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Abstract The effect of branches on the linear rheology of entangled wormlike micelle solutions is 
modeled by tracking the diffusion of micellar material through branch points. The model is 
equivalent to a Kirchhoff circuit model with the sliding of an entangled branch along an 
entanglement tube due to the constrained diffusion of micellar material analogous to the flux of 
current in the Kirchhoff circuit model. When combined with our previous mesoscopic pointer 
algorithm for linear micelles that can both break and fuse, the model adds a branch sprouting 
process and therefore enables simulation of the dynamics of structural change and stress relaxation 
in ensembles of micelle clusters of different topologies. Applying this new model to study the 
relationships between fluid rheology and microstructure of micelles, our results show that branches 
change the scaling law exponents for viscosity versus micelle strand length. This contrasts with 
the long-standing hypothesis that branches affect viscosity and relaxation in the same way that 
micelle ends do. The model also suggests a process for inferring branching density from salt-
dependent linear rheology. This is exemplified by mixed surfactant solutions over a range of salt 
concentrations with flow properties measured using both mechanical rheometry and diffusing 
wave spectroscopy (DWS). By elucidating the connection between the branching characteristics, 
such as strand length and branching density, with the nonmonotonic variation of solution viscosity, 
the above model provides a powerful new tool to help extract branching information from rheology. 
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Introduction  
 
Surfactants, which are at the heart of many chemical and biological systems,1-6 spontaneously 
assemble into solution aggregates, including cylindrical micelles,7-9 driven by a delicate balance 
between the solvophilic and the solvophobic parts of the molecule.10-14 This balance also controls 
the densities of two types of thermodynamic “defects” in the cylindrical body of the micelle, 
namely end-caps and branch junctions.15-17 The resulting structure breaks, reforms, and exchanges 
surfactants at rates that determine the viscoelastic behavior of the surfactant fluid.18-22  
 
Over many decades, a rich variety of theories and models have been developed16, 23-26 that allow 
micellar structure to be characterized from dynamic properties such as conductivity, light 
scattering, and viscoelasticity.27-30 Among the available models, that of Cates and coworkers for 
linear (unbranched) micelles has been particularly fruitful, for example in providing a means of 
estimating from linear rheology the average micelle length 〈𝐿〉 , a property that is otherwise 
inaccessible when micelles are linear but entangled.1, 5, 7, 29, 31-33 While the underlying Cates model 
appears to be sound, the earliest method of estimating micelle length was too simple to account 
accurately for the sensitivity of micellar structure, including its length and stiffness, on the 
presence of salts and additives.8, 33-35 Such deficiencies have been addressed by a mesoscopic 
simulation method, the “pointer algorithm,” applied to the Cates model by Zou and Larson.36, 37 
The pointer algorithm provides a comprehensive description of disentanglement dynamics, 
micellar reactions controlling the average length of the micelle, as well as structural flexibility, in 
linear micelles.29, 36-39  
 
For branched micelles, however, experimental detection of the presence and density of branch 
points is far more challenging. A variety of different methods, such as cryo-TEM, rheology (SAOS 
and extensional), neutron spin echo, and nonlinear flow measurements, have been used to detect 
micellar branches.40-46 Although light and neutron scattering can provide evidence for topological 
branching when micellar solutions are dilute, their results, when extrapolated to the entangled 
regime, remain controversial due to the difficulty in distinguishing branched micelles from linear 
entangled networks.29, 40, 47, 48 On the other hand, cryo-TEM, which differentiates intersecting 
micelles from branches by their contrast in the transmitted electron beam, provides definitive 
evidence of branching.8, 12, 42, 49 Nevertheless, since micellar structures are labile to 
thermomechanical treatment,17, 22, 32, 50 quantitative characterization of branch junctions by cryo-
TEM (which mostly appear to be trifunctional “Y” junctions) is sensitive to sample preparation.3, 

7, 41, 49, 51 In addition, unlike branched polymers, surfactants in a micelle can diffuse through their 
branch junctions, causing a change in the topological structure of both the entanglement network 
and in the micelle itself, thus providing multiple routes for disentanglement and thus lowering the 
solution viscosity.31, 52 Since rheology is highly sensitive to branches, to quantify the effects of 
branching on the rheology of micellar solutions, the “living” architecture of a branched micelle 
needs to be modelled efficiently as an evolving set of linear strands that are connected by multiple 
junctions and terminated by multiple ends.  
 
In this work, we extend our previous mesoscopic pointer algorithm for entangled thread-like 
micelles that can both break and fuse, to include branching into tree-like clusters of arbitrary 
complexity. This is achieved through a “constrained” diffusion model, such as that of Lequeux,53 
which draws on the idea that reptation-like intramicellar diffusion produces a flux of micellar 
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material through each strand, even as it remains confined within its entanglement “tube.” The 
accommodation of the pointer algorithm to a branch sprouting process is also explained thoroughly, 
where the method for moving pointers is guided by advanced tube theories. A factorial design of 
computations by varying micellar parameters demonstrate a change of scaling law exponents for 
viscosity as a function of branching level, in contrast with long-standing hypothesis that branch 
points affect viscosity the same way micelle ends do. The effect of branching was also studied 
experimentally through a serial of mixed surfactant solutions containing both sodium lauryl one 
ether sulfate (SLE1S) and cocoamidopropyl betaine (CAPB) over a range of salt ion concentration. 
By combining mechanical rheometry and diffusing wave spectroscopy (DWS) for viscoelastic 
characterization, the above model enables a quantitative evaluation of relationships between fluid 
rheology and microstructure of micelles. 
 
Modeling and simulation 
 
Constrained diffusion and branched micelle architecture. While the model of Lequeux53 produced 
a simple equivalence between the effect of branch points and chain ends on the overall rheological 
response, we develop here a quantitative model, by extending the pointer algorithm to branched 
micelles. We do so by defining a micellar “strand” as the linear portion of a micelle terminated by 
either a free end or a branch point at each end of the strand. We satisfy overall mass conservation 
by imposing a “constraint force” at each strand terminus so that the resulting linear displacement 
∆𝑥𝑖𝑗 (from 𝑖 to 𝑗) of the micellar strand bounded by termini 𝑖 and 𝑗 is given by a Langevin equation: 
 

∆𝑥𝑖𝑗 = √
6𝑘𝐵𝑇∆𝑡

𝜁𝑖𝑗
𝑛𝑖𝑗 +

𝐹𝑖 − 𝐹𝑗

𝜁𝑖𝑗
∆𝑡                                                   (1) 

 
where ∆𝑡  is the time step, 𝜁𝑖𝑗  is the drag coefficient for strand (𝑖, 𝑗), and 𝑛𝑖𝑗  is a uniformly-
distributed random number between -1 and 1. Note that the first and the second term on the right 
side of Eq. (1) represent the intramicellar diffusion and the effective “constraint” at terminus 𝑖 and 
𝑗 , respectively. The non-zero constrained force 𝐹𝑖  at the junction can be understood as the 
fluctuating “potential” that arises from imbalances of material flux in each strand that would occur 
in the absence of this potential. Thus, the contribution from this intramicellar diffusion to the 
structural lability of branched micelles (the length and the number of the strands in a branched 
micelle change with time) can be captured by a model of constrained reptation: The overall 
diffusion of surfactant molecules in each strand creates a random flux of micellar material along 
entanglement tubes, or an analogous “current” in the Kirchhoff circuit model of Fig. 1. 
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Figure 1 (a) A 3-arm branched micelle architecture with symbols described by the text and Eq. 1, and (b) 
the corresponding Kirchhoff circuit with rectangular resistors representing strands, and electrical grounds 
representing ends.  
 
Assuming that the effect of the terminus geometry on the rate of constrained diffusion is small, 𝜁𝑖𝑗 
will be proportional to the strand length (= 𝜁0𝐿𝑖𝑗  with 𝜁0  drag coefficient per unit length of 
micelle), and branch points then act as point-like objects. Since no mass can accumulate at a 
junction, if a net inward “current” were to occur there, a high potential just large enough to 
suppress this current would be produced. After numerically labeling the junctions and taking strand 
free ends as junctions with zero potential, the material flux of Eq. (1) in each arm is rewritten 
below in a connectivity matrix for the branched micelle with the architecture of a 3-arm in Fig. 1. 
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   where,  

𝑎𝑖𝑗 =
∆𝑡

𝜁𝑖𝑗
,   𝑏𝑖𝑗 = √

6𝑘𝐵𝑇∆𝑡

𝜁𝑖𝑗
𝑛𝑖𝑗 

 
In the above, a 2D matrix represents the connectivity among all the strands in a micelle cluster 
regardless of the micelle’s overall complexity. The 4th to the 6th rows in the connectivity matrix 
correspond to the three dangling ends with zero constrained forces (i.e., 𝐹1 =  𝐹2 = 𝐹3 = 0), while 
the 7th row imposes the constraint of no mass loss or accumulation at the branch point.  
 
The transport described by Eq. (2) for a multi-branched micelle is thus equivalent to that of a 
Kirchhoff circuit in Fig. 1b, with the micelle topology mapped onto a bidirectional connectivity 
matrix with randomly fluctuating voltages. Such a mapping permits micelles of arbitrary branch 
structure to be modeled, including multiple levels of tree-like branching, as well as internal re-
connections, or loops. Equation (2), or its generalization to a micelle with many branch points, can 
then be solved by the conventional numerical tools, such as LU decomposition. An analogous 
matrix is constructed for each branched or linear micelle in the ensemble, where a linear micelle 
has only one strand and two free ends, and so is described by a 3 × 3 matrix. A complex tree-like 
micelle is described by a large (2𝑛 + 1) × (2𝑛 + 1) matrix, where n is the number of strands. For 
a typical simulation of on-average 5 branch junctions per micelle, the largest micelle with the 
associated matrices can easily become 50 × 50. 
 
Micellar breakage and fusion. Micelles change their conformations or “relax” by both constrained 
diffusion and changes in the topology, without which the strands deep inside a treelike cluster 
would relax only after relaxation of peripheral branches. However, such relaxation in hierarchical 
manner is greatly accelerated by breakage and fusion of micelles, which occur at a rate 𝑘𝑏𝑟  (i.e., 
the breakage rate per unit micelle length) with equal probability at any point along the micelle. 
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The simulations preserve the initial average mass or total length 〈𝑀〉 of all strands of a micelle by 
stochastically introducing a fusion of two randomly chosen micelles each time a breakage occurs 
in any micelle, so that 〈𝑀〉 is by definition the equilibrium micelle size. Thus 𝑘𝑏𝑟  and the initial 
average micelle size together set the fusion rate per micelle. These reactions are illustrated in Fig. 
2, which defines the notation system that allows the connectivity of arbitrary complexity to be 
specified. Breakage of a strand requires introduction of two new ends, which are assigned unused 
numbers (#15 and #16 in Fig. 2a), while fusion eliminates two ends (#4 and #17 in Fig. 2b), and 
these numbers are then available for re-use.  
 

 
Figure 2 The micellar breakage and fusion represented by the manipulation of the strand lists between 
branched clusters: (a) breakage, and (b) recombination. The numbers identify chain ends and branch points. 
Each strand is thus defined by two numbers, one for each end or branch point.  In the lower figure in (a) 
and in (b), each bracket pairs a single number on the outside of the bracket identifying the branch point, 
with the three numbers on the inside of the bracket identifying the other ends of each of the three strands 
linked to that branch point.  Each of these strands can itself be a branch point, as in the case of strand (13,14), 
which is bounded at both ends by branch points.  
 
Micellar bud sprouting. To compensate the gradual loss of branches due to the constrained 
diffusion, new branches are randomly added as infinitesimal “buds” (with the size of micelle 
diameter ~ 4 nm), as shown in Fig. 3a, with equal probability per unit strand length, at a rate given 
by the inverse of a newly introduced time scale 𝜏̅𝑏𝑢𝑑. That is, over time, every segment in a strand 
is given an equal probability to form a bud. Micelle branches form as a result thermal fluctuations 
of local curvature, which we model by “sprouting” or growing of those buds.50, 54 As illustrated in 
Fig. 3b, any “unsprouted” bud, i.e., a bud that shrinks rather than grows on the subsequent time 
step (~1 μs) by constrained diffusion, is annihilated, while a “sprouting” bud that grows on the 
next time step, either becomes a short branch, as shown in Fig. 3c and d, or fuses with another 
micelle, as shown in Fig. 2. Any time a branch arm shrinks by constrained diffusion to a negative 
length, it is removed. The continual addition of “buds,” or “potential” branch junctions, balances 
their destruction by constrained diffusion, leading in time to an equilibration of the branching 
density.  
 
Closed intra-micellar loops, which can occur occasionally via random end-to-end fusion of highly 
branched strands, should have relatively small effects on the properties of branched micellar 
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systems except near a phase transition to a dense gel state (i.e., an interconnected network), where 
the mean-field description of our model fails. Although other mechanisms of branch formation 
and change of micelle length such as end splitting and interchange, strand-strand cross-linking, 
etc.1, 50, 54  could be included in our model, we here neglect them as their effects can likely be 
captured through modification of the “effective” rates of strand fusion/breakage and of 
budding/unbudding. 
 

 
Figure 3 The relaxation of branched micelles represented by the movement of pointers in the presence of 
(a) budding and (b) sprouting (growing) of new branches with constrained diffusion, as described in the 
text. Pointers are described by grey solid arrows along a micellar strand with each dashed rectangular region 
between two pointers representing an unrelaxed tube. Tube elements shrink between (c) (d) due to diffusion 
of a green and purple branch endpoint into their respective tube segments, feeding micellar material into 
the growth of “orange” sprouts that first appeared in (b). 
 
Evolution of pointers and relaxation mechanisms. “Pointers” are used to mark the boundaries 
between unrelaxed and relaxed point of micellar materials. Over time, the unrelaxed portions 
between pointer pairs shrink, and eventually the two pointers meet each other and are removed 
from the strand, marking completion of the relaxation of that portion. Updating the number and 
positions of the pointers for each strand, the time-dependent normalized stress relaxation 𝜇(𝑡) can 
then be calculated as the fraction of micellar tube segments 𝑙𝑒 that are unrelaxed at a given time 𝑡. 
Fast dynamics at time and length scales smaller than 𝑙𝑒, such as local Rouse and bending motions, 
are not captured by movement of the pointers, but are added later using analytical formulas, as 
described in earlier publications,36-38, 48 thus avoiding the unnecessary computational cost of 
tracking them explicitly. A detailed description of the above pointer algorithm can be found in our 
previous publications.36-38, 48 
 
Unlike linear micelles, relaxation of branched micelles, as illustrated in Fig. 3c and d, includes 
constrained diffusion under which the movement of the micelle allows pairs of pointers gradually 
to move towards each other, representing stress relaxation. This continues along dangling ends, 
which can be created by either micellar breakage or sprouting of a bud. However, pointer 
movement is not permitted along inner backbones that are terminated with branch junctions at both 
ends. Therefore, movement of a pointer along a dangling end must halt when the free end fuses 
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with another free end to create a new backbone strand. This halting of a pointer on a strand occurs 
even as the micellar material along that strand continues to flow into other strands by constrained 
diffusion, since the stress is stored in the tube segments, not the micellar material. Strand breakage 
creates new dangling ends and releases pointers on that strand to move again. Thus, by tracking 
the unrelaxed portions of micelles (marked by “pointers”), the above pointer algorithm provides 
the only opportunity at present to simulate the linear viscoelastic properties of well entangled 
branched micellar solutions with a hierarchy of length and time scales. 
 

 
Figure 4. (a) Evolution of micelle ensemble showing attainment of the well-equilibrated composition with 
final average strand length ⟨𝑆⟩ = 0.645 μm and branching level 𝛽 = 0.595 per μm. Note that the equilibration 
starts from an ensemble of linear micelles of average size ⟨𝐿⟩𝑖𝑛 = 2.50 μm with breakage/fusion time 𝑘𝑏𝑟= 
4.0 per μm of micelle, semi-flexibility 𝛼𝑒  = 2 (the ratio of the entanglement length 𝑙𝑒 to the persistence 
length 𝑙𝑝), and 𝑙𝑝 = 50 nm. After equilibration, this yields (b) the strand length distribution, and (c) the 
micelle number density and number of branched junctions per micelle as functions of micelle size. Note 
that in panel (b), the overlap of three different types of strand length distribution plus their linearity on a 
semilog plot are the result of their creation by a Poisson random process, while panel (c) shows that the 
distributions of micelle size become noisy for giant micelles (𝑀 > 10 μm), due to the small number of them 
in the ensemble.   
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Simulation setup and equilibration. A typical simulation starts by equilibrating an exponential 
distribution of linear micelles55-57 of average length 〈𝐿〉𝑖𝑛  via micellar reactions, constrained 
diffusion, and bud-sprouting processes. To obtain robust statistics, 𝑁 = 2000 micelles, initially all 
linear, are used, each of which may grow into branched micelles that can consist of multiple strands. 
Similar to our previous work on linear micelles,36-38, 48 a unit length 𝑙𝑠 , comparable to the 
persistence length 𝑙𝑝, is used to discretize the locations of breakage and budding points along the 
micelle. A cutoff length 𝐿𝑐 = 5〈𝐿〉𝑖𝑛 is also chosen as the maximum initial micelle length allowed 
in the ensemble to prevent the appearance of giant micelles with probability less than 0.5% in the 
ensemble. Given the total number 𝑁 of micelles and maximum allowable length 𝐿𝑐 in the initial 
linear ensemble, 𝑙𝑠 can be chosen such that its value (see Eq. S6 in the SI) has minimal effect on 
the macroscopic relaxation, as confirmed by our simulations. Details regarding simulation setup 
and data processing can be also found in the SI. 
 
As illustrated in Fig. 4a, branched micelles are formed from initially linear micelles during the 
equilibration. To increase the efficiency in approaching equilibrium while avoiding the artificial 
effects of imposing rigid cut-offs, two “dynamically varying” cutoffs are set, i.e., the maximum 
allowed number of branched junctions per micelle 𝐽𝑐  and the maximum length of a strand 
contained in a micelle 𝑆𝑐 . 𝐽𝑐  (=5 〈𝐽〉=5𝛽〈𝑀〉 ) and 𝑆𝑐  (=5 〈𝑆〉 ) vary dynamically during the 
simulation in response to changes in their corresponding ensemble-averaged values. With equal 
rates of stochastic breakage and fusion events, the equilibration process holds fixed the average 
micelle “size” 〈𝑀〉 or length of all strands of a micelle, and 〈𝑀〉 = 〈𝐿〉𝑖𝑛 (the averaged length in 
the initial linear ensemble before equilibration) which remains fixed as a result of the equal rates 
of micelle breakage and micelle fusion imposed by the algorithm. Due to the stochastic nature of 
creation and destruction of branch junctions and ends, at equilibrium the length of a micelle strand 
must obey a Poisson (i.e., exponential) distribution with identical average length 〈𝑆〉 regardless of 
its type, i.e., whether it is a linear micelle, a dangling arm or an inner backbone, as shown by Fig.4b. 
The overall micelle size distribution, in Fig. 4c, contains both many micelles that are too short to 
have many branches as well as a few, but very large, micelles with multiple branches due to fusion 
at a rate proportional to the number of branch ends. Since 〈𝑆〉 and the branching density 𝛽 are 
independent equilibrium parameters, empirical correlations to better guess their values from 〈𝑀〉 
and the budding time 𝜏̅𝑏𝑢𝑑  (a kinetic parameter), which must be set before equilibration, are 
established as elaborated in the SI.  
 
Materials and experiment 
 
Materials. To infer the presence of branches by examining the changes in linear rheology with 
added salt, a series of micelle solutions were made with the same volume fraction (𝜙 = 4.02 %) 
but various concentrations of NaCl (with the total counterion concentration [Na+] from both salt 
and surfactant ranging from 0.801 to 1.101 M). The surfactant solutions contain two types of 
surfactants, “SLE1S” and “CAPB”, along with a simple salt (sodium chloride, NaCl). SLE1S (see 
Fig. 5a) is an abbreviation for commercial SLES (sodium lauryl ethylene glycol sulfate, industrial 
grade) with one ethoxyl group (EO) on average (but with a distribution of the number of EOs 
ranging from 0 to 10). CAPB (see Fig. 6b, cocamidopropyl betaine, industrial grade) is a 
zwitterionic co-surfactant. The weight ratio of SLE1S/CAPB in the solution is fixed at 8.57. The 
activity of the SLE1S paste was verified using potentiometric anionic surfactant titration, ASTM 
D4251. All the samples were then well mixed at ratios designed to produce the desired surfactant 
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and salt concentrations (reported below) and allowed to rest overnight for degassing prior to 
measurements.  
 

 
Figure 5 The chemical structure for (a) SLE1S, and (b) CAPB. 
 
Macro-rheology. An MCR-702 TwinDrive rheometer (Anton Paar) equipped with a 50mm steel, 
0.5° cone and plate, was used for measurements. The zero-shear viscosity was measured in a flow 
experiment at low frequency, where a low shear viscosity plateau was observed. The frequency 
sweep measurements were conducted with logarithmic variation in the applied strain amplitude 
through a built-in “RheoCompass” software. Such a variation in the strain amplitude maximizes 
the torque signal at lower frequencies while minimizing the effects of inertia at high frequencies 
within the linear viscoelastic range of the samples. The counter-rotation mode was also used to 
divide the total strain amplitude between the upper and lower drive which helps limit inertial 
effects at high frequencies. The drive, system geometry, and motor were all calibrated or corrected 
prior to measurement. Only data where the measured torque deviates from the lower-drive-electric 
torque by < 2% were included (which is the recommended criterion by Anton-Paar). We sampled 
10 data points per decade of frequency to obtain enough information in a reasonable time. Samples 
were freshly loaded each time and a solvent trap was used to prevent solvent evaporation near the 
edge. All rheological measurements were performed within the linear viscoelastic regime at 25 °C. 
Each sample was re-measured and the standard deviation of each rheological measurement was 
found to be less than 5%.  
 
DWS. As an optical micro-rheology approach, diffusing wave spectroscopy (DWS) was also 
applied to observe the high-frequency behavior (10−105 rad/s) of micelle solutions. Details about 
DWS can be found in references.30, 37, 48, 58 The wavelength of light used in the DWS was 532 nm. 
Solutions of sulfate latex particles (8.2 wt. %, analytical grade, from Life Technology) with a bead 
size of 600 nm were used as molecular probes with final bead concentration at 0.5 wt. %. These 
beads, made of IDC polystyrene latex with a hydrophobic surface, were stabilized with a low level 
of sulfate charges (thus rendering the beads negatively charged), and were surfactant free. The 
samples for DWS measurement were well mixed with 0.5 wt % beads before adding 10 wt % NaCl 
solutions to avoid shocking of the samples. A high-speed vortex mixer was also used to ensure the 
homogeneity of the samples. After 12 h of equilibration, scattering from the sample was measured 
in a 5 mm glass cell on an LS Instruments RheoLab 7.1.0 system. The transport mean free path 𝑙∗ 
(=552 μm) was determined from the control sample with the same-size beads in water.   
 
Combining mechanical rheology with DWS. When combining the high-frequency rheological data 
from DWS with the lower-frequency data from mechanical rheometry, ideally, the two sets of data 
should overlap at intermediate frequencies (10~100 rad/s). However, it is now well accepted that 
the micro-rheology over- or underestimates the elastic modulus due to slip and the compression of 
fluid at the interface between particle probe and viscoelastic medium as well as the formation of 
particle-micelle aggregates.2, 58 As a consequence, to merge DWS data with the mechanical data 
requires that the magnitudes of G’ and G” from DWS be shifted by a factor that depends on the 
specific frequency range over which the two data sets overlap. The following procedure is 
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therefore used to obtain the combined G’ and G” curves: a) Mechanical rheometric data outside of 
a frequency window of 0.5-100 rad/s was removed, beyond which the data are subject either to the 
effect of inertia (at high frequency) or to low signal-to-noise ratio (at low frequency). b) Truncation 
of DWS data is carried out at low (<10 rad/s due to poorly resolved terminal behavior) and high 
frequency (>20000 rad/s due to the limitation of Brownian motions of probe particles). c) The 
remaining DWS data is eventually shifted vertically to allow for the best overlap with those from 
mechanical rheometry at frequencies between 50 to 150 rad/s. The resulting six-decade frequency 
spectrum of rheological moduli, G’ and G” for a 4.04 % SLE1S+CAPB solution is obtained with 
the corresponding 𝜂0 shown in Fig. 6. 
 

 
Figure 6 The experimental measurements for (a) G’ and (b) G” of micelle solutions with the same surfactant 
volume fraction (4.04 % SLE1S+CAPB) but different concentrations of [Na+]. The corresponding values 
of 𝜂0 is plotted in the inserted plot, each coded with the same color as the corresponding rheological curves. 
 
Results and discussion 
 
Scaling behaviors for micellar viscosity. Given the details on data acquisition and the associated 
time-to-frequency transformation in the SI, the flow properties of a micelle solution can be 
simulated for a well-equilibrated ensemble containing 2000 micelles, each of which may contain 
multiple, and hierarchical, branches. In Fig. 7, we present scaling laws of the zero-shear viscosity 
𝜂0 (extracted from the terminal region of G’ and G” curves, see SI for details) as functions of a set 
of micellar parameters including strand length ⟨𝑆⟩, branching density 𝛽 and the average size of 
micelle ⟨𝑀⟩. In Fig. 7a, we find that viscosity decreases with increasing 𝛽 for fixed micelle size 
⟨𝑀⟩. Thus, as the “span” of the micelle from one end to the other is decreased, a micellar segment 
has a shorter distance to slide by reptation to get from the interior of the micelle to its exterior, 
where it can relax. Thus, our results confirm the prevalent idea that relaxation is accelerated and 
viscosity is decreased in branched micelles relative to linear micelles of the same overall size 
⟨𝑀⟩ by the “sliding” of material through junctions.27, 53, 59 However, Fig. 7b shows the increase in 
zero shear viscosity 𝜂0 with increasing average strand length ⟨𝑆⟩ is much steeper at larger branch 
density 𝛽. This contradicts the conclusion of Lequeux and coworkers52, 53, 59 that this dependence 
should be independent of 𝛽; i.e., the viscosity of a solution of branched micelles with average 
strand length ⟨𝑆⟩ should be the same as that of a solution of linear micelles with average length 
⟨𝐿⟩. An intuitive explanation for the above steepening of the power law with increasing 𝛽 is that 
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an increase in ⟨𝑆⟩ for a highly branched system adds exponentially to the micellar material located 
far from the high-mobility micelle ends, and thus is slower to relax. 
 

 
Figure 7 Dependence of zero shear viscosity 𝜂0 as a function of (a) branching density 𝛽 at a series of fixed 
micelle sizes ⟨𝑀⟩ (in m) and (b) average strand length ⟨𝑆⟩ at fixed 𝛽. The dotted lines in the log-log plot 
of (b) are power law fits with the exponent indicated. Note that 𝜂0 values are extracted from the terminal 
regions of G’ and G” curves given by Fig. S5 in the SI with breakage rate 𝑘𝑏𝑟= 4.0 per μm of micelle, semi-
flexibility 𝛼𝑒  = 2, and persistence length 𝑙𝑝 = 50 nm. ⟨𝑀⟩ can be calculated from the values of ⟨𝑆⟩ and 𝛽, 
since only two of these parameters are independent. Small statistical errors (1~2%, shown in Fig. S6 in the 
SI) and obtained by repeating simulations (see SI for details), are within the size of the symbols. 
 
Effect of micellar breakage/ fusion on solution viscosity. The effect of micelle breakage/fusion rate 
𝜏̅𝑏𝑟 (equivalent to 1/𝑘𝑏𝑟〈𝑀〉) on 𝜂0 and on the corresponding rheological moduli G’ and G” of 
branched micelles are illustrated in Fig. 8. The increase of viscosity with increasing 𝜏̅𝑏𝑟 shows a 
power-law exponent of 0.48, which is consistent with that of the Cates theory (0.5) for linear 
micelles.55, 56 We find that the average strand length ⟨𝑆⟩  and branching density 𝛽  are nearly 
unaffected by a change in the breakage/fusion rate in Fig. 8, which is anticipated given that 𝜏̅𝑏𝑟 is 
a kinetic, rather than a thermodynamic, parameter. G’ and G” shift horizontally with increased 𝜏̅𝑏𝑟 
except at very high frequencies, where an overlap is observed. This indicates that the relaxation 
can be effectively accelerated by increasing 𝑘𝑏𝑟  (i.e., by decreasing 𝜏̅𝑏𝑟) but the microstructure of 
the micelles remains unaffected when the semiflexibility ratio 𝛼𝑒 (the ratio of entanglement to 
persistence length, 𝑙𝑒/𝑙𝑝) and the persistence length 𝑙𝑝  are held constant. In other words, the 
breakage/fusion time 𝜏̅𝑏𝑟 reflects the “living” character of the micellar solution, whose magnitude 
can be inferred from the deviation of the relaxation behavior from a single-mode Maxwellian 
model,55-57 and is therefore relatively unaffected by branching. The more microscopic parameters, 
namely the persistence length 𝑙𝑝  and 𝛼𝑒  (ratio of entanglement length 𝑙𝑒  to 𝑙𝑝 ), based on our 
previous findings,36-38, 48 are extracted from rheological data at high frequencies at which the 
rheology is also insensitive to branching.  
 
However, as illustrated by Fig. 8 (and additionally in Fig. S5 in the SI) the frequency dependence 
of the linear moduli G’ and G” of branched micelles is very similar to that of linear micelles. It 
can thus be anticipated that a given pair of G’ and G” curves can be fit equally well by either 
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allowing for, or ignoring, branching, simply by adjusting other micelle parameters. Although the 
fit of the rheology for branched micelles using a model for linear ones gives a pseudo micelle size 
⟨𝑀⟩ that is much lower than the true value for the branched micelles, without knowing the extent 
to which topology and other micellar properties can vary with salt concentration or other solution 
properties, linear rheology alone is insufficient to differentiate the effect of branching from other 
parameters of entangled micelle solutions.   
 

 
Figure 8 The effects of micellar reaction time 𝜏𝑏̅𝑟 (s) on zero shear viscosity 𝜂0 (inserted plot), with each 
point given the color also used to plot G’ (dashed lines) and G” (dot-dashed lines) versus frequency 𝜔 for 
branched micelles with identical average strand length ⟨𝑆⟩ = 0.96 μm and branching level 𝛽 = 0.38 per m. 
The ensemble for these simulations was obtained by equilibrating a linear micelle ensemble of average size 
⟨𝑀⟩ = 3.50 μm with 𝜏𝑏𝑢𝑑 = 0.2 ms, semi-flexibility 𝛼𝑒  = 2, and persistence length 𝑙𝑝 = 50 nm. The upward 
shift of G” with increasing 𝜏𝑏̅𝑟 at low frequencies yields the increase of 𝜂0 with a power law exponent of 
0.48 (R2 =0.963) in inserted panel. 
 
Estimation of degree of micellar branching. Since the linear rheology can be fit well by ignoring 
branches, a possible method to infer their presence is to examine the changes in linear rheology 
with added salt, using an assumed dependence of other micelle properties on salt concentration. 
Here linear rheology of micelle solutions (with the same volume fraction 𝜙 = 4.02 %) was obtained 
by the combination of optical micro-rheology and mechanical rheometry at a series of salt 
concentrations. A linear-micelle regime of the above surfactant solutions was studied in our 
previous work with similar experimental protocol.38, 48, 60 Details regarding the micellar material 
and the associated rheological measurements can be found in the previous section. 
 
According to Fig. 6 (inserted plot) or 9a, a maximum in 𝜂0, i.e., the so-called salt peak, at [Na+] = 
0.851 M, was observed beyond which the effect of branching becomes dominant as confirmed by 
SANS.47 We seek to quantify the topology of micelles by first fitting linear rheology data by 
assuming pseudo linear micelles with average length ⟨𝐿⟩ as shown by the “×” symbols in Fig. 9b. 
The corresponding estimates of other, branching-independent, micellar properties, i.e., reaction 
time 𝜏̅𝑏𝑟 , entanglement length 𝑙𝑒  (= 𝛼𝑒𝑙𝑝), and persistence length 𝑙𝑝  are given in Fig. 9c-d: A 
decrease in 𝑙𝑒 is observed with nearly constant 𝑙𝑝 at high ratios of [Na+]/[SLE1S+CAPB]. This 
results in a slight increase of entanglement modulus with increasing salt concentration, indicating 
micelles are “more densely entangled” with smaller entanglement spacing, possibly due to stronger 
electrostatic screening at higher salt concentration. 
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Figure 9 (a) The experimentally measured zero shear viscosity 𝜂0; (b) The pseudo micelle length 〈𝐿〉 and 
“true” micelle size 〈𝑀〉 (from an assumed linear dependence of scission free energy 𝐸𝑠𝑐  on [Na+]) (c) 
micellar breakage/fusion time 𝜏𝑏̅𝑟, (d) the entanglement 𝑙𝑒 and persistence length 𝑙𝑝, extracted by fitting 
the pointer algorithm to the rheology assuming linear micelles; (e)-(f) experimental measurements  and 
corresponding fits assuming no branches (dashed lines) and allowing for branches (filled symbols) for 
rheological moduli G’ and G” of micelle solutions at 25 C with the same surfactant volume fraction 
(4.04 %) with (e) [Na+] = 0.901 M and (f) [Na+] = 0.951 M, each coded by a color also used in panels (a)-
(d). Note that the inserted tables show the estimates for the branching-associated topological parameters: 
average strand length 〈𝑆〉 and branching density 𝛽 whose values are determined under the assumption that 
𝜏𝑏̅𝑟 , 𝑙𝑒 , and 𝑙𝑝  are unaffected by the presence of branching. Error bars of the parameters (panel c-d) 
estimated from rheology are based on their insensitivity percentages. This is the percentage by which the 
parameter can be allowed to vary from the best-fit value while retaining an average absolute fitting error < 
10%, with other parameters allowed to adjust to compensate to the extent possible. (The slightly better fit 
to the data obtained from the linear-micelle model is due to the better optimization for this model, than for 
the more expensive branched-micelle model.) 
 
Taking as examples two micelle systems on the right side of the salt peak, with [Na+] = 0.901 M 
and 0.950 M (and results for other salt concentrations given in Fig. S7 in the SI), the model 
predictions under the assumption of linear micelles (given by the dashed lines) match well with 
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the experimental measurements (denoted by hollow symbols) over six decades of frequency in Fig. 
9e-f. However, since we show below that similar fitting is obtained when allowing branching, 
additional information is required to estimate the true micelle size 〈𝑀〉. This can be achieved by 
extrapolating the micelle size 〈𝑀〉 = 〈𝐿〉  obtained for the two salt concentrations on the left side 
of the salt curve in Fig. 9b to the right side of the salt curve. The extrapolation is here carried out 
by assuming a linear dependence on salt concentration of scission free energy 𝐸𝑠𝑐  (i.e., the free 
energy to break a cylindrical micelle, creating two new end-caps)48  using 〈𝑀〉 ∝ exp(𝐸𝑠𝑐/2𝑘𝐵𝑇)  
 
This allows us to estimate the true average micelle size ⟨𝑀⟩ beyond the salt peak (denoted by “+” 
in Fig. 9b) in contrast to the apparent decrease of the pseudo length ⟨𝐿⟩ obtained when fitting 
without allowing branches (i.e.,“×” symbols in Fig. 9b). The branching density 𝛽 can then be 
obtained by fitting to the experimental measurements in Fig. 9e-f with average strand length ⟨𝑆⟩ 
determined by its dependence on ⟨𝑀⟩ and 𝛽. Detailed values of scission free energies 𝐸𝑠𝑐 , micelle 
sizes ⟨𝑀⟩, strand lengths ⟨𝑆⟩ and branching densities 𝛽 at various [Na+] are listed in Table S1 in 
the SI. 
 
As also illustrated in Fig. 9e-f, the good fits obtained by allowing for branches (filled symbols), 
and the corresponding values of ⟨𝑆⟩ and 𝛽 , indicate that obtaining branching parameters from 
linear rheology is underdetermined unless additional information is provided. The assumptions 
made above (i.e., that micelle scission free energy increases linearly with increasing salt 
concentration) provide an example of how this can be done. But of course, the method needs to be 
checked and possibly corrected, in case the scission free energy is not linear in salt concentration, 
or other micelle parameters vary with salt differently than assumed here. We believe that nonlinear 
rheological data fitted using a nonlinear model, such as the recent adaptation of the slip-spring 
model to micelles proposed by Sato et al.61 may provide a means to validate and improve our 
estimation of branching parameters.  
 
Conclusion 
 
We presented a mesoscopic model for the relaxation and linear rheology of branched micelle 
solutions, which we used to model the nonmonotonic dependence of viscosity on salt concentration 
observed for many surfactant solutions. We modeled the evolution of branched micelles by 
combining branch formation and dynamics with diffusion of micelles within entanglement tubes, 
with micellar scission and fusion reactions taken from our previously developed pointer algorithm 
methodology for entangled linear micelles. Analogously with the Kirchhoff circuit model, our 
constrained diffusion model maps the micelle topology onto a bidirectional connectivity matrix 
that tracks reptation of micellar mass through branch junctions under the constraint of no 
accumulation of surfactant at the branch point. Branch formation from a linear segment is 
introduced and controlled by an associated “branch budding” time scale, and thus offers the avenue 
towards micellar system containing very large and complex branched clusters with up to hundreds 
of branch points and tens of microns in size. 
 
The result is a mesoscale simulation model for the rheology of a branched micellar solution with 
independent parameters to account for micelle size and topology (i.e., average strand length ⟨𝑆⟩ 
and branching density 𝛽), reaction kinetics 𝑘𝑏𝑟 , dimensionless entanglement spacing 𝛼𝑒, as well 
as the micelle flexibility (persistence length 𝑙𝑝). This model allows the determination of scaling 
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exponents for micelle solution viscosity against strand or micelle size, or against branching density, 
results that are difficult or impossible to determine experimentally. Our results clearly demonstrate 
shear viscosity scales differently with end and branch-point densities during the transition from 
linear to branched structure. The scaling exponent for viscosity as a function of strand length, 
where a “strand” is a portion of the micelle terminated on each end by end a micelle end or a 
branch point, increases dramatically for micelles with higher branching densities, and thus 
contradicts the hypothesis that the viscosity of a solution of branched micelles is the same as that 
of linear micelles whose mean length equals the strand length of the branched micelles. 
 
The model also offers the first practical method for inferring properties such as micelle size, 
branching density, and breakage rate, from their linear rheology. Assuming a linear dependence of 
the scission energy on the added salt concentration, and that other micelle parameters including 
breakage time are the same as those obtained by fitting rheology using a code for linear micelles, 
the commonly observed decrease in solution viscosity at increased salt concentration can be fitted 
by allowing for increasing branching with increasing salt concentration. This demonstrates that by 
fitting the experimental linear viscoelastic data (i.e., G’ and G”) over a range of salt concentrations 
on the low-salt side of the diagram where branching can be neglected, the dependence of micelle 
scission free energy can be inferred and extrapolated to the high salt side, thereby allowing the 
branching density as a function of salt concentration on the high salt-side to be inferred. Checking 
the assumptions underlying this approach, using nonlinear rheological data for example, should be 
a high priority for future work. The new model thus provides an important step towards 
establishing the structure-property relationship for entangled micellar solutions over the entire 
range of salt curve. 
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