
RESEARCH ARTICLE

FedDNA: Federated learning using dynamic
node alignment

ShuwenWangID , Xingquan Zhu

Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida,
United States of America

* swang2020@fau.edu

Abstract

Federated Learning (FL), as a new computing framework, has received significant attentions

recently due to its advantageous in preserving data privacy in training models with superb

performance. During FL learning, distributed sites first learn respective parameters. A central

site will consolidate learned parameters, using average or other approaches, and dissemi-

nate new weights across all sites to carryout next round of learning. The distributed parame-

ter learning and consolidation repeat in an iterative fashion until the algorithm converges or

terminates. Many FL methods exist to aggregate weights from distributed sites, but most

approaches use a static node alignment approach, where nodes of distributed networks are

statically assigned, in advance, to match nodes and aggregate their weights. In reality, neu-

ral networks, especially dense networks, have nontransparent roles with respect to individual

nodes. Combined with random nature of the networks, static node matching often does not

result in best matching between nodes across sites. In this paper, we propose, FedDNA, a

dynamic node alignment federated learning algorithm. Our theme is to find best matching

nodes between different sites, and then aggregate weights of matching nodes for federated

learning. For each node in a neural network, we represent its weight values as a vector, and

use a distance function to find most similar nodes, i.e., nodes with the smallest distance from

other sides. Because finding best matching across all sites are computationally expensive,

we further design a minimum spanning tree based approach to ensure that a node from each

site will have matched peers from other sites, such that the total pairwise distances across

all sites are minimized. Experiments and comparisons demonstrate that FedDNA outper-

forms commonly used baseline, such as FedAvg, for federated learning.

Introduction
Federated Learning (FL), originally proposed in 2016 [1], is a learning paradigm which builds

machine learning models based on datasets distributed across multiple sites/devices in order

to protect privacy and prevent data leakage. While traditional machine learning methods are

typically trained based on centralized data, using FL provides a feasible way to develop models

that can keep all the training data on distributed devices and update model parameters using

immediate aggregation.

PLOS ONE

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 1 / 25

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

Citation:Wang S, Zhu X (2023) FedDNA:
Federated learning using dynamic node alignment.
PLoS ONE 18(7): e0288157. https://doi.org/
10.1371/journal.pone.0288157

Editor: Praveen Kumar Donta, TUWien:
Technische Universitat Wien, AUSTRIA

Received:March 28, 2023

Accepted: June 20, 2023

Published: July 3, 2023

Copyright: 2023Wang, Zhu. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This research is sponsored by the U.S.
National Science Foundation under grant No. IIS-
1763452. The funders had no role in study design,
data collection and analysis, decision to publish or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

As data collection and analytics are becoming increasingly popular, protecting data privacy

and safety is becoming a major concern for business, government, and nearly all sections of

human society. By deploying FL, each participant in the model training process can build one

model together without sharing data, naturally results in data privacy protection. Traditional

machine learning methods need to concentrate training data in a certain machine or a single

data center, which means in order to meet the gradually increasing data level, it is necessary to

continuously add machines and build infrastructure. Such method not only greatly increases

the cost but also hinders the efficiency building models. In contrast, FL allows all the needed

data stay in their local places without the need to build specific data center to aggregate them,

at the same time, each part of the data will be used to develop the model. Such efficient charac-

teristic enables Federated Learning to be widely used in multiple areas especially in the health-

care domain.

Federated learning in healthcare

The shift from written health records to electronic health records has been instrumental in

driving the use of patient data to improve the healthcare industry. The adoption of electronic

health records enables health care professionals to disseminate knowledge across all sectors of

health care, which in turn helps to reduce medical errors and improve patient care and satis-

faction. However, as mentioned previously, adequate medical data sets are difficult to obtain.

However, in order to capture the subtle relationships between disease patterns, socioeconomic

and genetic factors, and complex and rare cases, exposing the model to different cases is criti-

cal. FL is able to address this issue by enabling the distributed training of machine learning

models using remotely hosted datasets without the need to accumulate data and therefore

compromise the data privacy [2–7].

While FL is capable of making use of data across different sites/institutions, there are still

several data acquisition issues which can cause bias during model develop process. First of all,

due to data privacy limitation, the Health Insurance Portability and Accountability Act

(HIPAA) has set up regulations for healthcare organizations to manage and safeguard personal

information and address their risks and legal responsibilities in relation to processing personal

patients data [8]. This leads to strict data share policies of each healthcare provider, which, lim-

its the amount of available data source. Another issue is that there exist hospital speciality gaps

between different hospitals, in other words, healthcare providers might focus on several partic-

ular diseases treatment instead of performing general hospitalization. In this case, there are big

chances where FL models trained across all different disease focus datasets will perform pre-

dictions with certain disease-specific bias. In addition, biases also exist when patients demo-

graphic characteristics differ. Different income groups, age groups, genders, and geographical

locations and living environments will all affect the overall patient characteristics that admitted

to different regional hospitals, thus, data bias can also be observed in such kind of dissimilarity.

Therefore, it is essential to reduce all the above biases when we try to develop a federated learn-

ing model to make crucial medical predictions. We aim to design a novel federated learning

model that can take this kind of bias into consideration at the first step where node weight

aggregation takes place.

Federated learning uniqueness and limitation

Despite the fact that use of traditional machine learning techniques (TML) in combination

with electronic health records (EHR) is gaining popularity as a means to extract knowledge

that can improve decision-making processes in healthcare, they usually require the training of

high-quality learning models based on diverse and comprehensive datasets that are difficult to

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 2 / 25

obtain due to the sensitivity of medical data from patients. Meanwhile, although distributed

machine learning [9] has addressed parallel computing in handling large scale data, these

methods are often designed to tackle the data volumes using frequent data exchange. In addi-

tion, switch learning models are often prohibitively expensive/inconvenient, making it difficult

for end users to try/implement different learning algorithms. On the contrast, FL enables

devices to collaboratively learn shared predictive models while keeping all training data on-

device, decoupling the power of machine learning from the need to store data in the cloud.

This goes beyond using native models to make predictions on mobile devices and also brings

model training to the device.

Table 1 summarizes the main difference between federated learning, traditional machine

learning methods, and distributed machine learning methods. In summary, the inherent

advantage of federated learning is that is allows flexible modeling training and continuous

learning on end-user devices while ensuring no end-user data leaves the device. Fig 1 shows

how FL works. Global modelM is downloaded from the central server to each client when it

comes to training the model, after which the downloaded model is trained by each client using

their own dataset. Once the training process is completed, each client needs to update their

updated training parameters to the central server and the central server would aggregate the

learnt parameters (parameter aggregation) and pass the aggregation results to the global

model, therefore, one update for the global model is accomplished and this process is called

Global update. Once global update is finished, model parameters will be passed from the global

model to each local model for Local update, where clients’ model parameter will be updated

with the new aggregated model weights to start a new round training. [4].

Parameter aggregation is one of the most important steps of the federated learning. Among

all existing methods, Federated Averaging (FedAvg) is the most commonly used method. Eq 1

summarizes the global weight values w updating of FedAvg in each training round t, in which

k is the client index, Kmeans the total number of clients, n is the total number of instances

and nk is the local data examples for each client [1]. Overall, Eq 1 indicates that the global

weight vector w is the weighted average of weight values obtained from local clients. In this

paper, a bold-faced symbol denotes a vector or a high dimensional vectors (e.g. a matrix).

wtþ1 ¼
XK

k¼1

nk

n
wk

t ð1Þ

Recently, other weight aggregation methods have also been proposed in FL. For example,

anomaly score of each client is taken into consideration to detect abnormal client behavior,

thus, clients will not contribute equally when global model updates the weight values, the

majority of those novel methods are still based on FedAvg [10, 11]. Even though this method is

widely used and has been proved with good prediction performance [12, 13], due to the nature

Table 1. Comparison between Federated Learning (FL), traditional machine learning (TML), and distributed machine learning (DML) algorithms. DMLmethods
are commonly data driven (DMLd) or computing driven (DMLc).Data driven methods (DMLd) mainly try to learn from large volume distributed data, whereas comput-
ing driven methods (DMLc) aim to parallelize computing in learning from centralized data. Computing framework\ refers to the whole eco-system for learning, andmodel
switch refers to easiness of switching a new learning model.

Method Data location Main computing Computing framework Data exchange Main Challenge Privacy protection Model switch

TML Centralized Data center Very restrictive Yes Model performance Low Very restrictive

DMLc Centralized Data center Restrictive Yes Data volume Low Very restrictive

DMLd Distributed Local Flexible Yes Data volume Medium Restrictive

FL Distributed Local Very flexible Prohibited Data protection High Flexible

https://doi.org/10.1371/journal.pone.0288157.t001

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 3 / 25

of hidden layers in deep learning neural networks, we can clearly observe that this method

manually forces weight aggregations between neurons located at the exact same location (i.e.,
same layer and same node index) of two networks. However, when training two same-struc-

tured deep learning networks NA and NB, even they are given the same input, neurons at the

same location of the two networks do not always give the same update. In other words, certain

property of the input (or the same instance) may trigger the most significant activation to the

i-th node of NA, but same instance may triger the most significant activation to the j-th node

of NB. Meaning that same instance responds differently for the same lactation nodes between

two networks.

In order to demonstrate the above hypothesis, we create a simple dense neural network ND

with one input layer, two hidden layers and one output layer. One dataset with 10 features is

fed into ND. For the ith node in the first hidden layer N1
D, there will be 10 weight values

fw1
i;0;w

1
i;1; . . . ;w

1
i;9g corresponding to the 10 input features (the superscript denotes the first

trained network). After we train ND from scratch for five times with the exactly same dataset, a

node e is randomly chosen from all five networks (with the same node index), from which we

will get 10 weight vectors of {we,0, we,1, . . ., we,9} in which we;0 ¼ ½w1
i;0;w

2
i;0;w

3
i;0;w

4
i;0;w

5
i;0� repre-

sents all five trained weight values corresponding all five networks’ first indexed node and first

feature dimension as shown in Fig 2. After that, we calculate the variance of we,0, and repeat

the same for all 10 nodes. Fig 3 reports the variance of the weight values across all five trained

network. The high weight variance in Fig 3 concludes that weight aggregation by static node

matching will not only add uncertainty to model performance, but also will hinder the practi-

cal application of Federated Learning in industry.

In this paper, we aim to design a dynamic node matching method, FedDNA, to aggregate

weight values in each round based on a neuron-distance method, in which neuron distances

across all the clients are calculated after each client completes training the model parameters

with their own data. After that, the closest neurons are matched to calculate their average

weight values as new parameter for the global model. Fig 3 reports weight variance of the

matched nodes trained using same setting as the static node matching. The results show that

dynamic node matching provides much smaller weight variance across all nodes of different

networks. The advantage of reducing variance is that it allows nodes with similar behaviors to

be aggregated for weight averaging. This potentially results in stable and improved federated

learning performance.

Fig 1. A conceptual view of the FL framework. The local update (downstream) and global update (upstream) are carried out iteratively to ensure
models trained using local data are aggregated at central server, and then dispatched to distributed sites.

https://doi.org/10.1371/journal.pone.0288157.g001

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 4 / 25

In summary, the main contribution of the proposed research is summarized as follows:

• Dynamic node alignment:We propose a new dynamic node alignment framework,

, for weight aggregation in federated learning. Instead of using fixed node index to

match nodes across different sites, finds the best matching nodes based on node

weight values, such that nodes, of the same layer, with the most similar response to the input

are considered as one new node for next round training.

• Fast node alignment: To increase node aliment speed, we propose a Minimum Spanning

Tree (MST) based method to find global optimal matching nodes across all sites.

• Alignment and frozen: In each training process, after finding the matching nodes at the

very beginning, node matching will be frozen and federated average will be used for the rest

of training rounds. By doing this, we can ensure the matching nodes orders which will not

be disturbed by subsequent training.

Related work

Dynamic node alignment

Conventional FedAvg is proposed to strictly average local node weights in order to update the

global model parameters, which has inspired researchers to try to come up with more flexible

and reasonable node alignment ideas. A new federated learning algorithm called Fed2 incor-

porating a feature alignment strategy in order to enable local models to align feature represen-

tations with a global model by introducing a feature projection layer is proposed and validated

[14]. In this method, the authors introduce a feature projection layer, which is able to map the

features extracted by the local models to a common feature space that is aligned with the global

model. During training, the local models use this layer to project their features into the

Fig 2. A conceptual view of node weight variance calculation. Five neural networks with the same architecture are trained using same training
sample. The first hidden layer nodes are trained with the same input features and the first node is chosen to calculate the node variance.

https://doi.org/10.1371/journal.pone.0288157.g002

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 5 / 25

common feature space, where the distances between the projected features of both the local

models and global models can be minimized. A method for aligning two models in federated

learning by matching neurons that perform similar functions is proposed, in which the match-

ing is done by projecting the local update onto the tangent space of the reference model, which

ensures that the update is aligned with the reference model’s geometry. The weights used in

the averaging are proportional to the cosine similarity between each local update and the refer-

ence model. This weighting scheme gives more weight to updates that are more aligned with

the reference model and less weight to updates that are less aligned, which helps to improve

the overall convergence speed and accuracy of the algorithm [15]. Based on the previous

approach, a new approach Multi-Center Federated Learning that aims to improve personaliza-

tion by clustering clients based on their data distribution is proposed. The multi-center aggre-

gation mechanism this approach involves aggregating the local models from multiple centers

to obtain a global model. Each center trains its own local model based on the data of the clients

in its cluster. The local models are then aggregated by exchanging information between the

centers to improve the global model [16].

Fig 3. Comparisons of weight variance between two weight matching methods, Static node matching vs.Dynamic node matching (proposed). The
x-axis denotes the neuron node ID of the first hidden layer, consisting of 10 neurons, of a neural network. The network was trained five times till
convergence, using same training data. The y-axis denotes the variance of the weight values of each of the hidden nodes (Larger variance mean the
neuron weights are more unstable across different training times, even for the same feature dimension of the same neuron).

https://doi.org/10.1371/journal.pone.0288157.g003

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 6 / 25

Federated learning node aggregation

As more attention to data privacy protection are being payed, Federated Learning has become

one of the most popular areas. Certain number of studies have also proposed creative

approaches related to weight update in Federate Learning. LoAdaBoost FedAvg is proposed to

achieve higher model prediction accuracy on distributed intensive care data, in which local

models with a high cross-entropy loss were further optimized before model averaging on the

server [17]. Federated-Autonomous Deep Learning (FADL) is designed to update global

model by training part of the model using all data sources in a distributed manner while the

rest of the model is trained with data from specific data sources [18]. When it comes to IID

data, Haddadpour and his colleagues introduce a framework called federated averaging with

compression (FedCOM), which the global model is decided not only by the update by the aver-

age of all clients’ training results, but also determined by the previous global model [19]. A

model poisoning attack is proposed to perform adversary controlling of a small number of

malicious clients in order to ensure weight updates are not being poisoned by those clients

[20]. Similarly, abnormal clients are observed at the server side in the proposed detection-

based method to timely detect unusual clients behaviors to prevent abnormal server model

updates, in which a low dimension substitute of the weight vectors is created for anomaly

detection [10]. A novel FL approach using mutual information (MI) which weight updates are

reformulated by minimizing the MI between the local model and the aggregate model and

adopting a negative correlation learning (NCL) strategy on the client side. The convergence of

this algorithm theoretically is proved by experiments on MNIST, CIFAR-10, ImageNet and

clinical MimIC-III datasets [21]. A hierarchical federated edge learning framework is proposed

in order to solve the optimization issue of device scheduling and resource, in which immediate

hospitals are in charge of part of model aggregation work [22]. To prevent unreliable updates

from untrusted devices, a new concept called reputation has been introduced in the context of

FL-enabled healthcare systems. This reliable device choice plays an important role in mitigat-

ing multiple security attacks [23]. A new optimization algorithm for federated learning that

leverages over-the-air computation is proposed, in which the authors aim to improve the con-

vergence rate and accuracy of federated learning by introducing a new learning rate optimiza-

tion algorithm that takes into account the channel conditions and interference between the

devices in a federated learning network. This new algorithm uses a feedback mechanism to

adjust the learning rate dynamically, which improves the convergence rate and accuracy of the

federated learning model [24]. Federated Loss-Weighted Averaging (FedLWA) scheme is a

key component in an unsupervised recurrent federated learning (URFL) algorithm to enhance

the parameter aggregation, in which each edge device calculates a weight based on the loss

function of its local model during training [25].

Local-update SGDmethod which is a technique running stochastic gradient descent (SGD)

parallel on various workers and the sequences will only be updated once in a while has been

proved with faster convergence and less communication cost for Federated Learning [26].

Two ideas based on SGD are tested and proved convergence. The first strategy is local steps
and the second idea aims to share certain information and do local computations. The results

show higher convergence speed and more efficient communication on Federated Learning set-

tings using these two SGD based methods [27]. Several gap settings are emphasized between

the upper and lower limits of optimization associated with federated learning, particularly for

“intermittent communication graphs” that capture local SGDmethods but whose convergence

rates are not known to match the corresponding lower limits [28]. Computational heterogene-

ity generated by Local-update SGD in Federated Learning is analyzed and one solution to the

client fragmentation problem is to fix the number of local updates at a particular point, but

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 7 / 25

allow clients to update the global model fashion asynchronously or without locking [29].

Researchers assume that all clients are involved, at the same time using batch gradient descent

on all clients may be better than using stochastic gradients [30]. Li et al. [31] studied SGD con-

vergence in a more realistic environment for joint averaging, involving only a subset of cus-

tomers per round. To ensure convergence, they assume the probability that the client is

randomly and uniformly selected or proportional to the size of the local data set. The problem

of client characteristics varying over time throughout the day is introduced and the conver-

gence of semi-cyclic SGD is studied in the research [32], in which multiple blocks of clients

with different characteristics are sampled from regular cyclic patterns, such as day and night.

Due to the heterogeneity of computing power, clients can perform different local steps. Peri-

odic decentralized SGD (PD-SGD) is proposed and is proved to be able to allow multiple local

updates happed based on decentralized SGD in Federated Learning [33]. Yu et al. recommend

allowing each customer to maintain local momentum buffers and average local buffers and

local model parameters per communication turn. This approach, while empirically improving

the final accuracy of local SGD, doubles the cost per round of communication [34] A new

technique, FedFast, is presented to accelerate distributed learning to achieve good accuracy for

all users early in the training process by sampling from a different set of participating custom-

ers in each training round and applying an active aggregation approach to propagate the

updated model to other customers. Authors demonstrate the effectiveness of their approach

on various benchmark datasets and compare it with state of the art recommendation tech-

niques [35].

Federated learning for healthcare

Since FL is a general learning paradigm that eliminates data pooling requirements for AI

model development, it has applications across multiple scenarios, especially the entire AI

healthcare [36]. A FL-based privacy-aware and resource-saving collaborative learning protocol

was introduced in [37] for an EHR analysis management system working with multiple hospi-

tal institutions and cloud servers, where each hospital runs neural network models with its

own EHR with the help of cloud computing. In addition, an FL-based approach was proposed

to predict hospitalizations in patients diagnosed with heart disease using their historical EHR.

More specifically, health data from an EHR system consisting of patient smartphones and dis-

tributed hospitals is trained locally on demographic information such as age, gender and phys-

ical characteristics [6]. [38] proposed a FLT scheme for wearable health monitoring, in which

smartphones and cloud servers cooperated to train and share CNNmodel for the identifica-

tion of privacy-conscious human activities. A disease prediction method using FL with a large

national health insurance data set of 99 medical sites (such as hospitals and clinical laborato-

ries) distributed across 34 states in the United States is studied [39]. The data included EHR

for diabetes, psychological disorders, and ischemic heart disease. The FL approach achieves

competitive performance in terms of high accuracy and privacy by comparing with traditional

methods such as centralized learning and local training without federation. also builds a FL-

based health monitoring solution for analyzing patient outcomes from distributed hospital

networks. Interestingly, each hospital created an entity called the Personalized Treatment

Effect Estimator. Each estimator can be classified in each subgroup, where individual treat-

ment outcomes include outcomes of patient characteristics, and site indicators are used to esti-

mate overall treatment outcomes at coordination sites [40].

A combined brain imaging method is proposed to utilize MRI scans distributed across mul-

tiple clinical centers and institutions. In this case, through collaboration between the medical

site and the central server, an FL model was derived to simulate an end-to-end framework for

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 8 / 25

data standardization, confounding factor correction, and high-dimensional feature variability

measurements [41]. To facilitate X-ray scanning in intelligent health care, a FL-based approach

is proposed to support the diagnosis of acute neurological symptoms such as severe headache

or loss of consciousness. Each hospital runs a CNN-based DenseNet1212 model that supports

feature propagation, encourages feature reuse, and minimizes the number of neural parame-

ters to train the X-ray image dataset provided by the North American Radiology Society [42].

In addition, a dynamic fusion-based FL method is proposed for CT scan image analysis, which

can diagnose COVID-19 infection through customer participation and customer selection.

First, each customer, such as a medical institution, makes a decision about whether to partici-

pate in the FL rotation based on the performance of the new training model. The central server

also calculates the update time to determine which clients are allowed to update their local gra-

dient [43]. FL also combines with deep learning to build a deep collaborative learning solution

for detecting COVID-19 lung anomalies in CT. The internal data set was collected from a total

of 75 confirmed COVID-19 patients at three local hospitals in Hong Kong for FL simulation

and was then validated by data from mainland China and Germany [44].

Our work differs from the above methods because our dynamic node alignment aggregates

weights of matching nodes for FL by ensuring the best matching nodes across different sites.

Proposed approach

Motivation

Instead of using fixed node matching, like FedAvg does, we propose to use dynamic node

matching to find matching node between different sites, and then aggregate weights of

matched nodes to calculate weight values of the global model. During the FL process, the sites

will pass their local weight values to the center, so the center will carry out node matching

before aggregating site weight values. Our idea is to use weight values of each node as a feature

vector to find matching nodes. Because weight values of a neuron are associated to each fea-

tures, for nodes at the same hidden layer, they will have same input space. This allows us to use

weight values to find distance/similarity between nodes for matching.

To make sure weight values are aggregated from the most similar nodes crossing all clients

C, at the first step, nodes distances are calculated across all clients as shown in the distance

matrix in Table 2, from which Minimum Spanning Tree (MST) as shown in Fig 4 is used to

Table 2. An example of pairwise distance tables between three sites where each site has three nodes: Site1={A, B,
C}, Site2={a, b, c}, and Site3={ , , }. Each value in the table denotes distance between two nodes across two sites.

a b c

A 0.12 0.15 0.16

B 0.11 0.13 0.17

C 0.16 0.14 0.18

A B C

0.27 0.13 0.19

0.23 0.14 0.18

0.21 0.16 0.21

a b c

0.13 0.24 0.18

0.14 0.19 0.21

0.21 0.21 0.25

https://doi.org/10.1371/journal.pone.0288157.t002

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 9 / 25

ensure that the matching are across all clients. A minimum spanning tree (MST) or minimum

weighting tree is a subset of edges of a connected edge-weighted undirected graph that joins all

vertices together without any loops and with the smallest possible total edge weights. That is, it

is a spanning tree with the smallest possible sum of edge weights. More generally, any edge-

weighted undirected graph (not necessarily connected) has a minimum spanning forest, which

is the union of the minimum spanning trees of its connected components [45]. In our example

in Table 2, a distance mapping is plotted to demonstrate how the matching process works. At

first node distances are calculated across all sites, in this case, 3 sites. we start the matching pro-

cess from node a because it has the smallest distance 0.11 across all the nodes. we can observe

that node B has the smallest distance with it, therefore, B will be matched to a. For the next
step, we are using MST to find the next matching node for {a, B}, which in this case, will be

node . This MST matching process will continue until all the nodes are matched across all cli-

ents as shown in Fig 4.

Dynamic neural network node matching

In the proposed method, one key step is to find the closest nodes based on distance calculation

in each round. This step is carried out at the center, and the aggregated weights are then dis-

patched to the federated learning site for the next round. The node matching is applied to one

specific hidden layer of all networks, one at a time. By default, we are referring to nodes in the

first hidden layer for ease of explanation. The same matching process is applicable to any other

hidden layers as well. Algorithm 1 outlines the main steps of FedDNA for matching nodes

across networks. Overall definition of the symbols used in our node matching is shown in

Table 3.

Denote S ¼ fvs1; vs2; . . . ; vsng the global model (server) in which vsi ¼ ½ws
i;0;w

s
i;1; . . . ;w

s
i;m� is

the weight vector of the i-th node in its first hidden layer. C ¼ fc1; c2; . . . ; cSgmeans the set of

clients c and ca ¼ fva1; va2; . . . ; vang is nodes weight vector of client c . Node weight vector of cli-

ent c ’s i-th node is denoted by vai ¼ ½wa
i;0;w

a
i;1; . . . ;w

a
i;m�.

Neuron matching distance calculation. Given two neurons vai and v
b
j at the same layer,

because they have the same input dimensions (In this paper, we are using dense network archi-

tecture, so neurons at the same layer are connecting to all inputs/nodes of the preceding layer),

we can represent each nuron as a vector, and calculate distance/similarity between neurons

using the vectors.

Fig 4. Node matching using MST.Node a is the starting point since it has the smallest distance 0.11 with node B, therefore, B will be matched to a.
Node will be matched with {a, B} with MST. This MST matching process will continue for node b and c.

https://doi.org/10.1371/journal.pone.0288157.g004

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 10 / 25

Assume for any particular layer, the input dimension is m, and the weight values of

neuron vai ¼ ½wa
i;0;w

a
i;1; . . . ;w

a
i;m�, weight values of neuron vbj ¼ ½wb

j;0;w
b
j;1; . . . ;w

b
j;m�, respec-

tively. Node distance between vai and vki can be calculated with Euclidean distance defined

in Eq 2 or using Manhattan distance defined Eq 3. The Euclidean distance between two

points in Euclidean space is defined as the length of the line segment between the two

points, which essentially represents the shortest distance between two points. Manhattan

distance is a distance measure between two points in an m-dimensional vector space. It is

the sum of the projected lengths of the line segments between the points on the coordinate

axes. In simple terms, it is the sum of the absolute differences of two points measured in

all dimensions.

dEuclideanðvai ; vbj Þ ¼
ffiXm
d¼1
ðwa

i;d � wb
j;dÞ2

s
ð2Þ

dMahattanðvai ; vbj Þ ¼
Xm
d¼1
jwa

i;d � wb
j;dj ð3Þ

During the node matching process, we will be growing a tree (i.e. a minimum spanning tree

MST) to link matched/aligned nodes across all sites. In this case, a tree T consists of a set of

neurons, i:e:; T ¼ fvai ; . . . ; vbj ; . . .g where 6¼ . We enforce 6¼ such that an MST tree

only contains one node from each site (because we are trying to find matching nodes across all

sites. It does not make sense to have a neuron to match a node of the same network). The num-

ber of nodes in the tree T varies, as the tree is growing dynamically. However, after the match-

ing, each node only belongs to one MST tree, and the final number of nodes in the MST tree

equals to the number of sites of the FL learning framework. We do not record edges connect-

ing nodes in the tree, because our goal is to find matching nodes as a group, and then use their

weights to update center’s node weights. In this case, the pairwise relationship between sites is

not important to us. Also, each tree T records its membership nodes and will use their weights

to calculate the average weights, which will be pass to respective members of the tree T for

next round FL learning.

During node matching, we need to expand the tree T and include matching node to the

tree. Therefore, we define the distance between a node v and Minimum Spanning Tree T as in

Eq 4. The distance from a node to a Minimum Spanning Tree tree arg min dðv; T Þ equals to

Table 3. Definition for symbols used in node matching.

Symbol Definition

S Global model (server)

vsi Weight vector of the i-th node in global model first hidden layer

C Set of clients

c Nodes weight vector of client c

vai Node weight vector of client c ’s i-th node

wa
i;d Weight values of node vai

d(a, b) Distance between node a and node b
T Minimum spanning tree

dðv; T Þ Distance between node v and tree T

https://doi.org/10.1371/journal.pone.0288157.t003

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 11 / 25

its distance to its closest node in the tree.

dðv; T Þ ¼ arg
va 2 T

min dðv; vaÞ ð4Þ

Minimum spanning tree for neuron alignment across sites. At the first step, each client

downloads the model from central server and train it with its local data, after which client c is

randomly chosen from C. One node vai will be randomly selected among all the nodes in the

first hidden layer of client c ’s local model. In the second step, another client ck will be chosen

at random from {C—c }. A distance function explained previously will be used to calculate the

distance dðvkj ; vai Þ between all nodes in the first hidden layer of client ck model and node vai .
We can get two nodes matched ðvkj ; vai Þ based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T ¼ fvkj ; vai g, from which

we will start to grow the tree. MST is the one whose cumulative edge weights have the smallest

value, and in our proposed method, it means the one whose cumulative node distances have

the smallest value. In each matching step, we will randomly pick one client from {C—{c , ck}}.

Node to tree distance Eq 4 will be applied to find the subsequent matching nodes to join the

MST tree T . The MST tree T will continue growing until {C—{c , ck,. . .}} is empty and at the

same time, a complete tree T with new node set {vai , v
k
j , v

b
t ,. . .} will be formed to aggregate

their averaged weight values as a new node weight vsi for the global model. To illustrated the

above description, for example, one client is randomly chosen in Fig 5 then in Fig 6, after the

first calculation, node {a, B} are matching node, then we calculate distance d(a,), d(a,),

d(a,), d(a, θ), d(B,), d(B,), d(B,), d(B, θ), then choose node with the smallest distance

and node {a, B, } are the matching nodes. Weight values {v1a; v
2
B; v

3
a} will be averaged to be

considered as a new node value for the global model.

Algorithm 1: FedDNA: Federated learning with dynamic node alignment

N
M
C

C

Fig 5. Node matching step 1. after each client finishing training its local model, client c is randomly chosen from C and node vai will be randomly
selected among all the nodes in the first hidden layer of client c local mode.

https://doi.org/10.1371/journal.pone.0288157.g005

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 12 / 25

N C
 C
 C
va1; v

a
2; . . . ; v

ag
M ;; R N M

R
W ; W

R

C0 C

 C
va R
T fvag
R R n va va R
C0 C n ca

T
C0

½ ; �
2 ; 2C0

ð ; T Þ
T

T T [T
C0 C0 n
R R n R

w ðv Þ;8 2 T
T

W W [w

M M [T
M

ca 2 C
 ðca;WÞ

Algorithm 2: ClientUpdate(c,w): Local client weight updating

B

b 2 B
 5

Dynamic node alignment vs. Frozen. In our proposed method, frozen means instead of

using dynamic node alignment through the entire training process, we choose to train the fed-

erated learning model with dynamic node alignment for certain rounds at the very first begin-

ning, then static node alignment will be applied for the rest training part. By doing so, nodes

with similar response will be paired right after the training process starts and once all the neu-

rons are matched during the first certain rounds, we believe that the node pair pattern will

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 13 / 25

discovered and fixed to a certain extend, therefore, using static node alignment will prevent

the pattern from being disturbed from subsequent training process.

Theoretical analysis. In this subsection, we analyze the time complexity of , and

compare its complexity with simple global optimal matching search. Denote S the number of

sites, n the number of first layer nodes at each site, andm the number of features for each neu-

ron. Because all sites in FL setting have same network structure, we only focus on first layer,

and the same analysis applies to other layers, if dynamic node alignment is carried out beyond

the first layer.

Finding global optimal matching (i.e., the sum of matching distances of all nodes, across all

sites) is a combinatorial problem, because it requires comparisons of all nodes against all other

nodes, across all sites. For two sites, each having n nodes, the matching complexity is

Oðn � n�mÞ, because it needs to cross check all pairs (and each pairs involvem feature

dimension comparisons). Adding a third site would result inOðn � n� n�mÞ complexity

because all node pairs between three sites need to be checked. As a result, for S sites the total

complexity isOðnS �mÞ, which grows exponentially with respect to the number of sizes.

For , finding matching nodes across all sites for one node requiresOððS � 1Þ �
n�mÞ complexity because a node needs to search all nodes from other sites and it does not

need to search nodes from the same site. Once the first node is matched (across all sites) and

matched nodes are added to the minimum spanning tree (MST), the next node matching

requiresOððS � 1Þ � ðn� 1Þ �mÞ complexity because there are n−1 unmatched nodes

remain for each site. As a result, total time complexity for all nodes (across all sites) is the sum

of all individual nodes’ complexity:OððS � 1Þ � n�mÞ þOððS � 1Þ � ðn� 1Þ �mÞ
þ . . .þOððS� 1Þ � 1�mÞ ¼ OðS � n2 �mÞ. By growing minimum spanning tree (MST)

to support the matching, reduces the exponential complexity fromOðnS �mÞ (for
global optimal matching) to quadraticOðS � n2 �mÞ.

In summary, ’s complexity is linear with respect to the number of sites, and qua-

dratic with respect to the number of nodes at each site.

Experiments

Datasets

We used four benchmark datasets in the experiments. The first one is Diabetes Data Set which

data source are obtained from two main aspects, an automatic electronic recording device and

paper records to predict whether a patient has diabetes or not. For the automated electronic

Fig 6. Node matching result. node {a, B, } are matching nodes.

https://doi.org/10.1371/journal.pone.0288157.g006

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 14 / 25

recording devices, they have an internal clock to mark events, whereas paper records only pro-

vide periods of “logical time” (breakfast, lunch, dinner, bedtime). For paper records, fixed

times are assigned to breakfast (08:00), lunch (12:00), dinner (18:00) and bedtime (22:00).

Therefore, paper records have a fictional uniform time of recording, while electronic records

have a more real time stamp [46]. The second dataset we used is Spam_base Data Set from

UCI which was created by spam emails from postmaster and individuals and non-spam emails

from filed work and personal e-mails in order to construct a personalized spam filter. In this

dataset, The last column indicates whether the email is considered spam (1) or not (0), that is,

unsolicited commercial email. Most properties indicate whether a particular word or character

occurs frequently in emails [47]. Another data set used in this paper is called Patient Survival

Prediction Dataset. It uses knowledge about patient chronic conditions from Intensive Care

Units (ICUs) to inform clinical decisions about patient care and ultimately predict patient’s

survival outcomes [48]. Occupancy Detection Data Set is the last data set we used to verify our

model’s performance. It is a dataset for predicting room occupancy using environmental fac-

tors such as Temperature, Humidity, Light and CO2. Ground-truth occupancy obtained from

time stamped pictures that were taken every minute [49].

Basic descriptions about these four datasets are shown in Table 4 from which we can

observe the number of samples in each dataset, diabetes database has 1150 samples and there

are 4601, 91714 instances in the spambase data set and Patient Survival Prediction data set sep-

arately. Patient Survival Prediction set has the most samples and also the largest attributes

while Occupancy detection data set has the medium size samples with the least number of

attributes. Apart from that, data dimensions of those four are also different with various fea-

ture types such as categorical features, numerical features. One same point is that there are

only two classes in all the datasets, which means binary classification will be performed in our

proposed model.

Baseline methods

To validate the performance of the proposed method, we use deep neural networks as the

training models and employ four baselines for our comparisons. One is plain neural network

(Plain_NN) model which has the same structure as our proposed model which has one input

layer, two hidden layers and one output layer.

FedAvg. The second baseline is called Federated Average (FedAvg), which also share the

same network structure with our proposed method and use static node matching to aggregated

node weight values for the global model. In FedAvg, each client downloads the current model

from a central server, improves it by learning from its own local data, and then aggregates the

changes into a small centralized update. Only updates to the model are sent to the server/cloud

using encrypted communication and immediately averaged with other user updates to

improve the shared model based on Eq 1. All training data is kept locally and no individual

updates are stored in the cloud.

Table 4. Summary of the benchmark datasets used in the experiments, including sample amount, attributes amount, data characteristics and class distribution.

Dataset # of instances # of attributes Attribute Characteristics Class Class Distribution Class set up

Diabetes Database 1,150 19 Categorical, Integer Binary 0.89 0.2; 0.4; 0.5; 0.6; 0.7

Spambase Data Set 4,601 56 Integer, Real Binary 1.54 0.8; 0.6; 0.5; 0.4; 0.2

Patient Survival Prediction 91,714 186 Categorical, Real Binary 11.26 0.5; 1; 3; 5; 7

Occupancy Detection 20,560 7 Real Binary 3.33 0.5; 1; 1.5; 2; 2.5

https://doi.org/10.1371/journal.pone.0288157.t004

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 15 / 25

Federated Average (FedAvg) is a generalization of FedSGD that allows local nodes to per-

form multiple batch updates to local data and swap updated weights instead of gradients. The

basic principle behind this generalization is that in FedSGD, if all local nodes start from the

same initialization, the mean gradient is strictly equivalent to the mean weight itself. Further-

more, averaging adjustment weights from the same initialization does not necessarily harm

the performance of the resulting averaging model [1, 7].

FedDyn. Next baseline is call FedDyn, in which each client learns a unique model with its

own regularization parameter [50]. In this method, each client in the federated learning system

learns a unique model with its own regularization parameter. The regularization parameter is

updated dynamically during the training process based on the client’s local model perfor-

mance. This means that clients with more difficult data can have a higher regularization, while

clients with easier data can have a lower regularization, which improves the convergence speed

and accuracy of the federated learning process.

The objective of FedDyn is to solve. Eq 5, where kÂ 2 [m] consists of Nk training instances,

Lk(θ) is the empirical loss of the kth device and θ are the parameters of the neural network.

arg min
y2 d
½lðyÞ� 1

m

X
k2½m�

LkðyÞ ð5Þ

FedDNAfixed. Baseline 4 (FedDNAfixed) calculates nodes’ distance based on a fixed node.

This baseline is created because we want to confirm whether the node matching pattern in

dynamic node alignment improve compared with when the node used for matching remains

the same. At the first step, after each client finishing training its local model, client c is ran-

domly chosen from C. Then one node vai will be randomly selected among all the nodes in the

first hidden layer of client c ’s local model. In the next step, one client will be randomly ck

picked from {C—c }, a distance function explained previously will be used to calculate the dis-

tance dðvkj ; vai Þ between all nodes in the first hidden layer of client ckmodel and node vai . We

can get two nodes matched ðvkj ; vai Þ based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T ¼ fvkj ; vai g, from which

we will start to grow the tree. In each matching step, we will randomly pick one client from

{C—{c , ck}}. Unlike , in this baseline, the distance between a node to the tree will be

calculated with Eq 6, which means that only vai will be used in MST tree T to do the node

matching. The MST tree T will continue growing until {C—{c , ck,. . .}} is empty and at the

same time, a complete tree T with new node set {vai , v
k
j , v

b
t ,. . .} will be formed to aggregate

their averaged weight values as a new node weight vsi for the global model.

dðv; T Þ ¼ dEuclidean=Manhattanðv; vai Þ ð6Þ

For example, in Fig 5, distance for c2 will be d(a, A), d(a, B), d(a, C), d(a, D) and for c3 the
distance will be d(a,), d(a,), d(a,), d(a, θ). Assume for c2, the smallest distance is d(a, B)
and d(a,)for c3, then node {v1a; v

2
B; v

3
a} are the matching nodes and their weight values will be

averaged as one new node weight values for the global model.

FedDNArandom. The last baseline is a modification based on both and FedDNA-

fixed. Instead of being too static or too dynamic with the node matching, we cant to confirm the

feasibility when the matching node is neither 100% percent fixed nor using the entire MST

tree as a matching node. Settings for baseline 4 (FedDNArandom) is as follows: At the first step,

after each client finishing training its local model, client c is randomly chosen from C. Then
one node vai will be randomly selected among all the nodes in the first hidden layer of client

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 16 / 25

c ’s local model. In the next step, one client will be randomly ck picked from {C—c }, a dis-

tance function explained previously will be used to calculate the distance dðvkj ; vai Þ between all

nodes in the first hidden layer of client ck model and node vai . We can get two nodes matched

ðvkj ; vai Þ based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T ¼ fvkj ; vai g, from which

we will start to grow the tree. In our third step, one node will be randomly chosen from {vai , v
k
j }

which will be used to match nodes of client {C—{c , ck}} using Eq 4. Step 3 will be repeated

until {C—{c , ck,. . .}}is empty and at the same time, a new node set {vai , v
k
j , v

b
t ,. . .} will be

formed to aggregate their averaged weight values as a new node weight value for the global

model. Assume we randomly choose c2 in Fig 5 to do the first match, node {a, B} are the
matching nodes, then one node will be randomly chosen from node {a, B} to calculate distance
for c3. If node B is chosen, distance d(B,), d(B,), d(B,), d(B, θ), will be calculated to choose

the next matching node.

Experiments setting

Our overall experiment setting is shown in Table 5. We use 10-fold cross validation, under

which there will be 10 training rounds for each model to train. For each dataset, our aim is to

predict the corresponding target and 10-fold cross validation is applied to reduce both bias

and variance. Under each cross validation fold K, same weight values are initialized for all both

baseline models and our proposed models, Plain_NN, FedAvg, FedDyn, Baseline3, Baseline4
and FedDNA. For methods under FL setting, model parameters will be passed to each clients

at the very beginning of training. Training data will be randomly split into 5 sites and distrib-

uted to 5 clients, which is able to training the local model using their own data, after which

weight values will be aggregated based on different FL method and then send back to the global

models. Global models will pass the new calculated parameters to their local clients to start

new round training until the convergence. For our proposed method FedDNA, there are two

experiment settings in this paper. One is called no-freezing weight update setting, in which

weight values of the global model will be aggregated using FedDNAmethod for all the 10

Table 5. The pseudo code of the experiment settings and comparisons (all methods are compared based based on
same training/test data. The initial network weights of each site are the same for different methods to avoid discrep-
ancy due to random weight initialization.

Experiment setting: Node_matching Federated Learning
Input (1) DatasetsD; (2) Node matching setting: Freeze; No freeze

Output Prediction of the target y
For each cross validation fold K:
Initialize same weight values for all the global models:

Plain_NN, FedAvg, FedDyn, (FedDNAfixed), (FedDNArandom) and FedDNA
Split training data into 5 sites for 5 clients

For Baseline1:
Train model using all the training data

For federated learning models:

Client train their own model using their own data

Match nodes with their distance calculation principle

Aggregated weight values pass to each global model

End For

Evaluate each global models

https://doi.org/10.1371/journal.pone.0288157.t005

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 17 / 25

rounds while the second type of setting is called freezing, in other word, we will choose to

update the global model parameters with FedDNA at the first i round and after that FedAvg

will be used to aggregate clients’ model weight values for the rest of rounds. We design this

type of setting because we think the first several rounds of distance calculation will give use the

answer of the closest matching nodes then we can use that match to directly aggregated the

node weight values.

For our experiment dataset settings, we first run our model based on the original class dis-

tributions across all clients in all datasets which is negative: positive = 1.54 in spam database,

negative: positive = 0.89 in diabetes data base, negative: positive = 11.26 in Patient Survival Pre-

diction data set and negative: positive = 3.33 in Occupancy Detection data set. In the second

experiment setting, for each training process, 2 clients are randomly chosen to exchange 2/3 of

their data while the rest 3 clients keep their own data, in this case, our model will be verified on

non-IID datasets. Calculated overall node distance, Accuracy, AUC, F1_score, Balanced accu-

racy and Loss are used as performance measurement metrics.

Apart from randomly selecting 2 clients to exchange their data, we decide to evaluate our

proposed model under different class distribution settings. The original class distribution (neg-

ative:positive) of the four datasets are as shown in Table 4. A set of class distributions is set up

for the original four data sets to check the model performance. Since all the datasets have dif-

ferent original class distributions, the assigned class distributions of the four datasets in this

paper are different from each other.

Overall model performance

Tables 6–9 show the results for Diabetes dataset, Spam dataset, Occupancy data set and Patient

survival data set respectively in our first dataset setting. Due to page limitation, only the best

model performance results are presented in this paper. For Diabetes database, we can observe

that FedDNA, which uses our proposed method FedDNA is able to find nodes combinations

where the total node distance is the smallest with value 42.1352 compared with other methods

whose final distance results are greater than 50. At the same time, FedDNA presents better

metrics performance. Similarly, the smallest overall node distance and better metric perfor-

mance are realized by our FedDNA method for spam database. However, we can also come to

the conclusion that smaller overall node distance and better metrics performance does not

always come with the smallest training loss, especially for FedDNA. For occupancy and patient

survival prediction datasets, FedDNA shows similar performance as for the previous two data-

sets. Its overall classification performance outperforms all the baselines with the smallest node

distance 5.7316 and 57.4096 respectively after matching, which indicates FedDNA is able to

pair closest nodes together. We can tell that overall, for all the four datasets, when class distri-

butions are the same across all clients, our proposed method performs the best in the freezing

Table 6. Experimental results fromDiabetes dataset using Manhattan distance based matching. For , the matching freezes after first two rounds of dynamic
node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss

Plain_NN 0.6755 0.7529 0.6361 0.6744 3.3221

FedAvg 51.7421 0.7165 0.8044 0.7029 0.7219 1.9016

FedDyn 53.0637 0.7016 0.8012 0.7147 0.7078 1.8932

FedDNAfixed 63.7216 0.7264 0.7961 0.7120 0.7341 1.8354

FedDNArandom 56.3497 0.7298 0.8003 0.7280 0.7396 1.8274

FedDNA 42.1352 0.7381 0.8230 0.7290 0.7434 1.9253

https://doi.org/10.1371/journal.pone.0288157.t006

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 18 / 25

setting when the first two rounds using Manhattan distance to find the matching nodes and

the rest using FedAvg with the smallest overall distance under freeze first two rounds experi-

ment setting with 42.1352 for diabetes dataset, 730.3930 for the spam data set, 5.7316 for Occu-

pancy Detection and 57.4096 for Patient Survival Prediction data set.

FedDNA vs. FedAvg with respect to different class distributions

Fig 7 is a box-plot for our second experiment setting’s results. Instead of showing all the results

of all models across all the datasets, since results from the first setting highlights that FedDNA

outperforms FedAvg and FedDyn overall across all the datasets, only comparisons between

FedDNA and FedAvg, FedDyn with the combined results across all the datasets are shown in

Fig 7, in which outliers can be observed for three models but overall we can come to the con-

clusion that when data is not evenly distributed across all clients, FedDNA performs the best

in the freezing setting when the first two rounds using Manhattan distance to find the match-

ing nodes and the rest using FedAvg.

Table 7. Experimental results from Spam dataset using Manhattan distance based matching. For , the matching freezes after first two rounds of dynamic node
alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss

Plain_NN 0.9165 0.9536 0.8905 0.9095 0.5110

FedAvg 824.3761 0.9320 0.9717 0.9120 0.9294 0.4823

FedDyn 792.1406 0.9316 0.9719 0.9136 0.9117 0.4431

FedDNAfixed 798.0362 0.9350 0.9762 0.9187 0.9343 0.6352

FedDNArandom 911.6532 0.9351 0.9772 0.9178 0.9337 0.4521

FedDNA 730.3930 0.9376 0.9781 0.9210 0.9357 0.4841

https://doi.org/10.1371/journal.pone.0288157.t007

Table 8. Experimental results fromOccupancy detection dataset using Manhattan distance based matching. For , the matching freezes after first two rounds
of dynamic node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss

Plain_NN 0.8327 0.9578 0.5018 0.7021 1.4599

FedAvg 7.8736 0.9225 0.9715 0.8236 0.8910 1.1592

FedDyn 8.5130 0.9135 0.9713 0.8137 0.8862 1.0927

FedDNAfixed 10.4510 0.9346 0.9751 0.8681 0.9179 0.9031

FedDNArandom 9.6437 0.9306 0.9762 0.8699 0.9083 0.8621

FedDNA 5.7316 0.9402 0.9788 0.8710 0.9140 0.8711

https://doi.org/10.1371/journal.pone.0288157.t008

Table 9. Experimental results from Patient survival prediction dataset using Manhattan distance based matching. For , the matching freezes after first two
rounds of dynamic node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss

Plain_NN 0.8201 0.5309 0.0618 0.4998 1.7521

FedAvg 63.2566 0.7913 0.6185 0.0676 0.4942 1.1150

FedDyn 67.9825 0.7740 0.6098 0.0635 0.5099 1.0047

FedDNAfixed 71.2609 0.9083 0.6422 0.0302 0.5024 1.0670

FedDNArandom 75.6094 0.8633 0.6251 0.0232 0.5075 1.0427

FedDNA 57.4096 0.8898 0.6485 0.0297 0.5079 1.4629

https://doi.org/10.1371/journal.pone.0288157.t009

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 19 / 25

Since under this experiment setting, FedDyn does not deliver better overall performance

than FedAvg according to above tables and figure, its detailed comparison with FedDNA is

not demonstrated. Figs 8–11 report the performance of FedDNA and FedAvg, with respt to

different class distributions (the class distributions were adjusted to assess the algorithm per-

formance under different conditions). The y-axis is the values of each measurement and x-axis
is different class distribution set ups for each dataset as shown in Table 4.

For Diabetes Dataset, FedDNA and FedAvg has the largest gap for all the measurements

when sampling rate is 0.5 and both models’ performance fluctuate a lot with the change of

class distributions. For Spam Dataset, even though FedDNA and FedAvg perform similarly

when class distribution is smaller, as more and more negative samples shown in the datasets,

FedDNA starts to show more advantages than FedAvg, especially when negative instances take

up more than 40% of the dataset, the gap between both models become larger with a better

performance from FedDNA. Similarly, for Patient Survival Prediction Dataset, the larger the

sampling rate is, the better FedDNA outperforms FedAvg especially in terms of Fscore and

Balanced accuracy. While for Occupancy dataset, FedDNA does not show much better results

than FedAvg when class distribution is less than 2, after which both models the performance

of the two models tends to be consistent.

Fig 7. Overall performance comparisons between and FedAvg, FedDyn.Outliers ca be observed from both methods, overall
outperforms FedAvg and FedAvg performs similarly as FedDyn.

https://doi.org/10.1371/journal.pone.0288157.g007

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 20 / 25

Discussion
In this paper, we propose a dynamic node matching method for federated learning. We argued

that neural networks are inherently non-transparent and unstable, and the same network

structure may end up with very different weight values, even with the same training data and

same parameter settings. Traditionally, existing methods, such as FedAvg, force neurons

across sites to be matched with predefined order, and use fixed matching nodes during the FL

learning process. Alternatively, we proposed a dynamic node alignment, FedDNA, approach

which dynamically finds matching nodes across sites, and uses matched nodes to calculate

weight for FL learning. FedDNA represents each neuron as a vector, using their weight values,

and calculate distances between neurons to find matching nodes. Meanwhile, because finding

marching nodes are computationally expensive, we proposed a minimum spanning tree

(MST) based approach to speed up the matching, with matched nodes across all sites being

linked by using an MST tree. So the matching process is simply the MST tree growing process.

Fig 8. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for diabetes dataset.

https://doi.org/10.1371/journal.pone.0288157.g008

Fig 9. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for spam dataset.

https://doi.org/10.1371/journal.pone.0288157.g009

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 21 / 25

Experiments and comparisons, including biased sample distributions, validate the perfor-

mance of the FedDNA, compared to other baseline.

Future study can emphasize on the following three directions. First, we only studied dense

networks and verified its performance using FedDNA. Future study can try to explore node

matching between different types of network architectures, such as convectional nueral net-

works. Second, we only studied the proposed design using binary classification problems. In

the future, multi-class classification problem will be explored using our proposed FedDNA

method. For the last direction, we will use non-IID datasets to further adjust our model so that

it can be applied not only to binary classification problem but also can achieve good results for

datasets with different settings.

Author Contributions
Funding acquisition: Xingquan Zhu.

Fig 10. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for patient survival prediction
dataset.

https://doi.org/10.1371/journal.pone.0288157.g010

Fig 11. Performance comparisons between FedDNA and FedAvg with respect to different class distributions for occupancy dataset.

https://doi.org/10.1371/journal.pone.0288157.g011

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 22 / 25

Supervision: Xingquan Zhu.

Writing – original draft: ShuwenWang.

Writing – review & editing: Xingquan Zhu.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep

networks from decentralized data. In: Artificial intelligence and statistics. PMLR; 2017. p. 1273–1282.

2. Antunes RS, André da Costa C, Küderle A, Yari IA, Eskofier B. Federated Learning for Healthcare: Sys-
tematic Review and Architecture Proposal. ACM TIST. 2022; 13(4):1–23. https://doi.org/10.1145/
3501813

3. Xu J, Glicksberg BS, Su C,Walker P, Bian J, Wang F. Federated learning for healthcare informatics. J
Healthc Inform Res. 2021; 5(1):1–19. https://doi.org/10.1007/s41666-020-00082-4 PMID: 33204939

4. Qayyum A, Ahmad K, Ahsan MA, Al-Fuqaha A, Qadir J. Collaborative federated learning for healthcare:
Multi-modal covid-19 diagnosis at the edge. IEEEOpen Journal of the Computer Society. 2022; 3:172–
184. https://doi.org/10.1109/OJCS.2022.3206407

5. Nguyen DC, PhamQV, Pathirana PN, Ding M, Seneviratne A, Lin Z, et al. Federated learning for smart
healthcare: A survey. ACMComputing Surveys (CSUR). 2022; 55(3):1–37. https://doi.org/10.1145/
3501296

6. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive mod-
els from federated electronic health records. International journal of medical informatics. 2018; 112:59–
67. https://doi.org/10.1016/j.ijmedinf.2018.01.007 PMID: 29500022

7. Rieke N, Hancox J, Li W, Milletari F, Roth HR, Albarqouni S, et al. The future of digital health with feder-
ated learning. NPJ digital medicine. 2020; 3(1):1–7. https://doi.org/10.1038/s41746-020-00323-1
PMID: 33015372

8. CDC. Health Insurance Portability and Accountability Act of 1996 (HIPAA); 1996. cdc.gov/phlp/
publications/topic/hipaa.html.

9. Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed
machine learning. Acm computing surveys (csur). 2020; 53(2):1–33. https://doi.org/10.1145/3377454

10. Li S, Cheng Y, Liu Y, WangW, Chen T. Abnormal client behavior detection in federated learning. arXiv
preprint arXiv:191009933. 2019;.

11. Enthoven D, Al-Ars Z. Fidel: Reconstructing private training samples from weight updates in federated
learning. arXiv preprint arXiv:210100159. 2021;.

12. Deng Y, Kamani MM, Mahdavi M. Distributionally robust federated averaging. Adv Neural Inf Process
Syst. 2020; 33:15111–15122.

13. Sun T, Li D, Wang B. Decentralized federated averaging. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2022;.

14. Yu F, ZhangW, Qin Z, Xu Z, Wang D, Liu C, et al. Fed2: Feature-aligned federated learning. In: Pro-
ceedings of the 27th ACMSIGKDD conference on knowledge discovery & data mining; 2021. p. 2066–
2074.

15. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y. Federated learning with matched averag-
ing. arXiv preprint arXiv:200206440. 2020;.

16. Long G, Xie M, Shen T, Zhou T, Wang X, Jiang J. Multi-center federated learning: clients clustering for
better personalization. World WideWeb. 2023; 26(1):481–500. https://doi.org/10.1007/s11280-022-
01046-x

17. Huang L, Yin Y, Fu Z, Zhang S, Deng H, Liu D. LoAdaBoost: Loss-based AdaBoost federated machine
learning with reduced computational complexity on IID and non-IID intensive care data. Plos one. 2020;
15(4):e0230706. https://doi.org/10.1371/journal.pone.0230706 PMID: 32302316

18. Liu D, Miller T, Sayeed R, Mandl KD. Fadl: Federated-autonomous deep learning for distributed elec-
tronic health record. arXiv preprint arXiv:181111400. 2018;.

19. Haddadpour F, Kamani MM, Mokhtari A, Mahdavi M. Federated learning with compression: Unified
analysis and sharp guarantees. In: AISTATS; 2021. p. 2350–2358.

20. Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning through an adversarial lens.
In: ICML; 2019. p. 634–643.

21. Uddin MP, Xiang Y, Lu X, Yearwood J, Gao L. Mutual information driven federated learning. IEEE
Trans Parallel Distrib Syst. 2020; 32(7):1526–1538.

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 23 / 25

22. Luo S, Chen X, Wu Q, Zhou Z, Yu S. HFEL: Joint edge association and resource allocation for cost-effi-
cient hierarchical federated edge learning. IEEE Transactions onWireless Communications. 2020; 19
(10):6535–6548. https://doi.org/10.1109/TWC.2020.3003744

23. Kang J, Xiong Z, Niyato D, Zou Y, Zhang Y, Guizani M. Reliable federated learning for mobile networks.
IEEEWireless Communications. 2020; 27(2):72–80. https://doi.org/10.1109/MWC.001.1900119

24. Xu C, Liu S, Yang Z, Huang Y, Wong KK. Learning rate optimization for federated learning exploiting
over-the-air computation. IEEE Journal on Selected Areas in Communications. 2021; 39(12):3742–
3756. https://doi.org/10.1109/JSAC.2021.3118402

25. Zheng C, Liu S, Huang Y, ZhangW, Yang L. Unsupervised Recurrent Federated Learning for Edge
Popularity Prediction in Privacy-Preserving Mobile-Edge Computing Networks. IEEE Internet of Things
Journal. 2022; 9(23):24328–24345. https://doi.org/10.1109/JIOT.2022.3189055

26. Stich SU. Local SGD converges fast and communicates little. arXiv preprint arXiv:180509767. 2018;.

27. Malinovskiy G, Kovalev D, Gasanov E, Condat L, Richtarik P. From local SGD to local fixed-point meth-
ods for federated learning. In: ICML; 2020. p. 6692–6701.

28. Woodworth BE, Wang J, Smith A, McMahan B, Srebro N. Graph oracle models, lower bounds, and
gaps for parallel stochastic optimization. Adv Neural Inf Process Syst. 2018; 31.

29. Wang J, Liu Q, Liang H, Joshi G, Poor HV. Tackling the objective inconsistency problem in heteroge-
neous federated optimization. Adv Neural Inf Process Syst. 2020; 33:7611–7623.

30. Khaled A, Mishchenko K, Richtárik P. First analysis of local gd on heterogeneous data. arXiv preprint
arXiv:190904715. 2019;.

31. Li X, Huang K, YangW,Wang S, Zhang Z. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:190702189. 2019;.

32. Eichner H, Koren T, McMahan B, Srebro N, Talwar K. Semi-cyclic stochastic gradient descent. In:
ICML; 2019. p. 1764–1773.

33. Wang J, Joshi G. Cooperative sgd: A unified framework for the design and analysis of local-update sgd
algorithms. The Journal of Machine Learning Research. 2021; 22(1):9709–9758.

34. Yu H, Jin R, Yang S. On the linear speedup analysis of communication efficient momentumSGD for dis-
tributed non-convex optimization. In: ICML; 2019. p. 7184–7193.

35. Muhammad K, Wang Q, O’Reilly-Morgan D, Tragos E, Smyth B, Hurley N, et al. Fedfast: Going beyond
average for faster training of federated recommender systems. In: ACM SIGKDD; 2020. p. 1234–1242.

36. Li Y, Wang X, Zeng R, Donta PK, Murturi I, HuangM, et al. Federated Domain Generalization: A Sur-
vey. arXiv preprint arXiv:230601334. 2023;.

37. HaoM, Li H, Xu G, Liu Z, Chen Z. Privacy-aware and resource-saving collaborative learning for health-
care in cloud computing. In: ICC 2020-2020 IEEE International Conference on Communications (ICC);
2020. p. 1–6.

38. Chen Y, Qin X, Wang J, Yu C, GaoW. Fedhealth: A federated transfer learning framework for wear-
able healthcare. IEEE Intelligent Systems. 2020; 35(4):83–93. https://doi.org/10.1109/MIS.2020.
2988604

39. Liu D, Fox K, Weber G, Miller T. Confederated machine learning on horizontally and vertically separated
medical data for large-scale health system intelligence. arXiv preprint arXiv:191002109. 2019;.

40. Tan X, Chang CCH, Zhou L, Tang L. A tree-basedmodel averaging approach for personalized treat-
ment effect estimation from heterogeneous data sources. In: International Conference on Machine
Learning. PMLR; 2022. p. 21013–21036.

41. Silva S, Gutman BA, Romero E, Thompson PM, Altmann A, Lorenzi M. Federated learning in distributed
medical databases: Meta-analysis of large-scale subcortical brain data. In: 2019 IEEE 16th international
symposium on biomedical imaging (ISBI 2019). IEEE; 2019. p. 270–274.

42. Srivastava UC, Upadhyay D, Sharma V. Intracranial hemorrhage detection using neural network based
methods with federated learning. arXiv preprint arXiv:200508644. 2020;.

43. ZhangW, Zhou T, Lu Q,Wang X, Zhu C, Sun H, et al. Dynamic-fusion-based federated learning for
COVID-19 detection. IEEE Internet of Things Journal. 2021; 8(21):15884–15891. https://doi.org/10.
1109/JIOT.2021.3056185 PMID: 35663640

44. Dou Q, So TY, Jiang M, Liu Q, Vardhanabhuti V, Kaissis G, et al. Federated deep learning for
detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study.
NPJ digital medicine. 2021; 4(1):1–11. https://doi.org/10.1038/s41746-021-00431-6 PMID:
33782526

45. GrahamRL, Hell P. On the History of the Minimum Spanning Tree Problem. Annals of the History of
Computing. 1985; 7(1):43–57. https://doi.org/10.1109/MAHC.1985.10011

46. KahnM. Diabetes Data Set; 1994. https://archive.ics.uci.edu/ml/datasets/diabetes.

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 24 / 25

47. Hopkins M, Reeber E, Forman G, Suermondt J. Spambase Data Set; 1999. https://archive.ics.uci.edu/
ml/datasets/spambase.

48. Raffa JD, Johnson AE, O’Brien Z, Pollard TJ, Mark RG, Celi LA, et al. The Global Open Source Severity
of Illness Score (GOSSIS). Crit Care Med. 2022; 50(7):1040–1050. https://doi.org/10.1097/CCM.
0000000000005518 PMID: 35354159

49. Candanedo LM, Feldheim V. Accurate occupancy detection of an office room from light, temperature,
humidity and CO2measurements using statistical learning models. Energy and Buildings. 2016;
112:28–39. https://doi.org/10.1016/j.enbuild.2015.11.071

50. Acar DAE, Zhao Y, Navarro RM, Mattina M, Whatmough PN, Saligrama V. Federated learning based
on dynamic regularization. arXiv preprint arXiv:211104263. 2021;.

PLOS ONE Federated learning using dynamic node alignment

PLOSONE | https://doi.org/10.1371/journal.pone.0288157 July 3, 2023 25 / 25

