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Abstract

Federated Learning (FL), as a new computing framework, has received significant attentions
recently due to its advantageous in preserving data privacy in training models with superb
performance. During FL learning, distributed sites first learn respective parameters. A central
site will consolidate learned parameters, using average or other approaches, and dissemi-
nate new weights across all sites to carryout next round of learning. The distributed parame-
ter learning and consolidation repeat in an iterative fashion until the algorithm converges or
terminates. Many FL methods exist to aggregate weights from distributed sites, but most
approaches use a static node alignment approach, where nodes of distributed networks are
statically assigned, in advance, to match nodes and aggregate their weights. In reality, neu-
ral networks, especially dense networks, have nontransparent roles with respect to individual
nodes. Combined with random nature of the networks, static node matching often does not
result in best matching between nodes across sites. In this paper, we propose, FedDNA, a
dynamic node alignment federated learning algorithm. Our theme is to find best matching
nodes between different sites, and then aggregate weights of matching nodes for federated
learning. For each node in a neural network, we represent its weight values as a vector, and
use a distance function to find most similar nodes, i.e., nodes with the smallest distance from
other sides. Because finding best matching across all sites are computationally expensive,
we further design a minimum spanning tree based approach to ensure that a node from each
site will have matched peers from other sites, such that the total pairwise distances across
all sites are minimized. Experiments and comparisons demonstrate that FedDNA outper-
forms commonly used baseline, such as FedAvg, for federated learning.

Introduction

Federated Learning (FL), originally proposed in 2016 [1], is a learning paradigm which builds
machine learning models based on datasets distributed across multiple sites/devices in order
to protect privacy and prevent data leakage. While traditional machine learning methods are
typically trained based on centralized data, using FL provides a feasible way to develop models
that can keep all the training data on distributed devices and update model parameters using
immediate aggregation.
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As data collection and analytics are becoming increasingly popular, protecting data privacy
and safety is becoming a major concern for business, government, and nearly all sections of
human society. By deploying FL, each participant in the model training process can build one
model together without sharing data, naturally results in data privacy protection. Traditional
machine learning methods need to concentrate training data in a certain machine or a single
data center, which means in order to meet the gradually increasing data level, it is necessary to
continuously add machines and build infrastructure. Such method not only greatly increases
the cost but also hinders the efficiency building models. In contrast, FL allows all the needed
data stay in their local places without the need to build specific data center to aggregate them,
at the same time, each part of the data will be used to develop the model. Such efficient charac-
teristic enables Federated Learning to be widely used in multiple areas especially in the health-
care domain.

Federated learning in healthcare

The shift from written health records to electronic health records has been instrumental in
driving the use of patient data to improve the healthcare industry. The adoption of electronic
health records enables health care professionals to disseminate knowledge across all sectors of
health care, which in turn helps to reduce medical errors and improve patient care and satis-
faction. However, as mentioned previously, adequate medical data sets are difficult to obtain.
However, in order to capture the subtle relationships between disease patterns, socioeconomic
and genetic factors, and complex and rare cases, exposing the model to different cases is criti-
cal. FL is able to address this issue by enabling the distributed training of machine learning
models using remotely hosted datasets without the need to accumulate data and therefore
compromise the data privacy [2-7].

While FL is capable of making use of data across different sites/institutions, there are still
several data acquisition issues which can cause bias during model develop process. First of all,
due to data privacy limitation, the Health Insurance Portability and Accountability Act
(HIPAA) has set up regulations for healthcare organizations to manage and safeguard personal
information and address their risks and legal responsibilities in relation to processing personal
patients data [8]. This leads to strict data share policies of each healthcare provider, which, lim-
its the amount of available data source. Another issue is that there exist hospital speciality gaps
between different hospitals, in other words, healthcare providers might focus on several partic-
ular diseases treatment instead of performing general hospitalization. In this case, there are big
chances where FL models trained across all different disease focus datasets will perform pre-
dictions with certain disease-specific bias. In addition, biases also exist when patients demo-
graphic characteristics differ. Different income groups, age groups, genders, and geographical
locations and living environments will all affect the overall patient characteristics that admitted
to different regional hospitals, thus, data bias can also be observed in such kind of dissimilarity.
Therefore, it is essential to reduce all the above biases when we try to develop a federated learn-
ing model to make crucial medical predictions. We aim to design a novel federated learning
model that can take this kind of bias into consideration at the first step where node weight
aggregation takes place.

Federated learning uniqueness and limitation

Despite the fact that use of traditional machine learning techniques (TML) in combination
with electronic health records (EHR) is gaining popularity as a means to extract knowledge
that can improve decision-making processes in healthcare, they usually require the training of
high-quality learning models based on diverse and comprehensive datasets that are difficult to
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obtain due to the sensitivity of medical data from patients. Meanwhile, although distributed
machine learning [9] has addressed parallel computing in handling large scale data, these
methods are often designed to tackle the data volumes using frequent data exchange. In addi-
tion, switch learning models are often prohibitively expensive/inconvenient, making it difficult
for end users to try/implement different learning algorithms. On the contrast, FL enables
devices to collaboratively learn shared predictive models while keeping all training data on-
device, decoupling the power of machine learning from the need to store data in the cloud.
This goes beyond using native models to make predictions on mobile devices and also brings
model training to the device.

Table 1 summarizes the main difference between federated learning, traditional machine
learning methods, and distributed machine learning methods. In summary, the inherent
advantage of federated learning is that is allows flexible modeling training and continuous
learning on end-user devices while ensuring no end-user data leaves the device. Fig 1 shows
how FL works. Global model M is downloaded from the central server to each client when it
comes to training the model, after which the downloaded model is trained by each client using
their own dataset. Once the training process is completed, each client needs to update their
updated training parameters to the central server and the central server would aggregate the
learnt parameters (parameter aggregation) and pass the aggregation results to the global
model, therefore, one update for the global model is accomplished and this process is called
Global update. Once global update is finished, model parameters will be passed from the global
model to each local model for Local update, where clients’ model parameter will be updated
with the new aggregated model weights to start a new round training. [4].

Parameter aggregation is one of the most important steps of the federated learning. Among
all existing methods, Federated Averaging (FedAvg) is the most commonly used method. Eq 1
summarizes the global weight values w updating of FedAvg in each training round t, in which
k is the client index, K means the total number of clients, # is the total number of instances
and #y, is the local data examples for each client [1]. Overall, Eq 1 indicates that the global
weight vector w is the weighted average of weight values obtained from local clients. In this
paper, a bold-faced symbol denotes a vector or a high dimensional vectors (e.g. a matrix).

K

Wi = Zﬁw]t( (1)

pergile
Recently, other weight aggregation methods have also been proposed in FL. For example,
anomaly score of each client is taken into consideration to detect abnormal client behavior,
thus, clients will not contribute equally when global model updates the weight values, the
majority of those novel methods are still based on FedAvg [10, 11]. Even though this method is
widely used and has been proved with good prediction performance [12, 13], due to the nature

Table 1. Comparison between Federated Learning (FL), traditional machine learning (TML), and distributed machine learning (DML) algorithms. DML methods
are commonly data driven (DML,) or computing driven (DML,). Data driven methods (DML,) mainly try to learn from large volume distributed data, whereas comput-
ing driven methods (DML,) aim to parallelize computing in learning from centralized data. Computing framework\ refers to the whole eco-system for learning, and model
switch refers to easiness of switching a new learning model.

Method | Datalocation |Main computing | Computing framework |Data exchange |Main Challenge Privacy protection | Model switch
TML Centralized Data center Very restrictive Yes Model performance | Low Very restrictive
DML, Centralized Data center Restrictive Yes Data volume Low Very restrictive
DML, Distributed Local Flexible Yes Data volume Medium Restrictive

FL Distributed Local Very flexible Prohibited Data protection High Flexible
https://doi.org/10.1371/journal.pone.0288157.t001
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Fig 1. A conceptual view of the FL framework. The local update (downstream) and global update (upstream) are carried out iteratively to ensure
models trained using local data are aggregated at central server, and then dispatched to distributed sites.

https://doi.org/10.1371/journal.pone.0288157.g001

of hidden layers in deep learning neural networks, we can clearly observe that this method
manually forces weight aggregations between neurons located at the exact same location (i.e.,
same layer and same node index) of two networks. However, when training two same-struc-
tured deep learning networks N4 and Np, even they are given the same input, neurons at the
same location of the two networks do not always give the same update. In other words, certain
property of the input (or the same instance) may trigger the most significant activation to the
i-th node of N, but same instance may triger the most significant activation to the j-th node
of Np. Meaning that same instance responds differently for the same lactation nodes between
two networks.

In order to demonstrate the above hypothesis, we create a simple dense neural network Np,
with one input layer, two hidden layers and one output layer. One dataset with 10 features is
fed into Np. For the i" node in the first hidden layer N, there will be 10 weight values
{wio, Wiy, ..., wly} corresponding to the 10 input features (the superscript denotes the first
trained network). After we train Np, from scratch for five times with the exactly same dataset, a
node e is randomly chosen from all five networks (with the same node index), from which we
will get 10 weight vectors of {We, We 1, . . ., Weo} in which w,; = [w}, wzo, L W), w;] repre-
sents all five trained weight values corresponding all five networks’ first indexed node and first
feature dimension as shown in Fig 2. After that, we calculate the variance of w, o, and repeat
the same for all 10 nodes. Fig 3 reports the variance of the weight values across all five trained
network. The high weight variance in Fig 3 concludes that weight aggregation by static node
matching will not only add uncertainty to model performance, but also will hinder the practi-
cal application of Federated Learning in industry.

In this paper, we aim to design a dynamic node matching method, FedDNA, to aggregate
weight values in each round based on a neuron-distance method, in which neuron distances
across all the clients are calculated after each client completes training the model parameters
with their own data. After that, the closest neurons are matched to calculate their average
weight values as new parameter for the global model. Fig 3 reports weight variance of the
matched nodes trained using same setting as the static node matching. The results show that
dynamic node matching provides much smaller weight variance across all nodes of different
networks. The advantage of reducing variance is that it allows nodes with similar behaviors to
be aggregated for weight averaging. This potentially results in stable and improved federated
learning performance.
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Fig 2. A conceptual view of node weight variance calculation. Five neural networks with the same architecture are trained using same training
sample. The first hidden layer nodes are trained with the same input features and the first node is chosen to calculate the node variance.

https://doi.org/10.1371/journal.pone.0288157.9002

In summary, the main contribution of the proposed research is summarized as follows:

« Dynamic node alignment: We propose a new dynamic node alignment framework,
FedDNA, for weight aggregation in federated learning. Instead of using fixed node index to
match nodes across different sites, FedDNA finds the best matching nodes based on node
weight values, such that nodes, of the same layer, with the most similar response to the input
are considered as one new node for next round training.

Fast node alignment: To increase node aliment speed, we propose a Minimum Spanning
Tree (MST) based method to find global optimal matching nodes across all sites.

Alignment and frozen: In each training process, after finding the matching nodes at the
very beginning, node matching will be frozen and federated average will be used for the rest
of training rounds. By doing this, we can ensure the matching nodes orders which will not
be disturbed by subsequent training.

Related work
Dynamic node alignment

Conventional FedAvg is proposed to strictly average local node weights in order to update the
global model parameters, which has inspired researchers to try to come up with more flexible
and reasonable node alignment ideas. A new federated learning algorithm called Fed2 incor-
porating a feature alignment strategy in order to enable local models to align feature represen-
tations with a global model by introducing a feature projection layer is proposed and validated
[14]. In this method, the authors introduce a feature projection layer, which is able to map the
features extracted by the local models to a common feature space that is aligned with the global
model. During training, the local models use this layer to project their features into the
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Fig 3. Comparisons of weight variance between two weight matching methods, Static node matching vs. Dynamic node matching (proposed). The
x-axis denotes the neuron node ID of the first hidden layer, consisting of 10 neurons, of a neural network. The network was trained five times till
convergence, using same training data. The y-axis denotes the variance of the weight values of each of the hidden nodes (Larger variance mean the
neuron weights are more unstable across different training times, even for the same feature dimension of the same neuron).

https://doi.org/10.1371/journal.pone.0288157.g003

common feature space, where the distances between the projected features of both the local
models and global models can be minimized. A method for aligning two models in federated
learning by matching neurons that perform similar functions is proposed, in which the match-
ing is done by projecting the local update onto the tangent space of the reference model, which
ensures that the update is aligned with the reference model’s geometry. The weights used in
the averaging are proportional to the cosine similarity between each local update and the refer-
ence model. This weighting scheme gives more weight to updates that are more aligned with
the reference model and less weight to updates that are less aligned, which helps to improve
the overall convergence speed and accuracy of the algorithm [15]. Based on the previous
approach, a new approach Multi-Center Federated Learning that aims to improve personaliza-
tion by clustering clients based on their data distribution is proposed. The multi-center aggre-
gation mechanism this approach involves aggregating the local models from multiple centers
to obtain a global model. Each center trains its own local model based on the data of the clients
in its cluster. The local models are then aggregated by exchanging information between the
centers to improve the global model [16].
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Federated learning node aggregation

As more attention to data privacy protection are being payed, Federated Learning has become
one of the most popular areas. Certain number of studies have also proposed creative
approaches related to weight update in Federate Learning. LoAdaBoost FedAvg is proposed to
achieve higher model prediction accuracy on distributed intensive care data, in which local
models with a high cross-entropy loss were further optimized before model averaging on the
server [17]. Federated-Autonomous Deep Learning (FADL) is designed to update global
model by training part of the model using all data sources in a distributed manner while the
rest of the model is trained with data from specific data sources [18]. When it comes to IID
data, Haddadpour and his colleagues introduce a framework called federated averaging with
compression (FedCOM), which the global model is decided not only by the update by the aver-
age of all clients’ training results, but also determined by the previous global model [19]. A
model poisoning attack is proposed to perform adversary controlling of a small number of
malicious clients in order to ensure weight updates are not being poisoned by those clients
[20]. Similarly, abnormal clients are observed at the server side in the proposed detection-
based method to timely detect unusual clients behaviors to prevent abnormal server model
updates, in which a low dimension substitute of the weight vectors is created for anomaly
detection [10]. A novel FL approach using mutual information (MI) which weight updates are
reformulated by minimizing the MI between the local model and the aggregate model and
adopting a negative correlation learning (NCL) strategy on the client side. The convergence of
this algorithm theoretically is proved by experiments on MNIST, CIFAR-10, ImageNet and
clinical MimIC-III datasets [21]. A hierarchical federated edge learning framework is proposed
in order to solve the optimization issue of device scheduling and resource, in which immediate
hospitals are in charge of part of model aggregation work [22]. To prevent unreliable updates
from untrusted devices, a new concept called reputation has been introduced in the context of
FL-enabled healthcare systems. This reliable device choice plays an important role in mitigat-
ing multiple security attacks [23]. A new optimization algorithm for federated learning that
leverages over-the-air computation is proposed, in which the authors aim to improve the con-
vergence rate and accuracy of federated learning by introducing a new learning rate optimiza-
tion algorithm that takes into account the channel conditions and interference between the
devices in a federated learning network. This new algorithm uses a feedback mechanism to
adjust the learning rate dynamically, which improves the convergence rate and accuracy of the
federated learning model [24]. Federated Loss-Weighted Averaging (FedLWA) scheme is a
key component in an unsupervised recurrent federated learning (URFL) algorithm to enhance
the parameter aggregation, in which each edge device calculates a weight based on the loss
function of its local model during training [25].

Local-update SGD method which is a technique running stochastic gradient descent (SGD)
parallel on various workers and the sequences will only be updated once in a while has been
proved with faster convergence and less communication cost for Federated Learning [26].
Two ideas based on SGD are tested and proved convergence. The first strategy is local steps
and the second idea aims to share certain information and do local computations. The results
show higher convergence speed and more efficient communication on Federated Learning set-
tings using these two SGD based methods [27]. Several gap settings are emphasized between
the upper and lower limits of optimization associated with federated learning, particularly for
“intermittent communication graphs” that capture local SGD methods but whose convergence
rates are not known to match the corresponding lower limits [28]. Computational heterogene-
ity generated by Local-update SGD in Federated Learning is analyzed and one solution to the
client fragmentation problem is to fix the number of local updates at a particular point, but
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allow clients to update the global model fashion asynchronously or without locking [29].
Researchers assume that all clients are involved, at the same time using batch gradient descent
on all clients may be better than using stochastic gradients [30]. Li et al. [31] studied SGD con-
vergence in a more realistic environment for joint averaging, involving only a subset of cus-
tomers per round. To ensure convergence, they assume the probability that the client is
randomly and uniformly selected or proportional to the size of the local data set. The problem
of client characteristics varying over time throughout the day is introduced and the conver-
gence of semi-cyclic SGD is studied in the research [32], in which multiple blocks of clients
with different characteristics are sampled from regular cyclic patterns, such as day and night.
Due to the heterogeneity of computing power, clients can perform different local steps. Peri-
odic decentralized SGD (PD-SGD) is proposed and is proved to be able to allow multiple local
updates happed based on decentralized SGD in Federated Learning [33]. Yu et al. recommend
allowing each customer to maintain local momentum buffers and average local buffers and
local model parameters per communication turn. This approach, while empirically improving
the final accuracy of local SGD, doubles the cost per round of communication [34] A new
technique, FedFast, is presented to accelerate distributed learning to achieve good accuracy for
all users early in the training process by sampling from a different set of participating custom-
ers in each training round and applying an active aggregation approach to propagate the
updated model to other customers. Authors demonstrate the effectiveness of their approach
on various benchmark datasets and compare it with state of the art recommendation tech-
niques [35].

Federated learning for healthcare

Since FL is a general learning paradigm that eliminates data pooling requirements for AI
model development, it has applications across multiple scenarios, especially the entire Al
healthcare [36]. A FL-based privacy-aware and resource-saving collaborative learning protocol
was introduced in [37] for an EHR analysis management system working with multiple hospi-
tal institutions and cloud servers, where each hospital runs neural network models with its
own EHR with the help of cloud computing. In addition, an FL-based approach was proposed
to predict hospitalizations in patients diagnosed with heart disease using their historical EHR.
More specifically, health data from an EHR system consisting of patient smartphones and dis-
tributed hospitals is trained locally on demographic information such as age, gender and phys-
ical characteristics [6]. [38] proposed a FLT scheme for wearable health monitoring, in which
smartphones and cloud servers cooperated to train and share CNN model for the identifica-
tion of privacy-conscious human activities. A disease prediction method using FL with a large
national health insurance data set of 99 medical sites (such as hospitals and clinical laborato-
ries) distributed across 34 states in the United States is studied [39]. The data included EHR
for diabetes, psychological disorders, and ischemic heart disease. The FL approach achieves
competitive performance in terms of high accuracy and privacy by comparing with traditional
methods such as centralized learning and local training without federation. also builds a FL-
based health monitoring solution for analyzing patient outcomes from distributed hospital
networks. Interestingly, each hospital created an entity called the Personalized Treatment
Effect Estimator. Each estimator can be classified in each subgroup, where individual treat-
ment outcomes include outcomes of patient characteristics, and site indicators are used to esti-
mate overall treatment outcomes at coordination sites [40].

A combined brain imaging method is proposed to utilize MRI scans distributed across mul-
tiple clinical centers and institutions. In this case, through collaboration between the medical
site and the central server, an FL model was derived to simulate an end-to-end framework for

PLOS ONE | https://doi.org/10.1371/journal.pone.0288157  July 3, 2023 8/25



PLOS ONE

Federated learning using dynamic node alignment

data standardization, confounding factor correction, and high-dimensional feature variability
measurements [41]. To facilitate X-ray scanning in intelligent health care, a FL-based approach
is proposed to support the diagnosis of acute neurological symptoms such as severe headache
or loss of consciousness. Each hospital runs a CNN-based DenseNet1212 model that supports
feature propagation, encourages feature reuse, and minimizes the number of neural parame-
ters to train the X-ray image dataset provided by the North American Radiology Society [42].
In addition, a dynamic fusion-based FL method is proposed for CT scan image analysis, which
can diagnose COVID-19 infection through customer participation and customer selection.
First, each customer, such as a medical institution, makes a decision about whether to partici-
pate in the FL rotation based on the performance of the new training model. The central server
also calculates the update time to determine which clients are allowed to update their local gra-
dient [43]. FL also combines with deep learning to build a deep collaborative learning solution
for detecting COVID-19 lung anomalies in CT. The internal data set was collected from a total
of 75 confirmed COVID-19 patients at three local hospitals in Hong Kong for FL simulation
and was then validated by data from mainland China and Germany [44].

Our work differs from the above methods because our dynamic node alignment aggregates
weights of matching nodes for FL by ensuring the best matching nodes across different sites.

Proposed approach
Motivation

Instead of using fixed node matching, like FedAvg does, we propose to use dynamic node
matching to find matching node between different sites, and then aggregate weights of
matched nodes to calculate weight values of the global model. During the FL process, the sites
will pass their local weight values to the center, so the center will carry out node matching
before aggregating site weight values. Our idea is to use weight values of each node as a feature
vector to find matching nodes. Because weight values of a neuron are associated to each fea-
tures, for nodes at the same hidden layer, they will have same input space. This allows us to use
weight values to find distance/similarity between nodes for matching.

To make sure weight values are aggregated from the most similar nodes crossing all clients
C, at the first step, nodes distances are calculated across all clients as shown in the distance
matrix in Table 2, from which Minimum Spanning Tree (MST) as shown in Fig 4 is used to

Table 2. An example of pairwise distance tables between three sites where each site has three nodes: Site,={A, B,
C}, Site,={a, b, c}, and Site;={a, B, y}. Each value in the table denotes distance between two nodes across two sites.

a b c
A 0.12 0.15 0.16
B 0.11 0.13 0.17
C 0.16 0.14 0.18
A B C
a 0.27 0.13 0.19
0.23 0.14 0.18
V4 0.21 0.16 0.21
a b C
a 0.13 0.24 0.18
yij 0.14 0.19 0.21
V4 0.21 0.21 0.25

https://doi.org/10.1371/journal.pone.0288157.1002
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Fig 4. Node matching using MST. Node a is the starting point since it has the smallest distance 0.11 with node B, therefore, B will be matched to a.
Node a will be matched with {a, B} with MST. This MST matching process will continue for node b and c.

https://doi.org/10.1371/journal.pone.0288157.9004

ensure that the matching are across all clients. A minimum spanning tree (MST) or minimum
weighting tree is a subset of edges of a connected edge-weighted undirected graph that joins all
vertices together without any loops and with the smallest possible total edge weights. That is, it
is a spanning tree with the smallest possible sum of edge weights. More generally, any edge-
weighted undirected graph (not necessarily connected) has a minimum spanning forest, which
is the union of the minimum spanning trees of its connected components [45]. In our example
in Table 2, a distance mapping is plotted to demonstrate how the matching process works. At
first node distances are calculated across all sites, in this case, 3 sites. we start the matching pro-
cess from node a because it has the smallest distance 0.11 across all the nodes. we can observe
that node B has the smallest distance with it, therefore, B will be matched to a. For the next
step, we are using MST to find the next matching node for {a, B}, which in this case, will be
node o. This MST matching process will continue until all the nodes are matched across all cli-
ents as shown in Fig 4.

Dynamic neural network node matching

In the proposed method, one key step is to find the closest nodes based on distance calculation
in each round. This step is carried out at the center, and the aggregated weights are then dis-
patched to the federated learning site for the next round. The node matching is applied to one
specific hidden layer of all networks, one at a time. By default, we are referring to nodes in the
first hidden layer for ease of explanation. The same matching process is applicable to any other
hidden layers as well. Algorithm 1 outlines the main steps of FedDNA for matching nodes
across networks. Overall definition of the symbols used in our node matching is shown in
Table 3.

Denote § = {v{,vj, ..., V;} the global model (server) in which v = [w] ,w; ,..., w;

] 18
the weight vector of the i-th node in its first hidden layer. C = {¢,, c,, . .., ¢; } means the set of
clients cand ¢* = {v}, v}, ..., v’} is nodes weight vector of client ¢*. Node weight vector of cli-
ent ¢”s i-th node is denoted by v! = [w},w?|,..., w! .

Neuron matching distance calculation. Given two neurons v{ and vf at the same layer,
because they have the same input dimensions (In this paper, we are using dense network archi-
tecture, so neurons at the same layer are connecting to all inputs/nodes of the preceding layer),
we can represent each nuron as a vector, and calculate distance/similarity between neurons

using the vectors.
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Table 3. Definition for symbols used in node matching.

Symbol Definition
S Global model (server)
v Weight vector of the i-th node in global model first hidden layer
C Set of clients
< Nodes weight vector of client ¢
\A Node weight vector of client ¢*’s i-th node
wl, Weight values of node v*
d(a, b) Distance between node a and node b
T Minimum spanning tree
dv,T) Distance between node v and tree 7

https://doi.org/10.1371/journal.pone.0288157.t1003

Assume for any particular layer, the input dimension is m, and the weight values of
neuron v; = [w},w} ..., w’ |, weight values of neuron vf = [wjy, wfl, ceey wfm], respec-
tively. Node distance between v7 and v¥ can be calculated with Euclidean distance defined
in Eq 2 or using Manhattan distance defined Eq 3. The Euclidean distance between two
points in Euclidean space is defined as the length of the line segment between the two
points, which essentially represents the shortest distance between two points. Manhattan
distance is a distance measure between two points in an m-dimensional vector space. It is
the sum of the projected lengths of the line segments between the points on the coordinate
axes. In simple terms, it is the sum of the absolute differences of two points measured in

all dimensions.

d

Euclidean

(V?’Vf) =

dMuhattan (V?7Vf) = Z‘Wzd - W]ﬁdl (3)

During the node matching process, we will be growing a tree (i.e. a minimum spanning tree
MST) to link matched/aligned nodes across all sites. In this case, a tree 7 consists of a set of
neurons, i.e., 7 = {v’,... ,vf, ...} where a # 8. We enforce a # 3 such that an MST tree
only contains one node from each site (because we are trying to find matching nodes across all
sites. It does not make sense to have a neuron to match a node of the same network). The num-
ber of nodes in the tree 7 varies, as the tree is growing dynamically. However, after the match-
ing, each node only belongs to one MST tree, and the final number of nodes in the MST tree
equals to the number of sites of the FL learning framework. We do not record edges connect-
ing nodes in the tree, because our goal is to find matching nodes as a group, and then use their
weights to update center’s node weights. In this case, the pairwise relationship between sites is
not important to us. Also, each tree 7 records its membership nodes and will use their weights
to calculate the average weights, which will be pass to respective members of the tree 7 for
next round FL learning.

During node matching, we need to expand the tree 7" and include matching node to the
tree. Therefore, we define the distance between a node v and Minimum Spanning Tree 7 as in
Eq 4. The distance from a node to a Minimum Spanning Tree tree arg min d(v, 7 ) equals to
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Fig 5. Node matching step 1. after each client finishing training its local model, client ¢* is randomly chosen from C and node v will be randomly
selected among all the nodes in the first hidden layer of client ¢ local mode.

https://doi.org/10.1371/journal.pone.0288157.9g005

its distance to its closest node in the tree.

d(v,7T) = arg mind(v,v") (4)

vt e T

Minimum spanning tree for neuron alignment across sites. At the first step, each client
downloads the model from central server and train it with its local data, after which client ¢* is
randomly chosen from C. One node v; will be randomly selected among all the nodes in the
first hidden layer of client ¢®s local model. In the second step, another client ¢* will be chosen
at random from {C—c“}. A distance function explained previously will be used to calculate the
distance d(v{, v;) between all nodes in the first hidden layer of client ¢* model and node v*.

We can get two nodes matched (VJ’.‘, v”) based on the smallest distance.
Now we have two nodes, which are also the start of our MST tree 7 = {v¥, v/}, from which

we will start to grow the tree. MST is the one whose cumulative edge weights have the smallest
value, and in our proposed method, it means the one whose cumulative node distances have
the smallest value. In each matching step, we will randomly pick one client from {C—{c?, .
Node to tree distance Eq 4 will be applied to find the subsequent matching nodes to join the
MST tree 7. The MST tree 7 will continue growing until {C—{c% c,.. .}} is empty and at the
same time, a complete tree 7 with new node set {v?, v¥, v/,...} will be formed to aggregate
their averaged weight values as a new node weight v; for the global model. To illustrated the
above description, for example, one client is randomly chosen in Fig 5 then in Fig 6, after the
first calculation, node {a, B} are matching node, then we calculate distance d(a, @), d(a, f),
d(a, y), d(a, 0), d(B, ), d(B, B), d(B, 7), d(B, 0), then choose node a with the smallest distance
and node {a, B, a} are the matching nodes. Weight values {v!, v;, v*} will be averaged to be
considered as a new node value for the global model.

Algorithm 1: FedDNA: Federated learning with dynamic node alignment
Input: I: The index of the layer to apply node alignment (default
first hidden layer)
Data: Client models’ node weight values;
Chosen node set N={};
Matched node set M={};
Chosen Client set C={};
Output: Aggregated weight values of the global model S
1 C+ Set of federated learning participating clients
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2 N « Node set of the 1" hidden layer of participating clients (C)

3 W «— Obtain 1" layer’s weight values from participating clients (C)
4 c“— Randomly select one client from the client set C

5 {V/,vi,...,v'} < Obtain client €% s layer 1 node weight vectors

6 M «— (; R —N; //Initialize matched node set (M) and remain-
ing unmatched node set (R)

7W — 0; //Initialize set (W) storing mean weight values of
matched nodes across all sites

8 while R is not empty; //loop until all nodes are matched

9 do

10 C —C; //A temporary set to ensure that each site has one
node being matched, one at a time

11 c“% Randomly select one client from the client set C

12 v« Randomly select on neuron of ¢ from remaining node set R

13 T —{v}; //Initialize MST tree for matching

14 R—R\V //Exclude V% from remaining node set R

15 C —C\c*; //Exclude selected site ¢, because its node
already in the tree 7T

16 while (' is not empty; //loop until all sites are matched
17 do

18 |[v°, ¢l argmin d(v",7T); //find node v most closest to the

vxec*; c*el

MST tree 7

19 7 —TUv; //Include matched node v to the tree T

20 C—C\c; //Exclude site c

21 R—R\V; //Exclude v from remaining node set R

22 end

23 W« Average(v,);Vv, € T; //Calculate average weight values of
matched notes in 7

24 W —WuUWw; //Center collects average weights of matched
nodes across all sites

25 M— MUT; //Include all MST tree nodes to the matched set
M

26 end

27 for each client ¢* € C do

28 W « ClientUpdate(c*,W); //Dispatch mean weight values to
each site for next round federated learning (Alg. 2)

29 end

Algorithm 2: ClientUpdate(c,w): Local client weight updating
Input: w: trainable model parameters;
Data: (1) D.: local data at site c; (2) b: batch size; (3) e: Number of
epochs; (4) n: learning rate;
Output: w: updated local model parameters;
1 B+« split local data D. into batches of size b
2 for each epoch from 1 to e do
3 for batch be B do
4 W — w - nya(w;b)
5 end
6 end
7 Return w

Dynamic node alignment vs. Frozen. In our proposed method, frozen means instead of

using dynamic node alignment through the entire training process, we choose to train the fed-
erated learning model with dynamic node alignment for certain rounds at the very first begin-
ning, then static node alignment will be applied for the rest training part. By doing so, nodes
with similar response will be paired right after the training process starts and once all the neu-
rons are matched during the first certain rounds, we believe that the node pair pattern will
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Fig 6. Node matching result. node {a, B, o} are matching nodes.

https://doi.org/10.1371/journal.pone.0288157.9006

discovered and fixed to a certain extend, therefore, using static node alignment will prevent
the pattern from being disturbed from subsequent training process.

Theoretical analysis. In this subsection, we analyze the time complexity of FedDNA, and
compare its complexity with simple global optimal matching search. Denote X the number of
sites, n the number of first layer nodes at each site, and m the number of features for each neu-
ron. Because all sites in FL setting have same network structure, we only focus on first layer,
and the same analysis applies to other layers, if dynamic node alignment is carried out beyond
the first layer.

Finding global optimal matching (i.e., the sum of matching distances of all nodes, across all
sites) is a combinatorial problem, because it requires comparisons of all nodes against all other
nodes, across all sites. For two sites, each having #n nodes, the matching complexity is
O(n x n x m), because it needs to cross check all pairs (and each pairs involve m feature
dimension comparisons). Adding a third site would result in O(n x n x n x m) complexity
because all node pairs between three sites need to be checked. As a result, for X sites the total
complexity is O(n* x m), which grows exponentially with respect to the number of sizes.

For FedDNA, finding matching nodes across all sites for one node requires O((X — 1) x
n x m) complexity because a node needs to search all nodes from other sites and it does not
need to search nodes from the same site. Once the first node is matched (across all sites) and
matched nodes are added to the minimum spanning tree (MST), the next node matching
requires O((X — 1) x (n — 1) x m) complexity because there are n—1 unmatched nodes
remain for each site. As a result, total time complexity for all nodes (across all sites) is the sum
of all individual nodes’ complexity: O(Z — 1) x n x m) + O(Z — 1) x (n — 1) x m)
+...+O0((2-1) x1xm)=0OZ x n* x m). By growing minimum spanning tree (MST)
to support the matching, FedDNA reduces the exponential complexity from O(n* x m) (for
global optimal matching) to quadratic O(X x n* x m).

In summary, FedDNA’s complexity is linear with respect to the number of sites, and qua-
dratic with respect to the number of nodes at each site.

Experiments
Datasets

We used four benchmark datasets in the experiments. The first one is Diabetes Data Set which
data source are obtained from two main aspects, an automatic electronic recording device and
paper records to predict whether a patient has diabetes or not. For the automated electronic
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Table 4. Summary of the benchmark datasets used in the experiments, including sample amount, attributes amount, data characteristics and class distribution.

Dataset # of instances # of attributes Attribute Characteristics Class Class Distribution Class set up
Diabetes Database 1,150 19 Categorical, Integer Binary 0.89 0.2;0.4; 0.5; 0.6; 0.7
Spambase Data Set 4,601 56 Integer, Real Binary 1.54 0.8; 0.6; 0.5; 0.4; 0.2
Patient Survival Prediction 91,714 186 Categorical, Real Binary 11.26 0.5;1;3; 5,7
Occupancy Detection 20,560 7 Real Binary 3.33 0.5; 15 1.5;2; 2.5

https:/doi.org/10.1371/journal.pone.0288157.t004

recording devices, they have an internal clock to mark events, whereas paper records only pro-
vide periods of “logical time” (breakfast, lunch, dinner, bedtime). For paper records, fixed
times are assigned to breakfast (08:00), lunch (12:00), dinner (18:00) and bedtime (22:00).
Therefore, paper records have a fictional uniform time of recording, while electronic records
have a more real time stamp [46]. The second dataset we used is Spam_base Data Set from
UCI which was created by spam emails from postmaster and individuals and non-spam emails
from filed work and personal e-mails in order to construct a personalized spam filter. In this
dataset, The last column indicates whether the email is considered spam (1) or not (0), that is,
unsolicited commercial email. Most properties indicate whether a particular word or character
occurs frequently in emails [47]. Another data set used in this paper is called Patient Survival
Prediction Dataset. It uses knowledge about patient chronic conditions from Intensive Care
Units (ICUs) to inform clinical decisions about patient care and ultimately predict patient’s
survival outcomes [48]. Occupancy Detection Data Set is the last data set we used to verify our
model’s performance. It is a dataset for predicting room occupancy using environmental fac-
tors such as Temperature, Humidity, Light and CO2. Ground-truth occupancy obtained from
time stamped pictures that were taken every minute [49].

Basic descriptions about these four datasets are shown in Table 4 from which we can
observe the number of samples in each dataset, diabetes database has 1150 samples and there
are 4601, 91714 instances in the spambase data set and Patient Survival Prediction data set sep-
arately. Patient Survival Prediction set has the most samples and also the largest attributes
while Occupancy detection data set has the medium size samples with the least number of
attributes. Apart from that, data dimensions of those four are also different with various fea-
ture types such as categorical features, numerical features. One same point is that there are
only two classes in all the datasets, which means binary classification will be performed in our
proposed model.

Baseline methods

To validate the performance of the proposed method, we use deep neural networks as the
training models and employ four baselines for our comparisons. One is plain neural network
(Plain_NN) model which has the same structure as our proposed model which has one input
layer, two hidden layers and one output layer.

FedAvg. The second baseline is called Federated Average (FedAvg), which also share the
same network structure with our proposed method and use static node matching to aggregated
node weight values for the global model. In FedAvg, each client downloads the current model
from a central server, improves it by learning from its own local data, and then aggregates the
changes into a small centralized update. Only updates to the model are sent to the server/cloud
using encrypted communication and immediately averaged with other user updates to
improve the shared model based on Eq 1. All training data is kept locally and no individual
updates are stored in the cloud.
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Federated Average (FedAvg) is a generalization of FedSGD that allows local nodes to per-
form multiple batch updates to local data and swap updated weights instead of gradients. The
basic principle behind this generalization is that in FedSGD, if all local nodes start from the
same initialization, the mean gradient is strictly equivalent to the mean weight itself. Further-
more, averaging adjustment weights from the same initialization does not necessarily harm
the performance of the resulting averaging model [1, 7].

FedDyn. Next baseline is call FedDyn, in which each client learns a unique model with its
own regularization parameter [50]. In this method, each client in the federated learning system
learns a unique model with its own regularization parameter. The regularization parameter is
updated dynamically during the training process based on the client’s local model perfor-
mance. This means that clients with more difficult data can have a higher regularization, while
clients with easier data can have a lower regularization, which improves the convergence speed
and accuracy of the federated learning process.

The objective of FedDyn is to solve. Eq 5, where kA € [m] consists of Ny training instances,
L;(0) is the empirical loss of the k;;, device and 0 are the parameters of the neural network.

ferd

arg min[l(@)]é%ZLk(H) (5)
ke[m]

FedDNAg.q- Baseline 4 (FedDNAg,.q) calculates nodes’ distance based on a fixed node.
This baseline is created because we want to confirm whether the node matching pattern in
dynamic node alignment improve compared with when the node used for matching remains
the same. At the first step, after each client finishing training its local model, client ¢ is ran-
domly chosen from C. Then one node v? will be randomly selected among all the nodes in the
first hidden layer of client ¢*’s local model. In the next step, one client will be randomly c*
picked from {C—c“}, a distance function explained previously will be used to calculate the dis-
tance d (VJ’?, v?) between all nodes in the first hidden layer of client ¢* model and node v*. We
can get two nodes matched (v, v;) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree 7 = {v]k ,v*}, from which
we will start to grow the tree. In each matching step, we will randomly pick one client from
{C—{c% c"1}. Unlike FedDNA, in this baseline, the distance between a node to the tree will be
calculated with Eq 6, which means that only v¥ will be used in MST tree 7 to do the node
matching. The MST tree 7 will continue growing until {C—{c% k. Mis empty and at the
same time, a complete tree 7 with new node set {v}, v, v/,... .} will be formed to aggregate

their averaged weight values as a new node weight v; for the global model.
d(V, T) = dEuclidean/Manhattan (V7 vzy) (6)

For example, in Fig 5, distance for ¢* will be d(a, A), d(a, B), d(a, C), d(a, D) and for ¢’ the
distance will be d(a, ), d(a, B), d(a, ), d(a, 6). Assume for ¢?, the smallest distance is d(a, B)
and d(a, a)for ¢’, then node {v', v2, v’} are the matching nodes and their weight values will be
averaged as one new node weight values for the global model.

FedDNA . dom- The last baseline is a modification based on both FedDNA and FedDNA-
fixed- INstead of being too static or too dynamic with the node matching, we cant to confirm the
feasibility when the matching node is neither 100% percent fixed nor using the entire MST
tree as a matching node. Settings for baseline 4 (FedDNA ., ,qom) is as follows: At the first step,
after each client finishing training its local model, client ¢* is randomly chosen from C. Then
one node v’ will be randomly selected among all the nodes in the first hidden layer of client
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c®s local model. In the next step, one client will be randomly ¢ picked from {C—c%}, a dis-
tance function explained previously will be used to calculate the distance d(v}, v¥) between all

nodes in the first hidden layer of client ¢* model and node v*. We can get two nodes matched
(v}, v7) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree 7 = {vj" ,v7}, from which
we will start to grow the tree. In our third step, one node will be randomly chosen from {v, vi}
which will be used to match nodes of client {C—{c%, ¢*}} using Eq 4. Step 3 will be repeated
until {C—{c%, .. .}}is empty and at the same time, a new node set {v?, vj’.‘, vf ,. ..} will be
formed to aggregate their averaged weight values as a new node weight value for the global
model. Assume we randomly choose ¢ in Fig 5 to do the first match, node {a, B} are the
matching nodes, then one node will be randomly chosen from node {a, B} to calculate distance
for ¢®. If node B is chosen, distance d(B, @), d(B, B), d(B, ), d(B, 6), will be calculated to choose
the next matching node.

Experiments setting

Our overall experiment setting is shown in Table 5. We use 10-fold cross validation, under
which there will be 10 training rounds for each model to train. For each dataset, our aim is to
predict the corresponding target and 10-fold cross validation is applied to reduce both bias
and variance. Under each cross validation fold K, same weight values are initialized for all both
baseline models and our proposed models, Plain_NN, FedAvg, FedDyn, Baselines, Baseline,
and FedDNA. For methods under FL setting, model parameters will be passed to each clients
at the very beginning of training. Training data will be randomly split into 5 sites and distrib-
uted to 5 clients, which is able to training the local model using their own data, after which
weight values will be aggregated based on different FL method and then send back to the global
models. Global models will pass the new calculated parameters to their local clients to start
new round training until the convergence. For our proposed method FedDNA, there are two
experiment settings in this paper. One is called no-freezing weight update setting, in which
weight values of the global model will be aggregated using FedDNA method for all the 10

Table 5. The pseudo code of the experiment settings and comparisons (all methods are compared based based on
same training/test data. The initial network weights of each site are the same for different methods to avoid discrep-
ancy due to random weight initialization.

Experiment setting: Node_matching Federated Learning

Input (1) Datasets D; (2) Node matching setting: Freeze; No freeze

Output Prediction of the target y

For each cross validation fold K:

Initialize same weight values for all the global models:
Plain_NN, FedAvg, FedDyn, (FedDNA;..), (FedDNA 440m) and FedDNA

Split training data into 5 sites for 5 clients

For Baseline;:

Train model using all the training data

For federated learning models:

Client train their own model using their own data

Match nodes with their distance calculation principle

Aggregated weight values pass to each global model
End For
Evaluate each global models

https://doi.org/10.1371/journal.pone.0288157.t1005
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rounds while the second type of setting is called freezing, in other word, we will choose to
update the global model parameters with FedDNA at the first i round and after that FedAvg
will be used to aggregate clients’ model weight values for the rest of rounds. We design this
type of setting because we think the first several rounds of distance calculation will give use the
answer of the closest matching nodes then we can use that match to directly aggregated the
node weight values.

For our experiment dataset settings, we first run our model based on the original class dis-
tributions across all clients in all datasets which is negative: positive = 1.54 in spam database,
negative: positive = 0.89 in diabetes data base, negative: positive = 11.26 in Patient Survival Pre-
diction data set and negative: positive = 3.33 in Occupancy Detection data set. In the second
experiment setting, for each training process, 2 clients are randomly chosen to exchange 2/3 of
their data while the rest 3 clients keep their own data, in this case, our model will be verified on
non-IID datasets. Calculated overall node distance, Accuracy, AUC, F1_score, Balanced accu-
racy and Loss are used as performance measurement metrics.

Apart from randomly selecting 2 clients to exchange their data, we decide to evaluate our
proposed model under different class distribution settings. The original class distribution (neg-
ative:positive) of the four datasets are as shown in Table 4. A set of class distributions is set up
for the original four data sets to check the model performance. Since all the datasets have dif-
ferent original class distributions, the assigned class distributions of the four datasets in this
paper are different from each other.

Overall model performance

Tables 6-9 show the results for Diabetes dataset, Spam dataset, Occupancy data set and Patient
survival data set respectively in our first dataset setting. Due to page limitation, only the best
model performance results are presented in this paper. For Diabetes database, we can observe
that FedDNA, which uses our proposed method FedDNA is able to find nodes combinations
where the total node distance is the smallest with value 42.1352 compared with other methods
whose final distance results are greater than 50. At the same time, FedDNA presents better
metrics performance. Similarly, the smallest overall node distance and better metric perfor-
mance are realized by our FedDNA method for spam database. However, we can also come to
the conclusion that smaller overall node distance and better metrics performance does not
always come with the smallest training loss, especially for FedDNA. For occupancy and patient
survival prediction datasets, FedDNA shows similar performance as for the previous two data-
sets. Its overall classification performance outperforms all the baselines with the smallest node
distance 5.7316 and 57.4096 respectively after matching, which indicates Fed DNA is able to
pair closest nodes together. We can tell that overall, for all the four datasets, when class distri-
butions are the same across all clients, our proposed method performs the best in the freezing

Table 6. Experimental results from Diabetes dataset using Manhattan distance based matching. For FedDNA, the matching freezes after first two rounds of dynamic
node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain_NN 0.6755 0.7529 0.6361 0.6744 3.3221
FedAvg 51.7421 0.7165 0.8044 0.7029 0.7219 1.9016
FedDyn 53.0637 0.7016 0.8012 0.7147 0.7078 1.8932
FedDNAfixeq 63.7216 0.7264 0.7961 0.7120 0.7341 1.8354
FedDNA andom 56.3497 0.7298 0.8003 0.7280 0.7396 1.8274
FedDNA 42.1352 0.7381 0.8230 0.7290 0.7434 1.9253

https://doi.org/10.1371/journal.pone.0288157.t1006
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Table 7. Experimental results from Spam dataset using Manhattan distance based matching. For FedDNA, the matching freezes after first two rounds of dynamic node

alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain_NN 0.9165 0.9536 0.8905 0.9095 0.5110
FedAvg 824.3761 0.9320 0.9717 0.9120 0.9294 0.4823
FedDyn 792.1406 0.9316 0.9719 0.9136 0.9117 0.4431
FedDNA ficq 798.0362 0.9350 0.9762 0.9187 0.9343 0.6352
FedDNA, 4dom 911.6532 0.9351 0.9772 0.9178 0.9337 0.4521
FedDNA 730.3930 0.9376 0.9781 0.9210 0.9357 0.4841

https://doi.org/10.1371/journal.pone.0288157.1007

Table 8. Experimental results from Occupancy detection dataset using Manhattan distance based matching. For FedDNA, the matching freezes after first two rounds

of dynamic node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain_ NN 0.8327 0.9578 0.5018 0.7021 1.4599
FedAvg 7.8736 0.9225 0.9715 0.8236 0.8910 1.1592
FedDyn 8.5130 0.9135 0.9713 0.8137 0.8862 1.0927
FedDNA i.cq 10.4510 0.9346 0.9751 0.8681 0.9179 0.9031
FedDNA andom 9.6437 0.9306 0.9762 0.8699 0.9083 0.8621
FedDNA 5.7316 0.9402 0.9788 0.8710 0.9140 0.8711

https://doi.org/10.1371/journal.pone.0288157.t008

Table 9. Experimental results from Patient survival prediction dataset using Manhattan distance based matching. For FedDNA, the matching freezes after first two
rounds of dynamic node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain_NN 0.8201 0.5309 0.0618 0.4998 1.7521
FedAvg 63.2566 0.7913 0.6185 0.0676 0.4942 1.1150
FedDyn 67.9825 0.7740 0.6098 0.0635 0.5099 1.0047
FedDNA fica 71.2609 0.9083 0.6422 0.0302 0.5024 1.0670
FedDNA, 4dom 75.6094 0.8633 0.6251 0.0232 0.5075 1.0427
FedDNA 57.4096 0.8898 0.6485 0.0297 0.5079 1.4629

https://doi.org/10.1371/journal.pone.0288157.t009

setting when the first two rounds using Manhattan distance to find the matching nodes and
the rest using Fed Avg with the smallest overall distance under freeze first two rounds experi-
ment setting with 42.1352 for diabetes dataset, 730.3930 for the spam data set, 5.7316 for Occu-
pancy Detection and 57.4096 for Patient Survival Prediction data set.

FedDNA vs. FedAvg with respect to different class distributions

Fig 7 is a box-plot for our second experiment setting’s results. Instead of showing all the results
of all models across all the datasets, since results from the first setting highlights that FedDNA
outperforms FedAvg and FedDyn overall across all the datasets, only comparisons between
FedDNA and FedAvg, FedDyn with the combined results across all the datasets are shown in
Fig 7, in which outliers can be observed for three models but overall we can come to the con-
clusion that when data is not evenly distributed across all clients, FedDNA performs the best
in the freezing setting when the first two rounds using Manhattan distance to find the match-
ing nodes and the rest using FedAvg.
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Fig 7. Overall performance comparisons between FedDNA and FedAvg, FedDyn. Outliers ca be observed from both methods, overall FedDNA
outperforms FedAvg and FedAvg performs similarly as FedDyn.

https://doi.org/10.1371/journal.pone.0288157.9007

Since under this experiment setting, FedDyn does not deliver better overall performance
than FedAvg according to above tables and figure, its detailed comparison with FedDNA is
not demonstrated. Figs 8-11 report the performance of FedDNA and FedAvg, with respt to
different class distributions (the class distributions were adjusted to assess the algorithm per-
formance under different conditions). The y-axis is the values of each measurement and x-axis
is different class distribution set ups for each dataset as shown in Table 4.

For Diabetes Dataset, FedDNA and FedAvg has the largest gap for all the measurements
when sampling rate is 0.5 and both models” performance fluctuate a lot with the change of
class distributions. For Spam Dataset, even though FedDNA and FedAvg perform similarly
when class distribution is smaller, as more and more negative samples shown in the datasets,
FedDNA starts to show more advantages than FedAvg, especially when negative instances take
up more than 40% of the dataset, the gap between both models become larger with a better
performance from FedDNA. Similarly, for Patient Survival Prediction Dataset, the larger the
sampling rate is, the better FedDNA outperforms FedAvg especially in terms of Fscore and
Balanced accuracy. While for Occupancy dataset, FedDNA does not show much better results
than FedAvg when class distribution is less than 2, after which both models the performance
of the two models tends to be consistent.
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Fig 8. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for diabetes dataset.
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Discussion

In this paper, we propose a dynamic node matching method for federated learning. We argued
that neural networks are inherently non-transparent and unstable, and the same network
structure may end up with very different weight values, even with the same training data and
same parameter settings. Traditionally, existing methods, such as FedAvg, force neurons
across sites to be matched with predefined order, and use fixed matching nodes during the FL
learning process. Alternatively, we proposed a dynamic node alignment, FedDNA, approach
which dynamically finds matching nodes across sites, and uses matched nodes to calculate
weight for FL learning. FedDNA represents each neuron as a vector, using their weight values,
and calculate distances between neurons to find matching nodes. Meanwhile, because finding
marching nodes are computationally expensive, we proposed a minimum spanning tree
(MST) based approach to speed up the matching, with matched nodes across all sites being
linked by using an MST tree. So the matching process is simply the MST tree growing process.

0.900 A

0.875 1

0.850 1

0.825 A

Accuracy

0.800 -

0.775 A

0.750 -

Model
—— FedAvg
~——— FedDNA

0.2

04 06 08
Class Distribution (0:1)

AUC

0.97 4

0.96 -

Spam Database
0.90

0.95
0.94
0.93
Model
—— FedAvg
0.92 1 —— FedDNA
02 04 06 08

Class Distribution (0:1)

Fscore

0.88

0.86 4

0.84

0.82 4

0.80

0.78 4

0.76

Model
—— FedAvg
~——— FedDNA

02

0.4

0.6

08

Class Distribution (0:1)

0.92

0.90 1

0.88 4

Y

0.86 4

0.84

Balanced_accurac

0.82

0.80

0.78

Model
—— FedAvg
~—— FedDNA

02

0.4

06 08

Class Distribution (0:1)

Fig 9. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for spam dataset.
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Fig 11. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for occupancy dataset.
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Experiments and comparisons, including biased sample distributions, validate the perfor-
mance of the FedDNA, compared to other baseline.
Future study can emphasize on the following three directions. First, we only studied dense
networks and verified its performance using FedDNA. Future study can try to explore node
matching between different types of network architectures, such as convectional nueral net-
works. Second, we only studied the proposed design using binary classification problems. In
the future, multi-class classification problem will be explored using our proposed FedDNA
method. For the last direction, we will use non-IID datasets to further adjust our model so that
it can be applied not only to binary classification problem but also can achieve good results for

datasets with different settings.
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