
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024 2539

SPRIGHT: High-Performance eBPF-Based

Event-Driven, Shared-Memory Processing for

Serverless Computing

Shixiong Qi , Leslie Monis, Ziteng Zeng, Ian-Chin Wang,

and K. K. Ramakrishnan , Life Fellow, IEEE, Fellow, ACM

Abstract— Serverless computing promises an efficient, low-cost
compute capability in cloud environments. However, existing
solutions, epitomized by open-source platforms such as Knative,
include heavyweight components that undermine this goal of
serverless computing. Additionally, such serverless platforms lack
dataplane optimizations to achieve efficient, high-performance
function chains that facilitate the popular microservices develop-
ment paradigm. Their use of unnecessarily complex and duplicate
capabilities for building function chains severely degrades per-
formance. ‘Cold-start’ latency is another deterrent. We describe
SPRIGHT, a lightweight, high-performance, responsive serverless
framework. SPRIGHT exploits shared memory processing and
dramatically improves the scalability of the dataplane by avoiding
unnecessary protocol processing and serialization-deserialization
overheads. SPRIGHT extensively leverages event-driven pro-
cessing with the extended Berkeley Packet Filter (eBPF).
We creatively use eBPF’s socket message mechanism to support
shared memory processing, with overheads being strictly load-
proportional. Compared to constantly-running, polling-based
DPDK, SPRIGHT achieves the same dataplane performance
with 10× less CPU usage under realistic workloads. Addi-
tionally, eBPF benefits SPRIGHT, by replacing heavyweight
serverless components, allowing us to keep functions ‘warm’ with
negligible penalty. Our preliminary experimental results show
that SPRIGHT achieves an order of magnitude improvement in
throughput and latency compared to Knative, while substantially
reducing CPU usage, and obviates the need for ‘cold-start’.

Index Terms— Serverless, eBPF, event-driven, function chain,
shared memory.

I. INTRODUCTION

SERVERLESS computing has grown in popularity because

users have to only develop their applications while

depending on a cloud service provider to be responsible

for managing the underlying operating system and hardware

infrastructure. The typical costs borne by the user of serverless

computing are only for processing incoming requests. This

event-driven consumption of resources is attractive for cloud

users, especially when their demand is intermittent. It does,

Manuscript received 24 December 2022; revised 24 November 2023;
accepted 20 January 2024; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor Y. Liu. Date of publication 22 February 2024; date
of current version 18 June 2024. This work was supported in part by
the U.S. NSF under Grant CRI-1823270, Grant CNS-1818971, and Grant
CSR-1763929. (Corresponding author: Shixiong Qi.)

Shixiong Qi and K. K. Ramakrishnan are with the Department of Computer
Science and Engineering, University of California at Riverside, Riverside,
CA 92521 USA (e-mail: sqi009@ucr.edu).

Leslie Monis, Ziteng Zeng, and Ian-Chin Wang were with the Department
of Computer Science and Engineering, University of California at Riverside,
Riverside, CA 92521 USA.

Digital Object Identifier 10.1109/TNET.2024.3366561

however, place the burden on the cloud service provider to

provide adequate resources on-demand and ensure the quality

of service (QoS) requirements are met.

In many cases, serverless frameworks are profligate in their

resource consumption. They provide the needed functionality

by loosely coupling serverless functions and middleware com-

ponents that run as a separate container and/or pod. This can

be extremely resource-intensive, especially when deployed in

a limited capacity environment, e.g., edge cloud [1]. There are

still a number of shortcomings to be overcome for building a

high-performance, resource-efficient, and responsive serverless

cloud. Some contributors to this overhead are the following.

Use of heavyweight serverless components. In a serverless

environment, each function pod has a dedicated sidecar proxy,

distinct from its application container. Sidecar proxies help

build an inter-function service mesh layer with extensive

functionality support, e.g., metrics collection and buffering,

facilitating serverless networking and orchestration. However,

the existing sidecar proxy is heavyweight since it is continu-

ously running and incurs excessive overheads, including 2 data

copies, 2 context switches, and 2 interrupts (see §II) for a

single request. Moreover, since most serverless frameworks

primarily focus on HTTP/REST API [2], [3], additional pro-

tocol adaptation is required for specialized use cases, e.g., IoT

(Internet-of-Things) with MQTT [4], CoAP [5]. The current

design runs protocol adaptation as an individual component,

resulting in substantial resource consumption [6]. Having such

a heavyweight design may overload serverless environments,

especially in resource-limited edge clouds or when handling

infrequent workloads (e.g., IoT). Instead, going a step further

and invoking code for execution on a completely event-driven

basis without using an individual component can result in

substantial resource savings.

Poor dataplane performance for function chaining.

Modern cloud-native architectures decompose the monolithic

application into multiple loosely-coupled, chained functions

with the help of platform-independent communication tech-

niques, e.g., HTTP/REST API, for the sake of flexibility. But,

this involves context switching, serialization and deserializa-

tion, and data copying overheads. The current design also

relies heavily on the kernel protocol stack to handle the routing

and forwarding of network packets to and between function

pods, all of which impact performance. Although function

chaining brings flexibility and resiliency for building complex

serverless applications, the decoupled nature of these chains

also requires additional components (e.g., a message broker
1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2540 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

such as Apache Kafka [7], to coordinate communication

between functions, and a load balancer like Istio [8]). The

resulting complex data pipelines add more network communi-

cations for the function chain. All of this contributes to poor

dataplane performance (lower throughput, higher latency),

potentially compromising service level objectives (SLOs).

In this paper, we design SPRIGHT,1 a high-performance,

event-driven, and responsive serverless cloud framework

that utilizes shared-memory processing to achieve

high-performance communication within a serverless function

chain. We base the design of SPRIGHT on Knative [10],

a popular open-source serverless framework. Evaluation

results are presented for SPRIGHT and compared with

Knative under various realistic serverless workloads in

a cloud environment. Our event-driven shared memory

processing, includes event-driven proxies (we call them the

EPROXY and SPROXY) that significantly reduce the high

resource utilization in the Knative design. This results in

much lower latency. SPRIGHT overcomes the challenges of

existing serverless computing with the following innovations:

(1) We design the SPRIGHT gateway, a chain-wide com-

ponent, to facilitate shared memory processing within a

serverless function chain. The SPRIGHT gateway consolidates

protocol stack processing in the Linux kernel and distributes

the payload to the chain.

(2) We design event-driven proxies (i.e., EPROXY and

SPROXY) using the eBPF (extended Berkeley Packet Fil-

ter [11]), that effectively replace the heavyweight sidecar

proxy. We support the functions of metrics collection etc.,

with much lower CPU consumption. We further utilize the

XDP/TC hooks provided by eBPF to improve packet for-

warding performance outside the serverless function chain.

Compared to the kernel networking stack, the eBPF-based

dataplane dramatically lowers latency and CPU consumption.

(3) We implement zero-copy message delivery within a

serverless function chain by using event-driven shared mem-

ory communication. This avoids the unnecessarily duplicated

in-kernel packet processing between functions, achieving high-

speed, highly scalable packet forwarding within a serverless

function chain. Event-driven shared memory communication

helps reduce CPU usage and alleviate penalties when keeping

the function chain warm.

(4) SPRIGHT fully exploits the reconfigurability of the

eBPF maps to support Direct Function Routing (DFR) within

the serverless function chains, which eliminates the depen-

dency on an intermediate routing component (e.g., the message

broker in Knative [12]) for function chaining and avoids

duplicate processing in the dataplane.

(5) We implement the separation at the function-chain level

in SPRIGHT’s shared memory processing by restricting access

to a private shared memory to trusted functions of only that

chain. The SPROXY further restricts unauthorized access by

applying message filtering for inter-function communication.

(6) We optimize protocol adaptation by running it as an

event-driven component attached to the SPRIGHT gateway,

1This work was first published in the ACM SIGCOMM 2022 [9]. It has
been extended here with additional design details and experimental results.

Fig. 1. Networking processing involved in a typical serverless function chain.

to avoid unnecessary networking protocol stack processing

overhead. This optimization can significantly reduce resource

usage.

II. BACKGROUND AND CHALLENGES

There are a variety of implementations for function chaining

since there is no standard for a general solution architecture for

serverless applications. The data pipeline patterns for function

chaining of different open-source serverless platforms are

slightly different, depending on the messaging model applied,

e.g., a publish/subscribe model typically uses a message broker

as the intermediate component for coordinating invocations

within the function chain, while the request/response model

typically employs a front-end proxy to perform invocations

within the function chain. We examined the design of several

proprietary and open-source serverless platforms [12], [13],

[14], [15], [16] and developed a common abstract model of

the typical data pipeline pattern they use, as shown in Fig. 1.

The data pipeline for function chains uses a message

routing as follows: d Clients send messages (requests) to a

message broker/front-end proxy through the ingress gateway

of the cluster. e The messages are queued in the message

broker/front-end proxy and registered as an event. f The

message is transferred from the message broker/front-end

proxy to an active pod of the head (first) function in the

chain, as defined by the user. g The function pod is invoked

to process the incoming request. After the first function

processes the request, a response is returned and queued

in the message broker/front-end proxy, registered as a new

event for the next function in the chain. h The message

broker/front-end proxy sends this new event to an active pod

for the next function in the chain.

Unfortunately, this data pipeline poses several challenges

that are common across the different serverless platforms.

The core dataplane components, including the ingress gate-

way, message broker/front-end proxy, sidecar proxy, etc.,

are usually implemented as individual, constantly-running,

loosely coupled components. In addition, for internal calls

within the chain, each involves context switching, serializa-

tion/deserialization, and protocol processing.

We quantify the overheads in the representative open-source

platform, Knative, through systematic auditing performed with

a ‘1 broker/front-end + 2 functions’ chain setup based on the

current design depicted in Fig. 1. We assume all evaluated

components are deployed on the same node, with the overhead

on the external client-side excluded. We use an NGINX [17]

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2541

Fig. 2. Performance and overhead breakdown of different sidecar proxies.

server function for this audit. However, our results are gener-

ally applicable, as these basic overheads are independent of the

function used. We examine the different overheads incurred in

the data pipeline processing of one request (from d to h),

including # of copies, # of context switches, etc. as listed

in Table I. Due to implementation-specific differences, e.g.,

running multiple threads on the same CPU core, there may

inevitably be additional context switches. Our audit aims to

quantify the minimum value of each type of overhead. Based

on these observations, we list the following key takeaways:

Takeaway#1: Individual, constantly-running heavy-

weight sidecar. Serverless platforms equip each function pod

with an individual, constantly-running sidecar proxy to handle

inbound and outbound traffic. The presence of this sidecar

proxy introduces a significant amount of overhead. Just going

through step g, the sidecar proxy introduces 2 data copies

(50%), 2 context switches (50%), and 2 interrupts (33%).

To understand the impact of this overhead on dataplane

performance, we evaluate several sidecar proxies, including the

Envoy sidecar from Istio [18], Queue proxy from Knative [19],

and the OF-watchdog from OpenFaaS [20]. We use these

sidecar proxies to work with NGINX [17] as a representative

HTTP server function. We also use this NGINX HTTP server

function without sidecar proxies as the baseline to quantify

the additional overhead introduced by the sidecar proxy.

We disable autoscaling and limit ourselves to a single function

instance. We use wrk [21] as the workload generator and send

variable-size HTTP traffic (2% 10KB requests, 98% 100B

requests) directly to the function pod (including sidecar). Both

wrk and the function pod are running on the same node.

Our experimental results are shown in Fig. 2. Equipping

a sidecar proxy results in a 3×–7× reduction in throughput,

3×–7× higher latency, and a significant increase (3×–7×)

in CPU cycles per request. Even though the overhead varies,

it is common across all the evaluated sidecar proxies. Looking

deeper at the CPU overhead breakdown, the kernel stack

for the sidecar proxy consumes 50% of CPU cycles. This

substantial overhead of sidecar proxies undercuts the benefit

of serverless computing and calls for a more lightweight

serverless capability to provide the same functionality.

Takeaway#2: Excessive data copies, context switches,

and interrupts introduced by kernel-based networking. The

existing Knative framework uses kernel-based networking to

construct the dataplane for a serverless function chain, which

inevitably introduces a number of overheads (data copies, con-

text switches, and interrupts) caused by the kernel-userspace

boundary crossing. Looking at the network processing from

TABLE I

PER REQUEST KNATIVE OVERHEAD AUDITING OF DATA PIPELINES FOR A

‘1 BROKER/FRONT-END + 2 FUNCTIONS’ CHAIN

step d to step h in Fig. 1, each request results in 15 data

copies, 15 context switches, and 25 interrupts throughout the

entire data pipeline. In particular, most of the overhead (80%)

comes from networking within the function chain (from f to

h). The excessive overhead adds up as more messages are

exchanged between functions, which have to be handled by

the kernel. This can greatly impact the dataplane performance

of a serverless function chain.

Takeaway#3: Unnecessary serialization & deserializa-

tion. HTTP/REST API requires additional serialization and

deserialization operations to convert application data to byte

streams before being transmitted over the network. These

operations incur significant overhead (lowering throughput and

adding latency) [22], [23]. Each step in the data pipeline for

the function chain (from f to h) introduces 2 serialization

and 2 deserialization operations. As shown in Table I, current

designs further exacerbate this overhead with an excessive

number of protocol stack traversals, which we describe next.

Takeaway#4: Excessive, duplicate processing. Current

approaches for serverless function chains rely on the com-

position of existing networking components to support

asynchronous and reliable message exchange between func-

tions. Traffic within the chain has to go through the

message broker/front-end proxy, each time having to cross

the kernel-user space boundary. This also leads to duplicate

network protocol processing, adding to the overhead. As seen

in Table I, networking within the function chain in Knative

accounts for 75% of the total protocol processing overhead.

Protocol processing tasks, including checksum calculation

in software and complex iptables processing,2 contribute to

latency and results in poor scaling (especially as the number

of iptables rules increases) [25]. Furthermore, many of the

other dataplane overheads (e.g., data copies, context switches,

interrupts, and serialization & deserialization) are also ampli-

fied, as the chain becomes more complex, resulting in very

poor scaling.

Summary: The expected benefit of serverless computing

was to overcome the inefficiencies of ‘serverful’ computing

through event-driven execution, which helps use resources

strictly on-demand and be proportional to the load. However,

the excessive overhead in current serverless frameworks shows

that the ‘server’ is still entrenched in serverless computing.

Our auditing shows that the loosely coupled construction

of existing components for serverless computing results in

substantial unnecessary processing overhead, possibly discour-

2In [24] we showed that the overheads for iptables processing in a typical
Kubernetes environment (also applicable to Knative) using the Container
Network Interface accounts for 60% of the total networking overhead.

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2542 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 3. The overall architecture of SPRIGHT.

aging the implementation of microservices as function chains.

This poor dataplane design and having individual, constantly-

running components in the function chain prompt us to

create a more streamlined, responsive serverless framework

by considering high-performance shared memory processing

and lightweight event-driven optimizations to help extract the

‘server’ out of serverless computing.

III. SYSTEM DESIGN OF SPRIGHT

We now provide an overall view of the SPRIGHT architec-

ture, justifying the design of each component and discussing

their benefits for serverless environments. We then discuss

each part in detail, starting with lightweight event-driven

processing (§III-B), the shared memory processing for com-

munication within serverless function chains (§III-C), and

direct function routing (§III-D). We also discuss function

startup (§III-E), protocol adaptation (§III-F), security domain

(§III-G), and vertical scaling of SPRIGHT gateway (§III-H).

A. Overview of SPRIGHT

For this work, we start with open-source Knative as the

base platform [10]. Using an innovative combination of

event-driven processing and shared memory, we achieve high

performance while being resource-efficient and providing the

flexibility to build microservices using serverless function

chaining. Fig. 3 shows the overall architecture of SPRIGHT.

Importantly, we extensively use eBPF in SPRIGHT for net-

working and monitoring. eBPF is an in-kernel lightweight

virtual machine that can be plugged in/out of the kernel with

considerable flexibility, efficiency, and configurability [11].

The execution of eBPF programs is triggered only whenever a

new event arrives, thus working naturally with the event-driven

serverless environment. Using eBPF, various event-driven

programs can be attached to kernel hook points (e.g., the

network or socket interface). This enables high-speed packet

processing [26] and low-overhead metric collection [27]. eBPF

achieves its configurability through eBPF maps – a config-

urable data structure shared between the kernel and userspace.

With eBPF maps, a more flexible dataplane can be imple-

mented with customized routing. The good features of eBPF

help us provide functionality with strictly load-proportional

resource usage, a highly desirable toolbox for serverless envi-

ronments.

SPRIGHT’s dataplane: SPRIGHT improves the dataplane

of serverless computing by leveraging eBPF-based event-

driven processing and shared memory communication, which

helps us avoid the use of individual, constantly-running

sidecars (Takeaway#1 in §II) and reduces a number of

data movement related overheads within the function chain

(Takeaway#2 and #3 in §II). SPRIGHT uses Direct Func-

tion Routing (DFR) to forward requests directly from one

function to the next. This eliminates the need for an inter-

mediate routing component and avoids unnecessary, duplicate

processing overheads (Takeaway#4 in §II). These dataplane

optimizations make the request handling in SPRIGHT strictly

load-proportional and achieve superior performance compared

to existing serverless platforms (see evaluation in §IV).

• Event-driven processing: We design lightweight, event-

driven proxies (EPROXY and SPROXY in Fig. 3) that

use eBPF to construct the service mesh instead of a

continuously-running sidecar proxy associated with each

function instance, as is used by Knative. Thus, we reduce a

significant amount of the processing overhead (§III-B1).

To accelerate the data path to/from the function chain

and the ingress gateway which is outside the function

chain, we utilize XDP/TC hooks [28] in eBPF (§III-B2).

An XDP/TC hook processes packets at the early stage of

the kernel receive (RX) path before packets enter the kernel

iptables [25], resulting in substantial dataplane performance

improvement without the resource consumption of a ded-

icated sidecar proxy that uses the kernel protocol stack.

In addition, protocol adaptation is often required to inter-

face between application layer protocols, such as MQTT

and CoAP for IoT, to the HTTP/REST API supported by

serverless frameworks (addressed in §III-F).

• Shared memory communication: For inter-function com-

munication within the chain, SPRIGHT takes advantage

of shared memory that avoids a number of overheads

associated with data movement, including protocol process-

ing, serialization/deserialization, memory-memory copies,

etc. For every incoming request from external clients, a

SPRIGHT gateway performs the one-time, consolidated pro-

tocol processing for the function chain (§III-C1). SPRIGHT

considers event-driven SKMSG, which is a socket-related

eBPF program type [28], to construct the zero-copy I/O (i.e.,

descriptor delivery) between functions (see §III-C3).

• Direct function routing (DFR): To eliminate the impact

of having an intermediate routing component (message

broker) within the function chain, we design Direct Function

Routing (DFR). DFR leverages the configurability provided

by eBPF maps and allows for the dynamic update of routing

rules while exploiting shared memory to pass data directly

between the functions within the chain (§III-D).

Although these dataplane optimizations are built around the

Knative, our concepts and methodology can also be broadly

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2543

applied to other serverless platforms. In addition to dataplane

optimizations, SPRIGHT incorporates security domains to

restrict unauthorized access between different chains, by creat-

ing a private shared memory pool for each chain and applying

message filtering for inter-function communication (§III-G).

SPRIGHT’s control plane: We introduce a SPRIGHT

controller (Fig. 3) to coordinate the control plane for

SPRIGHT function chains. The SPRIGHT controller runs as

a cluster-wide control plane component in the master node,

working with serverless orchestration engines, e.g., Knative

and Mu [1], and their associated control plane components

(e.g., autoscaler, placement engine) to determine the scale

and placement of the function chain at the appropriate worker

node.

SPRIGHT adopts Kubernetes to manage the lifecycle of

function pods (e.g., creation, termination). It cooperates with

the kubelet, which is a pod management process in the Kuber-

netes control plane that runs on each worker node to manage

the lifecycle of the pods. We also use kubelet for function

health checks instead of depending on the sidecar (details in

Appendix B). Given a function chain creation request from

the SPRIGHT controller, the kubelet starts up functions in the

chain based on the user configuration, working in conjunction

with the shared memory manager (‘SHM mgr.’ in Fig. 3) and

PROXY manager to set up the dataplane for the function

chain (details in §III-B1). Each worker node has a shared

memory manager and a PROXY manager in the control plane,

both running as separate Kubernetes pods. To route external

requests to the SPRIGHT gateway of each function chain,

we use a cluster-wide Ingress Gateway to distribute the traffic.

B. Event-Driven Processing

1) eBPF-Based Event-Driven Proxy (EPROXY/SPROXY):

The sidecar proxy in a serverless environment, e.g., the queue

proxy in Knative, runs as an additional container in a function

pod distinct from the user container. It buffers incoming

requests before forwarding them to the user container, to help

handle traffic bursts and maintain throughput. The sidecar

proxy is also responsible for collecting metrics for the pod

(e.g., request rate, concurrency level, response time) and

exposing them to a metrics server to facilitate control plane

decision-making, e.g., autoscaling. However, this design has

several drawbacks, as we described earlier. We overcome them

with our lightweight, event-driven eBPF-based EPROXY &

SPROXY, which replace the sidecar proxy.

The EPROXY is composed of a set of eBPF programs

executed at the veth of the SPRIGHT gateway (Fig. 4), using

XDP and TC hooks [28]. SPRIGHT uses EPROXY to perform

L3 metrics collection and dataplane acceleration (§III-B2).

The SPROXY runs as a set of socket-related eBPF programs

(SK_MSG [28]) at the socket interface of the SPRIGHT gate-

way/function pods (Fig. 4). The ‘SK_MSG’ program supports

modification of messages that pass through the attached socket

as well as message redirection between sockets (with the help

of eBPF’s sockmap [28] to provide routing rules), which is an

ideal capability to exchange small messages such as packet

descriptors in supporting shared memory communication

(§III-C). However, the ‘SK_MSG’ program only works on

the TX path of the socket [28]. We use SPROXY for L7

Fig. 4. Event-driven EPROXY & SPROXY, shared memory, and DFR within
a chain: (d) the SPRIGHT gateway invokes the head function of chain; (e)
the head function calls the next function bypassing the SPRIGHT gateway.

metrics collection, packet descriptor exchange (§III-C3),

routing (§III-D), and security (§III-G). More details of the

metrics collection can be found in Appendix B.

The goal of the event-driven proxy is to achieve function-

ality comparable to that of the sidecar proxy, but with lower

overhead. Since the event-driven proxy is only triggered when

there are incoming requests, there is no CPU overhead when

idle. Although EPROXY and SPROXY work in the kernel,

they are created by the cloud service provider rather than the

user, which does not affect the isolation of the user function.

This is similar to how serverless platforms attach a sidecar to

a user function. We do not need the queueing capability in the

event-driven proxy as the shared memory within the function

chain already provides that queueing. Thus, SPRIGHT still

provides the same functionality to improve concurrency and

handle traffic bursts as a sidecar proxy. But, eliminating the

additional queuing stage helps reduce request delays.

Initialization of EPROXY & SPROXY: We dedicate a

PROXY manager (Fig. 3) on each worker node for attaching

EPROXY/SPROXY to the SPRIGHT gateway and/or function

pods. The PROXY manager is created during the startup of

the worker node’s control plane, during which it loads the

EPROXY/SPROXY eBPF programs into the kernel (via the

bpf() syscall) and creates required eBPF maps, including the

metrics map and socket map (sockmap). The SKMSG program

is then attached to the sockmap. The sockmap automatically

attaches the SKMSG program to the function pod’s socket

interface, once a function’s socket interface is registered

into it by the sockmap writer in the PROXY manager. The

initialization procedure of the EPROXY starts as soon as the

SPRIGHT gateway is ready (i.e., when SPRIGHT gateway

passes the health check from kubelet). kubelet instructs the

PROXY manager to attach the EPROXY programs to the XDP

and TC hooks at the veth of SPRIGHT gateway.

Both the SPRIGHT gateway and functions follow the same

procedure to attach to the SPROXY. We use a function as an

example to explain the initialization procedure of SPROXY,

as depicted in Fig. 5. During startup, the function creates a

socket interface for attaching to the SPROXY. The function

initiates a connection on its socket to the dummy socket in the

PROXY manager. The dummy socket stays active to maintain
Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 5. Initialization of SPROXY: SKMSG program, sockmap.

the connection with function’s socket (d). After the connection

is established, the function sends the socket’s file descriptor

and the function ID to the PROXY manager (e). To attach

the SKMSG program to function’s socket, the PROXY manager

uses its sockmap writer to update the function ID (key) and

the socket’s file descriptor (value) to the sockmap (f), using

‘bpf_map_update_elem()’ helper. The SKMSG program is then

automatically attached to the socket by the kernel.

2) eBPF-Based Dataplane Acceleration for External Com-

munication: We exploit EPROXY’s XDP/TC hooks to

accelerate communication by the function chain in SPRIGHT

to external components (e.g., cluster-wide Ingress Gateway).

We develop an eBPF forwarding program (in EPROXY) and

attach it to the XDP/TC hook that is positioned on the RX

path of the network interface, including the host-side veth

of the pod (i.e., veth-host3) and the physical NIC, as shown

in Fig. 6. eBPF offers packet redirect features (i.e., ‘XDP_

REDIRECT’ and ‘TC_ACT_REDIRECT’) that support pass-

ing raw frames between the virtual network interfaces, or to

and from the physical NIC without going through the kernel

protocol stack [29]. This helps save CPU cycles consumed

by iptables. The eBPF forwarding program has two functions:

1) Look up the kernel FIB (Forwarding Information Base)

table to find the destination network interface based on the

FIB parameters of the received packet (using bpf_fib_lookup()

helper), including the IP 5-tuple, index of source interface,

etc. 2) Forward the raw packet frame to the target (veth-

host or NIC) interface via ‘XDP_REDIRECT’ or ‘TC_ACT_

REDIRECT’. The communication could be either in the same

node or across different nodes, supported by an eBPF-based

dataplane via the eBPF forwarding program. An XDP program

at the physical NIC processes all inbound packets received

by the NIC. It redirects the packet to the veth-host of the

destination function pod after a routing table lookup (d in

Fig. 6). The TC program at the veth-host handles the outbound

packet from the function pod. Depending on the packet’s

destination, the TC program may take different routes. If the

destination of the packet is to another function pod (e.g., traffic

between ingress gateway pod and SPRIGHT gateway pod) on

the same node, the TC program directly passes the packet to

the veth-host of the destination function pod via ‘TC_ACT_

REDIRECT’ (e in Fig. 6). If the destination function pod is

on another node, the TC program redirects the packet to the

NIC (f in Fig. 6).

Improvement with dataplane acceleration based on

EPROXY: To estimate the benefit of eBPF’s XDP/TC fea-

tures, we evaluate the networking performance of SPRIGHT

3A function pod is connected to the host through a pair of veths, i.e., the
host-side veth and pod-side veth.

Fig. 6. Dataplane acceleration using eBPF XDP/TC hooks.

Fig. 7. (Left) Performance impact of TC/XDP redirect: RPS and latency;
(Right) CPU overhead breakdown of receiver side kernel stacks: with TC/XDP
acceleration (w/ acc.) & without TC/XDP acceleration (w/o acc.).

when the XDP/TC acceleration is enabled in EPROXY. We use

Apache Benchmark [30] to simulate the traffic to/from the

cluster-wide ingress gateway running on a different node than

the SPRIGHT gateway. We further break down the CPU

cycles expended for the kernel stack processing, to accurately

quantify the CPU cycles saved by the XDP/TC acceleration.

Fig. 7 (Left) compares the RPS and response latency

performance of SPRIGHT when the XDP/TC acceleration is

enabled or disabled. With a concurrency of 32, SPRIGHT

with XDP/TC acceleration has a 1.3× improvement in RPS

compared to SPRIGHT without XDP/TC acceleration. Since

XDP/TC acceleration transfers raw packets between network

devices (i.e., veth and NIC), the overhead spent in kernel

iptables can be avoided, which in turn improves throughput.

The response latency of SPRIGHT with XDP/TC accelera-

tion is 19µs with a concurrency of 32, compared to 24µs

for SPRIGHT without XDP/TC acceleration. The RPS and

response latency improvements remain even as the concur-

rency increases, allowing SPRIGHT to maintain a peak RPS

of 53K when XDP/TC acceleration is enabled. We then

break down the CPU cycles spent on processing a request

(at concurrency 32), including in the host’s kernel stack

and the pod’s network stack, as shown in Fig. 7 (Right).

The client-side overhead is excluded. Bypassing the host’s

kernel networking stack and associated iptables processing,

XDP/TC’s acceleration saves 1.45× total CPU cycles spent

on each request. This option, however, means the loss of

full-featured iptables network policy support, which may not

be required for certain cases (e.g., when users require higher

dataplane performance, with the infrastructure provider having

only a subset of the kernel iptables functionality [31]).

C. Shared Memory Communication Within Function Chains

To support shared memory communication within a server-

less function chain, three key building blocks are required: (1)

Protocol processing. The incoming message to a SPRIGHT

function chain requires protocol processing before being

moved to shared memory for communication within the func-

tion chain. Similar protocol processing to construct outgoing

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2545

messages is needed. (2) Shared memory pool. A private

shared memory pool that is initialized for the function chain

and is attached to functions during their startup is needed.

The message payload is kept in shared memory without

being moved between functions. (3) Zero-copy I/O within

the function chain. To enable zero-copy data movement

between functions, shared memory processing relies on packet

descriptors to pass the location of data in the shared memory

pool, which is then accessed by the function.

1) Consolidated Protocol Processing: To flexibly manage

traffic in and out of the function chain and avoid duplicate

protocol processing within the chain, we create a SPRIGHT

gateway. It acts as a reverse proxy for the function chain to

consolidate the protocol processing. The SPRIGHT gateway

relies on the kernel protocol stack for protocol processing

and extracts the application data (i.e., Layer 7 payload).

It intercepts incoming requests to the function chain and

copies the payload into a shared memory region. This enables

zero-copy processing within the chain, avoids unnecessary

serialization/deserialization and protocol stack processing. The

SPRIGHT gateway invokes the function chain for requests,

processes the results, and constructs the HTTP response to

external clients. SPRIGHT assumes that functions in the same

chain run within the same node, to derive the benefits of

sharing memory between functions.

2) Shared Memory Pool: SPRIGHT allocates a private

shared memory pool with Linux HugePages for each serverless

function chain. Using HugePages can reduce the access over-

head of in-memory pages, thus improving the performance of

serverless functions when accessing data in the shared memory

pool. In addition, the shared memory pool within the function

chain supports queueing to help sustain traffic bursts.

SPRIGHT takes advantage of DPDK’s multi-process sup-

port [32] to create shared memory pools for function chains.

At the startup of a SPRIGHT function chain, a DPDK primary

process is spun up in the shared memory manager pod. The

DPDK primary process has privileged permission to initialize

the shared memory pool, using rte_mempool_create() API.

Each DPDK primary process owns a unique shared data

file prefix [32] – a multiprocessing-related option in DPDK.

We further extend its use to isolate different memory pools [9].

By specifying the correct prefix, the gateway and functions

in SPRIGHT, which run as DPDK secondary processes, can

attach to the memory pool (use rte_memzone_lookup() API)

created by the chain’s specific DPDK primary process in the

shared memory manager pod.

Note that DPDK’s multi-process shared memory is indepen-

dent of other DPDK libs/devices such as DPDK RTE RING

and Poll Mode Driver. This gives SPRIGHT the freedom to

choose different implementations of zero-copy I/O to support

shared memory communication within the function chain.

3) Event-Driven Zero-Copy I/O Within the Function Chain:

SPRIGHT extends the use of SPROXY (Fig. 4) to implement

the event-driven zero-copy I/O for shared memory commu-

nication within the function chain. The SKMSG program in

SPROXY works with eBPF’s sockmap to enable message

redirection between the socket interfaces of function pods by

communicating a packet descriptor from one function to the

next in the chain. The packet descriptor used in SPRIGHT

is a small 16-byte message that incurs negligible overhead.

A packet descriptor contains two fields: the instance ID of

the next function and a pointer to the data in shared memory.

Once the SPROXY receives a packet descriptor, it extracts the

instance ID of the next function, which is then used to query

the eBPF’s sockmap to retrieve the target socket interface

information (i.e., the file descriptor). For the description of

the zero-copy based message flow in SPRIGHT, refer to [9].

The packet descriptor redirection performed by the

SPROXY bypasses any kernel protocol stack processing

(which is unnecessary here), incurring minimal overhead.

SPROXY operates in a purely event-driven manner, avoiding

the need to busy-poll descriptors and saving CPU resources.

Thus, the communication overhead is entirely load-dependent.

Another implementation option is using polling-based zero-

copy I/O, as used by DPDK, which uses polling-based RTE

RING [33] to pass packet descriptors. DPDK’s RTE RING

is implemented as a userspace shared memory queue that

offers a low-latency IPC channel between independent pro-

cesses (i.e., function pods) because it entirely eliminates any

kernel-userspace interaction (e.g., context switches, interrupts)

and operates at memory speeds, ensuring higher performance.

DPDK’s RTE RING has been extensively used to build

high-performance dataplanes for cloud services [34]. However,

using DPDK’s RTE RING as the inter-function IPC channel

requires expensive busy polling that continuously consumes

CPU cycles, independent of traffic intensity.

4) Event-Driven Vs. Polling-Based Shared Memory Pro-

cessing: To identify the most appropriate zero-copy I/O

for shared memory processing in the context of server-

less computing, we compare SPRIGHT’s event-driven shared

memory processing based on SPROXY (hereafter referred to

as S-SPRIGHT) with polling-based shared memory processing

based on DPDK (hereafter referred to as D-SPRIGHT), with

a function chain containing 2 function pods. We use Apache

Benchmark [30] on a second node as the workload gener-

ator. We additionally set up a function chain with the base

Knative environment and use NGINX as the front-end proxy

to coordinate the communication within the chain. Both the

SPRIGHT gateway and NGINX proxy are configured with

two dedicated cores for a fair comparison. Note: We collect

the results from 10 repetitions. All results also show the 99%

confidence interval.

As shown in Fig. 8, with low concurrency, e.g., at

32, S-SPRIGHT (0.024ms) shows a slightly higher average

response delay compared to D-SPRIGHT (0.02ms), but still

has a much lower (almost 6×) response latency compared

to Knative (0.138ms). In terms of RPS, both D-SPRIGHT

(50.3K) and S-SPRIGHT (41.7K) are substantially higher than

Knative (7.2K), with a significant 5.7× improvement.

As S-SPRIGHT relies on the in-kernel eBPF program (i.e.,

SPROXY) to deliver packet descriptors, it incurs overheads for

context switching, contributing to the extra latency. However,

the SPROXY processing latency is masked when the concur-

rency increases (≥ 32), because the context switching latency

overlaps with the other processing. Throughput increases

rapidly, up to 5× that of Knative. Although S-SPRIGHT has a

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2546 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 8. Comparison between polling-based (D-SPRI.) and event-driven
(S-SPRI.) shared memory processing with 1 gateway pod and 2 function pods.
Kn: Knative; QPs: Sidecars; SFs: serverless functions; GW: gateway.

1.2× lower peak throughput than D-SPRIGHT, S-SPRIGHT

has a substantially lower CPU usage, because it is purely

event-driven. Both of those approaches have a much lower

overhead compared to Knative. With a concurrency of 1, S-

SPRIGHT consumes 32% CPU, which is 9.6× and 4.5× less

than D-SPRIGHT (308%, or more than 3 CPU cores fully

used) and Knative (143%), respectively. When the concurrency

increases to 32, S-SPRIGHT consumes 259% CPU, which is

still less than D-SPRIGHT (359%). Comparatively, the CPU

usage of base Knative increases to a shocking 1585% (more

than 15 CPU cores used) at a concurrency of 32 (see Fig. 8

(c)). The sidecar proxy consumes 70% of Knative’s CPU.

Even with increasing concurrency (≥ 32), S-SPRIGHT has a

consistent and steady saving in CPU compared to the others.

Individual, constantly-running components (sidecar proxy with

Knative or DPDK’s poll mode using up CPUs) have excessive

overhead. More importantly, S-SPRIGHT consumes negligible

CPU resources when there is no traffic. We observed that S-

SPRIGHT’s gateway and function pods that are event-driven

consume zero CPU when there is no traffic, making it possible

to keep a function pod ‘warm’ to overcome the ‘cold start’

delay (§IV-B2). Thus, event-driven shared memory processing

is ideal for serverless computing, especially for function

chains.

D. Direct Function Routing Within a Function Chain

To optimize the invocations within a function chain, we use

Direct Function Routing (DFR), which enables the upstream

function in the chain to directly invoke/communicate with

the downstream function. As shown in Fig. 4, the SPRIGHT

gateway only invokes the head function in the chain once

(d in Fig. 4). When the first function completes the request

processing (e in Fig. 4), it directly calls the next function

without going through the SPRIGHT gateway. The rest of the

function invocations in the chain also bypass the SPRIGHT

gateway, thus significantly reducing the invocation latency

and overhead. To support DFR, SPRIGHT adopts a two-step

routing mechanism. It uses a chain-specific, userspace routing

table and an in-kernel sockmap. The userspace routing table

helps determine the ID of the next function, while the in-kernel

sockmap uses that function ID to find its corresponding socket

file descriptor, which is then used by the SPROXY to perform

the actual packet descriptor delivery between the sockets of

the source and destination function. For details of routing

configuration and load balancing with a function chain, refer

to Appendix A.

E. Function Startup in SPRIGHT

In Knative, the startup of a function pod consists of several

key steps: control plane activity (e.g., pod placement), con-

tainer runtime initialization (e.g., container image extraction,

namespace creation, Cgroups configuration, file system mount-

ing, etc), and dataplane setup (e.g., route setup, veth devices

creation, etc). The startup process of a SPRIGHT function

pod shares several common steps with a Knative function

pod creation in terms of control plane activity and con-

tainer runtime initialization. However, SPRIGHT differs from

Knative in setting up the dataplane because SPRIGHT uses

shared memory communication. More importantly, SPRIGHT

uses eBPF-based event-driven proxies. Knative, on the other

hand, uses the sidecar proxy as an individual container, thus

incurring additional startup latency to initialize the sidecar

container. The dataplane setup of a Knative function pod is

nested within the container runtime initialization and is com-

pleted by the Container Network Interface (CNI) plugin [24].

During the dataplane setup of a Knative function pod, the CNI

plugin creates a veth-pair (a pod-side veth and a host-side veth)

to connect the function pod to the host’s network namespace,

facilitating inter-pod connectivity. An IP address is assigned

to the function pod and the route is configured in the host’s

iptables to finalize the dataplane setup [24].

SPRIGHT avoids relying on the CNI plugin to set up the

dataplane of the function pod for the use of event-driven

shared memory processing. The dataplane setup of a

SPRIGHT function pod involves the initialization of the

SPROXY (§III-B) and attachment to the shared memory

pool4 (§III-C). We compare the startup overhead of SPRIGHT

function pods and Knative function pods in §IV-C.

When starting up a function chain in SPRIGHT, a

SPRIGHT gateway pod is created, which involves the ini-

tialization of SPROXY and attachment to the shared memory

pool. Additional dataplane setup (e.g., veth-pair creation, route

setup, etc) is performed by the CNI plugin to connect the

SPRIGHT gateway pod with the kernel protocol stack, as the

SPRIGHT gateway interacts with the kernel protocol stack to

perform protocol processing and to attach the EPROXY to the

veth device. The initialization of the SPRIGHT gateway pod

as well as the startup of functions in the same chain can be

performed in parallel to amortize the startup penalty, as we

discuss in §IV-C.

4Note: The shared memory manager in SPRIGHT pre-allocates a number
of shared memory objects in the shared memory pool. This avoids the shared
memory creation latency during dataplane setup for SPRIGHT functions.

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2547

F. Event-Driven Protocol Adaptation

Event-driven processing can help tremendously in inter-

facing serverless frameworks, which have an HTTP/REST

API, with a variety of application-specific protocols (e.g.,

for IoT with MQTT [4], CoAP [5]). Current designs use a

separate protocol adapter (e.g., Kamelet in Apache Camel-

K [35]) for translation between these protocols. However,

since SPRIGHT’s shared memory processing directly works

on payloads independent of the application layer protocols,

the protocol adapter can ideally run as an internal event-driven

component that is part of the SPRIGHT gateway. This achieves

a much more streamlined protocol adapter design, using

resources strictly on demand. Please refer to [9] for the details

of the event-driven protocol adaptation design.

G. Security Domains in SPRIGHT

SPRIGHT recognizes the need for isolation between server-

less functions in a shared cloud environment, especially with

the use of shared memory processing. It is necessary to restrict

access to a shared memory pool to only trusted functions. The

trust model in SPRIGHT assumes that the functions within

a chain trust each other, but the functions in different chains

may not. To limit unauthorized access across function chains,

SPRIGHT provides abstractions to construct a security domain

for each function chain: 1) a private shared memory pool for

each chain; 2) inter-function (intra-domain) packet descriptor

filtering with the SPROXY; 3) inter-domain access control

enabled by the SPRIGHT gateway and attached EPROXY.

Appendix C provides more details of SPRIGHT’s security

domain design, including security domain separation, intra-

domain and inter-domain access control, and alternatives to

in-kernel iptables by directly using SPRIGHT components.

H. Vertical Scaling of SPRIGHT Gateway

The SPRIGHT security domain design requires a dedicated

SPRIGHT gateway for each domain. Dedicating CPU cores

to the SPRIGHT gateway may lead to CPU wastage at light

loads. Therefore, we utilize the concept of “rate proportional

scheduling” [36]. It actively determines the CPU quota of the

SPRIGHT gateway based on request arrival characteristics.

The SPRIGHT gateway is a networking component, serving

as the entry/exit point for function chain. The processing tasks

for each request in the SPRIGHT gateway involve a fixed

amount of protocol processing, routing, etc., which usually

has very little variability for the CPU cycle consumption. This

suggests there would be a strong correlation between the CPU

core usage of the SPRIGHT gateway and the incoming request

rate. Fig. 15 (left) shows this correlation under various load

levels (number of external clients at 5K, 12K, 20K, 25K, and

30K). Therefore, we can estimate the CPU core usage of the

SPRIGHT gateway based on the request rate,5 using simple

linear regression: Ci,t = α × ri,t, where Ci,t represents the

estimated CPU core usage of the SPRIGHT gateway i at time

5Note that to estimate the CPU usage of general serverless functions, which
may involve much more complex application-level computations, a more
comprehensive estimator is recommended, such as using a Deep Q Network

(DQN) [37] or a Graph Neural Network (GNN) [38].

TABLE II

PER REQUEST DATA PIPELINE OVERHEAD FOR SPRIGHT

t, ri,t represents the Exponentially Weighted Moving Average

(EWMA) of the request rate of the SPRIGHT gateway i at

time t, and α is the regression coefficient. We use the EWMA

of the request rate to ensure that the estimated Ci,t is not

too sensitive to short-term fluctuations. We set the EWMA

coefficient to 0.8 as it yields better results in our testing.

We compute α offline, as 1.13 × 10
−4. This is consistent for

various concurrency levels we tested (see the LR line plot

in Fig. 15 (left)). Given the estimated CPU core usage of

SPRIGHT gateway i, we use the Cgroups utility to configure

its CPU core quota (“cfs_quota_us” and “cfs_period_

us”), thus avoiding wastage caused by dedicating CPU cores.

We execute the scheduling loop over a 2-minute window.

I. Overhead Auditing of SPRIGHT and Constraints

The overhead auditing of SPRIGHT (Table II) shows that

SPRIGHT achieves 0 data copies, 0 additional protocol pro-

cessing, and no serialization/deserialization overheads within

the chain. Although the use of SPROXY generates context

switches and interrupts, the total number of context switches

and interrupts for SPRIGHT is still far less than that of the

base Knative design. In addition, the results in Fig. 8 show that

the context switches and interrupts introduced by SPROXY

have a limited impact on the performance with concurrent

processing of just a few sessions. The event-based shared

memory processing substantially reduces resource usage, more

than compensating for any of the added context switches and

interrupts However, SPRIGHT’s shared memory processing

is constrained by the need to have intra-node deployment of

function chains, requiring locality-aware placement strategies,

as exploited in [39] (more details in Appendix B). Existing

applications, which use synchronous HTTP/REST APIs and/or

POSIX-like sockets, also require minimal changes to the code

to work with SPRIGHT’s shared memory processing (details

in Appendix D).

IV. EVALUATION & ANALYSIS

A. Experiment Setup

To examine the improvement of SPRIGHT and its com-

ponents, we consider several typical serverless scenarios,

including (1) a popular online shopping boutique, (2) An IoT

environment of motion detectors, and (3) a more complex

processing of image detection & charging for an automated

parking garage. For each scenario, we set up a function chain

to execute the serverless application (Fig. 9). The details of

the setup for each scenario are as follows:

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2548 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 9. Serverless function chains setup. The parking workload has two func-
tion chain invocation sequences: (Chain-1) d→e→f→h→g; (Chain-2)
d→e→g.

1. Online Boutique is an open-source representative

implementation of a microservice-based online store appli-

cation [40]. It has 10 different functions, communicating

with each other using gRPC. We ported these functions to

SPRIGHT (in C) and Knative (using Go language) based

on the implementation provided in [40]. Functions ported

to SPRIGHT use shared memory, while functions in Kna-

tive continue to use gRPC, for inter-function communication.

We use Locust [41] as the load generator and use the default

workload provided in [40] to generate a realistic web-based

shopping application’s request pattern. The default workload

utilizes a total of 6 different sequences of function chains

(see [9]). We compare four alternatives to run the online bou-

tique application, including gRPC, Knative, S-SPRIGHT, and

D-SPRIGHT. In the “gRPC” mode (‘server-full’ approach),

the function runs as a Kubernetes pod without a sidecar

and uses the built-in gRPC server for functions to talk to

each other directly without involving a broker/front-end.6 In

Knative mode, we use the Istio ingress gateway to mediate

the communication between functions. We disable the acti-

vator [42] (a cluster-wide queuing component in Knative) to

avoid additional queuing delays.

2. IoT - Indoor motion detection for automated lighting

requires tracking a sequence of events utilizing multiple sen-

sors. The simple function chain contains 2 functions (Fig. 9

(b)). Motion sensors going ‘on’ triggers an actuator function

to turn on the light. The light may be automatically turned off

after a period of no activity. We consider the MERL motion

detector dataset [43]. We use a traffic generator developed

in Python to send motion events based on the timestamps in

the dataset. The CPU service time of the sensor function and

actuator function are both set at 1ms. For the base Knative

6The “frontend service” (Fig. 9 (a)) in the online boutique runs as a user
function, which is distinct from the general broker/front-end. The latter is a
system component that used to mediate the communication between functions
(e.g., the Istio ingress gateway in Knative mode).

Fig. 10. RPS for online boutique: {Knative, gRPC} at 5K & {D-SPRIGHT,
S-SPRIGHT (overlap)} at 25K concurrency.

setup, we use NGINX to coordinate the communication within

the function chain.

3. Parking - image detection & charging takes snapshots of

each parking spot as input for visual occupancy (of parking

spots) detection in parking lots. It detects the vehicle’s license

plate and determines whether the plate metadata is stored

in the database through a plate search function. If it is not

stored, a ‘persist-metadata’ function is invoked to store the

plate metadata in the database. Finally, it charges parking fees

based on the license plate’s metadata. We consider the CNR-

Park+EXT image dataset collected from a parking lot with

164 parking spaces [44]. We use the same load generator used

for IoT workload to send snapshot images (150× 150 pixels,

∼3KB each) through HTTP/REST API call. Every 240-second

interval, 164 snapshots are sent to the function chain. We use

NGINX to coordinate the message exchanges within the chain.

We use VGG-16 as the image detection algorithm, and the

CPU service time of the image detection function is set to

435ms [45]. The CPU service times of other functions and

the sequence of functions being called are shown in Fig. 9.

Testbed setup: The testbed is built on top of a base Knative

platform, including 1) Knative serving/eventing components

(v0.22.0) [12], [46]; 2) Kubernetes components (v1.19.0),

including API server, placement engine, etcd, etc [47]. We use

the docker engine (v20.10.21) as the container runtime.

We consider Calico CNI (Native routing mode) [48] as the

underlying networking solution except for the communication

within the function chain of Knative. We run the experiments

on the NSF Cloudlab with two c220g5 nodes [49]. Each node

has a 40-core Intel CPU@2.2 GHz, 192GB memory, and a

10Gb NIC. We use Ubuntu 20.04 with kernel version 5.16.

We configure the concurrency of both Knative and SPRIGHT

function as 32. The concurrency level of a function pod

determines the # of requests it can process in parallel.

B. Performance With Realistic Workloads

1) Comparing SPRIGHT, Knative, and gRPC Mode: We

now compare D-SPRIGHT (using DPDK’s RTE rings) and

S-SPRIGHT (using SPROXY) against Knative and the gRPC

mode for several different function chains of the online bou-

tique application. We configure different concurrency levels

(i.e., # of concurrent users) of requests from the Locust load

generator. We select two concurrency levels, 5K and 25K,

to show here. To achieve the 5K concurrency, we set the

spawn rate of 200/sec. concurrent requests. The spawn rate

controls the # of concurrency steps increased every second.

Above 5K, Knative’s performance becomes highly variable

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2549

Fig. 11. Online boutique. Top row: Knative, 5K concurrency. Mid. row: gRPC, 5K concurrency. Bottom row: {D-SPRIGHT (D), S-SPRIGHT (S)}, 25K
concurrency. (Left col.) Response time CDF for 6 different function chains; (Mid. col.) Time series of response time, function chains; (Right col.) CPU usage
time series, gateway (GW), function chains (fn), sidecar proxy (Knative).

with time, indicating overload (also results in very high tail

response times). Both S-SPRIGHT and D-SPRIGHT have

stable performance at a 25K concurrency level, after which

they begin to show behavior indicating a slight overload.

To achieve the 25K concurrency, we set the spawn rate of

concurrency at 500/sec.

Even at 5K concurrency, Knative already begins to be

overloaded. From 0s to 35s (Fig. 10), the concurrency level of

the load generator is ramping up to 5K, and the requests/sec

(RPS) increases to ∼900 req/sec. Knative begins to overload

(see at 35s in Fig. 10) due to the use of sidecars and the use

of the Istio ingress gateway (hereafter referred to simply as

‘gateway’) to mediate the communication between functions.

At this 5K concurrency, the gateway and sidecars consume

∼13 CPU cores (from 35s onwards), which is 50% of the

entire Knative setup. It finally leads to CPU contention with

the functions, whose CPU utilization soon reaches saturation

at 62s (using up ∼13 CPU cores, Fig. 11 (g)). In addition,

the use of the gateway and sidecars contributes to additional

processing and queuing delays on the request’s data path,

leading to the reduction in RPS observed (see beyond 30s

in Fig. 10). The closed-loop of workload generation and

request processing results in the RPS, resource utilization,

and response times experiencing overload cycles (occurs again

between 100s - 140s).

Compared to Knative, gRPC has a more stable RPS and

better overload behavior at 5K as gRPC has no sidecars

and bypasses the gateway. By removing these heavyweight

components, functions in the gRPC mode make full use

of CPU resources. The shortened request data path further

reduces latency and alleviates overload and queuing problems.

As shown in Fig. 11 (a) and (b), the resulting tail latency

of gPRC, i.e., 95%ile, of 141ms, measured across all the

functions of the online boutique service, which is 4.9× lower

than Knative (whose 95%ile is 693ms). Fig. 11 (d) and (e)

TABLE III

LATENCY COMPARISON AT 5K AND 25K CONCURRENCY

further demonstrate the benefits of removing sidecars and the

gateway. For requests sent between 35s and 75s, the response

time of Knative increases significantly while the gRPC shows

a delayed overload (only 45s onwards) and its response time

during the overload (45s to 75s) is much lower than Knative.

However, as gRPC depends on the kernel protocol stack for

networking and requires serialization/deserialization. These

overheads are not negligible. The entire gRPC setup consumes

91% of the total CPU cores available on the physical node in

order to drain the queued requests (e.g., 45s to 75s in Fig. 11

(h)). This pattern repeats again, e.g., in the time period 108s

- 140s. Overall, this is quite inefficient.

Compared to Knative and gRPC, D-SPRIGHT and

S-SPRIGHT both have stable RPS throughout the experiment,

for concurrency levels ranging from 5K all the way to 25K.

At 5K concurrency, The 95%ile latency of D-SPRIGHT and

S-SPRIGHT are 11ms and 13ms (see Table III), significantly

less than Knative (690ms) and gRPC (140ms), while utilizing

far less CPU. Although D-SPRIGHT constantly consumes

CPU cycles when idle, even at maximum load, it consumes

only 11 total CPU cores at a concurrency level of 5K,

which is ∼2.5× less than Knative (similar to Fig. 8). This

again validates the benefits of SPRIGHT’s shared memory

processing, saving CPU resources by avoiding the needless

processing overheads with Knative discussed previously in §II.

S-SPRIGHT further reduces CPU usage dramatically by using

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 12. Time series of response time, and CPU utilization for motion
detection workload - 1-hour long experiments.

purely event-driven processing compared to D-SPRIGHT.

With 5K concurrency, S-SPRIGHT consumes only ∼1 CPU

core, including the gateway and all the functions, getting

comparable performance (throughput, response time) to D-

SPRIGHT. We further increase the concurrency level of the

load generator to 25K for D-SPRIGHT and S-SPRIGHT. This

increases the utilization, but still maintains low tail response

times. Both D-SPRIGHT and S-SPRIGHT maintain a stable

RPS of ∼5500 req/sec (Fig. 10), which is 5× higher than

the highest stable RPS achieved with Knative and gRPC.

Moreover, S-SPRIGHT uses far less CPU resources than D-

SPRIGHT, even as the load increases. At 25K concurrency,

S-SPRIGHT consumes only ∼3.5 CPU cores, which is 3×

less than D-SPRIGHT (Fig. 11(i)), showing the benefit of the

eBPF-based event-driven processing.

With SPROXY generating context switches and interrupts

for descriptor delivery (Table II), there is some additional

latency in S-SPRIGHT’s shared memory processing, and is

slightly worse than D-SPRIGHT in terms of tail latency

(Fig. 11(c)). The 95%iles of S-SPRIGHT, measured across all

the functions, is 1.2× higher than D-SPRIGHT (more details

in Table III). The additional delay for SPROXY’s descriptor

delivery, adds to the transient queueing and hence slightly

longer tail latency. However, as we said in §III-C4, the impact

of this additional latency introduced by SPROXY is quite

limited. Further, the processing time within the functions,

which usually are non-trivial, will likely dwarf the extra

latency introduced by SPROXY, in relative terms. Importantly,

the throughput (RPS) of S-SPRIGHT is very close to D-

SPRIGHT at high concurrency levels.

2) Bypassing the Impact of Cold Start and Zero Scaling:

We set up an experiment with zero scaling enabled in Knative

to study the impact of cold start. Without incoming requests,

Knative scales functions down to zero to save resources and

reduce costs. We set the ‘grace period’ for scaling down to zero

as 30 seconds. In contrast, we keep functions in SPRIGHT

‘warm’ by having a minimum number of active function

pods, knowing that our purely event-driven processing will

not consume CPU resources when idle. We use the motion

detection workload to study the impact of cold start because

of the intermittent nature of such IoT traffic.

Fig. 13. Parking image detection & charging: (a) Time series of response
time of function chains; (b) Time series of aggregate CPU for function chains,
sidecar proxy (Knative).

Fig. 12 (a) clearly shows the impact of cold start in Knative,

with large response times that possibly render the motion

detection application ineffective and severely violate SLOs.

E.g., starting from 1950s, a number of motion events occur

one after another (inter-arrival time of a few seconds) that

are sent to the currently zero-scaled function chain. The first

motion event that arrives at the gateway is queued and triggers

the instantiation of the functions. Since a serverless function

pod takes some time to start, subsequent requests have to

be queued. The cascading effect during the cold start of the

entire function chain further degrades the response time [38],

resulting in a long tail latency going up to 9s. Once the

function is active, Knative has a reasonably small response

time when there are consecutive incoming events (e.g., before

the grace period terminates between 2000s and 2500s), which

keeps the functions ‘warm’.

In contrast, SPRIGHT shows consistently low response

times over the entire workload duration since there is always

an active pod to serve the request without leaving requests

waiting in the queue (we can sidestep going down to zero-

scale). More importantly, although SPRIGHT keeps one (or

more) function warm, the event-driven nature of SPRIGHT

leads to negligible CPU consumption when there is no traffic.

In fact, with Knative, the higher resource usage of the sidecar

proxy under load more than offsets any benefit of Knative’s

zero-scaling. E.g., in Fig. 12 (b), the spikes in the CPU

usage for the sidecar proxy (e.g., at the 1500s mark), even

when handling small traffic, is quite wasteful and is eminently

avoidable with SPRIGHT’s event-driven design.

Since the ‘Parking: image detection & charging’ workload

has a distinct periodic arrival pattern (e.g., monitoring and

billing every 4 minutes), we configure a ‘pre-warm’ phase

for Knative functions 20 seconds before the next burst is

scheduled to arrive. ‘Pre-warming’ helps avoid the penalty of

the cold start delay of serverless functions while trading off

a small amount of the resource savings of shutting down the

pods in serverless computing with zero-scaling [50]. However,

as observed in Fig. 13 (b), the CPU usage for each function

instantiation at the pre-warming stage in fact exceeds the

CPU usage consumed by request processing (i.e., observe

the CPU usage spike for the pre-warming and the function

execution 20 seconds later). Thus, while zero-scaling reduces

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2551

Fig. 14. (Left) Latency comparison of a single function pod startup between
SPRIGHT and Knative; and (Right) latency of multiple function pods startup
in SPRIGHT (startup in parallel VS. startup in sequence). For function’s index,
refer to Fig. 9.

CPU usage if the idle period is long, a CPU cost for frequent

creation/destruction of functions must be considered. Knative

also is quite inefficient for scaling functions down to zero.

When there is no traffic for a grace period of 30s (e.g., 270s

to 300s in Fig. 13 (b)), Knative begins scaling down the

functions to zero. But, functions remain in a ‘terminating’ state

until 380s without being really terminated or releasing CPU

resources. Thus, the scaling-down process lasts as long as 80s,

during which all the Knative sidecar proxies and functions are

consuming CPU resources, which is unnecessary and wasteful.

For comparison, S-SPRIGHT consumes only a small

amount of CPU throughout the entire period, in fact with

slightly lower (about 16%) response time (both average and

95%, Fig. 13 (a)). Overall, S-SPRIGHT saves up to 41%

CPU cycles in this 700s experiment without resorting to zero-

scaling, almost doubling system capacity compared to Knative.

C. Startup Latency Comparison (SPRIGHT Vs. Knative)

We now compare the startup latency for a function chain

in SPRIGHT against Knative. For a fair comparison, we use

the same control plane and Docker container runtime. The

common control plane components include Kubernetes’s pod

scheduler, controller manager, and API server. We use the

online boutique functions [40] for evaluation and reuse the

testbed setup in §IV-A.

To measure the latency of control plane activity (tcp),

we timestamp when the Kubernetes controller manager (on the

master node) receives the pod creation request, and again when

the kubelet (on the worker node) is signaled by the control

plane for the pod initialization tasks, including the dataplane

setup and container runtime creation. The difference is the

latency for performing control plane activities.

To measure the dataplane setup latency (tdp) of a Knative

function pod, we timestamp when the kubelet sends the

networking setup request to the CNI and another timestamp

when the kubelet receives an ack. from the CNI indicating suc-

cessful setup of the function pod’s dataplane. We measure tdp,

the latency for completing the initialization of the SPROXY

(Fig. 5) and its attachment to the shared memory pool.

For both Knative and SPRIGHT, we quantify the difference

between the total pod initialization latency (tpod) and the

dataplane setup latency (tdp) as the container runtime creation

latency (tcr = tpod − tdp). tpod is measured as the duration

starting from when the kubelet is informed of pod initialization

by the control plane, until the kubelet detects the readi-

ness of the function pod. When profiling the startup latency

of SPRIGHT function pods, we disable the CNI to avoid

spending unnecessary latency on setting up kernel iptables

and configuring veth devices, since SPRIGHT functions do

not require these. We keep the CNI plugin enabled for the

startup of SPRIGHT gateway pod as discussed in §III-E.

Fig. 14 (Left) shows the startup latency of a single function.

SPRIGHT and Knative have same tcp and tcr as both use the

same control plane components and container runtime. The

primary difference is in the tdp. Knative spends ∼0.4s for

setting up the dataplane for a single function pod with an

extra ∼0.7s for creating an individual sidecar container for this

pod. SPRIGHT takes only ∼0.016s for SPROXY initialization

and attaching the shared memory pool. This, again, shows the

benefit of SPRIGHT’s use of shared memory and event-driven

proxies, which eliminates the heavyweight sidecar container

creation and slow kernel-based dataplane setup.

The SPRIGHT gateway dedicated to the function chain

incurs a significant initialization overhead (∼0.4s) when the

SPRIGHT function chain is first created, with an extra

∼0.3 milliseconds to attach the EPROXY. This is mainly

caused by the in-kernel configuration (veth-pair and kernel

iptables) via CNI, similar to a Knative function pod. But, the

startup overhead of the SPRIGHT gateway can be overlapped

by starting it in parallel with the SPRIGHT functions in the

chain. More importantly, the startup of the SPRIGHT gateway

is a one-time task that occurs only during the very first startup

of the function chain.

Fig. 14 (Right) compares the startup latency of a complete

function chain with the parallel and sequential startup of

multiple function pods. Starting up pods in parallel takes

3.3× less time than starting up pods sequentially. Thus,

it is desirable to have function pods in SPRIGHT start in

parallel to amortize the startup penalty. Both dataplane setup

in SPRIGHT and control plane activity get the benefit of

parallelism. The dominant latency is from container runtime

creation, but there is limited benefit from having pods started

up in parallel. This is because of the contention for access to

the network namespace in the Linux kernel. This forces us to

sequentially create and modify the network namespaces [51],

[52], [53]. Using a shared network namespace (shared by

functions in the same security domain) can eliminate the

network namespace contention and further reduce the total

container runtime creation time for parallel startup of multiple

function pods in a chain [52].

D. Evaluating the Scaling of the SPRIGHT Gateway

To understand the benefits of rate proportional scheduling

(denoted RP) on the SPRIGHT gateway, we compare it with

the “dedicated cores” policy (denoted DC). The “dedicated

cores” strategy assigns CPU cores exclusively to the SPRIGHT

gateway, which can prevent CPU interference. However, this

strategy potentially wastes CPU cores under light load as the

assigned CPU cores are not shared with any other SPRIGHT

gateway or functions running on the same node. We use

three online boutique [40] function chains (CH-1, CH-2, and

CH-3), co-located on the same node. Each function chain has

a dedicated SPRIGHT gateway. We set the peak concurrency

levels of the three function chains as 5K, 12K, and 30K. We set

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2552 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 15. Comparison of rate proportional scheduling and dedicating cores: (left) correlation between CPU core usage of SPRIGHT gateway and RPS; (middle)
CPU allocation time series; (right) RPS time series.

the spawn (increase) rate of the concurrency level at 500/sec.

Other configurations are the same as §IV-B1.

Fig. 15 (middle) shows the CPU allocation over time for the

different SPRIGHT gateways. It is clear that the SPRIGHT

gateway using DC results in serious CPU wastage by con-

sistently occupying the CPU core throughout the entire time.

In contrast, RP allocates CPU cores to SPRIGHT gateways

of different function chains in proportion to their load. The

unused portion of the CPU core can be potentially shared

with serverless functions, resulting in better efficiency. In the

meantime, RP also does not cause any significant performance

(RPS) loss when we look at Fig. 15 (right), which demon-

strates the feasibility of using the concept of “rate proportional

scheduling” to help address the resource allocation for the

SPRIGHT gateway while retains the high performance of

SPRIGHT’s data plane.

V. RELATED WORK

In recent years, a number of serverless platforms have been

launched, e.g., AWS Lambda [54], IBM Cloud Functions [55],

Apache OpenWhisk [56], OpenFaaS [57], Knative [10], etc,

to support cloud-resident applications. Work on understand-

ing the performance impact of commercial or open-source

serverless platforms [19], [58] has guided us on the design

of SPRIGHT. Li et al. [19] showed that the overhead of the

ingress gateway reduced the throughput by 13%, compared to

the performance of function invocation using the ‘direct call’

mode (i.e., the client directly invokes the function instance,

bypassing the ingress gateway). Zhu et al. [59] reported that

container-based sidecars cause excessive latency and CPU

usage increase, which is also consistent with our observa-

tions. Benedetti et al. [58] studied the suitability of different

serverless function startup modes (i.e., cold and warm) for

supporting IoT applications, indicating that cold start can have

significant resource-saving benefits but can impact response

time. This prompts us to examine the resource consumption

and overheads of each component carefully.

Several past works have examined the inefficiency and

overheads that exist in Linux networking, including data copies

and context switching [60], [61], [62], [63]. The overhead of

protocol processing [24] and serialization-deserialization [22],

[64] directly impact networking performance, which applies

to container-based serverless functions, including function

chains. A variety of optimizations have been proposed to

improve the network performance for different application

scenarios, which can be complementary to current Linux

networking (e.g., XDP [26], AF_XDP in OVS [65]) or bypass

kernel-based networking (e.g., NetVM for NFV [66]). Our

work combines the advantages of kernel-bypass zero-copy

networking where essential for serverless function chains, and

leveraging eBPF-based event-driven processing.

Multiple proposals optimize different aspects of serverless

frameworks, e.g., runtime overhead reduction [51], [67], [68],

[69], intelligent resource provisioning, and traffic manage-

ment [1], [70]. Ditto [39] is a serverless analytics system

developed on top of SPRIGHT, maximizing intra-node shared

memory processing to alleviate the data plane overheads of a

large amount of shuffle-related traffic within function chains

used for data analytics. Further, [38], [71], [72] aim to optimize

resource allocation and deployment of serverless functions

on the basis of a chain, which improves the efficiency and

flexibility of building microservices using serverless function

chaining. But, they do not focus on optimizing the dataplane,

which as we show has a significant impact.

‘Cold start’ in serverless: The cold start latency of server-

less functions detracts from their being an ideal framework

for building microservices. Reference [73] proposes a startup

latency optimization specifically for Kubernetes-based envi-

ronments by placing pods on nodes that have container image

dependencies locally to avoid the latency of pulling images.

However, their 95%ile startup latency after optimization is still

around 23s, severely impacting the QoS. In addition, startup

(either cold start or pre-warm [50]) adds additional costs, as we

have observed, making optimizations built around cold start

less desirable. A policy of ‘keep-warm’ of pods has been an

alternative to mitigate the cold start latency in serverless [74].

They can achieve an 85% improvement of the 99%ile latency.

Although [74] considerably improves the SLOs, it is built on

Knative with heavyweight components (e.g., queue proxy),

resulting in excessive resource usage. Fuerst and Sharma [75]

consider greedy-dual caching to determine which functions

should be kept as warm. By factoring in several key indicators

of a function, e.g., memory footprint, invocation frequency,

etc., they can prioritize functions to be kept warm, thus

limiting memory consumption to keep a minimum number of

warm functions and achieve SLOs. Since SPRIGHT primarily

contributes to controlling CPU usage, [75] can be a good

complement to SPRIGHT to reduce memory utilization.

VI. CONCLUSION

SPRIGHT demonstrated the effectiveness of event-driven

capability for reducing resource usage in serverless cloud

environments. With extensive use of eBPF-based event-driven

capability in conjunction with high-performance shared mem-

ory processing, SPRIGHT achieves up to 5× throughput

improvement, 53× latency reduction, and 27× CPU usage

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

QI et al.: SPRIGHT: HIGH-PERFORMANCE eBPF-BASED EVENT-DRIVEN, SHARED-MEMORY PROCESSING 2553

savings compared to Knative when serving a complex web

workload. Compared to an environment using DPDK for

providing shared memory and zero-copy delivery, SPRIGHT

achieves competitive throughput and latency while consum-

ing 11× fewer CPU resources. Additionally, for intermittent

request arrivals typical of IoT applications, SPRIGHT still

improves the average latency by 16% while reducing CPU

cycles by 41%, when compared to Knative using ‘pre-warmed’

functions. This makes it feasible for SPRIGHT to support

several ‘warm’ functions with minimum overhead (since

CPU usage is load-proportional), sidestepping the ‘cold-start’

latency problem. Across several typical serverless work-

loads, SPRIGHT shows higher dataplane performance while

avoiding the inefficiencies of current open-source serverless

environments, thus getting us closer to meeting the promise

of serverless computing. In addition, SPRIGHT saves 32%

startup latency for a single function pod compared to Kna-

tive, which is an ideal capability for serverless computing.

SPRIGHT is publicly available at https://github.com/ucr-

serverless/spright.git

REFERENCES

[1] V. Mittal et al., “Mu: An efficient, fair and responsive serverless
framework for resource-constrained edge clouds,” in Proc. ACM Symp.

Cloud Comput., Nov. 2021, pp. 168–181.

[2] (2022). AWS Serverless API. [Online]. Available: https://docs.aws.
amazon.com/serverless-application-model/latest/developerguide/sam-
resource-api.html

[3] (2022). OpenFaaS API Gateway/Portal. [Online]. Available: https://docs.
openfaas.com/architecture/gateway/

[4] (2022). MQTT Version 5.0. [Online]. Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[5] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An application
protocol for billions of tiny internet nodes,” IEEE Internet Comput.,
vol. 16, no. 2, pp. 62–67, Mar./Apr. 2012.

[6] I.-C. Wang, S. Qi, E. Liri, and K. K. Ramakrishnan, “Towards a proactive
lightweight serverless edge cloud for Internet-of-Things applications,” in
Proc. IEEE Int. Conf. Netw., Archit. Storage (NAS), Oct. 2021, pp. 1–4.

[7] (2022). APACHE KAFKA. [Online]. Available: https://kafka.apache.org/

[8] (2022). Istio Traffic Management. [Online]. Available: https://istio.
io/latest/docs/concepts/traffic-management/

[9] S. Qi, L. Monis, Z. Zeng, I.-C. Wang, and K. K. Ramakrishnan,
“SPRIGHT: Extracting the server from serverless computing! High-
performance eBPF-based event-driven, shared-memory processing,” in
Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 780–794.

[10] (2022). Knative. [Online]. Available: https://knative.dev

[11] The Linux Foundation. (2022). EBPF. [Online]. Available: https://
ebpf.io/

[12] (2022). Knative Eventing. [Online]. Available: https://knative.dev/docs/
eventing/

[13] (2022). OpenWhisk—Creating Action Sequences. [Online]. Available:
https://github.com/apache/openwhisk/blob/master/docs/actions.md#
creating-action-sequences

[14] (2022). OpenWhisk Composer. [Online]. Available: https://github.com/
apache/openwhisk-composer

[15] (2022). Chaining OpenFaaS Functions. [Online]. Available: https://
ericstoekl.github.io/faas/developer/chaining_functions/

[16] Microsoft. (2022). Azure—Function Chaining in Durable Func-

tions. [Online]. Available: https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-sequence?tabs=csharp

[17] (2022). NGINX. [Online]. Available: https://www.nginx.com/

[18] (2022). Istio Architecture. [Online]. Available: https://istio.io/latest/docs/
ops/deployment/architecture/

[19] J. Li, S. G. Kulkarni, K. Ramakrishnan, and D. Li, “Understanding open
source serverless platforms: Design considerations and performance,” in
Proc. 5th Int. Workshop Serverless Comput., 2019, pp. 37–42.

[20] (2022). Of-Watchdog. [Online]. Available: https://github.com/openfaas/
of-watchdog

[21] (2021). Wrk. [Online]. Available: https://github.com/wg/wrk

[22] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soule,
“Zerializer: Towards zero-copy serialization,” in Proc. Workshop Hot

Topics Operating Syst., 2021, pp. 206–212.

[23] D. Raghavan, P. Levis, M. Zaharia, and I. Zhang, “Breakfast of champi-
ons: Towards zero-copy serialization with NIC scatter-gather,” in Proc.

Workshop Hot Topics Operating Syst., Jun. 2021, pp. 199–205.

[24] S. Qi, S. G. Kulkarni, and K. K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalabil-
ity,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1, pp. 656–671,
Mar. 2021.

[25] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
“Securing Linux with a faster and scalable iptables,” ACM SIGCOMM

Comput. Commun. Rev., vol. 49, no. 3, pp. 2–17, Nov. 2019.

[26] T. Høiland-Jørgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in Proc. 14th Int.

Conf. Emerg. Netw. Experiments Technol., 2018, pp. 54–66.

[27] J. Levin and T. A. Benson, “ViperProbe: Rethinking microservice
observability with eBPF,” in Proc. IEEE 9th Int. Conf. Cloud Netw.

(CloudNet), Nov. 2020, pp. 1–8.

[28] Red Hat. (2022). Understanding the EBPF Networking Features

in RHEL. [Online]. Available: https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_
networking/assembly_understanding-the-ebpf-features-in-rhel-8_
configuring-and-managing-networking

[29] (2022). EBPF XDP: The Basics and a Quick Tutorial. [Online]. Avail-
able: https://www.tigera.io/learn/guides/ebpf/ebpf-xdp/

[30] (2021). Apache Benchmark. [Online]. Available: https://httpd.apache.
org/docs/2.4/programs/ab.html

[31] M. Abranches, O. Michel, and E. Keller, “Getting back what was lost
in the era of high-speed software packet processing,” in Proc. 21st ACM

Workshop Hot Topics Netw., 2022, pp. 228–234.

[32] (2023). Multi-process Support of DPDK. [Online]. Available: https://doc.
dpdk.org/guides/prog_guide/multi_proc_support.html

[33] (2023). Ring Library. [Online]. Available: https://doc.dpdk.org/guides/
prog_guide/ring_lib.html

[34] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes

Netw. Function Virtualization, Aug. 2016, pp. 26–31.

[35] (2023). Apache Camel. [Online]. Available: https://camel.apache.
org/camel-k/2.1.x/kamelets/kamelets.html

[36] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 639–652, Apr. 2020.

[37] Z. Wang et al., “DeepScaling: Microservices autoscaling for stable CPU
utilization in large scale cloud systems,” in Proc. 13th Symp. Cloud

Comput., 2022, pp. 16–30.

[38] J. Park, B. Choi, C. Lee, and D. Han, “GRAF: A graph neural
network based proactive resource allocation framework for SLO-oriented
microservices,” in Proc. 17th Int. Conf. Emerg. Netw. Experiments

Technol., 2021, pp. 154–167.

[39] C. Jin et al., “Ditto: Efficient serverless analytics with elastic paral-
lelism,” in Proc. ACM SIGCOMM Conf., Sep. 2023, pp. 406–419.

[40] (2023). Online Boutique by Google. [Online]. Available: https://github.
com/GoogleCloudPlatform/microservices-demo

[41] (2022). Locust. [Online]. Available: https://locust.io/

[42] (2022). Knative Serving—Activator. [Online]. Available: https://github.
com/knative/serving/blob/main/docs/scaling/SYSTEM.md#activator

[43] C. R. Wren, Y. A. Ivanov, D. Leigh, and J. Westhues, “The MERL
motion detector dataset,” in Proc. Workshop Massive Datasets, 2007,
pp. 10–14.

[44] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car parking
occupancy detection using smart camera networks and deep learning,” in
Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2016, pp. 1212–1217.

[45] A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “ECML: Improving
efficiency of machine learning in edge clouds,” in Proc. IEEE 9th Int.

Conf. Cloud Netw. (CloudNet), Nov. 2020, pp. 1–6.

[46] (2022). Knative Serving. [Online]. Available: https://knative.dev/docs/
serving/

[47] (2021). Kubernetes Components. [Online]. Available: https://kubernetes.
io/docs/concepts/overview/components/

[48] (2022). Project Calico. [Online]. Available: https://www.tigera.io/
project-calico/

[49] D. Duplyakin et al., “The design and operation of CloudLab,” in Proc.

USENIX Annu. Tech. Conf., 2019, pp. 1–14.

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

2554 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

[50] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in Proc. USENIX

Annu. Tech. Conf., 2020, pp. 205–218.

[51] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-
optimized containers,” in Proc. USENIX Annu. Tech. Conf., 2018,
pp. 57–70.

[52] S. Thomas, L. Ao, G. M. Voelker, and G. Porter, “Particle: Ephemeral
endpoints for serverless networking,” in Proc. 11th ACM Symp. Cloud

Comput., 2020, pp. 16–29.

[53] V. Jain, S. Qi, and K. K. Ramakrishnan, “Fast function instantiation
with alternate virtualization approaches,” in Proc. IEEE Int. Symp. Local

Metrop. Area Netw. (LANMAN), Jul. 2021, pp. 1–6.

[54] (2022). AWS Lambda. [Online]. Available: https://aws.amazon.com/
lambda/

[55] (2022). IBM Cloud Functions. [Online]. Available: https://cloud.ibm.
com/functions/

[56] (2022). Apache OpenWhisk. [Online]. Available: https://openwhisk.
apache.org/

[57] (2022). OpenFaaS. [Online]. Available: https://www.openfaas.com/

[58] P. Benedetti, M. Femminella, G. Reali, and K. Steenhaut, “Experimental
analysis of the application of serverless computing to IoT platforms,”
Sensors, vol. 21, no. 3, p. 928, Jan. 2021.

[59] X. Zhu et al., “Dissecting overheads of service mesh sidecars,” in Proc.

ACM Symp. Cloud Comput., Oct. 2023, pp. 142–157.

[60] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proc. ACM SIG-

COMM Conf., 2021, pp. 65–77.

[61] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, 1997.

[62] J. Lei, M. Munikar, K. Suo, H. Lu, and J. Rao, “Parallelizing packet
processing in container overlay networks,” in Proc. 16th Eur. Conf.

Comput. Syst., 2021, pp. 1–16.

[63] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proc. Workshop Experim. Comput. Sci., Jun. 2007, pp. 1–4.

[64] S. Kanev et al., “Profiling a warehouse-scale computer,” in Proc. 42nd

Annu. Int. Symp. Comput. Architecture, 2015, pp. 158–169.

[65] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open vSwitch
dataplane ten years later,” in Proc. ACM SIGCOMM Conf., Aug. 2021,
pp. 245–257.

[66] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” in Proc. 11th USENIX Symp. Networked Syst. Design Imple-

ment., Seattle, WA, USA, Apr. 2014, pp. 445–458.

[67] I. E. Akkus et al., “SAND: Towards high-performance serverless
computing,” in Proc. USENIX Annu. Tech. Conf., Boston, MA, USA,
Jul. 2018, pp. 923–935.

[68] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and G. Parmer,
“Sledge: A serverless-first, light-weight wasm runtime for the edge,” in
Proc. 21st Int. Middleware Conf., 2020, pp. 265–279.

[69] A. Agache et al., “Firecracker: Lightweight virtualization for serverless
applications,” in Proc. 17th USENIX Symp. Networked Syst. Design

Implement., 2020, pp. 419–434.

[70] A. Singhvi, A. Balasubramanian, K. Houck, M. D. Shaikh,
S. Venkataraman, and A. Akella, “Atoll: A scalable low-latency server-
less platform,” in Proc. ACM Symp. Cloud Comput., Nov. 2021,
pp. 138–152.

[71] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra,
M. T. Kandemir, and C. Das, “Kraken: Adaptive container provisioning
for deploying dynamic dags in serverless platforms,” in Proc. ACM

Symp. Cloud Comput., 2021, pp. 153–167.

[72] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” in Proc. 11th ACM

Symp. Cloud Comput., Oct. 2020, pp. 311–327.

[73] S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient
container startup at the edge via dependency scheduling,” in Proc. 3rd

USENIX Workshop Hot Topics Edge Comput., 2020, pp. 1–7.

[74] P.-M. Lin and A. Glikson, “Mitigating cold starts in serverless platforms:
A pool-based approach,” 2019, arXiv:1903.12221.

[75] A. Fuerst and P. Sharma, “FaasCache: Keeping serverless computing
alive with greedy-dual caching,” in Proc. 26th ACM Int. Conf. Architec-

tural Support Program. Lang. Operating Syst., Apr. 2021, pp. 386–400.

Shixiong Qi received the B.Sc. degree in elec-
tronic and information engineering from Nanjing
University of Posts and Telecommunications, China,
in 2015, and the M.Sc. degree in communication and
information systems from Xidian University, China,
in 2018. He is currently pursuing the Ph.D. degree
with the Department of Computer Science and Engi-
neering, University of California at Riverside. His
current research interests include cloud computing,
5G, and network function virtualization.

Leslie Monis received the B.Tech. degree in com-
puter science and engineering from NITK, India,
in 2019, and the M.S. degree in computer science
from the University of California at Riverside in
2022. He is currently a Software Engineer with
NVIDIA. His research interests include cloud com-
puting and network function virtualization.

Ziteng Zeng received the B.Sc. degree in computer
science from Zhejiang University, China, in 2020,
and the M.S. degree in computer science from
the University of California at Riverside in 2022.
He is currently a Software Engineer with Google.
His research interests include cloud computing and
network function virtualization.

Ian-Chin Wang received the bachelor’s degree in
computer science from National Chiao Tung Uni-
versity, Taiwan, in 2018, and the M.S. degree in
computer science from the University of California
at Riverside in 2021. He is currently a Software
Engineer with Oracle. His research interests include
serverless computing and the IoT.

K. K. Ramakrishnan (Life Fellow, IEEE) received
the M.Tech. degree from the Indian Institute of
Science in 1978 and the M.S. and Ph.D. degrees in
computer science from the University of Maryland,
College Park, USA, in 1981 and 1983, respec-
tively. He is currently a Professor of computer
science and engineering with the University of
California at Riverside. Previously, he was a Distin-
guished Member of the Technical Staff with AT&T
Labs-Research. Before 1994, he was the Technical
Director and a Consulting Engineer of networking

with Digital Equipment Corporation. From 2000 to 2002, he was the Founder
and the Vice President with TeraOptic Networks Inc. He has published
nearly 300 articles and has 183 patents issued in his name. He is an ACM
Fellow and an AT&T Fellow, recognized for his fundamental contributions
to communication networks, including his work on congestion control, traffic
management, and VPN services.

Authorized licensed use limited to: Northeastern University. Downloaded on October 12,2024 at 14:47:00 UTC from IEEE Xplore. Restrictions apply.

