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Abstract—Name-based publish/subscribe systems using
Information-Centric Networking (ICN) principles can provide
a flexible and efficient framework for communication in
disaster situations. Efficient, secure dissemination of information
can play a critical role in disaster management. But, secure
and authenticated group communications that maintain
confidentiality and integrity remain a challenge.

In this paper, we design a flexible and efficient encryption
framework SAFE that leverages graph-based naming frame-
works for providing role-based communication among first re-
sponders. We study the suitability of message-oriented encryption
where the sender leverages the name hierarchy, and compare it
with a key-oriented encryption scheme that requires the receiver
to utilize appropriate keys to decrypt based on the publisher-
targeted name for the message. Both encryption schemas can
be built with attribute-based encryption (ABE) or public key
encryption (PKE) implementations. We find message-oriented en-
cryption provides the needed flexibility for dynamic environments
when communicating with members changes frequently. With
message-oriented encryption, we further address key revocation
and support for infrastructure-less environments in disaster
situations and consider the tradeoff between flexibility and
optimization for large relatively static communication groups.

We evaluate both encryption schemas built on top of ABE and
PKE. We examine the key generation time, ciphertext length,
encryption, and decryption time, and see that SAFE’s design is
the most suitable for large and dynamically changing groups.

I. INTRODUCTION

Effective communication among first responders in a disaster
environment is critical to the success of public safety mis-
sions. The key to effective communication during a disaster
includes communicating at different levels of granularity in
an evolving incident command chain. Members from different
departments or teams may need to receive different messages
based on their role and position in the organization or incident
management. Additionally, first responders may frequently
move between different teams with different objectives. A
framework that flexibly allows for dynamic changes to the
communication framework and enables first responders to
communicate efficiently is highly desirable. Having a well-
defined naming framework, typical of ICN approaches [1],
[2], can accommodate the needs of emergency communication.
Information-Centric Networking (ICN)-based disaster com-
munication systems [2]–[4] provide the basic framework for
flexible and efficient name-based communication to meet this
requirement for emergency communication. Publish/Subscribe
(pub/sub) systems (e.g., [5], [6]) are convenient for infor-
mation dissemination, and provide the necessary push-based
information delivery needed for one-to-many first-responder
communication that is typically needed in our context [7], [8].

Compared to efficiency, secure communication is even more
critical to first responders who need to exchange information
when responding to disasters. Leaking confidential information
could be harmful whether it falls into the hands of malicious
individuals, or even the general public as it may cause unnec-
essary panic. In the spirit of ICN [1], [9], we seek to secure the
data that is transmitted rather than the communication channel.
We use encryption of the transmission between first responders
to maintain confidentiality. A variety of encryption schemes,
such as public key encryption (PKE) [10], [11], identity-
based encryption (IBE) [12], or attribute-based encryption
(ABE) [13] could be utilized. However, there is a need to
augment these schemes to meet the needs of emergency
communication, to be able to flexibly identify the recipients
for a message. The challenge is to be able to specify the
recipient identities (roles identified in the namespace) and their
authorization to decrypt the content for each message. Existing
methods, including IP-multicast, and ICN (where the content
is identified in a request/response, such as in NDN [1], [2])
fail to adequately address this issue.

To ensure messages are exchanged securely for commu-
nicating among members of a dynamically formed group in
such a role-based namespace, we seek a method for encrypting
messages that supports the namespace hierarchy. A message
sent to a group identified by a destination name should only be
decryptable by subscribers of that name and its descendants
in the hierarchy. Traditional encryption schemes fail to take
aspects of groups such as the namespace hierarchy into consid-
eration and are not flexible in accommodating dynamic groups
(e.g., dispatching units for specific roles, day/night shift). For
PKE, public and secret keys have to be generated together
as pairs. If we generate a different public-secret key pair for
each subscriber, it will be difficult and extremely inconvenient
for publishers to track which subscribers belong to which
name. For IBE and ABE, the sender (encryptor) and receiver
(decryptor) could encrypt or decrypt based on identities or a
branch of attributes related to names. However, the identities
and attributes themselves do not have an associated hierarchy.
Previous work has utilized ABE to secure constant topic-based
names ICN by encrypting messages based on a combination
of several names with similar properties [14]. However, this
approach does not meet the requirements of a role-based name
system in a disaster environment, where names can dynami-
cally change. The use of name combinations would impose
limitations on the flexibility of the system. First responders
may frequently have to operate in disconnected/infrastructure-
less environments, where they may not be able to acquire new979-8-3503-0322-3/23/$31.00 ©2023 IEEE
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keys. It is imperative that they still be able to communicate
securely in such situations (e.g., in a shelter). Therefore, an en-
cryption mechanism beyond one of these existing mechanisms
of PKE, ABE, or IBE is needed.

In this paper, we design SAFE, an authenticated, confidential
message exchange framework using encryption techniques that
leverage the graph-based namespace used for communication
among first responders during disaster management [7].

For encrypted information exchange, using any of the tech-
niques we study here, ABE (either Key Policy Attribute Based
Encryption (KP-ABE) [15] or Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [16]) or PKE [10], [11], a pub-
lisher sends a message with a name or set of names (name set)
embedded in the ciphertext. That ciphertext can be decrypted
by the subscribers of the target name or of its descendants of
the name in its sub-graph based on the name set in the key(s)
that they have. We examine the distinct approaches for how
the name set (or attribute set) is included in the message or in
the key. A message-oriented approach would include a name
set (or attributes) in each message and the key at the receiver
requires only a single name that finds a match in the name set.
In a key-oriented approach, the message a publisher encrypts
would include a single name. The key of a receiving subscriber
embeds a set of names, including those of its ancestors. The
underlying key generation requires a set of names in each key.

We generalize these message and key-oriented encryptions
further by having a set of names (Nk) in each key, and
correspondingly, a set of names (Nm) in each published
message. We evaluate both the message and key-oriented
approaches, using a range of underlying encryption approaches
(PKE, Key Policy, Ciphertext Policy) both qualitatively and for
performance (CPU consumption and network bandwidth).

We see in our evaluations that a message-oriented interface
is superior in terms of flexible processing and bandwidth
efficiency. Note that with message-oriented encryption, other
fundamental encryption methods can be implemented. In this
paper, we build the message-oriented interface on top of three
different fundamental encryption implementations: KP-ABE,
CP-ABE, and multi-envelope public key encryption (ME-
PKE). With both KP-ABE and CP-ABE, we use a unique ID
related to the name [2] as an attribute and manage the attributes
to fulfill the requirements for the message-oriented solution.
The ME-PKE we propose utilizes public key encryption to
deliver messages to multiple receivers. We compare each im-
plementation in terms of key generation, communication over-
head, encryption performance, and decryption performance.
As we show, SAFE, our message-oriented KP-ABE scheme,
has the best encryption performance, the least communication
overhead, and the second-best decryption performance.

We briefly summarize the contributions of this paper:
• We build an abstraction framework utilizing the well-known

encryption schemes (ABE, PKE) to provide an encrypted
information exchange integrated into a graph-based naming
framework for information-centric pub/sub communication.

• We design, develop, and evaluate SAFE, a message-oriented
and key-oriented encryption solution for confidential com-

munication between publishers and subscribers.
• We compare the key generation, communication overhead,

encryption, and decryption performance of several encryp-
tion implementations: MultiEnvelope-PKE (ME-PKE), KP-
ABE, and CP-ABE using a message-oriented abstraction.

• We further enhance the base message-oriented KP-ABE
solution, with mechanisms that support richer semantics and
key revocation for a large group of publishers/subscribers
that use a name-based communication infrastructure.

• SAFE facilitates flexible, per-message dynamic group
information exchange even within disconnected and
infrastructure-less environments.

II. BACKGROUND & RELATED WORK

A. Name-based Publish/Subscribe
First responders need to communicate with different groups of
people, depending on the situation and the information they
need to communicate. Despite its adoption and deployment in
many situations, IP multicast has limitations since IP multicast
group addresses do not capture the semantic relationships
within and between groups (e.g., hierarchical groups). Name-
based multicast, leveraging the concept of ICN [17], which
shows a number of benefits in disaster environment [18], can
overcome a number of these limitations, and provides the
appropriate level of flexibility, dynamics and structure among
multicast groups [6]–[8], [19].

The ICN-based publish/subscribe model [6] has been pro-
posed for its efficient group multicast, demonstrating its ben-
efits not only in disaster scenarios but also in other con-
texts such as IoT [20] and smart cities [21]. This approach
overcomes the scalability and complexity issues of traditional
long-lived connection-based [22] or broker-based [23] pub-
lish/subscribe systems. CNS [8] further improves the pub-
lish/subscribe model by introducing a role-based namespace,
which facilitates the dissemination of information. POISE [7]
extends CNS by relieving the strict hierarchy restrictions and
to a graph-based dynamic namespace.

A graph-based dynamic namespace allows first responders
from different organizations and incident management hier-
archies to use publish/subscribe to communicate freely. First
responders subscribe to names based on their role. A message
sent to a particular name will result in all subscribers of
names under that name in the hierarchy to also receive the
message [7]. This ensures that useful information sent to
an organization is disseminated to the appropriate groups
within the organization. This is particularly important when
a dynamic team is formed for incident management.

A sub-namespace could be added for an incident, such as
a particular city’s firefighting team in its entirety. An incident
topic may be created, and different departments may be added
to the incident management by attaching their namespace
hierarchy by a dispatcher or incident commander. For example,
when a fire occurs, commanders could create a “Fire Incident”
and connect all relevant teams to the incident.

Assume that we have a namespace shown in Fig. 1. The
yellow nodes are part of the organizational namespaces (de-
partments and units), while the blue nodes are the incident-
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Fig. 1: Example Namespace for Disaster Management

related names (roles). Say for example the dispatcher is
assigning units for “Search Team” as part of “Incident X”.
(e.g., dispatching “Fire Engine 1” (including “Firefighter 1”
and “Firefighter 2”) as part of the search team (shown as a red
dashed line in the figure)). This allows for the namespace to be
dynamically managed as the incident evolves. Communication
among members of various groups often needs to be kept
confidential. This is achieved through proper encryption.

B. Attribute-based Encryption

Traditional PKE (e.g., RSA [10]) requires the encryptor to get
the public key certificate in order to generate a secret message.
IBE [12] allows the public key to be an arbitrary string (e.g.,
the email address of the receiver). ABE [13], [15], [16] further
extends IBE by allowing the public key string to not be atomic,
but be a set of attributes (e.g., address, roles). To decrypt a
ciphertext, the decryptor has to hold a key that matches the
attributes used when the message is encrypted. Based on how
the attributes are matched, ABE can be generally classified
into 2 categories: KP-ABE [15] and CP-ABE [16].
KP-ABE: KP-ABE allows the ciphertext to embed a set of
attributes (γm, e.g., “attr1, attr2, . . .”) and the key to encode
an access policy (Ak). An access policy is a conjunction
of attributes with relationships (“and” [∧], “or” [∨]), e.g.,
“(attr1∨attr2)∧attr3”. The key can decrypt the message only
if γm satisfies Ak. For example, the key with access structure
“(attr1 ∨ attr2) ∧ attr3” can decrypt message with attributes
“attr1, attr3”, but not “attr1, attr2”.
CP-ABE: Similar to KP-ABE, CP-ABE also encrypts and
decrypts messages based on attributes. However, to allow
senders to have better control of the recipients of the message,
CP-ABE embeds the policy (Am) in the message instead of
the keys. Keys in CP-ABE only contain a set of attributes (γk).
A key can decrypt a message only when γk satisfies the policy
Am in the ciphertext. E.g., a receiver with key “attr1, attr2”
can decrypt messages with policies “attr1 ∧ (attr2 ∨ attr3)”
and “attr1 ∨ (attr2 ∧attr3)” but not “attr1 ∧attr2 ∧attr3”.

C. Secure Group-Communication Solutions

One approach to address group communication is multicast
encryption. By allowing all recipients to share the same
decryption key, multiple receivers can decrypt messages sent
by a sender. However, this approach encounters the challenge
of efficient key revocation [24], as revoking the key of even an
individual recipient requires re-issuing a key to all the others.

Message-Oriented Encryption Key-Oriented Encryption

Recipient-Selection Key Revocation

Abstract Encryption Layer

KP-ABE CP-ABE ME-PKE IBE …
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u
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Fig. 2: SAFE Design Overview

It also suffers from flexibility issues. The sender can only
choose to send to some predefined (usually coarse-grained)
groups instead of being able to decide the proper recipient on
a message-to-message basis.

A current solution for communication among first respon-
ders during disasters, FirstNet [25] utilizes unicast secure
channels for each receiver, which results in excessive over-
head, and is not suitable for disconnected environments.

III. SAFE DESIGN OVERVIEW

Adversary Model: An adversary may try to recover the
plaintext from the ciphertext obtained by sniffing the com-
munication between the publisher and the subscriber, without
a key, which our system needs to prevent. Another possible
attack by an adversary is to obtain private keys during the key
distribution phase. SAFE needs to keep the keys secure during
the key distribution, allowing access only for the key issuer
and subscribers. Another scenario is when a first responder
loses his or her subscribed device, SAFE must have a key
revocation method for rapid removal of those devices no
longer trusted. A proper authentication mechanism is needed
to prevent unauthorized users from subscribing and publishing.
The system should also support perfect forward secrecy [26],
[27] and backward secrecy [28], which implies that the use of
a key should be time-limited, and the current key can not be
used to recover a previous or a future key.
Design Summary: The name-based pub/sub message ex-
change utilizes SAFE to achieve confidentiality, authenticate
users, and ensure message integrity suitable for commu-
nication among first responder groups. We support either
a message-oriented or key-oriented encryption mechanism.
SAFE is built on top of an “abstract encryption layer” that
provides basic functions needed for dynamic and efficient
encryption. Figure 2 shows the overview of SAFE. Subscribers
of a name or its descendants would receive a message sent to
that name in a name-based pub/sub framework (as in [7]). To
provide confidentiality, we introduce an “abstract encryption
layer” (AEL) on top of a basic encryption scheme. This AEL
serves as an interface to the underlying encryption schemes
such as PKE, KP-ABE, and CP-ABE. The AEL manages
the abstraction of basic encryption functions such as key
generation, encryption, and decryption. We discuss the AEL
in more detail in §IV.

The AEL supports two possible approaches, a message-
oriented encryption approach and a key-oriented approach.
The message-oriented encryption leverages the namespace
during the encryption process and embeds the name and its
descendants into the encrypted message. On the other hand, the
key-oriented solution embeds the name hierarchy in the key
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itself, allowing subscribers to decrypt messages with names
that match the names included in the key. We detail these two
solutions and outline the advantages and disadvantages of each
approach in §V. Message-oriented encryption offers publishers
the ability to adapt to namespace changes by just including or
excluding names from the updated namespace. Because of this
adaptability, we select message-oriented encryption for SAFE.

The AEL can be implemented using various base encryption
schemes, such as KP-ABE, CP-ABE, ME-PKE, IBE, etc. In
this paper, we have implemented the AEL using KP-ABE,
CP-ABE, and ME-PKE. For KP-ABE and CP-ABE, we utilize
names as attributes and embed the name hierarchy in the form
of a set of attributes or an access structure. For ME-PKE, we
generate distinct public/secret key pairs for each name. We
then embed the name hierarchy by encrypting messages with
multiple corresponding public keys and letting subscribers
hold multiple secret keys. We explain this in §VI.

We propose mechanisms for key distribution and user
authentication. It is crucial to encrypt the messages during
the key-distribution process to prevent eavesdroppers from
obtaining keys. Additionally, we require users to authenticate
themselves when subscribing to names, and transmitting mes-
sages. This ensures that only authorized users can access the
system and guarantees the integrity of the messages (§VII).

On top of the message-oriented encryption, we design
rich recipient-selection semantics to provide more flexibility
for the publishers to decide who can decrypt each message
(§VIII-A). To improve the efficiency in large groups whose
members do not change frequently, we also design a solution
to achieve better efficiency in terms of message size and
encryption/decryption time (§VIII-B).

In a dynamically changing environment, it is critical to en-
able revocation of the ability of recipients to decrypt messages
sent to a role that they are no longer in, and have unsubscribed
to the role (e.g., when they are assigned to a different role, or
when a “shift” changes). For the message-oriented encryption
mechanism, we have developed key revocation. This includes
a timeout-based key revocation method and a blacklist-based
key revocation method. Implementing these methods can
be challenging for any of the base encryption schemes. In
the case of timeout-based key revocation, we achieve it by
adding a timestamp in each attribute, enabling the control
of key usage within a certain time interval. Similarly, for
blacklist-based key revocation, we utilize temporary names
to effectively blacklist specific subscribers from a group of
subscribers who share the same key (§IX).

SAFE establishes a relationship between the set of role-
based recipient names and the encryption mechanisms to
provide an efficient, but flexible, framework. By integrating
role-based names, SAFE can be incorporated into an IP-based
architecture or in existing ICN architectures. The role-based
names could be directly implemented in MobilityFirst utilizing
Globally Unique IDs (GUIDs). With gateways, the role-based
names can also be applied to NDN [1] and DONA [29]. As
demonstrated in [30], the role-based name works with IP-
based architectures at the application layer, with information

N3

N4

N5

N1

N2

N6

Fig. 3: Example Graph-based Namespace for Encryption

TABLE I: Message-Oriented vs. Key-Oriented Solution

Message-Oriented Key-Oriented
Subscribe: N1 7→ N1 N1 7→ N1

(subscribed N2 7→ N2 N2 7→ N2

name 7→ N3 7→ N3 N3 7→ N1, N3

names that N4 7→ N4 N4 7→ N1, N4

subscriber can N5 7→ N5 N5 7→ N2, N5

decrypt (Nk)) N6 7→ N6 N6 7→ N1, N2, N5, N6

Publish: N1 7→ N1, N3, N4, N6 N1 7→ N1

(destination N2 7→ N2, N5, N6 N2 7→ N2

7→ N3 7→ N3 N3 7→ N3

names that N4 7→ N4, N6 N4 7→ N4

publisher need N5 7→ N5, N6 N5 7→ N5

to encrypt (Nm)) N6 7→ N6 N6 7→ N6

dissemination being achieved using overlays.
IV. ABSTRACT ENCRYPTION LAYER

We now describe the AEL to abstract the service offered by the
underlying encryption scheme and handle the embedding of
the name hierarchy with the secure message exchange through
encryption. The AEL abstracts 3 algorithms:
Key Generation (Nk | SK): The key issuer takes a set of
names Nk as input and generates a secret key (SK). Nk

indicates the names SK can decrypt.
Encrypt (M , Nm | CT): The encryptor (publisher) takes
message (M ), a set of names Nm as input and generates the
ciphertext (CT). The name set Nm indicates the recipients the
message is addressed to.
Decrypt (CT, SK | M?): The decryptor (subscriber) uses the
SK to decrypt the message. The message will be successfully
decrypted if Nk ∩ Nm is not empty.

V. ENCRYPTION IN GRAPH-BASED PUB/SUB

To discuss the encryption on top of a simple graph-based
namespace, we create an example namespace in Fig. 3, a
directed acyclic graph structure. We need to allow (or deny)
receivers to decrypt the messages based on the semantics of
our namespace. All subscribers of the name and its descen-
dants should be able to decrypt the message.

A. Message-oriented Encryption
The Message-oriented encryption solution embeds the DAG
name relationships when encrypting the messages.

The key generation algorithm generates the secret key (SK)
for a subscriber of a name N , for which the key issuer
only needs to take Nk:{N} as input. During message-oriented
encryption, the publisher uses Nm:{target name and also all its
descendants} as input. For decryption, all the (authenticated)
subscribers of the name in the hierarchy that satisfy Nk ∩Nm

can decrypt the message.
The left column of Table I shows the details of the message-

oriented solution. For example, the subscriber of N6 will
only hold the key(s) that could decrypt the message sent to
N6. When a publisher send message to N1, it will encrypt
with Nm:{N1, N3, N4, N6}. Subscribers of N6 will be able to
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decrypt the message by the SK with Nk:{N6} provided to it
by the key issuer.

B. Key-oriented Encryption
An alternative solution is key-oriented encryption, where we
embed the hierarchical relationships in the keys. Here, the
key generation algorithm takes Nk:{the name itself and all
its ancestors} as input to generate a key to be issued to
subscribers of that name. For the encryption algorithm, the
input would be Nm:{the intended recipients’ name}. For
decryption, the subscriber uses its own key provided by the
key issuer that matches its name or that of its ancestors.

For example in the example graph-based namespace, when
subscribing to N6, the user should be able to receive messages
that are sent to N1, N2, N4, N5 and N6. Therefore, the key is-
suer will issue the key(s) that with Nk:{N1, N2, N4, N5, N6}.
A publisher sending a message to N1 only needs to encrypt
the message with Nm:{N1}. Subscribers of N6 would use the
corresponding key to decrypt the message. The right column
of Table I details the decryption key(s) held by a subscriber
(and the publisher’s action).

C. Comparing Message-oriented vs. Key-oriented encryption
A significant shortcoming of key-oriented encryption is that
the key issuer (the name-certification service, NCS) has to
generate new keys for affected subscribers when the names-
pace is updated.

For message-oriented encryption, the computational over-
head may be high for a sender. But this overhead is distributed
across all senders and only occurs when sending a message,
which is preferable compared to the overhead on a single
entity (NCS) with key-oriented encryption. A second concern
with message-oriented encryption is that the namespace at
some senders may be stale in a disconnected environment.
However, this is acceptable as the system behavior matches a
first responder’s understanding of the namespace.

VI. IMPLEMENTATION OF ENCRYPTION SCHEMES

This section describes the different encryption schemes that
can be used to implement the service provided by the AEL.
We use KP-ABE, CP-ABE, and PKE as examples to illustrate
how the AEL can be implemented. However, other encryption
schemes (e.g., IBE) can also be used as the base scheme.

Using Fig. 3, we look at the attributes/keys required for
each name from the perspectives of both the publisher and
the subscriber in Table II when publishers send messages
to N1 and subscribers of N6 decrypt those messages. The
name list used with encryption Nm would contain N1 and
its descendants, N3, N4, N6 For decryption, the name list Nk,
would contains N6 and its ancestors, N1, N2, N4, N5

A. Key Policy Attribute Based Encryption (KP-ABE)
As indicated in Sec. II, in KP-ABE, the four fundamental
primitive algorithms of Setup, Key Generation, Encrypt, and
Decrypt provide the functionality required by the AEL. With
Setup, the NCS generates the pubic parameters (PK) and
a master key (MK, private to the key issuer). Publishers
Encrypt the message using PK with a set of attributes (γm)

embedded in the message and generate the ciphertext. With
Key Generation, the NCS generates a private key for the
decryptor with an access structure (Ak) embedded in it. Using
the Decrypt algorithm, if the γm in the ciphertext satisfies the
Ak in the private key, the decryptor could decrypt the message.

Each attribute is a single name, and we utilize a GUID [2]
of each name as the attribute. For Ak, we exclusively use the
“OR” operator (“∨”) in the relationship of the attributes. Thus,
when an attribute is present both in γm and Ak, Ak will be
satisfied, allowing the ciphertext to be decrypted.

The Ak embedded in the private key comprises all the
attributes of names in the set Nk. The attributes of names
in Nm as γm are embedded in the ciphertext. The ciphertext
will be decrypted if γm and Ak contain the same attribute.
This process naturally corresponds to the operation Nk ∩Nm,
satisfying the requirement of the decryption algorithm in AEL.

Table II is an example of how γm and Ak contain names
in Nm and Nk. Since the attribute and name have a one-
to-one correspondence, we use the name (Nx) to directly
indicate the attribute of that name (attrNx

). When encrypting
the message sent to N1, the publisher uses all the names in
Nm, including N1, N3, N4, N6 to compose the set γm and
embed γm in the ciphertext before sending to N1. When
decrypting the message, the private key held by subscribers
of N6 will contain Ak comprising all the names in Nk

(N1, N2, N4, N5, N6) connected by the “OR” operator (“∨”).
Ak will be N1 ∨N2 ∨N4 ∨N5 ∨N6. Therefore, γm finds a
match in Ak. Subscribers of N6 can decrypt the message.

B. Ciphertext Policy Attribute Based Encryption (CP-ABE)
The CP-ABE also has a similar set of four primitives as with
KP-ABE. However, the access structure (Am) is embedded in
the ciphertext, while the set of attributes (γk) is contained
in the private key. We also utilize a GUID of each name as
an attribute. For Am, we will also exclusively use the “or”
operator (“∨”) for the relationship between attributes.

In CP-ABE, the attributes γk of a name in Nk are embedded
in the private key. Am embedded in the ciphertext comprises
all the attributes of names in the set Nm. Similar to KP-
ABE, the decryption process fulfills the requirement of the
decryption algorithm of AEL.

Table II shows the example of how Am and γk contains
names in Nm and Nk in CP-ABE. When encrypting the
message sent to N1, Am will be composed of attributes of
names in Nm, as N1∨N3∨N4∨N6. During decryption, all the
attributes of names in Nk, including N1, N2, N4, N5, N6, will
compose γk and are embedded in the key held by subscribers
of N6. γk finds a match in Am and the message could be
decrypted by subscribers of N6.

C. Multi-Envelope Public Key Encryption
In Public Key Encryption (PKE), keys are generated as pub-
lic/secret key pairs. The public key (PK) is used to encrypt
the message, and the corresponding Secret Key (SK) for
decrypting the message.

Using PKE to implement the AEL, the NCS generates a
public/secret key pair for each name. Thus, each name is
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TABLE II: Implementation of AEL using Different Encryption Mechanisms (publisher sending to N1, subscriber is N6)
KP-ABE CP-ABE ME-PKE

Encrypt Nm={N1, N3, N4, N6} γm: N1, N3, N4, N6 Am: N1 ∨N3 ∨N4 ∨N6 PKN1
, PKN3

, PKN4
, PKN6

Decrypt Nk={N1, N2, N4, N5, N6} Ak: N1 ∨N2 ∨N4 ∨N5 ∨N6 γk: N1, N2, N4, N5, N6 SKN1 , SKN2 , SKN4 , SKN5 , SKN6

Randomly Generated
Symmetric Key

Message

Asymmetric Encryption

Asymmetric Encryption

Symmetric Encryption

Public Key 1

Public Key 2

Encrypted Message

Encrypted Symmetric Key 1

Encrypted Symmetric Key 2

Fig. 4: Process for Multi-Envelope Public Key Encryption
associated with a key pair. To encrypt a message, the publisher
needs to use the distinct PKs of names in Nm to encrypt
the message. For decryption, subscribers hold multiple SKs
of names in Nk and try each to see if that SK can correctly
decrypt the ciphertext. Therefore, the requirement of AEL is
satisfied when Nk ∩ Nm is not empty, and the receiver can
decrypt the message. But to send the message to multiple
receivers, PKE requires encrypting the same message with
multiple different PKs, which can be expensive. To address
this, we proposed a ME-PKE scheme here.

To minimize the computational cost and shorten the length
of the ciphertext, we utilize an “envelope structure” (Hybrid
Encryption), as in OpenSSL [31] for this multiple public
key encryption scenario. The envelope structure is a public
key encryption strategy that involves encrypting the message
with a randomly generated symmetric key and then using
the public key to encrypt this symmetric key instead of the
entire message [32]. In our proposed use of the envelope
also the publisher generates a random symmetric key and
uses it to encrypt the message. However, the symmetric
key is then encrypted multiple times with different PKs, as
shown in Fig. 4, thus resulting in multiple envelopes. When
a subscriber receives the message, it decrypts the symmetric
key using its SKs to decrypt the envelope to successfully
extract the symmetric key. It then decrypts the message
content using the decrypted symmetric key.

Table II gives an example of how a publisher and the
subscribers use PKs and SKs. When encrypting a message sent
to name N1, since name set Nm contains N1, N3, N4, N6,
the publisher needs to use all the PKs of the names in Nm,
which are PKN1 , PKN3 , PKN4 , PKN6 , to encrypt the
message. For decryption by subscriber(s) of N6, since name
set Nk contains N1, N2, N4, N5, N6, the subscriber(s) needs
to hold SKN1

, SKN2
, SKN4

, SKN5
, SKN6

.The ciphertext
could be then decrypted since the corresponding SKs are held
by the subscriber.

We provide a detailed quantitative evaluation of KP-ABE,
CP-ABE and ME-PKE in Sec.XI, with a particular focus on
message-oriented encryption.

VII. KEY DISTRIBUTION AND AUTHENTICATION

Key Distribution: In order to securely distribute private keys
of names to its subscribers, a number of measures are needed.
First, all key distribution messages need to be encrypted to
prevent unauthorized access. To require a private key(s) of a
name from the NCS, the subscriber needs to generate its own
public/private key pair and share the public key with NCS.

Then, the NCS encrypts the required private key(s) for the
name/role that the user subscribes to, using that subscriber’s
public key, and sends those back.
Subscriber (First Responder) Authentication: In SAFE,
subscribers are authenticated prior to requesting keys from
the NCS. To achieve this, we can use one of a number of
conventional approaches, e.g., a two-step authentication. The
first step involves verifying the identity of the first responder,
which is carried out offline, potentially with the organization
initially physically verifying the identity of the first responders
and assign them an authorized device. Alternatively, first
responders could authenticate themselves with biometrics of
their own devices. The second step involves the NCS verifying
the subscription action online. This can be accomplished
through various methods, such as two-factor authentication so
that the NCS can then issue keys to authenticated subscribers.
Message Authentication & Integrity: Attackers could act
as publishers and generate false or meaningless messages to
subscribers. Also, an attacker could generate a man-in-the-
middle attack and modify the original message. Therefore,
authenticating a publisher and maintaining message integrity
is critical. Publishers can utilize an encrypt-then-MAC mech-
anism by signing their message using their private key after
encrypting the message. Subscribers can then verify the mes-
sage based on a chain of trust certification. This mechanism is
also commonly used in Name Data Networking (NDN) [9]. In
our case, the public key of first responders should be signed
by their respective departments. The department’s public key,
in turn, should be signed by a higher-level department, and
so on. When first responders publish messages, they include
the signed public key along with the message. As a result,
subscribers only need to cache a higher-level public key they
trust and can verify the signature of its descendants. This
ensures that messages are securely transmitted and originate
from authorized senders.

VIII. OPTIMIZATIONS
A. Supporting Richer Semantics
At the security layer, we can provide richer semantics to have
better control of access to the messages, while the network
focuses on efficient delivery with simpler graph-based naming
for determining senders and receivers. Since the receiver’s
computation is performed using message-oriented encryption
at the AEL, we can support richer semantics than defined in
the graph-based namespace at the network layer.

We define an expressive language, starting from basic set
operators of “intersect” [∩], “union” [∪], “complement”/
“not” [¬], and “bracket” [()]. The core for determining
the recipient is these set operations. To satisfy the special
requirements of the graph-based namespace, we introduce a
new operator “expand” [⊕]. An expansion on a set [⊕(∗)]
searches for all the descendants of the names in the set.

We provide several examples based on the namespace of
Fig. 1. To send to a name “CA Fire” and all its descendants, we
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can use ⊕ (CA Fire). This is a simple scenario in the case of
the graph-based namespace. Also, we can achieve the goal of
sending to multiple names with their descendants by applying
the “union” [∪] on multiple expands of names. As a second
example, we show a publisher (e.g., an incident commander)
sending a message for all the firefighters and EMTs dealing
with “Incident X”. To do so, the publisher uses the formula
⊕ (Incident X) ∩ (⊕ (Fire) ∪ ⊕ (EMT)). Another example is
when a publisher wants to send a message to all members of
“NJ EMT” who are not dealing with “Incident X”. This may
happen when a commander is seeking available resources to
deal with a new incident. To do so, the publisher uses the
formula ⊕ (NJ EMT) ∩ ¬ ⊕ (Incident X) .

This allows the publisher to flexibly select recipients and is
only feasible with the message-oriented solution, but not with
the key-oriented solution.
B. Efficiently Supporting Large Constant Groups
When the command chain is long and involves many names,
embedding a large number of attributes/keys in the ciphertext
can lead to message bloat. To address this scenario, the
administrator can create a group name to represent everyone
in the name hierarchy and ask each subscriber in the hierarchy
to also subscribe to the new group. When a publisher wants
to send a message to the old hierarchy, they can send it to the
new group role instead of the old role, reducing the message
size since only one attribute is needed. This mechanism does
come with a penalty: the name hierarchy will be less dynamic
compared to the old solution, as any change in the old name
hierarchy would cause the deletion of the group name and the
generation of a new group name.

IX. KEY REVOCATION

Key revocation allows the key issuer to deny a receiver if he is
no longer trusted. It is an important feature to ensure the secu-
rity of the whole system. Our solution combines timeout-based
and blacklist-based mechanisms to ensure good performance.
The timeout-based mechanism ensures that the receiver can
only get a key for a limited period of time. To extend the
period, the receiver has to renew the key from the issuer. The
issuer can deny the renewal request if he believes that the re-
ceiver is no longer trusted. The timeout-based mechanism has
its limitations since the key issuer can only take action when
an old key expires. To overcome this limitation, our blacklist-
based mechanism allows the issuer to deny a receiver at any
time by placing the key in the blacklist. These two mechanisms
complement each other to improve overall efficiency. Since
the blacklist-based mechanism takes care of the short-term
key denial, the timeout-based mechanism can give each key
a relatively long lifetime and thus reduce the computation
overhead for key generation. Further, since the timeout-based
mechanism can invalidate each key automatically after a
limited amount of time (the lifetime of the key), the blacklist-
based mechanism does not have to keep the blacklist entries
indefinitely. This makes the blacklist scalable over time.
A. Timeout-based Key Revocation
To achieve Timeout-based Key Revocation, we divide time
into fixed slots (e.g., an hour) and use the start time of

Firefighter 1

Smartphone

Laptop

Firefighter 2

Fire Engine 1

(a) Device Name Blacklisting

Firefighter 1

Smartphone

Temp FF 1

Firefighter 2

Fire Engine 1
Laptop

(b) Temporary Name Blacklisting

Fig. 5: Key Revocation (blue arrows mean subscription)

each slot as its identity. When granting a key, we encode a
concatenation of the name as well as the start time of a slot
into the decryption key. For example, when we grant a key
for name “EMT 1” for time slot [2020-12-31 23:00:00 GMT –
2021-01-01 00:00:00 GMT), the name set Nk needs to contain
“EMT1 t176BB078180” (the hex. representation of the epoch,
valid for the 1-hour time slot). To implement this, KP-ABE and
CP-ABE could embed this concatenation as an attribute in the
private key and message as appropriate. For instance, assuming
the underlying GUID of “EMT 1” is 0xfbc3d7, an attribute
“0xfbc3d7 t176BB078180” would be embedded in the private
key. For ME-PKE, each key pair should only be used in one
correct time slot. When the time slot ends, NCS needs to grant
a new pair of keys to the name. In response to the new key
policy, the name set Nm would also contain this concatenation.

An important property satisfied by KP-ABE, CP-ABE, and
ME-PKE is that even if the private key of a time slot or a pair
of keys (for ME-PKE) is compromised, an adversary cannot
get the key (or decrypt messages) from a previous time slot.
Our time-based private key also satisfies the Perfect Forward
Secrecy property(PFS, [26], [27]). PFS (and backward se-
crecy) is discussed in more detail in §X.

Based on preliminary experiments (not reported here) we
found that comparing the validity of time interval in the key
and in the message is computationally much more complex
than just comparing the time slots specified in the name of
the message and the key.

The time-based key should also be able to operate even
when both the senders and receivers are disconnected from the
NCS for a certain period of time (meanwhile the senders and
receivers can still communicate with each other via device-to-
device links). If receivers (first responders) know they might
need to work in an infrastructure-less environment (e.g., a
shelter) for a long period of time, they can prefetch (and cache)
a set of keys from NCS before leaving the connected environ-
ment to cover the period they are offline. Receivers might
also receive ciphertexts that were sent (and encrypted) a long
time ago. The NCS needs to keep track of the authorization
history of each user and have the ability to recover deleted
keys. In ME-PKE, the NCS is required to store all the expired
keys for potential future requests. For ABE, instead of storing
expired keys, the key issuer can generate new keys with the
old timestamp, thus eliminating the storage overhead.

B. Blacklist-based Key Revocation

Thanks to the rich semantics provided by message-oriented
encryption, a sender can easily exclude a name (via (∗) ∩
¬(name)) when specifying the receiver name set. Blacklisting
can be done on top of names instead of devices.
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Device Name Blacklisting: With blacklist-based key revoca-
tion, we mandate that each name has only 1 subscriber (or
device). Blacklisting a name is equivalent to blacklisting a
subscriber/device. For a first responder with multiple devices,
we create unique names as children of the original name.

In Fig. 5a, we create the two names “Smartphone” and
“Laptop” for the devices of “Firefighter 1”, instead of these
devices subscribing to the name “Firefighter 1”. Note that
these names are only required in the security layer. In the
network (and information) layer, both devices still subscribe
to “Firefighter 1” to maximize the benefit of multicast de-
livery and minimize the use of GUIDs. If the Smartphone
of Firefighter 1 is stolen or lost, the key issuer can notify
the sender to exclude “Smartphone”, and the sender uses
“⊕(Fire Engine 1) ∩ ¬(Smartphone)” when encrypting the
message being sent. However, this design runs counter to the
principle of graph-based namespace where users focus on the
roles instead of the devices (information-centricity).
Temporary Name Blacklisting: To address the issue with
device name blacklisting, we create a temporary name for
benign devices subscribing to the affected name and blacklist
the original name (until all the keys the blacklisted device pos-
sesses have expired). In Fig. 5b, to blacklist “Smartphone”, the
NCS creates a new temporary security-layer name (“Temp FF
1”) and makes“Laptop” subscribe to the new name. From
the next time slot till the end of the blacklist period, when
“Laptop” requests keys for “Firefighter 1” the NCS would
respond with the key for “Temp FF 1”. Thus, the receiver
does not have to keep track of the name updates. At the same
time, NCS needs to notify the senders of the creation of the
new name, the new relationship, and the blacklist entry of
the original name (and the expiration time). When sending a
message, the application would use richer semantics to exclude
“Firefighter 1” (“⊕(Fire Fighter 1)∩¬(Fire Fighter 1)”), and
include “Temp FF 1”. With this, message senders do not have
to keep track of namespace updates arising from blacklisting
events. At the end of the blacklist period, since “Smartphone”
no longer receives any key, it is safe for the NCS to revert
the namespace, move “Laptop” back onto “Firefighter 1”,
and recycle the temp. name. However, this new solution
requires the NCS to push keys to the affected receivers and
the namespace updates to the senders, posing difficulties in
offline/disconnected scenarios.

We get the best of both solutions by combining them: when
receivers are in a connected environment, we use Temporary
Name Blacklisting to minimize overhead. When receivers need
to be mobilized to an infrastructure-less environment, we
use Device Name Blacklisting, which slightly increases the
number of names, but provides the benefit of being able to
blacklist a device even without an NCS.

X. SECURITY ANALYSIS

We now perform a security analysis of SAFE for message-
oriented encryption based on KP-ABE.
Confidentiality: For SAFE only identified recipients have the
ability to decrypt the message. Publishers are responsible for
identifying recipients in the message. On the other hand,

TABLE III: Control Messages Needed (and Total Size using KP-
ABE/CP-ABE/ME-PKE) in Different Scenarios

Solution Leaf Subscribe Dispatch Delete
Message- 0 1 0 0
Oriented (208/262/83)

Key- 0 1 3 2
Oriented (880/566/414) (3479/2076/495) (2417/1620/96)

subscribers only hold the decryption key of the name/role they
subscribe to. As a result, messages can only be decrypted
by subscribers of names/roles specified as recipients in the
message by the publisher.
Integrity: Maintaining the integrity of transmitted messages
is critical to prevent attackers from modifying those messages.
The integrity of a message in SAFE is achieved by an
encrypt-then-Message Authentication Code (MAC) [33]. If
any message or even the MAC is changed by a person-in-
the-middle, it will be identified by the receiver who checks
the MAC to validate the message.
Security against Chosen-Plaintext Attack (CPA) & Chosen-
Ciphertext Attack (CCA): SAFE is CPA and CCA secure
because we are building on top of KP-ABE. KP-ABE is CPA
secure by design [15] and can be extended to be CCA-secure
in a similar manner as in [34]. However, instead of using the
transformation specified in [34], SAFE uses an encrypt-then-
MAC procedure (signature) to ensure the authenticity of the
ciphertext. With a strong unforgeable MAC, the scheme is then
CCA secure. [33]
Forward and Backward Secrecy: In SAFE, each decryption
key is only available for a specified time interval. The start
time of the interval serves as an attribute. Any unintended key
leakage of a single decryption key will enable the attacker to
decrypt messages sent during only that one time period. Mes-
sages from both previous and subsequent time intervals will
be secure and cannot be decrypted by attackers. Furthermore,
in KP-ABE, the decryption key can only be derived from the
master key, which is stored securely at the key issuer. Even
with the decryption key for a specific time slot, an attacker
cannot derive the decryption key for a different time slot.
Replay Attack: A replay attack involves an attacker capturing
and repeating the same ciphertext to the receiver to exhaust the
receiver’s resources. To prevent this attack, a publisher could
include a random nonce along with the ciphertext. Since the
integrity of the message is protected by the MAC, the nonce
cannot be modified during transmission. If the subscriber
receives a message with a nonce that has been seen before, it
will reject the message.
Preventing Leakage of Decryption Keys: Attackers may try
to get the private key during the key distribution phase. As
described in §VII, the subscriber needs to authenticate itself
before requesting a decryption key from the key issuer. The
key issuer encrypts the messages sent for key distribution.

XI. EVALUATION

In this section, we compare message-oriented and key-oriented
encryption, and also the three encryption implementation
alternatives. We use OpenABE [35] as a library for KP-ABE
and CP-ABE and implementation. We found that the binary
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ciphertext loading function and CCA wrap function [36]
in OpenABE introduces excessive overhead. For the binary
ciphertext loading function, we argue that this is a library-
related issue. Including it in the result may distract from
understanding the performance of the core algorithm. There-
fore, we excluded this part of the OpenABE library when
measuring the decryption time. Additionally, SAFE is built on
an Encrypt-then-MAC procedure (i.e., adding a signature to
the ciphertext), which provides CCA security [33]. Therefore,
we avoid using the CCA wrap function of OpenABE. We also
implemented ME-PKE utilizing the PKE API of OpenABE
to provide a fair comparison across KP-ABE, CP-ABE, and
ME-PKE. OpenABE PKE uses the Elliptic Curve One-Pass
Diffie-Hellman algorithm. We build ME-PKE on top of that.

SAFE works with role-based namespaces at the application
layer, and are independent of the underlying network protocol
or dissemination model. We focus on metrics pertaining to the
overhead of message transmission, performance, and resource
usage at the application layer.
A. Control Message Overhead
To quantify the control overheads for the message-oriented
and key-oriented encryption in a dynamic environment, we
compare the differences in the number of control messages
required when a name change occurs. From a security per-
spective, control messages are only needed when new key(s)
have to be delivered, such as a subscription to a new name or
when the namespace changes. We present 4 scenarios based on
the example namespace depicted in Fig. 1, before studying the
system at scale. For simplicity, we assume that each name has
only one subscriber and that initially there are no subscribers
for a name. The results are shown in Table III.
Scenario 1: Since adding a leaf name does not affect an
existing subscriber, no new keys need to be issued by the key
issuer in both key-oriented and message-oriented encryption.
No new control messages are required.
Scenario 2: Subscribing to a name, e.g., after adding “Fire-
fighter 7” to “Fire Engine 2”, results in 1 control message
being generated in message-oriented encryption to deliver the
key of “Firefighter 7” to the new subscriber. In both KP-ABE
and CP-ABE implementations, a single attribute is embedded
in the new key. The size of the key is 208B (KP-ABE) or 262B
(CP-ABE). For ME-PKE, the SK of “Firefighter 7” (83 bytes)
is delivered to the new subscriber. In key-oriented encryption,
the key in the control message needs to encode “Firefighter
7” and all its ancestors (5 names in total). Therefore, the size
of the key is 880B (KP-ABE) or 566B (CP-ABE). ME-PKE
delivers the SKs of all five names (size is 414 bytes).
Scenario 3: Dispatching “Fire Engine 1” as a child of “Search
Team” (the red dashed arrow in Fig. 1) does not affect the
subscribers in message-oriented encryption as the key of each
subscriber only encodes the name he/she subscribes to. Thus
no control messages are generated. In key-oriented encryption,
each key encodes the name and all the ancestors. In this
scenario, “Fire Engine 1”, “Firefighter 1”, and “Firefighter 2”
get two new ancestors: “Incident X” and “Search Team”. As
a result, they each need to adjust their key(s), leading to the

TABLE IV: Key-Oriented Encryption - Large Scale Simulation

Operations 20 20 10 Dispatch 20
Dispatch Delete + 10 Delete Subscribe

# of Control Messages 101 45 407 20

Payload
KP-ABE 202.3 15.2 340.4 55.9
CP-ABE 108.0 14.2 220.7 33.5

(KB) ME-PKE 42.6 3.5 30.2 26.6

generation of 3 control messages in total. For KP- and CP-
ABE, “Fire Engine 1” requires a new key with 6 attributes:
“Fire Engine 1”, “NJ Fire”, “NJ”, “Fire”, “Search Team”, and
“Incident X”. The key size would be 1047B (KP-ABE) or
642B (CP-ABE). Similarly, “Firefighter 1” and “Firefighter 2”
each need a new key with 7 attributes since they are the chil-
dren of “Fire Engine 1”. Each key would be 1216B (KP-ABE)
or 717B (CP-ABE). For ME-PKE, subscribers of “Fire Engine
1”, “Firefighter 1”, and “Firefighter 2” need the SKs of “Inci-
dent X” and “Search Team”. Two new keys with a total length
of 165B need to be delivered to all the 3 affected subscribers.
Scenario 4: relieving a team from a task. E.g., removing “Fire
Engine 1” from “Search Team” (reverse operation of scenario
3). Similar to scenario 3, message-oriented encryption does
not need any control message for this update since the
keys are not affected by the change in the relationship. In
comparison, key-oriented encryption needs to “remove” the
encoded “Incident X” and “Search Team” from the keys
given to “Fire Engine 1”, “Firefighter 1” and “Firefighter 2”.
With KP- and CP-ABE, the key issuer can generate new keys
without the corresponding attributes, resulting in new key
sizes for “Fire Engine 1” 711B (KP-ABE) or 490B (CP-ABE),
and “Firefighter 1”/“Firefighter 2” 880B (KP-ABE) or 565B
(CP-ABE). As for ME-PKE, the key issuer can only request
the subscribes “forget” the SKs of the names. Therefore the
control message size is the size of name × # of names affected
(32B each). We acknowledge that this is not a proper key
revocation solution for key-oriented encryption since it totally
depends on the subscribers being cooperative (not using old
keys in ABE and deleting SKs in ME-PKE). The real overhead
for key-oriented encryption when deleting relationships in the
namespace could get a lot higher, making it a very costly and
inflexible solution compared to message-oriented encryption.
Large Scale Simulation: We performed a larger-scale sim-
ulation to study the control message overheads (key-oriented
encryption) and the size of the ciphertext (both cases).
Simulation setup: We simulate two hierarchical namespaces:
an administrative hierarchy and an incident hierarchy. The
administrative tree has a randomly generated number of levels
and a random number of branches, both ranging from 4 to
6, resulting in a total of 1337 nodes. The incident tree is
created based on the level and fanout ranging from 3 to 5,
comprising a total of 155 nodes. We assume each name has
only one subscriber. During the simulation, we observed the
control messages generated and their payloads for randomly
generated operations. Results are in Table IV.
Simulation results: First, we randomly selected 20 nodes
from the administrative tree and dispatch them as children of
randomly chosen nodes in the incident tree. This resulted in the
generation of 101 control messages, indicating that not only
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Fig. 6: Message-Oriented Encryption - Ciphertext Length(KB).

the selected nodes but also their descendants were affected.
Table IV shows that KP-ABE sends about 2 × the payload of
CP-ABE to deliver new keys, while MK-PKE is much lower.
In the second scenario, we randomly deleted 20 relationships
from the administrative tree. This led to the generation of 45
control messages. The relatively small amount of overhead
is due to the selection of relatively low-level relationships
that were deleted. The third scenario combined the first two
scenarios. We first dispatch 10 nodes from the administrative
tree as children of nodes in the incident tree and then deleted
10 relationships in the administrative tree. This resulted in the
generation of 407 control messages. Again, KP-ABE sends
more bytes than the others, with ME-PKE introducing much
lower overhead. The relatively large amount of overhead is
due to the selection of relatively higher-level relationships. In
the last scenario, we randomly selected 20 nodes from the
administrative tree and let each one have a new subscriber.
This resulted in a total of 20 control messages, as we only
needed to deliver the new key(s) to the new subscribers. Again,
KP-ABE is more expensive. Overall, from all the scenarios,
KP-ABE had the largest payloads, followed by CP-ABE, and
ME-PKE had the lowest payloads.
B. Ciphertext Length
To evaluate the overhead for sending messages in both encryp-
tions. We first generally compare different implementations
and then evaluate them with a large-scale simulation.

In Fig. 6 we show the length of ciphertext (with signature)
for a 16-byte attribute length which is large enough to identify
each group addressed in the communication, of KP-ABE,
CP-ABE, and ME-PKE with message-oriented encryption. In
Fig. 6a, we show the ciphertext length for a varying number
of attributes, for a 160-byte message, which is a typical SMS
message [37]. The number of attributes are selected based
on the expected number of recipients for typical messages
during disaster communication. Fig. 6b, shows the ciphertext
length for varying message sizes, with a fixed number of 50
attributes. We believe the range of the message size used here
covers the range of sizes for typical text-, image-, and voice-
based messages in disaster communication. Both results show
that both KP-ABE and CP-ABE, as well as ME-PKE, grow
linearly, with KP-ABE having the lowest rate of increase. KP-
ABE has the shortest ciphertext, followed by CP-ABE. In KP-
ABE, the set of attributes is included in the ciphertext. For CP-
ABE, the access structure is included in the ciphertext. The
access structure is longer than the set of attributes because
it not only contains attributes but also their relationships. In
ME-PKE, we use a 32-byte (256-bits) randomly generated key
for each receiver, which is larger than the 16-byte attribute,
resulting in the largest ciphertext size.

TABLE V: Total Ciphertext Length (KB) for Sending Message

# of names sending to 10 20 30

Message-Oriented
KP-ABE 7.3 18.6 22.5
CP-ABE 9.9 28.5 30.7
ME-PKE 12.8 41.0 40.1

Key-Oriented
KP-ABE 5.7 11.5 17.3
CP-ABE 6.3 12.7 19.1
ME-PKE 6.4 12.9 19.3

For large-scale simulation for both message and key-
oriented encryption, we used the previously generated admin-
istrative tree as the target. We randomly chose 10, 20, and 30
names to send a message to and calculate the total ciphertext
length (results in Fig. 6). There is a higher probability of
selecting lower-level nodes (more of them) with fewer descen-
dants compared to higher-level nodes. While this may slightly
diminish the advantages of key-oriented encryption, it is
reasonably typical of real-life scenarios where communication
occurs more frequently between sub-departments or individual
first responders rather than the entire department.

Table V presents the simulation results. Key-oriented en-
cryption generally results in shorter ciphertext lengths com-
pared to message-oriented encryption. The overhead in KP-
ABE for message-oriented encryption is less than 1.5 times
that of key-oriented encryption in each scenario. CP-ABE and
ME-PKE have larger ciphertexts than KP-ABE.

C. Comparison among Options
Based on the analysis of control messages in different sce-
narios, it is evident that message-oriented encryption offers
advantages in terms of control message requirements and key
size compared to key-oriented encryption. This is particularly
beneficial in dynamic environments where frequent name
changes occur, such as the addition or deletion of incidents
or teams. Furthermore, the size of keys in key-oriented en-
cryption, especially in implementations like KP-ABE and
CP-ABE, can become significantly larger with deeper name
hierarchies. Also, key-oriented encryption needs to revoke the
old key each time the namespace is updated, which will be
complex in a dynamic environment. When comparing the
overhead of sending messages, it is observed that key-oriented
encryption generates shorter ciphertext compared to message-
oriented encryption in all implementations. However, in the
case of KP-ABE, the reduction in ciphertext length is no
more than a factor of 1.5, which diminishes the advantage
of the key-oriented solution. In comparison to the payload
for name updating, we aim to demonstrate that this price is
worth paying. Based on these findings, we recommend using
message-oriented encryption as the preferred approach.

D. Comparison among Encryption Schemes
We now compare KP-ABE, CP-ABE, and ME-PKE imple-
mentations based on message-oriented encryption.
Key Generation: Based on our experiment, in message-
oriented encryption, the time taken for a single key generation
is 0.28 milliseconds (ms) for CP-ABE, 0.73 ms for KP-ABE,
and 0.01 ms for ME-PKE. It should be noted that in message-
oriented encryption, each ABE key only has one attribute, and
each name has only one PK/SK pair. Therefore, we present
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the results with one attribute. We set the attribute length to
16 bytes in both KP-ABE and CP-ABE. This experiment and
the following experiment in this section were conducted on a
system with 12 CPU cores and 32 GB memory.

The results indicate that KP-ABE takes the longest time
for key generation, followed by CP-ABE, while ME-PKE is
the fastest. In KP-ABE, the access structure is embedded in
the key, while in CP-ABE, the attribute list is embedded in the
key. Therefore, CP-ABE is expected to be faster than KP-ABE
for key generation. Generating PK/SK key pairs is the fastest
process, as it does not embed any attributes.
Encryption Performance: We now compare the encryption
performance of KP-ABE, CP-ABE, and ME-PKE, measuring
the running time for each encryption scheme with a 16-byte
attribute length, and message length of 160 bytes. Figure 7a
shows that the encryption time for all three encryption schemes
grows almost linearly as the number of attributes increases.

Figure7c shows the running time as the message length
increases, with the number of attributes fixed at 50. The three
schemes grow slowly with the message length. Only when the
message size grows to the order of MBytes, the encryption
time starts to increase substantially (e.g., images and video).

KP-ABE has the best encryption performance among all
three schemes. It has a set of attributes embedded in the
ciphertext, while CP-ABE needs to create an access structure
which has more impact on performance. For ME-PKE, Open-
ABE PKE uses the Elliptic Curve One-Pass Diffie-Hellman
algorithm. Generating a Diffie-Hellman common shared key
to encrypt a message for each receiver based on their PK (and
thus MK-PKE) is expensive.
Decryption Performance: We evaluated the running time
of decryption for KP-ABE, CP-ABE, and ME-PKE in the
message-oriented solution.

Figure 7b shows the decryption time varying with the
number of attributes for message-oriented encryption. We still
use 16 bytes as the length of an attribute and a 160-byte
message. Each subscriber of a name holds a key with one

attribute (KP-ABE, CP-ABE) or one SK (ME-PKE). The
number of attributes here indicates how many names were
embedded in the encrypted message. Again, the decryption
time is relatively flat. The variability we observe in the plots
are typical measurement-related variations, based on the task
being repeated 100 times.

Thus, see that ME-PKE has the lowest result decryption
time, with KP-ABE being the second best. The reason is that
symmetric key decryption in ME-PKE is faster. CP-ABE is
slower because with message-oriented encryption, CP-ABE
needs to recover a long access structure in the message. On
the other hand, KP-ABE only has an access structure with a
single attribute in the key.
Resource usage: Figures 7e and 7f shows the CPU
consumption (millions of cycles) for each encryption and
decryption operation, as the number of attributes is varied. It
tracks the encryption and decryption time results. The attribute
length is 16 bytes and the message size is 160 bytes. During
encryption, CP-ABE has the highest CPU cycle consumption,
followed by ME-PKE, with KP-PKE using the fewest number
of CPU cycles. For decryption, CP-ABE still has the highest
CPU cycle consumption, followed by KP-ABE, while ME-
PKE has the lowest CPU consumption. Regarding memory
footprint, CP-ABE, KP-PKE, and ME-PKE are all close to
each other and increase linearly. Specifically, when embedding
50 attributes/names, all three schemas have similar behavior,
consuming approximately 488 MB during the encryption pro-
cess and around 494 MB for decryption.

XII. CONCLUSION

In this paper, we designed SAFE, an encryption mechanism
for a name-based disaster pub/sub communication system to
achieve a flexible, scalable multiparty communication and
efficient data distribution while still maintaining confidentiality
and integrity. We abstract the encryption layer, supporting
either message-oriented encryption or key oriented-encryption.
The abstract encryption layer could be implemented by mul-
tiple basic encryption schemes, including KP-ABE, CP-ABE,
and ME-PKE. Based on our evaluation of our implementation
as well as simulations, KP-ABE has the shortest ciphertext
length and lowest encryption time, although it is slower for key
generation and decryption. However, since message-oriented
encryption does not require new keys to be generated on
namespace updates, the key generation process is much less
frequent, mitigating this concern for KP-ABE. We avoid ME-
PKE because of its poor encryption performance. Another con-
cern with ME-PKE is that publishers need to hold all the public
keys of the names they want to send to. Even for namespace
updates, KP-ABE and CP-ABE require a single public key to
handle all encryption. SAFE uses message-oriented encryption
with KP-ABE for first-responder communication.

XIII. ACKNOWLEDGEMENT

This work was supported by the US Department of Commerce,
NIST (award 70NANB17H188) and US NSF grant CNS-
1818971. We thank our shepherd, Prof. Spyros Mastorakis, for
his support and the reviewers for their valuable comments.

11
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on October 12,2024 at 15:43:21 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[2] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst:
a robust and trustworthy mobility-centric architecture for the future
internet,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 16, no. 3, pp. 2–13, 2012.

[3] A. Hannan, S. Arshad, M. A. Azam, J. Loo, S. H. Ahmed, M. F. Majeed,
and S. C. Shah, “Disaster management system aided by named data
network of things: Architecture, design, and analysis,” Sensors, vol. 18,
no. 8, p. 2431, 2018.

[4] M.-N. Tran and Y. Kim, “Named data networking based disaster re-
sponse support system over edge computing infrastructure,” Electronics,
vol. 10, no. 3, p. 335, 2021.

[5] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
information networking further: From psirp to pursuit,” in Broadband
Communications, Networks, and Systems: 7th International ICST Con-
ference, BROADNETS 2010, Athens, Greece, October 25–27, 2010,
Revised Selected Papers 7. Springer, 2012, pp. 1–13.

[6] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan,
“Copss: An efficient content oriented publish/subscribe system,” in 2011
ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems. IEEE, 2011, pp. 99–110.

[7] M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based names-
paces and load sharing for efficient information dissemination in disas-
ters,” in 2019 IEEE 27th International Conference on Network Protocols
(ICNP). IEEE, 2019.

[8] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan, “Cns: content-
oriented notification service for managing disasters,” in Proceedings of
the 3rd ACM Conference on Information-Centric Networking, 2016.

[9] Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in proceedings of the
2nd ACM Conference on Information-Centric Networking, 2015, pp.
177–186.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[11] D. Brown, “Standards for efficient cryptography, sec 1: elliptic curve
cryptography,” Released Standard Version, vol. 1, 2009.

[12] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Workshop on the theory and application of cryptographic techniques.
Springer, 1984, pp. 47–53.

[13] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances
in Cryptology–EUROCRYPT 2005: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005. Proceedings 24. Springer, 2005,
pp. 457–473.

[14] M. Ion, J. Zhang, and E. M. Schooler, “Toward content-centric privacy
in icn: Attribute-based encryption and routing,” in In Proceedings of
the 3rd ACM SIGCOMM workshop on Information-centric networking,
2013, pp. 39–40.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security,
2006, pp. 89–98.

[16] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE symposium on security and privacy
(SP’07). IEEE, 2007, pp. 321–334.

[17] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, ,
and R. L. Braynard, “Networking named content,” in In Proceedings of
the 5th international conference on Emerging networking experiments
and technologies, 2009, pp. 1–12.

[18] J. Seedorf, A. Tagami, M. Arumaithurai, Y. Koizumi, N. B. Melazzi,
D. Kutscher, K. Sugiyama, and et al., “The benefit of information centric
networking for enabling communications in disaster scenarios,” in In
2015 IEEE Globecom Workshops (GC Wkshps). IEEE, 2015, pp. 1–7.

[19] S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri,
“Achieving scalable push multicast services using global name resolu-
tion,” in In 2016 IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2016, pp. 1–6.
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