
Z-stack: A High-performance DPDK-based

Zero-copy TCP/IP Protocol Stack

Anvaya B. Narappa∗, Federico Parola†, Shixiong Qi∗, K. K. Ramakrishnan∗

∗University of California, Riverside †Politechnico of Torino

Abstract—Data centers require high-performance and efficient
networking for fast and reliable communication between appli-
cations. TCP/IP-based networking still plays a dominant role
in data center networking to support a wide range of Layer-4
and Layer-7 applications, such as middleboxes and cloud-based
microservices. However, traditional kernel-based TCP/IP stacks
face performance challenges due to overheads such as context
switching, interrupts, and copying.

We present Z-stack, a high-performance userspace TCP/IP
stack with a zero-copy design. Utilizing DPDK’s Poll Mode
Driver, Z-stack bypasses the kernel and moves packets between
the NIC and the protocol stack in userspace, eliminating the
overhead associated with kernel-based processing. Z-stack em-
ploys polling-based packet processing that improves performance
under high loads, and eliminates receive livelocks compared to
interrupt-driven packet processing. With its zero-copy socket
design, Z-stack eliminates copies when moving data between the
user application and the protocol stack, which further minimizes
latency and improves throughput. In addition, Z-stack seamlessly
integrates with shared memory processing within the node,
eliminating duplicate protocol processing and serialization/dese-
rialization overheads for intra-node communication. Z-stack uses
F-stack as the starting point which integrates the proven TCP/IP
stack from FreeBSD, providing a versatile solution for a variety
of cloud use cases and improving performance of data center
networking.

Index Terms—DPDK, zero-copy, TCP/IP protocol stack, shared
memory

I. INTRODUCTION

Data centers now serve as the backbone of almost all

modern digital operations, hosting critical applications and

services in the cloud. The key to their efficiency lies in robust,

high-performance networking that ensures fast and reliable

communication between applications. With the widespread

adoption of microservice software architecture, applications

are being built as a set of loosely coupled functions. This

also results in frequent communication between application

components which can contribute to increased latency. All of

this requires the networking support to be fast and efficient,

handling large volumes of data, while ensuring quality of

service. In a cloud environment with multiple tenants and

with virtualization (e.g., especially containerization), it is also

important to consider the benefits of a user-space protocol

implementation that can potentially avoid interactions across

different tenant flows.

Most application designs still depend on the in-kernel

implementation for protocol processing (the kernel TCP/IP

stack), using the traditional POSIX sockets. They seek to

leverage the full functionality and reliability of a kernel

TCP/IP protocol stack. However, the kernel protocol stack

has a number of significant performance challenges [1]. Its

design, built for generality, was not originally focused on the

current high-speed, low-latency requirements of today’s data

center networking. It has a number of sources of overhead: (1)

Context switches: Caused by the need to switch between user

and kernel mode during packet processing, it adds considerable

latency [2]. (2) Interrupts: Handling network packet inter-

rupts can be resource-intensive [1]. (3) Data copies: Moving

data between the kernel and userspace results in additional

processing time [1]. (4) Protocol processing: Each layer of

the TCP/IP stack adds its own headers and performs its

checks and computations, which can be resource-intensive.

This includes tasks like computing checksums, segmenting/re-

assembling data packets, and handling retransmissions [3].

(5) Serialization/deserialization: The need to serialize and

deserialize data for transmission over the network adds to the

processing burden [2].

The overhead of kernel-based TCP/IP processing signif-

icantly impacts the performance of a variety of network

functions and applications in the cloud and leads to additional

CPU consumption [2], [4]. Existing solutions [2], [4], [5]

seek to leverage shared memory processing to bypass the

heavyweight kernel protocol stack and achieve considerable

performance improvement in various use cases in the cloud,

e.g., serverless computing [2], 5G core network [5], Network

Function Virtualization and Middleboxes [4]. However, shared

memory processing is limited to a single node and existing

solutions [2], [4], [5] still rely on the kernel protocol stack for

inter-node communication, leading to performance limitations.

Existing work explores high-performance inter-node com-

munication approaches, such as Remote Direct Memory Ac-

cess (RDMA [6]) or userspace TCP/IP stack with kernel

bypass [7], [8]. However, RDMA does not accelerate commu-

nication with external clients outside the data center. TCP/IP

stacks using kernel bypass, such as mTCP [7] and F-stack [8],

have a POSIX-compatible API design and can accelerate

data center networking. It can also improve communication

with external clients through the integration of a cluster-

wide ingress gateway at the edge of the data center cloud.

However, the existing userspace TCP/IP stack solutions often

introduce an additional copy when moving data between the

user application and the protocol stack. This is particularly

expensive when handling large messages (see §IV).

We describe Z-stack, which is a user-space high-

performance TCP/IP protocol stack with a zero-copy design.

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

979-8-3503-5209-2/24/$31.00 ©2024 IEEE 100

20
24

 IE
EE

 3
0t

h 
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n 

Lo
ca

l a
nd

 M
et

ro
po

lit
an

 A
re

a 
Ne

tw
or

ks
 (L

AN
M

AN
) |

 9
79

-8
-3

50
3-

52
09

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/L
AN

M
AN

61
95

8.
20

24
.1

06
21

88
1

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 



Z-stack leverages DPDK’s Poll Mode Driver (PMD [9]) to

bypass the kernel and move packets between the NIC and

the protocol stack in userspace. We choose to use polling-

based packet processing, as it yields better performance under

high load and can eliminate receive livelock [10] compared

to interrupt-driven packet processing [11]. Moving protocol

processing to the userspace helps Z-stack eliminate a number

of kernel-related overheads. such as context switching and

interrupts. Further, Z-stack employs a more efficient, zero-

copy protocol processing that minimizes latency and maxi-

mizes throughput. We achieve this in Z-stack by eliminating

the data copy caused by the POSIX-style socket APIs, as

in [7], [8]. The data copy at the socket interface is a natural

fit with the userspace-kernel separation when the application

works with a kernel-based protocol stack. It requires isolating

the buffers between the user application and the kernel.

However, as we move the protocol stack into userspace, the

boundary crossing between the userspace and kernel is no

longer needed. Thus, it facilitates the elimination of the data

copy at the socket interface to deliver better performance.

With its zero-copy design, Z-stack can seamlessly work with

the shared memory processing within the node to eliminate

duplicate protocol processing and serialization/deserialization

overheads when moving the data across multiple components

of a user application [2] (e.g., with microservices) or network

functions [4].

We implement Z-stack on top of F-stack [8]. F-stack inte-

grates the TCP/IP stack from FreeBSD, which is proven to be

fully functional and robust, compared to other TCP/IP stacks

such as mTCP [7] and Microboxes [12]. Z-stack is available

at https://github.com/anvayabn/Z-stack.

II. RELATED WORK

Given the challenges with the traditional kernel-based

TCP/IP stack, several inter-node communication alternatives

have been explored in the past: (1) POSIX-compatible

userspace TCP/IP stacks: mTCP [7] is a high-performance

userspace TCP/IP stack with multicore scalability. It addresses

some of the TCP/IP stack’s limitations by using kernel bypass

and operates fully in userspace. This helps mTCP avoid the

overhead of kernel operations. mTCP also supports the effi-

cient handling of network traffic across multiple cores. How-

ever, mTCP is not a complete TCP/IP stack replacement [4].

F-stack [8] is a production-level userspace TCP/IP stack

developed by Tencent Cloud. It provides a high-performance

TCP/IP stack with the help of DPDK’s kernel bypass capabil-

ity, which uses DPDK Poll Mode Driver (PMD [9]) to process

network packets in userspace. In particular, F-stack’s TCP/IP

stack is migrated from FreeBSD, which is fully functional and

robust compared to TCP. (2) Demikernel [13] is another ex-

ample. It is a library operating system, in Rust, that leverages

kernel-bypass technologies like DPDK and RDMA. It provides

memory safety and efficient concurrency management through

co-routines instead of POSIX threads. However, Demikernel

requires applications to pre-segment their data into MTU-

sized segments before being given for transmission. In general,

Demikernel does not provide POSIX-like API, thus introduc-

ing additional overheads on the application development. (3)

TAS (TCP Acceleration as an OS Service) [14] uses a different

approach, replacing the data path of the TCP stack, with

the control remaining in the kernel. Data path features such

as congestion control, loss recovery, and packet filtering are

implemented in TAS. TAS has userspace threads that execute

packet IO using DPDK and post the data to the application,

which runs on a separate thread. The partial reliance on the

kernel can limit the overall performance gains from kernel-

bypass as the control path can become a bottleneck under

high network loads. (4) LUNA [15], is another approach that

uses SR-IOV to split traffic between the kernel and userspace

applications. However, LUNA uses a custom TCP/IP stack,

unlike the more robust FreeBSD TCP/IP that Z-stack builds

on. (5) RDMA allows direct memory access from the memory

of one computer to another without involving either one’s op-

erating system. By bypassing the OS, RDMA reduces latency

and improves throughput significantly [6]. It enables faster

data transfer rates, crucial for data-intensive applications. In

addition, RDMA offloads work from the CPU, freeing it up

for other tasks, thereby reducing CPU overhead [6]. However,

RDMA is not POSIX-compatible, requiring additional effort to

port legacy applications that rely on POSIX sockets. Although

there is POSIX-socket-style API support for RDMA such as

rsocket [16] to simplify application porting, rsocket incurs

an additional data copy between the application and RDMA

transport, which may reduce the benefit of RDMA.

Application FreeBSD NIC

ff_write()

ff_read()

TC
P

IP

Et
he

rn
et

 TX

RX

U
se

r B
uf

fe
r 

sosend()

sorecv()

Data Copy Data Copy 

DPDK
PMD

Programming
SDK

ff_dpdk_
if_send()

Fig. 1: Data copies in F-stack.

A. Anatomy of data copies in F-stack

We focus on the design of F-stack [8], a userspace TCP/IP

protocol stack implementation here, as it aims to streamline

network data handling while also ensuring POSIX API com-

patibility to ease application portability. As a consequence

of needing to maintain compatibility with the POSIX API,

user applications that utilize F-stack have to move (copy) the

data into a socket buffer to interact with the FreeBSD TCP/IP

implementation in F-stack, as shown in Fig. 1. There is an

additional data copy incurred within F-stack as part of protocol

processing, occurring at the interface between the protocol

stack and the DPDK’s PMD. This is caused by the distinct

memory management systems (i.e., memory allocator) used

by the protocol stack and the DPDK’s PMD.

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

101
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 



Copy in transmit path: Examining the packet transmission

processing in F-stack in more detail (Fig. 1), we see that the

data (payload) is moved between the user application and

the socket buffer through F-stack’s POSIX-style APIs (ff

write()), which introduces an explicit data copy (via sosend()).

Subsequent to the protocol processing within F-stack, data

payload and protocol headers (TCP/IP) are copied (via ff

dpdk if send()) to a contiguous buffer owned by the DPDK’s

PMD.

Copy in receive path: When examining the receive direction,

the NIC DMAs the received data packets to the socket buffer

in F-stack, working with DPDK’s PMD. Subsequent to the

receive-side protocol processing in the userspace F-stack, the

data is copied (via sorecv()) from the socket buffer to the

receive buffer provided by the user application. The user

application consumes the data using the ff read() provided

by F-stack’s programming SDK.

Although F-stack provides relatively better performance and

is more comprehensive compared to other kernel-based or

(even) userspace protocol stacks, it does not eliminate the

overhead of data copying, which can be quite significant as we

evaluate in §IV. This is true when processing large messages,

causing up to 2× throughput degradation for F-stack.

III. DESIGN OF Z-STACK

A. Overview of Z-stack

Fig. 2 is an overview of the architecture of Z-stack. Z-stack

fully operates in userspace to avoid context switches between

the kernel and the userspace. It leverages DPDK’s PMD to

move packets between the NIC and the userspace protocol

stack, bypassing the kernel to eliminate the interrupt overhead

and the potential receive livelock [10]. The implementation

of the protocol stack is ported from FreeBSD. This gave us a

thoroughly tested and reliable TCP/IP stack that is responsible

for communication between network devices, ensuring that

packets are sent, routed, and received correctly. The user

application utilizes zero-copy socket APIs (z_read() and z_

write()), which use the memory location of the data directly

to interact with Z-stack. Z-stack retains the location in the

memory of the data and constructs the necessary headers. At

the interface, the network headers (TCP/IP) are prepended to

the data instead of performing a full copy to DPDK buffers.

DPDK PMD

NIC

FreeBSD

TCP/IP 

Programming SDK

Zero-Copy POSIX API

Kernel
Bypass

Fig. 2: An architectural overview of Z-stack.

Application FreeBSD NIC

z_write()

z_read()

TC
P

IP

Et
he

rn
et

 TX

RX

DPDK
PMD

Programming 
SDK

Headroom L7
Header 

L7
Payload

Data Pointer 

TCP/IP
Headers

L7
Header

L7
Payload

Data Pointer 

DMA to/fro
m

memory pool 

Fig. 3: Zero-copy design in Z-stack.

This process creates a contiguous data block that is then

transferred via DMA by the NIC. While we recognize that Z-

stack’s socket APIs are not fully POSIX compliant, requiring

applications to adapt their implementation to support these

APIs, the adaptation to Z-stack is straightforward, facilitated

by Z-stack’s Software Development Kit (SDK). Applications

need to prepare the buffer before using the write() API,

and provide a memory location when using the read() API.

To facilitate application development and interface with the

protocol stack, our SDK (slightly enhanced from F-stack’s

SDK) in Z-stack includes all the necessary coroutines and

socket management features such as epoll and kqueues.

B. Zero-copy socket APIs

Fig. 3 depicts Z-stack’s zero-copy design. Z-stack removes

the data copies by manipulating the buffers in the user applica-

tion and providing to the customized socket APIs (z_write()

and z_read()) a pointer to the data (i.e., descriptor). This

eliminates the memory-memory copies when data is moved

between the user application and the protocol stack. The API

requires the buffer to be prepared with sufficient headroom to

accommodate the TCP/IP header. The header is prepended to

the payload as it traverses through the TCP/IP stack.

1 /* Event loop to process network events */

2 int loop(void *arg)

3 {

4 struct kevent events[MAX_EVENTS];

5 int nevents = ff_kevent(kq, NULL, 0, events,

MAX_EVENTS, NULL);

6

7 for (int i = 0; i < nevents; ++i){

8 struct kevent event = events[i];

9 int clientfd = (int)event.ident;

10

11 if (event.filter == EVFILT_READ) {

12 void *mb;

13 ssize_t readlen = z_read(clientfd, &mb

,4096);

14

15 if (readlen > 0) {

16 char * data = ff_mbuf_mtod(mb);

17 ff_mbuf_free(mb);

18 }

19 }

20 }

21

22 return 0;

23 }

Listing 1: Example using z_read().

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

102
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 



Zero-copy Read API (z_read()): For a read operation, z_

read() is designed to provide a user application with the

pointer to the data in the receive buffer avoiding the need

to copy data into a buffer in the user application. As shown

in Listing 1, the z_read() API is invoked by the application

when there is data on the socket. The epoll notification mecha-

nism is used to notify the application of any READ events on

the socket. The z_read() is called by the application with

a pointer (*mb in Listing 1) to a memory location for the

received data. The z_read() API returns the memory location

containing the reference to the L7 data buffer. The ownership

of the buffer is transferred to the application. Z-stack puts the

responsibility on the user application to free the buffer (via

ff_mbuf_free()) once it completes the processing of data

and no longer needs it.

Zero-copy Write API (z_write()): The z_write() API

is called with a descriptor to the payload directly in the

user application that it had created (via rte_pktmbuf_

alloc() in Listing 2). It is typically used in conjunction

with a notification mechanism (e.g., epoll) to send data once

the socket is writable. The data buffer is manipulated while

residing in the user application space, knowing the size of the

data to be transmitted. The buffers here are allocated from the

DPDK’s memory allocator maintaining a headroom for the

packet header. The z_write() API takes a socket descriptor,

a data buffer containing the data to be sent, and the size of

the data. Z-stack also eliminates the data copy when moving

the data from protocol stack to DPDK’s PMD (with F-stack,

there is a copy introduced in ff dpdk if send() because data is

copied from the application onto a FreeBSD buffer, and then

after protocol processing, the data is copied into a 2KBytes

DPDK buffers at the interface between FreeBSD and DPDK’s

PMD). Since the data buffer is managed by DPDK’s memory

allocator throughout the data path, Z-stack can eliminate this

data copy because the user application copies the data directly

to the DPDK buffer, and Z-stack can manipulate the same

buffer by prepending the TCP/IP header. The data is then

handed to the NIC to be transmitted, utilizing the scatter-gather

capability of NIC’s DMA engine (see §III-E). This direct data

path from the user application to the NIC ensures that the

payload remains intact.

1 struct rte_mempool *mbuf_pool =

2 pktmbuf_pool[lcore_conf.socket_id];

3 rte_mb = rte_pktmbuf_alloc(mbuf_pool);

4 data = rte_pktmbuf_mtod(rte_mb, char *);

5 // Copy data into buffer

6 memcpy(data, "Your data here", data_size);

7 rte_mb->data_len = data_size;

8 rte_mb->pkt_len = rte_mb->data_len;

9 // Get a message buffer for sending

10 mb = ff_mbuf_get(NULL, rte_mb, data, rte_mb->

data_len);

11 // Send data over the socket

12 z_write(clientfd, mb, rte_mb->data_len);

Listing 2: Example using z_write().

C. Managing Multiple Concurrent Connections

Concurrent connection management is a critical component

of the protocol stack to enable the support of multiple user

sessions, each of which is distinguished by its own connection.

Z-stack is designed to handle multiple connections simultane-

ously as shown in Fig. 4. The key to implementing concurrent

connection management is to bind distinct sockets (“Socket1”

to “SocketN” in Fig. 4) to different connections, with a listen-

ing socket used to setup the connection between the read/write

sockets of the client and server. Multiple connections of a

user application share the same listening socket for connection

establishment, as is done with typical socket programming. Z-

stack’s protocol processing demultiplexes packets to connected

sockets based on IP tuples (i.e., source/destination IP addresses

and source/destination port numbers).

As shown in Fig. 4, the server using Z-stack opens a

listening socket (bound to a specific port), which is the pri-

mary endpoint to listen to incoming connection establishment

requests from clients. The listening socket subscribes to a

notification mechanism (e.g., kqueue/epoll). The notification

mechanism monitors multiple file descriptors (i.e., sockets) to

see if they are ready for I/O operations, thus enabling the

server to manage multiple connections concurrently.

Each new client socket is dedicated to a particular client,

created by the listening socket. The client socket also sub-

scribes to the notification queue. This allows the server to be

notified when there is activity on these client sockets. E.g.,

when a client sends data, the corresponding client socket in

the server becomes “ready for reading,” and this state change

is reported as an event in the queue. The server’s event loop

continuously polls the notification queue for new events. When

an event is detected on a client socket, the server reads the

incoming data from that socket for processing based on the

application’s logic. If the server needs to send data back to

the client, it writes the response to the client’s socket.

ClientClient

Event Loop 

Kqueue Listening Socket 

Socket N 
Socket 2

Socket1 

Write 
Connect

Clients

User
Application

Read

NIC

K
er

ne
l

D
PD

K
PM

D

1.2.

3.Subscribe

7. Subscribe

5.Events 4.
Po

ll
8. Read

9. Write

User Space

6. Accept

TC
P 

pr
ot

o.
 p

ro
ce

ss
in

g

Fig. 4: Concurrent Connection Management in Z-stack.

D. Non-blocking I/O

Z-stack implements non-blocking I/O to manage network

communication efficiently. Socket operations such as ff

accept(), ff connect(), ff read(), and ff write() are executed in

a non-blocking manner, i.e., when invoked, these operations re-

turn control to the application rather than waiting for data to be

ready, or for the write to complete. Z-stack also incorporates an

event-driven model by using kqueue/epoll-based notification

mechanism (Fig. 4). This event-driven notification mechanism

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

103
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 



monitors multiple sockets and alerts the application when a

socket is ready for further action without a blocking wait.

This method of I/O operations reduces the idle time of the

application and uses system resources efficiently.

E. Hardware Offloading in Z-stack (TSO/LRO)

Modern NICs typically support TCP Segmentation Offload

(TSO [17]) and Large Receive Offload (LRO [17]) to acceler-

ate TCP/IP processing. Z-stack also takes advantage of these

features. TSO allows the protocol stack to pass a large buffer

as a single unit to the NIC. The NIC hardware takes care of

segmenting this large buffer into smaller MTU-sized packets.

This reduces CPU utilization and improves overall system

performance. In Z-stack, TSO becomes particularly relevant

as it uses a single buffer per transmission, avoiding buffer

chaining. When a large message is ready for transmission,

Z-stack relies on the NIC’s TSO capability to handle the

segmentation.

IV. EVALUATION

We compare the performance of Z-stack against F-stack [8]

and Linux kernel protocol stack, using an echo server appli-

cation. The comparison between Z-stack and F-stack allows

us to quantify the performance improvement of Z-stack’s

zero-copy protocol processing and understand in-depth the

overhead of copying data. The comparison against the Linux

kernel protocol stack helps us understand the difference in the

performance of protocol processing in userspace and the over-

heads introduced with context switching between userspace

and kernel space.

Testbed setup: We set up our experiments on NSF Cloud-

Lab [18]. We use two r650 nodes, each with a 100Gbps

NIC. We use Ubuntu 20.04 with kernel version 5.15. We

use wrk [19] — an HTTP load generation tool to send

HTTP requests to the echo server application. The echo server

application returns the HTTP response to wrk. We focus

on the inter-node latency and throughput: the wrk and echo

server applications are placed on different nodes. Latency and

throughput are measured for different representative message

sizes, ranging from small requests (64KBytes, 1KBytes) to

large requests (4KBytes, 8KBytes). We also vary the concur-

rency and observe how the server handles a large number of

connections (up to 200 concurrent connections).

1 50 100 150 200
Concurrency

0
25
50
75
100
125
150
175
200

K
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 5: Throughput (left) and latency (right) (64Byte mes-

sages). “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

1 50 100 150 200
Concurrency

0

2

4

6

8

10

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 6: Throughput (left) and latency (right) with 1KBytes

message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

1 50 100 150 200
Concurrency

0

5

10

15

20

25

30

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 7: Throughput (left) and latency (right) with 4KBytes

message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

A. Throughput and latency performance

For small messages (64Bytes, 1KBytes), Z-stack has similar

throughput and latency performance compared to F-stack (see

Fig. 5 and Fig. 6). This is consistent with the observation

in [1], in that the data copy is not the dominant networking

overhead when message sizes are small. However, even going

from 64Bytes to 1KBytes, we still observe that there is a

performance difference between Z-stack and F-stack. The data

copy incurred in F-stack accounts introduces a small perfor-

mance loss, both in throughput and latency compared to Z-

stack. When compared to the kernel protocol stack, Z-stack’s

zero-copy design (§III-B) substantially reduces the time spent

on protocol processing. With 64Bytes (Fig. 5) and 1KBytes

(Fig. 6) message sizes, Z-stack shows a significant throughput

improvement and latency reduction (up to 5×), underscoring

the efficiency gains from its design optimizations, including

polling-based packet processing and bypassing the kernel.

As shown in Fig. 7 and Fig. 8, the performance im-

provement of Z-stack becomes even more significant with

larger message sizes (4KBytes and 8KBytes). Z-stack achieves

∼2× the throughput and reduced latency when compared

against F-stack. Against the kernel protocol stack, Z-stack’s

throughput showed an even more significant improvement,

reaching around 4× higher throughput.

1 50 100 150 200
Concurrency

0

10

20

30

40

50

60

G
bp
s

zs

fs

ks

1 50 100 150 200
Concurrency

0.0

0.2

0.4

0.6

0.8

1.0

L
at

en
cy

 (
m

s)

zs

fs

ks

Fig. 8: Throughput (left) and latency (right) with 8KBytes

message. “zs”: Z-stack; “fs”: F-stack; “ks”: Kernel stack.

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

104
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 



60 120 200 290
RPS (x 1K)

0

50

100

150

200

250

300

350

C
P

U
 (

%
)

Z-Stack

K-Stack(interrupt)

K-Stack(others)

Fig. 9: CPU overhead.“K-stack”: Kernel stack.

B. CPU Overhead
Z-stack utilizes DPDK’s PMD to move packets between the

userspace application and the NIC. This requires a designated

CPU core confined solely to the PMD, which constantly

consumes CPU cycles as the CPU core is engaged in polling

activity even in the absence of packets to process. Fig. 9 shows

the comparison of the CPU overhead between Z-stack and

kernel protocol stack.

Under light loads (up to about 60K requests per second),

the CPU core utilization for the kernel protocol stack is 76%,

while Z-stack’s CPU utilization due to DPDK’s PMD is at

100%. However, as we keep increasing the load, the kernel

protocol stack shows significant CPU inefficiency, which is

caused by its interrupt-based packet handling. For instance,

when the load is 290K requests per second, the kernel protocol

stack spends 122% CPU core on handling interrupts from the

NIC, which leads to a total CPU consumption of 340% (3.4

CPU cores used). On the other hand, Z-stack’s CPU utilization

is still 100%, which is 3.4× less than the kernel protocol

stack. This empirical evidence suggests that in comparison to

the conventional kernel protocol stack, which incurs elevated

CPU consumption stemming from NIC interrupt handling, Z-

stack’s polling approach proves to be more efficient for even

slightly heavier traffic loads (e.g., even at 120K requests/sec).

In addition, we allow multiple user applications to share the

Z-stack to amortize the polling overhead under light load.

V. CONCLUSION

This paper described Z-stack, a high-performance userspace

TCP/IP protocol stack that offers true zero-copy data move-

ment between the user application and NIC. Z-stack uses

DPDK’s poll mode to move data between userspace and the

NIC, outperforming the kernel-based approach that inevitably

incurs context switches and interrupts. This increases through-

put and reduces latency up to a factor of 5. Z-stack further

adopts a zero-copy socket interface to move data between the

protocol stack and the user application. This yields overall a

2× throughput and latency improvement when handling large

messages. The zero-copy design of Z-stack makes it suitable

for local shared-memory processing, which helps improve data

plane performance when distributed applications are organized

in a complex chain.

ACKNOWLEDGMENT

We thank the US NSF for their generous support through

grants CRI-1823270, CNS-1818971.

REFERENCES

[1] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proceedings of the

2021 ACM SIGCOMM 2021 Conference, ser. SIGCOMM ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 65–77.

[2] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan, “Spright:
Extracting the server from serverless computing! high-performance ebpf-
based event-driven, shared-memory processing,” in Proceedings of the

ACM SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 780–794.

[3] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 656–671, 2021.

[4] S. Qi, Z. Zeng, L. Monis, and K. K. Ramakrishnan, “Middlenet: A
unified, high-performance nfv and middlebox framework with ebpf and
dpdk,” IEEE Transactions on Network and Service Management, vol. 20,
no. 4, pp. 3950–3967, 2023.

[5] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.
Ramakrishnan, and J.-C. Chen, “L25gc: a low latency 5g core network
based on high-performance nfv platforms,” in Proceedings of the ACM

SIGCOMM 2022 Conference, ser. SIGCOMM ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 143–157.

[6] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19). Boston, MA: USENIX Asso-
ciation, Feb. 2019, pp. 1–16.

[7] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mTCP: a highly scalable user-level TCP stack for multicore
systems,” in 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 489–502.

[8] “F-Stack,” https://github.com/F-Stack/f-stack, 2024, [ONLINE].
[9] “Poll Mode Driver,” https://doc.dpdk.org/guides/prog guide/poll mode

drv.html, 2024, [ONLINE].
[10] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in

an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, no. 3, pp. 217–252, 1997.

[11] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in 2012

USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX Association, Jun. 2012, pp. 101–112.

[12] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and T. Wood,
“Microboxes: high performance nfv with customizable, asynchronous
tcp stacks and dynamic subscriptions,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 504–517.

[13] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,
A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. De-
moulin, P. Choudhury, and A. Badam, “The demikernel datapath os
architecture for microsecond-scale datacenter systems,” in Proceedings

of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
ser. SOSP ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 195–211.

[14] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson, “Tas: Tcp acceleration as an os service,” in Proceedings

of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019.

[15] L. Zhu, Y. Shen, E. Xu, B. Shi, T. Fu, S. Ma, S. Chen, Z. Wang, H. Wu,
X. Liao, Z. Yang, Z. Chen, W. Lin, Y. Hou, R. Liu, C. Shi, J. Zhu, and
J. Wu, “Deploying user-space TCP at cloud scale with LUNA,” in 2023

USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, Jul. 2023, pp. 673–687.

[16] “rsocket,” https://linux.die.net/man/7/rsocket, 2024, [ONLINE].
[17] “TCP offload engine,” https://en.wikipedia.org/wiki/TCP offload

engine, 2024, [ONLINE].
[18] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra, “The design and operation of CloudLab,” in 2019

USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 1–14.

[19] “wrk,” https://github.com/wg/wrk, 2024, [ONLINE].

2024 IEEE 30th International Symposium on Local and Metropolitan Area Networks (LANMAN)

105
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:45:30 UTC from IEEE Xplore.  Restrictions apply. 


