, and the projected spin axis is oriented vertically on the observer’s screen.
The remaining parameters are sampled from a prior similar to Table 1, with the exception that the range of the cone opening angle has been extended to θs ä (0, π/2).
We have classified the images into two categories, “inside the cone” (blue) and “outside the cone” (red). These are defined, respectively, by images generated with
∣ ∣ ∣ ∣cos coss oq q< in the case of “inside the cone” images or ∣ ∣ ∣ ∣cos coss oq q> in the case of “outside the cone” images.

Figure 13. Assessing the influence of model parameters on various image features. The leftmost panel shows an image of one of the representative dual-cone models
of Section 3. The direction of the spin is projected onto the image with a white arrow. The grid of panels to the right shows the magnitude of the partial derivatives of
each image pixel with respect to the parameters of the dual-cone model. The color range in each of the derivative panels is rescaled to its minimum and maximum
pixel value.
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model allowing for the peak intensity of the n= 0 image to be
greater than that of n= 1, despite the fact that the dual-cone
model is optically thin. Although our parameterization is
axisymmetric, our emissivity model generically forms asym-
metric emission structures in the bulk spacetime.

We give some intuition on how various parameters can affect
features in the images of the model in Figure 13. This plot
depicts gradients of the image pixels with respect to the model
parameters when evaluated at one of the best-fit images in
Section 3. The leftmost panel shows the true image with the
direction of the projected spin axis superimposed as a white
arrow. The parameters can broadly be categorized as space-
time-dependent parameters—the mass-to-distance ratio (θg),
spin (a), and inclination (θo)—which are seen to have large
gradients in only in the photon ring region, and emissivity and
accretion parameters that largely affect features in either only
the n= 0 subimage or both n= 0 and n= 1 subimages.

The image structure of spacetime-dependent gradients is
consistent with the expected action of these parameters on the
appearance of the photon ring. Papoutsis et al. (2023) have
suggested, for example, that a shift in the photon ring with
respect to the projected the spin axis is likely an observable
sensitive to spin, since the n= 0 subimage is largely insensitive
to spin. This effect can be seen in our spin derivative panel
(first row, second column of the image gradients), which
features a large gradient for emission in the n= 1 subimage and
a relatively suppressed gradient for n= 0. The magnitude of the
gradient is higher in regions of the n= 1 subimage that are
away from the spin axis. The asymmetry in the sensitivity of
the n= 1 feature to spin is indicative of the effect of spin on the
photon ring’s displacement. Another example is of the gradient
with md (first row first column), which is also strongest in the
photon ring region. The md parameter acts as a radial scaling of
the black hole, a fact that is exemplified by the relatively
uniform gradient around the n= 1 ring in the md panel.

Some of the emissivity parameters of interest are those that
control the location of the peak emission R, p1 and p2. The
magnitude of the derivative with respect to p1 is peaked within
a compact region, interior to the peak emission, while those of
p2 are peaked exterior to that region. These results are
consistent with the definition of our emissivity envelope in
Equation (2). Some of the accretion parameters, including fluid
speed (βv) and magnetic field azimuthal orientation (η) largely
do not influence the n= 1 emission structure. We note that
Figure 13 demonstrates that the “inner shadow” (Chael et al.
2021) is sensitive to the jet opening angle (θs) where the jet
bases of the forward and rear jets are seen highlighted in the
gradient with respect to θs.

A.2. Transformations of Quantities to Boyer–Lindquist
Coordinates

Equation (6) can be used to map vectors in the ZAMO frame
to vectors in the Boyer–Lindquist frame. Performing this

transformation on the fluid velocity gives
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which shows that the intuition that χ controls the direction of
the fluid flow carries over from the fluid frame to the global
Boyer–Lindquist frame.
We can also transform the magnetic field vector in a similar

fashion. Since there is no electric field in the fluid frame, a
magnetic field four-vector can be constructed from Bm¢ to find
the magnetic field in the global Boyer–Lindquist frame
(Gammie et al. 2003),
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From this definition, it follows that B bm m=¢ ¢ in the fluid
frame. The equivalent four-vector in the Boyer–Lindquist
Frame is then
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A.3. Image Indexing

The Kerr spacetime naturally gives rise to strong-lensing
effects where an object will produce infinitely many images
when seen by a distant observer (see, e.g., Cunningham &
Bardeen 1973; Ohanian 1987). A prescription for indexing the
infinity of images formed from a single object is then useful
when modeling observables. Previous works have focused

( ) ( ) ( ) ( ) ( )(( ) ( ) )
( )b

1 sin 2 sin cos cos 1 cos 2 1
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q
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on schemes that index images based on the number of
equatorial crossings, or number of turning points accrued in θ
in a photon trajectory (see, e.g., Gralla & Lupsasca 2020;
Johnson et al. 2020), but such definitions are ambiguous for
general emitter–observer configurations. In particular, we show
classes of trajectories associated with various emitter and
observer configurations in Figure 14 for n= 0 emission as
determined by affine length ordering. An analysis of this figure
indicates that the affine length ordered n= 0 images of each
trajectory could result in a different indexing when using either
the equatorial crossing or the turning point definitions. In
particular, this figure indicates that the two definitions are not
equivalent, and that there exists emitter and observer config-
urations, which do not have n= 0 images in either the
equatorial crossing or turning point indexing definitions. Here,
we define a generic strategy for indexing null-geodesic
trajectories in the Kerr spacetime.

An observer at infinity sets up a screen with coordinates

( )
p

p sin
A5

r
o

a
l
q

= - = -
f

( ) ( )
p

p
, , , A6

r ob q l h= - = - Q
q

where

( ) ( )a cos cot A72 2 2 2q h q l qQ = + -

is the angular potential of a null-geodesic. Every pixel on the
screen of an asymptotic observer can be associated with a
unique null ray of the Kerr exterior. This fact allows for a local
indexing scheme, which orders images on pixels by the total
affine parameter or the Mino time of the trajectories that
generated them. We note that a indexing scheme based on
Mino time is equivalent to one performed on affine time since

the two are related through the relationship
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, A8t
l

=
S

where Σ� 0.
We define the Mino time for an nth indexed trajectory, which

connects a pixel to a bulk location. We note that the Mino time
can be expressed in terms of quadratures of θ as
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with u cos2 q= , and θs and θo being the emission and
observation Boyer–Lindquist inclination of the photon. The
symbol of Equation (A9) indicates a path integral.
Any trajectory of Equation (A9) can be classified as

“Ordinary” or “Vortical.” The classification is based off the
fact that any point along the photon’s trajectory must satisfy the
constraint, Θ(θ)� 0, which implies that the rays have turning
points at
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The classification of trajectories into “Ordinary” or “Vortical”
then follows from the nature of the roots (see Gralla &
Lupsasca 2020), where geodesics that are said to undergo

Figure 14. Schematic diagram showing the types of trajectories that can make up the n = 0 subimage. Multiple configurations are shown. The labels emitter 1/2
indicate cases for which the emitter is above/below the equatorial plane. The left panel shows the trajectories for observer and emitter configurations where the
observer is inside the cone (IC), while the right panel shows configuration for where the observer is outside the cone (OC). The green highlighted trajectories originate
from emitters that are on the side of the cone near to the observer, while those highlighted in orange originate from the side far from the observer. The black solid line
highlights the equatorial plane, and is the reference line from where the antiderivative used to evaluate the integral Equation (A9) is defined. The dashed lines indicate
the location of the turning points in θ, which bounds the photon trajectories.
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“Ordinary” motion satisfy
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while those that undergo “Vortical Motion” satisfy
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Our goal of this section is related to the length of the
trajectory of a photon to an index, n, that labels the subimage,
which the photon generates. To aid in this analysis, we define
the integrals,
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These will be useful since the total Mino time can be written as
linear combination of these functions. In general, the total Mino
time of the nth image is

ˆ ( )nG , A18n 0t tD = + Dq

which is dependent on the emission and observation inclina-
tions, as well as the pixel on the observer’s screen that the
photon lands on.

Refining Equation (A18) into a definition requires specifying
the Mino time of the zeroth image, Δτ0. Our approach is to
defineΔτ0 from the observational properties of a curve γf= (t,
r(f), θs, f), which is taken to be closed in bulk space. γf will
thus result in an image of a closed curve on the observer’s
screen that will either be intersected by the β= 0 axis, or lie
entirely to one side of it. We use the fact that γf can be thought
of as the intersection of a rigid cone and a rigid 2D surface, to
define the situation where the image of γf intersects β= 0 as
the case where the observer is positioned “inside the cone”
(IC), while the other case will be for an observer positioned
“outside the cone” (OC). We have chosen this classification to
be consistent with that of Papoutsis et al. (2023), and will
quantify it through the definition of a variable,
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One observational distinction that can be made about γf is
whether it originated from the “farside” of the cone, or the
“nearside” with respect to the observer. This distinction allows
us to define Δτ0 in the following way for IC observers as
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An implication of Equation (A6) is that ( )sign b =
( )∣psign rq =¥ of a photon received by an asymptotic observer.

We will use this fact to classify trajectories seen by IC
observers as either having originated from the “farside” or
“nearside” through the label

( ( ) ) ( ) ( )isfarside sign 0 cos 0 . A22ob q= > <
We can define ∣OCtD in a similar way to ∣ICtD . The labeling

of emission as farside versus nearside is however implicit since
image (γf) lies to one side of theta β= 0, and thus will depend
on ( )∣psign r rsq = . We therefore define ∣OCD as
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whose form we would like to emphasize is similar to ∣0 ICtD ,
but with Gs and Go swapped. Thus, we have that
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Figure 14 shows a summary of the classification of Δτ0
trajectories.
Equation (A24) can be further simplified with Boolean

algebra. We define the νθ at the points of emission as
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which allows the total Mino time accrued to be written as
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where n is the image index.

Appendix B
Image Domain

Section 3 discusses the details of our image-domain study of our
semianalytic models. The images analyzed were used to illustrate
our models’ capabilities for reproducing structures seen in various
time-averaged GRMHD simulations, MAD and SANE. We also
study the robustness of our model at producing representative
images of GRMHD at various inclinations and at limited
resolution. We show that the parameters that define the
representative images are, in general, consistent with the
parameters of the true GRMHD simulations. Table 4 lists a
summary of the parameters that we used to define our models,
along with the parameters that were fitted from GRMHD with our
combination model in Figure 3. The GRMHD model used in
Figure 3 was of a retrograde MAD GRMHD. We note that the
representative models at 30° and 50° are also described by a
retrograde accretion flow (the accretion flow is retrograde if the
signs of χ and a differ in our convention). We also show additional
images of fits to 0.5 spin MAD and SANE GRMHD simulations
in Figure 15, where we find similar results as in Figure 2. All fits
shown in Section 3 were to high spin images of GRMHD.
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Table 4

Summary of Results from the NxCORR Fit Study of Figure 3

Param. Description Units Range
Best-fit Param.

30° 50° 70° 90°

θg Mass-to-distance ratio μas [1.5, 8] 5.04 5.04 5.04 4.99
a Black hole dimensionless spin K [−1, 0] −0.96 −0.95 −0.95 −0.89
θo Observer inclination deg [ ]20, 20t tq q- + 27 45 55 70

θs Cone opening angle deg [ ]20, 90 67 70 61 77
p.a. Position angle of projected spin axis deg K K K K K

Rcone Characteristic radius of emission on conical component
GM

c2
[1, 10] 3.13 4.36 5.26 4.27

p1cone Inner exponent of the cone intensity profile K [0.1, 10] 0.79 0.27 0.15 0.43
p2cone Outer exponent of the cone intensity profile K [1, 10] 3.28 3.57 3.94 5.56
χcone Fluid velocity azimuthal angle in ZAMO frame deg [−180, 180] 180 180 100 105
ιcone Orthogonal angle of magnetic field conical component deg [0, 90] 64 90 65 88
βvcone Fluid speed of conical component in ZAMO frame c [0, 0.9] 0.38 0.18 0.10 0.16
σcone Spectral index of conical component K [−1, 3] −0.01 −0.19 1.14 2.37
ηcone Tangential angle of magnetic field conical component deg [−180, 180] 162 10 175 −7
Rdisk Characteristic radius of emission on equatorial component

GM

c2
[1, 10] 5.36 5.67 4.45 1.01

p1disk Inner exponent of the disk intensity profile K [0.1, 10] 0.10 0.1 0.10 9.43
p2disk Outer exponent of the disk intensity profile K [1, 10] 4.47 7.12 5.63 1.55
χdisk Fluid velocity azimuthal angle in ZAMO frame deg [−180, 180] 84 79 129 148
ιdisk Orthogonal angle of magnetic field equatorial component deg [0, 90] 79 90 80 82
βvdisk Fluid speed of equatorial component in ZAMO frame c [0, 0.9] 0.17 0.41 0.19 0.09
σdisk Spectral index of equatorial component K [−1, 3] 1.98 3.00 1.78 −1.11
ηdisk Tangential angle of magnetic field equatorial component deg [−180, 180] 10 −19 180 90
rJ Relative flux component between cone and disk K [0, 1] 0.5 0.48 0.81 0.58

Note. The parameters and the search ranges shown include all the parameters that were used in the image-domain study of Section 3 across all model types. θt in the
above table refers to the true spin inclination that our model was fitted to. There are no entries for the p.a. under the “Best-fit Parameters” column since it was fixed to
the true value during the fits.
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Figure 15. Best-fit (by optimizing the normalized cross correlation; see Section 3) equatorial, dual-cone, and combination (equatorial + dual-cone) models to four
GRMHD simulations of M87*. The four models are (left) a = 0.5, Rhigh = 20, MAD, (center-left) a = 0.5, Rhigh = 160, SANE, (center-right) a = 0.94, Rhigh = 10,
MAD, and (right) a = 0.94, Rhigh = 160, SANE. The bottom row compares the model emissivity to the GRMHD emissivity. The equatorial model shows the most
significant errors in the best-fit parameters. For the dual-cone model, the mass-to-distance ratio of the best-fit model is accurate to within ∼1%, the spin is accurate to
within 6%, and the inclination is accurate to within 4° for each of the four GRMHD simulations.
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Appendix C
Visibility Domain

Here, we show the full corner plots for the visibility-domain
fits of Section 4. These include the corner plots for the self-fit
(Figure 16), the GRMHD fit (Figure 17), and the 2017 M87*

data fit (Figure 18).

Figure 16. Full triangle plot for dual-cone model fits to synthetic data generated from a dual-cone model (see Section 4.5 for details).
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Figure 17. Full triangle plot for dual-cone model fits to synthetic data generated from a prograde Rhigh = 160 SANE simulation of M87* (see Section 4.6 for details).
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