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Most tests of general relativity with gravitational-wave observations rely on inferring the degree
to which a signal deviates from general relativity in conjunction with the astrophysical parameters
of its source, such as the component masses and spins of a compact binary. Due to features of the
signal, measurements of these deviations are often highly correlated with the properties of astro-
physical sources. As a consequence, prior assumptions about astrophysical parameters will generally
affect the inferred magnitude of the deviations. Incorporating information about the underlying
astrophysical population is necessary to avoid biases in the inference of deviations from general rel-
ativity. Current tests assume that the astrophysical population follows an unrealistic fiducial prior
chosen to ease sampling of the posterior—for example, a prior flat in component masses—which
is is inconsistent with both astrophysical expectations and the distribution inferred from observa-
tions. We propose a framework for fortifying tests of general relativity by simultaneously inferring
the astrophysical population using a catalog of detections. Although this method applies broadly,
we demonstrate it concretely on massive graviton constraints and parameterized tests of deviations
to the post-Newtonian phase coefficients. Using observations from LIGO-Virgo-KAGRA’s third
observing run, we show that concurrent inference of the astrophysical distribution strengthens con-
straints and improves overall consistency with general relativity. We provide updated constraints
on deviations from the theory, finding that, upon modeling the astrophysical population, the 90%-
credible upper limit on the mass of the graviton improves by 25% to mg < 9.6 X 1072 eV/c2 and

the inferred population-level post-Newtonian deviations move ~0.40 closer to zero.

I. MOTIVATION

Gravitational-wave observations from compact binary
mergers have provided a unique laboratory to test Ein-
stein’s theory of gravity in the strong-field regime [1-
7). These individual detections by the Advanced
LIGO [8] and Advanced Virgo [9] detectors allow for
various tests—such as inspiral-merger-ringdown consis-
tency [10, 11], parameterized inspiral deviations [12-
14], gravitational-wave dispersion [15, 16], birefringence
[17, 18] and nontensorial polarizations [19-23], among
many more; see Ref. [7] for recent results—to both
target specific properties of general relativity (GR) as
well as broadly explore its consistency with observa-
tions. Beyond analyzing events individually, the ensem-
ble of detections can be analyzed collectively to study
the possibility of deviations from GR at the population
level [6, 7, 24, 25]. Hierarchical population tests rely on
inferring the distribution of deviation parameters across
all events and confirming that it is consistent with a glob-
ally vanishing deviation [24, 26, 27].

In this study we explore the systematic impact of astro-
physical population assumptions on these studies, show
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that they already come into play for current catalogs due
to the increasing number of detections, and offer a so-
lution under the framework of hierarchical population
modeling.

In inferences about deviations from GR, there are
strong likelihood-level correlations between the devia-
tion parameters and the astrophysical parameters of the
source, such as the masses and spins of compact bi-
naries [1, 28, 29]. Therefore, any inference of devia-
tions from GR signals from black hole coalescences will
be affected by assumptions about the distribution of
binary black-hole masses and spins in the Universe—
otherwise known as the astrophysical population distri-
bution [30]. This is true at both the individual-event
and catalog levels, regardless of the specific assumptions
made in combining deviation parameters across events,
whether the analysis is hierarchical or not. Even when
astrophysical parameters do not explicitly appear in the
catalog-level test of GR, assumptions about these pa-
rameters are implicitly encoded in the individual-event
deviation posteriors through the prior. As the catalog of
gravitational-wave observations grows and the precision
of the measurements improves, these systematic effects
become more important.

In presence of correlations between deviation and as-
trophysical parameters, we must simultaneously model
the astrophysical population distribution in conjunction
with testing GR. By not explicitly doing so, as has been
the case in previous tests of GR [1-7, 24], the astrophys-
ical population is typically implicitly assumed to be uni-
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form in detector-frame masses and uniform in spin mag-
nitude. This fiducial sampling prior is adopted to ensure
broad coverage of the sampled parameter-space, and not
to represent a realistic astrophysical population. In real-
ity, the primary-black hole mass population more closely
follows a decreasing power-law with an excess of sources
at ~35 M), and preferentially supports low spins [30, 31].
This mismatch can lead to biased inference regarding de-
viations from GR. Simultaneously modeling the astro-
physical and deviation distributions will not eliminate
the influence of the former on the latter, but it will en-
sure that this interplay is informed by the data and not
arbitrarily prescribed by analysis settings.

While this insight applies to all tests of GR, for con-
creteness we devote our attention to constraints on the
mass of the graviton [15, 16] and deviations in parameter-
ized post-Newtonian (PN) coefficients [12, 13, 32-35]. A
massive graviton would affect the propagation of a gravi-
tational wave over cosmological distances; this leads to a
frequency-dependent dephasing of the gravitational wave
which is related to the mass of the graviton, m,, and the
propagated distance. The PN formalism describes the
Fourier-domain phase of an inspiral signal under the sta-
tionary phase approximation through an expansion in the
orbital velocity of the binary system; each k/2 PN expan-
sion order can then be modified by a deviation parameter,
0, which vanishes in GR. See App. A for further de-
tails about both calculations. We focus on these tests as
they target the signal inspiral phase, which also primar-
ily informs astrophysical parameters such as masses and
spins; we leave other tests [5-7, 10, 11, 15, 16, 19-23] to
future work.

As motivation, Fig. 1 shows how inference on the OPN
coefficient of a real event (GW191216-213338) depends
on astrophysical assumptions. This figure compares mea-
surements with (blue) and without (red) a simultaneous
measurement of the population of black hole masses and
spins (see Sec. II). The observed binary black-hole pop-
ulation shows a preference for systems with comparable
masses; as a consequence of the strong correlation be-
tween the 0PN deviation coefficient and the mass ratio
of GW191216-213338, this preference then “pulls” the
system towards more equal masses and a more negative
deviation coefficient. This is a direct manifestation of the
fact that tests of GR are contingent on our astrophysical
assumptions. Higher PN orders are expected to display
similar correlations as in Fig. 1 with these and other pa-
rameters. For example, spins are known to be correlated
with the coupling constant of dynamical Chern-Simons
gravity which modifies the phase at the 2PN order [36—
39]. While we have constructed the posterior informed
results here, it is more robust to simultaneously infer the
astrophysical population while also testing GR. Fixing
the prior to one astrophysical population realization or
marginalizing over possible distributions from other anal-
yses will not capture any correlated structure between the
inferred deviation parameters and the astrophysical dis-
tributions. The above example serves only to illustrate
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FIG. 1. Posterior distributions for the OPN deviation
coefficient d¢o, detector-frame chirp mass M(1 + z), and
symmetric mass ratio n for the gravitational-wave event
GW191216-213338 [6, 40], as inferred by a modified SEOB-
NRv4 waveform [14, 41-44]. Posteriors are conditioned on
two different astrophysical assumptions: the broad prior used
during parameter estimation (red), and the astrophysical pop-
ulation inferred by the data using the model in Sec. IIB
(blue). The black dashed curves show the expected correla-
tion (App. B). Due to the correlations between astrophysical
and deviation parameters, different astrophysical populations
lead to different posteriors for d¢pyo.

the impact of the arbitrary choices previously made.

The remainder of the manuscript focuses on combining
information from many observations to simultaneously
infer the astrophysical population while testing GR; it
is structured as follows. We first introduce our hierar-
chical analysis framework, as well as astrophysical and
GR deviation models, in Sec. II. We then demonstrate
the impact of incorporating astrophysical information
by constraining the graviton mass and inferring the PN
deviation properties with an ensemble of gravitational-
wave observations in Sec. III. We analyze events from
LIGO-Virgo-KAGRA (LVK)’s third observing run with
individual-event results from Ref. [7] (the posterior sam-
ples are available in Ref. [45]) — a subset of the events in
GWTC-3 [46]. The simultaneous modeling of the astro-
physical population while testing GR tightens the gravi-
ton mass upper limit by 25%, and improves consistency
with GR on the PN coefficients by ~0.40, when using
a modified SEOBNRv4 waveform [14, 41-44]. Finally,
we conclude in Sec. IV, where we summarize the case for
jointly modeling the astrophysical population when test-
ing GR in order to avoid biases and hidden assumptions,
and comment on how the same is true for gravitational-
wave studies of cosmology or nuclear matter.



II. POPULATION ANALYSES

In this section, we introduce the fundamentals of in-
ferring a population distribution from individual observa-
tions and discuss the population models we employ. We
also outline the implementation and importance of ob-
servational selection effects in accounting for the events
used within the analysis.

A. Preliminaries

We infer the astrophysical population distribution and
deviations from GR (see Refs. [47-49] for a discussion of
hierarchical inference in the context gravitational-wave
astronomy). This framework has already been exten-
sively applied to tests of GR and astrophysical popula-
tion inference separately [6, 7, 24, 25, 30, 31, 50-66]. Here
we focus on combining both methods to jointly infer the
astrophysical population while testing GR.

Our approach is based on a population likelihood,
p({d}|A), for the ensemble of observations, {d}, given
population hyperparameters, A = {Aastro, Angr}. We
separate the hyperparameters into the parameters de-
scribing the astrophysical population distribution, Aastyo,
and parameters describing the deviation to GR, Aygr-
The hyperparameters encode the shape of the popula-
tion distribution, 7(6|A), where 6 are parameters of a
single event; we describe our population models in the
following subsections. This hierarchical approach allows
us to test GR while concurrently inferring the astrophys-
ical population from the data. Given the likelihoods of
individual events, p(d;|0;), the population likelihood is

p({d}|A) =

. N
ﬂley/mewﬂﬂ%M% (1)
where d; and 6; are respectively the data and parameters
for the ith event, and {d} is the collection of data for the
ensemble of N observations'. We address the technical
aspects of the likelihood calculation in App. C.

In Eq. (1), £(A) is the detectable fraction of obser-
vations given a set of population hyperparameters and
accounts for selection biases [47]. It is defined as
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Here pget (0) is the probability of detecting a binary black-
hole system with parameters #. The selection factor in
Eq. (2) accounts for both the intrinsic selection bias of

! Equation (1) assumes a prior on the rate of observations as
7(R)  1/R, which was analytically marginalized [62].

a gravitational-wave detector (e.g., heavier binaries are
more detectable), as well as selection thresholds used
when deciding which gravitational-wave events to ana-
lyze. The detected fraction can also be framed as a “nor-
malizing factor,” which relaxes the need for normalizable
population distributions (so long as the integrals in Eqs. 1
and 2 are finite) [67]. This correction will become impor-
tant in Sec. IT C when discussing the selection criteria for
events to be included in the analysis.

In theory, the selection factor should account for the
effect of both astrophysical and deviation parameters.
However, we ignore the latter here, the effect of which
is subject of ongoing research [68]. For the former, we
compute the detectable fraction, £(A), from a set of re-
covered injections,

where Njyj is the number of injected signals, Nyec is the
number of recovered signals, and Tqraw (6;) is the distribu-
tion from which the injected signals were drawn (for more
details see Refs. [30, 31, 47-50]). The subset of injected
signals that are recovered is determined by the partic-
ular thresholds used to determine which gravitational-
wave observations to use within the hierarchical analy-
sis. To avoid biases, the criteria on the threshold for the
detectable fraction calculation must match that of the
observed signals. We address the specifics of the relevant
criteria for our analysis in Sec. I C.

Finally, Eq. (1) explicitly shows the need for jointly
modeling the astrophysical population when testing GR.
While the astrophysical population may be separa-
ble from the deviation distribution so that w(f|A) =
T (Qastro| Aastro) T(fnar|Ancgr), this factorization cannot
be undertaken for individual event likelihoods, as the
deviations are often correlated with astrophysics (see
Fig. 1), i.e. p({di}|0) # p({d}|0ncr) p({d}|0astro). There-
fore, the integrals of Eq. (1) do not separate and tests of
GR cannot be undertaken in isolation from the astro-
physics.

From the hyperposterior distribution on the popula-
tion parameters, we can construct the individual event
population-informed posteriors following Refs. [69-71]
(and references therein). Such distributions represent our
best inference about the properties of a given event in the
context of the entire catalog of observed signals. These
calculations are subtle as they avoid “double-counting”
the gravitational-wave events which also used to infer the
population distribution.

B. Population models

In this subsection, we outline the population models for
both the GR deviations and the astrophysical population.
While many astrophysical population models have been



proposed [30, 31, 50-66] as a product of the increasing
number of observations [30, 46], in this work we restrict
ourselves to standard parameterized models motivated
by previous analyses.

1.  GR deviation population models

There are two typical approaches to combining poste-
riors on GR deviation parameters obtained from different
gravitational-wave observations, each stemming from dif-
ferent assumptions behind the deviations (see, e.g., dis-
cussions in[6, 7]). The first, more general approach is to
assume that the population describing deviations from
GR is, to the lowest order, a Gaussian distribution with a
mean, 4, and standard deviation, o [24, 26]. In the limit
that all observations are consistent with GR, (p,0) —
(0,0) and the inferred distribution approaches a Dirac
delta function at the origin. Since a Gaussian distribu-
tion encapsulates the lowest order moments of more com-
plicated distributions, given enough events any deviation
from a delta function at the origin will be identified as a
violation of GR, even if the exact shape of the deviation
distribution is not captured by a Gaussian [24, 27]. This
approach is now routinely applied to post-Newtonian de-
viations tests, inspiral-merger-ringdown consistency tests
and ringdown analyses [6, 7, 24], but it can be naturally
extended to any analysis that recovers GR in the limit of
some vanishing parameter. This method provides a null
test in cases where the exact nature of the deviation is
unknown.

The second approach assumes all observations share
the same value of the deviation parameter [5, 12-14, 44,
72-76]. This is the limiting case of the aforementioned
Gaussian model when o — 0. This model (in the absence
of astrophysical information) is equivalent to simply mul-
tiplying the marginal likelihoods of the deviation parame-
ter obtained from the individual events. The assumption
of a shared parameter is only suitable in the context of
specific theories or models, in which case the expected
degree of deviation for each event can be predicted ex-
actly as a function system specific parameters (e.g., BH
masses and spins) and universal, theory-specific param-
eters (e.g., coupling constants), the second of which can
be measured jointly from a catalog of detections by mul-
tiplying likelihoods. In practice, the lack of complete
waveform models beyond GR means that this approach
has so far only been well-suited for measurements such
as the mass of the graviton, and features of the prop-
agation of gravitational waves whose observational sig-
natures are independent of specific source properties by
construction [5-7].

2. Astrophysical population models

Following Refs. [30, 31, 50], we model the primary
black-hole mass (m;) distribution as a power-law whose

slope is given by an index «, with a sharp cut-off gov-
erned by the minimum mass, My, and a higher-mass
Gaussian peak,

7T(m1|A) = (1 - fpeak) ,P[Oé,mmin}(ml)‘F
fpeak N[:upealﬂ Ugeak](ml) : (4)

Here, fpeak is the fraction of binaries in the Gaussian
peak, the powerlaw is given by

—a
my o, M 2 Mmin

(5)

0, m1 < Mmin ,

Pla, Mmin] (1) {

and N[u, 0?](z) is the probability density function for a
Gaussian with mean p and variance o?. We fix muyi, =
5 Mg for simplicity. Unlike other studies [30, 31, 53],
we do not infer much structure in the Gaussian peak as
higher mass features become unresolvable when looking
at the light binary systems that provide constraints of
PN coefficients (see Sec. I1C).

We parameterize the distribution of mass ratios, ¢ =
ma/my, as a conditional power-law, with index 8, and a
sharp cut-off imposed by myi,, such that

1 2 q Z mmin/ml

wqlmi: A) {qﬁ’ ©)

Oa q S mmin/ml .

Here 8 can take any value without leading to a singularity
due to the lower bound on the mass ratio.

We adopt a truncated Gaussian population model for
the component spins with a mean, p,,, and standard devi-
ation, oy, bounded between zero and one, assuming both
spins are drawn independently from the same population
distribution. This differs from standard Beta distribu-
tion utilized in many recent analyses [30, 31, 50, 54, 77].
as it allows for non-zero support at the edges of the spin-
magnitude domain [78]. Furthermore, adopting a Gaus-
sian model allows for efficient computation of the popula-
tion likelihood via analytic integration (see App. C). For
individual-event analyses where the spins are assumed to
be aligned with the orbital angular momentum (as is the
case for posteriors using a modified SEOBNRv4 wave-
form [14, 41-44]), this model treats the measured spin
along the orbital angular momentum as the total spin
magnitude.

For analyses where the individual event inferences
also possess information about the spin-precession de-
grees of freedom, we adopt a model for the spin tilts,
cos 012, whereby the population is parameterized as a
mixture of isotropically distributed and preferentially
aligned spins [54],

m(cos by, cosbs|A) = fZO + (1 = fiso) X

N1, 05](cos 1) N1, 05](cos 62) (7)

where fiso is the mixing fraction, and oy is the standard
deviation of the preferentially aligned Gaussian compo-
nent. This model is only relevant for analyses with pre-
cessing spins. In this manuscript, this includes the mas-
sive graviton constraints (Sec. IITA), and PN deviation



tests with the IMRPHENOMPV2 [34, 35, 79] waveform
(App. D).

Finally, we also adopt a power-law model for the
merger-rate density as a function of redshift [62],

1 dV,
142 dz

m(z[A) o< (1+2)*, (8)
where dV../dz denotes the evolution of the comoving vol-
ume with redshift, and X is the power-law index. When
A = 0, the binary black-hole population is uniformly dis-
tributed within the source-frame comoving volume.

C. Selection criteria and observations

We limit ourselves to binary black-hole observations
made during LIGO-Virgo-KAGRA’s third observing
run [46] with false-alarm-rates of less than 1073 per
year?. This mirrors the selection criteria chosen for the
tests of GR within Refs. [5-7], and therefore we do need
not reanalyze any individual gravitational-wave observa-
tions [45, 80]. The events that pass these criteria are
listed in Table IV of Ref. [6] and Table V of Ref. [7].
In future studies, the false-alarm-rate threshold could be
raised to increase the number of included gravitational-
wave events. This would likely improve inference of the
astrophysical population and GR deviation constraints
due to the larger catalog of observations. In our analy-
ses, we exclude GW190814 [81] as it is an outlier from the
binary black-hole population [31] and GW200115_042309
since it is a black hole-neutron star merger [82]. It is
straightforward to extend this analysis to additionally
incorporate binary neutron star and neutron star-black
hole mergers by adopting a mixture model of the differ-
ent source classifications (see Ref. [30] for one example).
We then use all events except GW200316_215756° when
inferring the mass of the graviton, mirroring the analysis
in Ref. [7]. When constraining the PN deviation coeffi-
cients, we include the additional criterion that signal-to-
noise ratios (SNRs) during the binaries’ inspiral must be
greater than 6, again mirroring previous analyses [6, 7].

We use posteriors for the graviton’s mass inferred us-
ing a modified IMRPHENOMPV2 [34, 35, 79] waveform,
whereas we use both modified SEOBNRv4 [14, 41—
44] (for results in Sec. IIIB) and modified IMRPHE-
NoMPVv2 [12, 13, 34, 35, 73, 76, 79] (for results in
App. D)* waveform models when inferring the PN de-
viations. We summarize these events and their relevant

2 For comparison, the population analyses presented Ref. [30] used
a false alarm rate threshold of 1 per year. A more stringent false-
alarm-rate threshold is often adopted when testing GR to avoid
contaminating from false detections.

3 GW200316_215756 was excluded from propagation tests within
Ref. [7] due to poor sampling convergence.

4 Single-event results with IMRPHENOMPV2 were only produced
during the first half of the third observing run [6, 7].

properties in Tab. I. We do not include gravitational-
wave events from the first and second LIGO-Virgo ob-
serving runs, as a semi-analytic approximation was used
to estimate the sensitivity of the detector network during
that time [5]. This approximation does not compute a
false-alarm rate and therefore cannot be unambiguously
incorporated into this methodology.

As described in Sec. II, selection effects are estimated
through an injection campaign. While we know the to-
tal network SNR of the individual injections, part of our
selection criteria is based on the inspiral network SNR.
We approximate the inspiral SNR from the total SNR
by constructing a linear fit to their ratio as a function of
detector-frame total mass (Fig. 2). This fit is constructed
by inferring the slope and offset of the line, as well as the
uncertainty on the data points. We assume identical un-
certainties on all SNR ratios, and marginalize over this
parameter to fit the line. We validate this approxima-
tion by computing the detection probability pget(6) with
different draws of the linear fit. We find that different
realizations of the approximation do not change the de-
tection probability, and so we consider this approxima-
tion to be sufficiently accurate for our purposes. Future
injection campaigns may also opt to compute the inspiral
SNR directly.

III. RESULTS

In this section we simultaneously infer the astrophys-
ical population while testing GR and quantify the im-
pact of fixing the population distribution to the sam-
pling prior. Throughout, we use the nomenclature
“fixed” and “inferred” to refer to whether the analy-
sis uses the fixed sampling prior or infers the distribu-
tion from data, respectively. We implement the analy-
ses using NUMPYRO [84, 85] and JAX [86], leveraging
ASTROPY [87-89] and ScIiPy [90] for additional calcula-
tions, and MATPLOTLIB [91], ARV1Z [92] and CORNER [93]
for plotting purposes. The code for the hierarchical tests
is available in Ref. [94].

A. DMassive graviton constraints

We begin by demonstrating that astrophysical assump-
tions are crucial even in the simplest scenarios, where a
global deviation parameter is shared across events. This
is the case for the mass of the graviton, mgy [15, 16]
(see App. A1), for which we produce an updated up-
per limit by simultaneously inferring the astrophysical
distribution.

We combine results from individual-event likelihoods
under the assumption of a shared deviation parameter as
described in Sec. I1 B. In practice, we compute this as the



TABLE 1. Observations from the LIGO-Virgo-KAGRA’s
third observing run that pass our selection criteria [6, 7,
46, 83]. The different columns outline the gravitational-wave
event, the detector-frame chirp mass, the total and inspiral
mazimum a posteriori SNRs (ptor and pinsp respectively), and
whether it was included in the graviton constraint calculation
(mg) or the post-Newtonian deviation tests (PN). Horizontal
lines split events from the two halves of the third observ-
ing period. While we use all events marked under “PN” in
Sec. III B, we are limited to the first half of observing run
when using IMRPHENOMPV2 posterior samples in App. D.

Event (I+2)M|  prot Pinsp | Mg |PN
[Mo)]

GW190408_181802| 23.7%1% 15.0 8.3 VA
GW190412 30.1127 19.1 151 | v |V
GW190421 213856 | 46.675% |  10.4 2.9 v
GW190503_185404 | 38.615% | 13.7 4.3 v -
GW190512_180714| 18.6%5% 12.8 105 | v |V
GW190513_205428| 29.515¢ | 13.3 5.1 v -
GW190517_055101 | 35.9%2% | 11.1 3.4 v -
GW190519_153544 | 65.1177, | 15.0 0.0 v -
GW190521_074359| 39.8%22 25.4 9.7 VA
GW190602_175927| 72.971%5 | 13.1 0.0 V|-
GW190630_185205| 29.4115 16.3 8.1 VA
GW170706_222641 | 75.11120 | 12.7 0.0 V|-
GW190707_093326| 9.8915L, | 134 122 |V |V
GW190708_232457| 15.5753 13.7 111 | v | v
GW190720_000836 | 10.4715-2 10.5 9.2 VA
GW170727_060333 | 44.7753 12.3 2.0 v | -
GW190728.064510| 10.1705% | 12.6 114 | v |V
GW190828_063405| 34.5%29 16.2 6.0 VA
GW190828 065509 | 17.415:S 9.9 6.3 VR
GW190910_112807 | 43.972% | 144 3.3 V|-
GW190915235702| 33.1%33 | 131 3.7 V|-
GW190924 021846 | 6.447055 | 12.2 18 | v |v
GW191129.134029( 8.497058 | 14.1 128 |V |V
GW191204.171526] 9.70795% | 18.0 163 | v |V
GW191215.223052| 24.911% | 10.6 5.5 v -
GW191216.213338| 8.947955 | 17.9 156 | v |V
GW191222.033537| 51.0152 | 13.1 3.1 v -
GW200129_065458| 32.1138 25.7 104 |V |V
GW200202_154313| 8.1570 52 | 11.1 105 | v |V
GW200208.130117| 38.8%52 9.9 3.0 v |-
GW200219.094415| 43.7%53 | 11.2 2.8 V|-
GW200224.222234| 40.9%33 |  19.4 47 | v | -
GW200225_060421| 17.7+39 12.9 6.8 VA
GW200311_115853| 32.7+2% 17.5 6.5 VA
GW200316_215756| 10.7+51 11.5 10.7 -V

p
SI0SP 0 1.1079:9% — 0.9019:98 <M(1 - Z)>
Ptot

100 Mo

Fraction of SNR within inspiral, Pinsp /Ptot

50 100 150
Total detector-frame mass, M (1 + z) [Mg]

FIG. 2. Ratio between the network mazimum a posteriori
gravitational-wave inspiral and the total SNRs as a function of
detector-frame total mass, M (142z) = (m1+ma2)(1+2), for all
gravitational-wave observations in the LIGO-Virgo-KAGRA
third observing run [6, 7, 46, 83] with a false-alarm rate less
than 1073 /yr. The solid blue line is the median best-fit line to
the observations, with the band representing the 90%-credible
uncertainty. While computing this fit, we also estimate the
uncertainty in the individual data points. We use this fit to
compute the inspiral SNR for the injections used to estimate
the detection probability, pdet(6), as described in Sec. IIC.

limit of a vanishing standard deviation of the hierarchi-
cal analysis described in Sec. II. For technical reasons, we
assume a uniform prior distribution on log;q(mgy) when
combining observations, which differs from Refs. [5-7]
which applied a uniform prior prior on mg itself; this
is to avoid poor convergence when reweighting between
individual-event posterior distributions. In the end, we
reweight the shared graviton mass inference to a uniform
prior to report upper limits on mg,. We compare this
to results obtained assuming the sampling prior for the
astrophysical parameters.

The one-dimensional marginal distributions of the
shared mass of the graviton are shown in Fig. 3. The in-
clusion of astrophysical information changes the inferred
distributions of the graviton’s mass increasing support for
mg = 0. When using the sampling prior for the astro-
physical population (and thereby assuming the incorrect
distribution), the graviton’s mass is constrained to be
my < 1.3x10723eV /c? at the 90% level®; however, upon
inferring the astrophysical population the graviton’s mass

5 This constraint differs from the 90% upper limit of 1.27 x 10~23
eV/c? calculated in Ref. [7], which is determined by addition-
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FIG. 3. Marginal one-dimensional posterior distributions for
the mass of a massive graviton. In practice, we compute the
shared value of graviton mass by assuming a shared devi-
ation parameter log,,(mgc?/eV) then reweighting to a uni-
form graviton mass prior. The dashed lines correspond to
the 90% upper limits from the two analyses. We compare
the result when astrophysical information is not included,
equivalent to multiplying individual event likelihood functions
(yellow), to also modeling the astrophysical population (dark
blue). The result shifts towards smaller values of mg if si-
multaneously modelling the astrophysical population and the
graviton’s mass.

becomes more constrained, with m, < 9.6 x 10—24 eV/c2
at the 90% credible level. Under the expectation that GR
is correct and my = 0, a reduced constraint is generically
expected as we have included the correct information re-
garding the astrophysical population. This highlights the
effect of unreasonable astrophysical assumptions, which
are inconsistent with the observed population, on tests
of GR.

B. Hierarchical post-Newtonian deviation
constraints from SEOBNRv4

We repeat the population analysis, this time measuring
the hierarchical PN deviation distribution with a mean,
upN, and standard deviation, opy, for all PN orders.
This is corresponds to ten separate analyses where only
one PN deviation coefficient is allowed to vary. To com-
pare with the default approach (which implicitly assumes
a flat-in-detector-frame mass, uniform mass ratio, uni-
form spin-magnitude aligned spin, and comoving volume

ally incorporating observations from the first and second LIGO-
Virgo-KAGRA observing periods [5, 95]. We do not include these
observations due to the ambiguity in the detector network sensi-
tivity during these periods.

redshift distributions), we also fit the GR deviation in
isolation under the assumption of the (astrophysically
unrealistic) sampling prior [6, 7].

Figure 4 shows the two-dimensional posterior distri-
bution of the deviation hyperparameters for —1 through
to 3.5 PN orders. The standard results implicitly using
the sampling prior are shown in yellow, while the results
from the simultaneous modeling of the astrophysical and
deviation populations are shown in dark blue. When con-
currently modeling the astrophysical distribution, in all
PN deviation parameters the inferred mean resides closer
to zero, i.e., the expected value from GR, while there is
no clear trend in opy. Overall, (upN,opn) = (0,0) is re-
tained with greater significance for almost all PN orders.

We quantify this improvement by comparing the two-
dimensional credible level® at which the expected GR
value, (upn,opn) = (0,0), resides in Fig. 5. A lower
value for the credible region implies that the value of
hyperparameters expected from GR resides closer to the
bulk of the distribution. In all but one PN order, jointly
inferring the astrophysical and PN deviation distribu-
tions moves the inferred distribution to be more consis-
tent with GR. For the 0.5PN deviation coefficient, d¢pq,
there is little change in the credible level at which GR
is recovered. Generally, inference of the astrophysical
population allows our inferences of GR deviations to be
more consistent with GR, with an average improvement
of 0.40.

To shed further light on the interaction between the
GR and astrophysics parameters, we focus on two specific
deviation parameters. In particular, we draw attention
to the 3PN coefficient (which shows the largest tight-
ening of the supported hyperparameter space in Fig. 4)
and the OPN coefficient (where the PN deviation is most
inconsistent with GR in Fig. 5).

1. Ezample: 3PN deviation coefficient, dps

To understand the origin of the improved measurement
for dpg when modeling astrophysics in Fig. 4, we show an
expanded corner plot in Fig. 6 with an additional subset
of the hyperparameter posterior distributions. The top
left corner reproduces the corresponding panel in Fig. 4,
wherein the yellow posterior distribution is obtained un-
der the assumption of the astrophysical population given
by the sampling priors, while the dark blue is obtained
by simultaneously inferring the astrophysical-population
and the GR deviation parameters.

6 This “displacement” is the quantile, Qar, reported in Refs. [6, 7]
as (displacement)? = —2In(1 — Qgr) 02. The quantile is com-
puted by integrating over all regions of the hyperposterior dis-
tribution which are at a higher probability than (upn,opN) =
(0,0). We report values in terms of the standard deviation in
two dimensions, 1o and 20 correspond to ~39.3% and ~86.5%
credibility, respectively.
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FIG. 4. Two-dimensional marginal posterior distributions for the hyperparameters of the Gaussian PN deviation distribution
informed by the 20 events in the third LIGO-Virgo-KAGRA observing run passing the selection criteria, analysed with a
modified SEOBNRv4 [14, 41-44] waveform. The contours indicate the 50% and 90% credible regions. Each panel corresponds
to a separate analysis where the coefficient varied was at a different PN order. The analysis was undertaken with an implicitly
assumed, astrophysically-unrealistic population (yellow), and a model which simultaneously infers the astrophysical population
model (dark blue). Modelling both the astrophysical population and the PN deviation population systematically shifts the

inferred mean, ppn, closer to zero.
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FIG. 5. Displacement of the deviation parameter distribution
from GR for each PN deviation coefficient. The displacement
corresponds to the credible levels at which the hyperparam-
eter values corresponding to GR, (upn,opn) = (0,0), reside
for two different models as shown in Fig. 4. This quantity is
indicative of the relative position of the posterior to the GR
value. Incorporating the astrophysical population as well as
the hierarchical model for the PN deviation leads to an in-
ferred result more consistent with GR for most cases.

Additionally, we use the same set of individual-event
posterior samples to separately infer the astrophysical
population independently of the PN deviation parame-

ters, which amounts to assuming a uniform distribution
of deviations across events (solid green). This differs
from standard astrophysical population inference, which
assumes that GR is correct a priori and thus starts
from individual-event posteriors conditioned on dp =
0 [30, 31, 50]. Finally, we also compute the astrophysi-
cal population under the assumption that GR is correct,
(upN,opn) = (0,0) (dashed green). The result assuming
GR is correct is computed by fixing (upn,opn) — (0,0)
to ensure equivalent samples are used between analy-
ses, and is consistent with the usual population inference
modulo model choices at the individual-event and popu-
lation levels [30, 31, 50].

From the two-dimensional marginal distributions, the
most apparent feature is that inferring the astrophysical
population under the assumption of a broad uniform GR
deviation population (shown in solid green) leads to infer-
ences consistent with broad spin populations (large oy, )
and populations favoring uneven mass ratios (8 < 0).
This can be straightforwardly explained by the presence
of correlated structure between dpg, mass ratio, and the
component spins at the individual-event level.

To demonstrate this, Fig. 7 shows four different poste-
riors for GW191216_213338 under different priors. The
four distributions shown are the posterior obtained with
the sampling priors (red), the one informed by the GR
deviation population only analysis (yellow), the one in-
formed by the astrophysical population only analysis
(green), and the one informed by the jointly-inferred GR
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FIG. 6. Marginal one- and two-dimensional posterior distributions for the dps PN deviation and a subset of astrophysical
population hyperparameters. Contours correspond to the 50% and 90% credible regions. Results from four analyses are shown
— population inference using the PN deviation population only with the “default” sampling prior astrophysical population
(yellow), astrophysical population only (green), astrophysical population under the assumption that GR is correct (dashed
green), and the joint analysis inferring the post-Newtonian deviation and astrophysical populations simultaneously (dark
blue). No strong correlations exist between either the mean or standard deviation of the deviation Gaussian and astrophysical
population parameters. The starkest difference is that inferring the population when the PN deviation population is ignored
leads to broad spin magnitude populations.
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FIG. 7. One- and two-dimensional posterior distributions for
the 3PN deviation parameter, the mass ratio, and the primary
black-hole spin for GW191216.213338 under four different as-
sumptions: broad sampling priors (red), informed by the GR
deviation population analysis (yellow), informed by the astro-
physical population (green), informed by the joint inference
of PN deviation and astrophysical populations (dark blue).
Contours indicate the 90% credible region. Evidence for both
a low mass ratio and larger primary spins is strongly contin-
gent upon the astrophysical assumptions. Broad priors such
as those used while sampling the posterior distribution have
significant support for lower mass ratios. Inclusion of informa-
tion from both the deviation population and the astrophysics
leads to an inferred result with both low primary spin and
high mass ratio.

deviation and astrophysical populations (blue). The pos-
teriors which involve information from inferred popula-
tions are computed following Ref. [69], and do not double-
count the data from GW191216_213338, as discussed in
Sec. ITA.

Under the sampling astrophysical prior, posteriors ex-
hibit a low-g, high-x; mode. Since the inferred astro-
physical population is inconsistent with low mass ratios
and high spin magnitudes, the astrophysical-population-
informed posteriors have reduced support for unequal
masses (compare the red contour to the green one). Ad-
ditionally incorporating the GR deviation information
(blue), the population-informed posterior further reduces
support for high-spinning systems. The similarity of the
results under the sampling prior (red) with those in which
only the GR deviation population is inferred (yellow),
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suggests that inferring small GR deviations is on its own
not enough to significantly affect the inference of the as-
trophysical parameters in this case.

The tightening of the o, hyperposterior distribution
(i.e., inferring a more narrow spin population) when
jointly inferring the GR deviation and astrophysical pop-
ulations is precisely what we observe at the population
level in Fig. 6 comparing the dark blue and green con-
tours. Additionally, when enforcing that dpg = 0 for
all events (dashed green), we no longer recover support
for broad spin populations. Interestingly, the astrophys-
ical population inferred jointly with the GR deviation
population is very similar to the result obtained when
fixing dpg = 0. This illustrates that, if we allow the
model to infer that the scale of GR deviations is small,
we will recover similar inferences overall as if we had fixed
dp = 0 a priori: we are learning both that spins are small
and that any GR deviation must be small at this PN or-
der. Conversely, an assumption of a broad GR deviation
population leads to unrealistic astrophysical populations
to account for the far-fetched astrophysical systems such
analyses allow. We can also use this example to under-
stand why inferring the deviation population in the ab-
sence of astrophysical modelling leads to a different de-
viation population with a larger inferred mean. Figure 7
shows that ¢ and dpg are correlated at the individual-
event level, and therefore a broader ¢ distribution will
lend more support to the higher values of dpg. This cor-
relation then systematically pulls the mean of the PN
deviation distribution to higher values.

2. Ezxzample: OPN deviation coefficient, dpo

We now turn to dpg, for which the standard analysis
with a fixed astrophysical prior finds the least consistency
with GR, at the 2.20 credible level (yellow circle for dpq
in Fig. 5), driven by a displacement away from ppn =
0 (Fig. 4). Since this parameter is strongly correlated
with the chirp mass and mass ratio (Fig. 1), we expect
improvements when jointly modeling the astrophysical
and deviation distributions; indeed that is the case, with
GR recovered at the 1.60 level (blue circle in Fig. 5).
This analysis infers a opy distribution that peaks slightly
away from zero.

We can understand this behavior with Fig. 8, where
we plot a subset of the two-dimensional marginal pop-
ulation posterior distributions in the same color scheme
as Fig. 6. The structure of the PN deviation distribu-
tion is directly correlated with the mass ratio power-law
index, B: steeper power-laws correspond to more vari-
ance in the GR deviation (larger 8, larger opy). This is
also manifested in the fact that when the PN deviation
is assumed to be uniformly distributed (solid green), the
astrophysical inference prefers steeper mass ratio power-
laws (larger (), and that the analysis with deviations
fixed to zero (dashed green) leads to a shallower slope



(8 < 6). There is also a correlation between opy and
the width of the spin distribution, oy, by which a nar-
rower spin distribution demands for a greater spread in
deviation parameters within the population.

Such correlations highlight precisely why we need to
account for the astrophysical population when testing
GR. By assuming a particular, fixed model for the astro-
physical population, the hyperparameter correlations will
not be captured in the marginal posterior for the GR de-
viation population. The analysis assuming the sampling
prior for the astrophysical population (yellow), infers a
value of opy which peaks at zero. Among other hyper-
parameters, the sampling prior corresponds to a uniform
(8 = 0) mass-ratio distribution. Fixing the astrophysical
population in such a way will lead to the hyperparameter
posterior peaking at opy = 0, as seen in Fig. 8.

IV. CONCLUSIONS

In this study, we have shown the importance of mod-
eling the astrophysical population when testing GR with
gravitational waves. Current tests do not explicitly
model the astrophysical population, and therefore implic-
itly treat the prior used for sampling the posterior distri-
bution as the assumed astrophysical population. Due to
the presence of correlations between many GR deviations
and astrophysical parameters, inappropriate astrophysi-
cal population choices will bias the test of GR. Like other
sources of systematics, including waveform modeling [96—
99], the severity of this bias increases with the number
of detections. We have shown that the effect of this bias
is already being felt in the present catalog. This issue
can only be fully addressed by simultaneously modelling
both the astrophysical population in addition to the GR
deviations.

We demonstrate the effect of inappropriate astrophys-
ical models using constraints of the graviton’s mass and
tests of PN deviations as concrete examples. We show
that jointly modeling the astrophysical population distri-
bution while testing GR leads to results more consistent
with GR. Furthermore, for some deviations at various
PN orders there are correlations between hyperparam-
eters governing the astrophysical and deviation popula-
tions. The impact of the astrophysical distribution is not
just important for these parameters and these hierarchi-
cal models: any test of GR should accurately account for
the astrophysical population. In fact, this problem is not
unique to tests of GR— attempts to infer cosmological
properties [100] or the equation of state of dense nuclear
matter [101] are also impacted by these same considera-
tions.

We can generically understand the impact of folding
in the astrophysical population as follows. The standard
sampling prior is chosen to broadly cover the parameter
range of interest, and not to accurately represent the true
astrophysical population. The actual population distri-
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bution will then typically provide support on a more nar-
row region of parameter space than the sampling prior.
As a result, population-informed posteriors will not only
avoid systematic biases but will also provide more strin-
gent constraints on GR due to the additional information
from the associated narrower population.

This posterior shrinkage is illustrated in Fig. 9, which
shows the OPN deviation parameter and detector frame
chirp mass for the 20 events considered in our study (Ta-
ble I). The three sets of distributions correspond to the
posteriors under different priors: fixed sampling priors
(light red), fixed astrophysical prior and an inferred PN
deviation population (yellow), as well as the case where
both PN-deviation and astrophysics distributions are in-
ferred (blue). As more information about the GR devi-
ation distribution is included, the inferred posterior of
0PN deviation parameter and the detector-frame chirp
mass is more constrained. The posteriors are then con-
strained further still as additional information regarding
the astrophysical population is included.

There are a number of directions in which to extend
our work. The first would be to account for selection
effects on the hyperparameters of the GR deviation dis-
tribution; this is to be addressed in upcoming work [68].
Additionally, here we have assumed a strongly param-
eterized model for the astrophysical population, with a
power law and a Gaussian peak. This model is currently
flexible enough given the number of events, with the pri-
mary mass Gaussian peak not impacting the inferred PN
deviations with the selection of events considered. As the
number of events used with these tests increases, and sub-
tle features in the astrophysical population reveal them-
selves, we will likely need more flexible models [63-66] to
further avoid biases from misspecified population mod-
els [102-104]. Furthermore, in the case of PN coefficients,
one would ideally constrain all orders simultaneously, in
addition to the astrophysical parameters [1, 105-109).

Concurrently modeling the astrophysical population
when testing GR is inevitable. Models that do not in-
clude a parameterized astrophysical population are im-
plicitly assuming the sampling prior as the fixed popu-
lation model. Such an assumption may induce system-
atic biases, cause false detections of GR violations, or
incorrectly claim a stronger confirmation of GR than is
warranted by the data. Moreover, even when account-
ing for the astrophysical population, correlations between
GR deviation and astrophysical hyperparameters suggest
that a true deviation could be absorbed into an unphysi-
cal inferred astrophysical population, a case that can only
be noticed in studying the hyperposterior relating astro-
physical to deviation parameters. Hierarchically model-
ing the astrophysical population while testing GR pro-
vides the solution to the implicit bias of assuming a fixed
astrophysical population, and allows us to explore corre-
lations between astrophysical parameters and deviations
from GR, with fewer hidden assumptions.
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FIG. 8. Similar to Fig. 6, one- and two-dimensional posterior distributions for the d¢o deviation and a subset of astrophysical
population hyperparameters. A strong correlation is found between the width of the inferred post-Newtonian deviation pop-
ulation and the index of the mass ratio power-law when jointly inferring the deviation and astrophysical population models.
There is also a less pronounced correlation between the deviation and spin population standard deviations. In the absence of
modelling the astrophysical population, the inferred PN population is pulled to a higher mean with a reduced width.
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FIG. 9. Marginal two-dimensional posterior distributions for the OPN deviation coefficient and the detector-frame chirp mass for
the events analyzed under the broad prior assumptions (light red), informed PN deviation population only (yellow), and informed
by the jointly inferred deviation and astrophysical populations (dark blue). Contours indicate the 90% credible regions. This
result demonstrates that as additional information is incorporated into the population distribution, more stringent constraints
on the deviation parameters are placed on an individual event level. In the case demonstrated here, this pulls the inferred value

towards d¢ = 0 for all events.
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Appendix A: Formulation of parameterized tests of
general relativity

In this appendix we outline the calculations required
to constrain the graviton’s mass (App. A 1) and infer the
PN deviation parameters (App. A 2).

1. Massive graviton measurements

The impact of a massive graviton on the propagation
of gravitational waves has been studied in Refs. [15, 16]
and references therein. A graviton with mass m, modifies

the dispersion relation of the gravitational wave. In a
cosmological background, g, ,
Gup"p’ = —m (A1)

where p* is the 4-momentum of the graviton. This leads
to a dephasing of the gravitational wave, 6®(f), that
scales with the distance over which the signal propagates,

7(1+ z)Dim2c?

5D(f) = — Do 7, (A2)




where Dy, is the luminosity distance, h is Planck’s con-
stant, and

Do 1+z/ Nin

Here, Hy = 67.9km s * Mpc_1 is the Hubble constant,
and Q,, = 0.3065 and Q24 = 0.6935 are the matter and
dark energy density parameters, respectively, adopting
the values used in previous analyses [7, 46, 110].

(1+42)72
(142 3+QA

(A3)

2. Post-Newtonian deviation tests

Current parameterized PN tests are constructed by
single-parameter modifications to the post-Newtonian
description of the inspiral gravitational-wave phase in the
frequency domain. This is given by [34, 111]

3

™
BT

7
Z (Wk+<ﬂkllnf)f(k_5)/3-

O(f) = 2r fte
(A4)

Here, ®(f) is the frequency-domain gravitational-wave
phase under the stationary-phase approximation, f =
7GM(1+2)f/c3, where M(1+ z2) is the redshifted chirp
mass, M = (myma)®/®/(m1 +msa)/® is the source-frame
chirp mass, 7 = mymso/M? is the symmetric mass ratio,
t. and ¢, are the coalescence time and phase of the bi-
nary; finally, k& indexes the k/2 PN order, and ¢, and
@i, are the PN coeflicients. The logarithmic coefficients,
@x, only enter at 2.5 and 3.5 PN orders and otherwise
vanish [112, 113]. In GR, the coefficients are functions of
the intrinsic parameters of the binary, their masses and
spins. From this prescription, modifications to GR are
incorporated by modifying [12, 13, 32]

r = (1 +0¢r) ok, (A5)
except for k’s for which ¢, = 0 in GR (k = —2,1); in
these cases, the modification is ¢ — dpg, and dpg is an
absolute deviation [114].

In practice, modifications to IMRPHENOMPV2 [12, 13,
34, 35,73, 76, 79] and SEOBNRv4 [14, 41-44] waveforms
are computed differently, then the latter is transformed
to the former. For the modified SEOBNRv4 waveform,
the deviation is applied as above [14]. While, IMRPHE-
NOMPV2 is modified to only apply the deviation is onto
the nonspinning portion of the PN coefficient [12, 13]. We
translate all inferred deviation parameters to the IMR-
PHENOMPV2 deviation parameter 5¢IMR for consistency,

0y NS

MR = S s (A6)
Pk

where (pgs is the nonspinning value of the PN coefficient
— calculated by setting the spins to zero for a particular
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set of compact binary masses. Additionally, care needs to

be taken when translating to a uniform prior on 6<pIMR,

as the appropriate Jacobian,

d(SgOIMR _ O (A7)
d(;g@k (PES ’

is necessary. If the original prior is uniform on dpg, then
the 0oMR must be weighted by the Jacobian to be effec-
tively translated to another uniform prior.

Appendix B: Computing expected parameter
correlations

Correlations between GR deviation and astrophysical
parameters can be analytically approximated by identify-
ing regions of the parameter space that lead to a similar
frequency evolution [28] and signal duration. The dom-
inant correlation is the one between the detector-frame
chirp mass, M(1 + z), and the symmetric mass ratio, 7.
The duration of a gravitational-wave signal is related to
the detector-frame chirp mass and some fiducial cut-off
frequency [115],

Toc/\/l5/3(1+z)5/3f_8/3. (B1)

If we relate the final frequency to the innermost stable
orbit or any cut-off which scales inversely with the bi-
nary’s total mass, then T oc = 8/5 M13/3(1 4 2)13/3. A
constant duration then imlies

M(1 4 2) oc = 24/05 (B2)

Here we have ignored both the contributions of a spin-
induced “hang-up” effect [116] and GR deviations.
Correlations between astrophysical parameters and

GR deviations can then be computed at lowest order [28]
by enforcing that the second-order derivative of the phase
evolution as a function of frequency be constant. As an
example, for the correlation in Fig. 1, we compare the
phase evolution when dpg = 0 and when varying dpg at
the leading PN order, resulting in

My (14 20) 753 ~ (14 60)M™P/3(1 + 2)75/3 . (B3)
Here Mg and zy are the values of the chirp mass and
redshift when there is no deviation. We find the OPN
deviation coefficient to only be directly correlated with
the detector frame chirp mass,

5/3
M(1+2)
(S(po ~ (A/M> —1. (B4)

This calculation can be repeated for higher PN orders as
well, however care needs to be taken as lower PN orders
need to be retained when computing higher PN deviation
coefficient correlations.



Appendix C: Population likelihood approximation

In practice, we carry out single-event parameter esti-
mation with a fiducial sampling prior, 7(6), before the hi-
erarchical population analysis. We therefore do not pos-
sess representations of the individual event likelihoods,
p(d|0), but rather samples drawn from the fiducial pos-
terior distribution p(0|d) o« p(d|f) 7(6). Therefore, it
is common to instead reformulate the integral within
Eq. (1) as an average over samples drawn from each
event’s posterior distribution [47-49],

N iMl - m|A
P < g g 5ty (@)

where M; is the number of posterior samples for the ith
event. It is possible for this Monte Carlo integration
to not converge—particularly if the population distri-
bution 7(#|A) is narrower than posterior distributions
for individual events [48, 61, 67, 78, 117, 118]. This
is particularly important in our scenario, since the in-
ferred population of deviations from GR is typically nar-
rower than marginal measurements from many individ-
ual events. This leads to a dearth of samples within the
inferred GR deviation population, which subsequently
leads to unreliable Monte Carlo integration in Eq. (C1).

To address this issue, we use Gaussian kernel density
estimates to represent the individual-event posteriors in
a number of parameters, and simplify the calculation
analytically by leveraging Gaussian population models.
Dividing the parameters into the subset described by
the Gaussian population distributions, §%, and the non-
Gaussian distributions, NG, we can analytically inte-
grate over the former without resorting to Eq. (C1). The
Gaussian population parameters are the GR deviation
parameter and the binary-hole spin magnitudes, whereas
the black-hole primary mass and mass ratio, redshift, and
spin tilts (for the analysis in App. D) are included in
the non-Gaussian set of parameters. For the kernel den-
sity estimation, we determine the corresponding covari-
ance matrix for each individual event’s distribution using
Scott’s rule [119],

R
nop

EBW,:‘ ~ (02)

where ¥; is the weighted covariance matrix of the pa-
rameters being estimated, d is the number of Gaussian
dimensions, and neg is the effective number of sam-
ples [120, 121],
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with the weights, w(0%,) = 1/7(6%,).

Since the integrand in the @ —épace is a product of
Gaussian distributions, the resulting integral is also a
Gaussian [122]. This leads to the straightforward expres-

sion for the likelihood function

where pu(A) = (1, fuy, piy) and X(A) = diag(o?,02,0%),
though more complicated structure can be 1mposed on
the population model. Since this integral is computed
analytically, we empirically find improved convergence.

Appendix D: Constraints from IMRPHENOMPV2

While we have focused on results from SEOB-
NRv4 [14, 41-44], these analyses do not include pre-
cessing degrees of freedom. However, evidence for pre-
cession has been found at the population level within
gravitational-wave observations [30, 31]. Therefore, to
explore if there are any major changes when incorporat-
ing precession effects, we use the 12 events from the first
half of the third observing run analysed with IMRPHE-
NoMPv2 [12, 13, 34, 35, 73, 76, 79] which meet our selec-
tion criteria [6]. There are no equivalent results from the
second half of the third observing run [7]. We show the
summary of the marginal two-dimensional posterior dis-
tribution for the Gaussian population hyperparameters
with and without the inclusion of astrophysical informa-
tion in Fig. 10. Generally, these results are less con-
strained due to the smaller number of events, though we
still witness a similar shift in the means of the Gaussian
populations as in Fig. 4. We also summarize the quantiles
at which the expectation from GR presides in Fig. 11.
Generally, the IMRPHENOMPV2 results are more con-
sistent with GR than the equivalent SEOBNRv4 results
presented in Sec. III B. This could be a product of this
waveform model incorporating precession, or simply that
fewer events were analyzed, leading to a decrease in pre-
cision.
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FIG. 10. Same figure as Fig. 4 but using 12 events from the first half of the third LIGO-Virgo-KAGRA observing run, with

individual event posterior distributions constructed with IMRPHENOMPV2.

results with SEOBNRv4, although parameters are less constrained—Ilikely due to fewer observations incorporated.

PN deviation: inferred, Astrophysics: fixed

@® PN deviation: inferred, Astrophysics: inferred

20

([ ] o ° o [ ] ®
Il Il Il 1 Il Il , Il Il Il
dp—26p0 dp1 02 Sz dps 0psi dpe dper S
PN deviation coefficient

Displacement from GR
{ ]

FIG. 11. Same as Fig. 5, for the results from the IMRPHE-
NOMPV2 analysis. As seen throughout the manuscript, inclu-
sion of the astrophysical population model in general leads
to improved consistency with GR. Furthermore, the poste-
rior distributions sit closer to GR for IMRPHENOMPV2 than
SEOBNRv4, likely as a result of analyzing fewer events.
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