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ABSTRACT

Objective: To develop an Artificial Intelligence (Al)-based anomaly detection
model as a complement of an “astute physician” in detecting novel disease

cases in a hospital and preventing emerging outbreaks.

Methods: Data included hospitalized patients (n=120,714) at a safety-net
hospital in Massachusetts. A novel Generative Pre-trained Transformer (GPT)-
based clinical anomaly detection system was designed and further trained
using Empirical Risk Minimization (ERM), which can model a hospitalized
patient's Electronic Health Records (EHR) and detect atypical patients.
Methods and performance metrics, similar to the ones behind the recent Large
Language Models (LLMs), were leveraged to capture the dynamic evolution of
the patient's clinical variables and compute an Out-Of-Distribution (OOD)

anomaly score.

Results: In a completely unsupervised setting, hospitalizations for Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection could
have been predicted by our GPT model at the beginning of the COVID-19
pandemic, with an Area Under the Receiver Operating Characteristic Curve
(AUC) of 92.2%, using 31 extracted clinical variables and a 3-day detection
window. Our GPT achieves individual patient-level anomaly detection and

mortality prediction AUC of 78.3% and 94.7%, outperforming traditional linear



models by 6.6% and 9%, respectively. Different types of clinical trajectories of
a SARS-CoV-2 infection are captured by our model to make interpretable
detections, while a trend of over-pessimistic outcome prediction yields a more
effective detection pathway. Furthermore, our comprehensive GPT model can
potentially assist clinicians with forecasting patient clinical variables and

developing personalized treatment plans.

Conclusion: This study demonstrates that an emerging outbreak can be
accurately detected within a hospital, by using a GPT to model patient EHR
time sequences and labeling them as anomalous when actual outcomes are
not supported by the model. Such a GPT is also a comprehensive model with
the functionality of generating future patient clinical variables, which can

potentially assist clinicians in developing personalized treatment plans.

Keywords: Novel disease detection; Pandemic prevention; EHR modeling;

Deep learning; GPT.



1. INTRODUCTION

Pandemics can be devastating, as the COVID-19 pandemic plainly
demonstrated."? An effective, early novel infectious disease detection system
could potentially be used to trigger a response and implement mitigation
measures within a hospital, which is essential to prevent a future pandemic.
Manual detection of a new disease cluster depends on an astute physician
realizing the atypical nature of encountered cases, which requires expertise,
time, and inquisitiveness.3* Artificial Intelligence (Al) processes may provide a
scalable solution with the potential to yield more rapid and accurate detection

of emerging threats.

The transformer® architecture is responsible for the most recent successes of
Al%-8 revolutionizing clinical Natural Language Processing (NLP),%° clinical
image analysis,'®"" Electronic Health Records (EHR) modeling,'? and protein
structure prediction.'® Specifically, the Generative Pre-trained Transformer
(GPT)'* is a special type of unidirectional transformer which can generate new
sequence instances. A GPT trained on large corpora using Causal Language
Modeling (CLM) gave rise to Large Language Models (LLMs) such as
ChatGPT.82 GPT-based generative Al models do not simply memorize
associations between words,’™ but are able to represent the semantics

underlying the training data.'®'”



Despite GPT’s outstanding analytical and generative ability showed in a variety
of biomedical applications,'®2" to the best of our knowledge, it has not been
applied to structured EHR sequence modeling for unsupervised novel disease
detection. Current transformer-based EHR anomaly detection and modeling
systems were trained using BERT-like methods,'??? and they were not
successfully applied to detect novel diseases and prevent pandemics. Instead,
recent disease detection systems utilized Convolutional Neural Networks
(CNN),?%-25 and Recurrent Neural Networks (RNN)?¢ using different types of
data and trained in a supervised manner, which achieved decent detection
accuracy. However, supervised training limits their generalizability to unknown
diseases. Unsupervised COVID-19 detection models based on CNN and
variational autoencoders were designed,*?"-?¢ though these models relied on
lung X-ray or CT scans, which limits their applicability. Pandemic surveillance
strategies were based on the population distribution?® and admission number
time series,?° but these methods cannot detect individual patient anomalies. An
unsupervised NLP method was proposed to detect an outbreak in dogs from
EHRs,3! but this approach only used free text and was not applied to human
subjects. An One-Class Support Vector Machine (OCSVM) approach was
applied to spike protein sequences to detect SARS-CoV-2 variants,®? but did
not use EHR data or deep neural networks. The availability of GPT and EHR

data creates an opportunity for innovation by training a comprehensive GPT for



EHR modeling, similar to how ChatGPT was developed for natural language

tasks.

This study leverages GPT, language modeling schemes, and Out-Of-
Distribution (OOD) detection to exploit the evolutionary characteristics in EHR
time series, seeking to detect anomalies in EHRs associated with a potential
new disease or emerging pandemic. Clinical variables in the EHRs were
separated into consecutive periods to form a sequence. We used a Causal
(electronic health) Record Modeling (CRM) method based on the CLM for GPT
Language Models (LM). To compute OOD anomaly scores for each patient, we
modified the perplexity metric in language modeling to evaluate how well a new

EHR sequence fits models pre-trained on the in-distribution EHR.
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This study aims to build a Generative Pre-trained Transformer
(GPT)-based structured EHR modeling system for real-time,
What this | unsupervised novel disease detection and hospital-level
paper adds | outbreak surveillance, which requires no prior knowledge of
new diseases. This comprehensive EHR model can also
potentially support a variety of EHR-based prediction tasks.

2. MATERIAL AND METHODS

2.1. Data description

Our data set contains de-identified EHRs of 120,714 hospitalized patients from
the Boston Medical Center (BMC), which is the largest safety-net hospital in
New England. Each patient may have multiple admissions; overall 230,026
admissions from January 1, 2016 to January 24, 2023 were included. For each
admission, 31 clinical variables were extracted, including SARS-CoV-2 test
results, vital signs, demographics, past medical history, hospitalization status,
Intensive Care Unit (ICU) status, mechanical ventilation records, and death

(see Supplement for details).

2.2, Clinical rationale

Predictive modeling exploits correlations between clinical variables and
outcomes of interest.3334 Earlier work®3:3¢ found that patient outcomes such as
ICU admission and death can be predicted at an early stage of the infection by

a few predictors, including vital signs and laboratory results. More complex



models that captured the evolution of a patient’s clinical condition showed even
stronger predictive power.3” Given that each disease is associated with specific
patterns, modeling these patterns in a structured EHR time series with
sequence modeling algorithms has the potential to detect a new disease by

identifying cases that do not fit the model.

2.3. EHR sequentialization

We defined a period to correspond to 7 consecutive hours and separated the
patient's EHR into a sequence of periods. We set 7 = 4 in this study, since the
vital signs were typically collected every 4 hours in the hospital. For a
hospitalization with H hours in total, n =[H/t] consecutive periods
{t;, ..., t,} were defined starting from the admission time. In each period,
continuous variables (e.g., vital signs) were averaged, while categorical
variables (e.g., ICU status) were binarized into 0/1 indicator variables. Hence,
for each variable f out of the m total clinical features/outcomes in a set M =
{f1, ..., fm}, its value can be extracted for a period t;, denoted as x{i, and x;, =
(x{il, x[lm) € R™ is a (column) feature vector for t;. Thus, each admission is
represented by a sequence x; . = {xtl, ...,xtn}. We exclude a specific patient
sequence if more than 20% of the continuous variables are missing, and we
impute the missing values for a continuous variable using the median of the

non-missing values in the training set. Finally, all continuous variables were



standardized using the mean and standard deviation computed from the

training set.

2.4. Causal EHR modeling

CLM is a powerful language modeling scheme, which we modify to develop our
CRM method for EHR modeling. In NLP, for a text sequence with tokens
{y1, -, ¥}, the CLM training for an LM aims at maximizing the conditional
probability of the correct next-token given the previous tokens, i.e.,
PWily1, -»Vi-1,0.1), Where 6,,, are the parameters of the model. Therefore,
the trained LM can generate new text by predicting the next token in an
autoregressive way. For EHR modeling, rather than predicting the next token,
we use a GPT with parameters 0 to define a discriminative probability model
P(xi|xt1:ti_1,0) and predict the next-period clinical variables, given only the
current and past periods. We make the assumption that due to the EHR data
correlations we discussed in Sec. 2.2, all the next-period variables are
predictable given the historical and current-period EHR, i.e., a statistical
assumption that all the future variables are conditionally independent given the
past and present. As a result, the parameters can be learned by maximizing the
likelihood on all variables and periods (with a history) using a training set of N

admissions from the EHR dataset:

f
mglx H]1¥=1 H?:z er]v[ P(xk'ti |Xk,t1:ti_1' 0)’



where the index k denotes the k-th admission sample. By taking the negative
logarithm, we can formulate our CRM problem as an Empirical Risk

Minimization (ERM) with a loss function defined by the discriminative model:

=

n

memzz Z —logP xkt [Xpe,t,:6, 1,0). (D
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Note that our causal EHR modeling is a framework inspired by Causal
Language Modeling (CLM) and further trained using ERM, rather than a
traditional causal inference method in clinical study. We use GPT to build this
discriminative model, which is illustrated in Figure 1. Each x, is first mapped
into the initial hidden state h,.,, where the positional embedding is also added
to discriminate different periods during the hospitalization. For each self-
attention layer in GPT, the previous layer's output hidden states will be first
mapped into Query, Key and Value vectors Q. ,K; and V. for each period,

and the attention score of t; w.r.t t; is computed as:

|{ (Qtil Ktj) ) )

—_—, L 2],
Ati,tj = {\[dlm(Ktl)

k —00, i < jl

where (-, *) denotes inner product and dim(-) the dimension of a vector.

’ EXp(Atltj)
Therefore, in the updated hidden state h; —) Ve, the

7 1exp(At ty
weights for the future periods after t; become 0, which forces the multi-head
attention mechanism to be unidirectional and implemented only across the
current and past periods. The attention layers in GPT exploit the dependency

of the clinical variables from different periods, and the hidden state h., for



period t; output by the last attention layer utilizes all the present/past but no
future information, which naturally suits the definition of the loss function in
CRM (cf. Eq. (1)). For each continuous variable f, alinear regression layer with
parameters wy € [R{d,bf € R is defined to predict the next-period 3?{{(0) =
(ws,hy,_ ) + by, where 6 are all parameters in the entire GPT model (including
wy and by). If f is binary, a softmax classifier is defined instead to derive the
predicted positive probability f{i(e). The loss function L is defined by the

absolute error and cross-entropy loss between the target and GPT prediction:

|xtfi - J?[l )|, if f continuous,

f
L,.(8) =
t —x{i log ;?[l ) — (1 — xfl) log (1 - f{i(e)), otherwise.

Finally, the CRM training for a GPT model amounts to minimizing the total loss:

N n

mein Z Z L{(,ti(e).

k=11i=2 fem

In practice, we do not predict the past medical history and demographics, but
only use them as features to predict other variables, which is because these

features are typically time-invariant within an admission.
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Figure 1. GPT for causal EHR modeling.

2.5. Out-Of-Distribution (OOD) anomaly detection

We regard novel disease detection as an OOD anomaly detection task, which
detects data instances that are drawn far away from the training distribution.
We use all the EHR data before January 1, 2019 as the in-distribution training
data, as COVID-19 that is regarded as the novel disease to detect in this work,
did not appear before 2019. Therefore, a GPT pre-trained on normal EHR using
our CRM method can represent the in-distribution patterns and be used to

detect anomalies in a new EHR.



Transformer-based LMs have shown significant distribution-specific
characteristics,%383° with perplexity®® being a key metric in evaluating how an
LM fits the text. We define our perplexity metric to evaluate how our GPT model

fits the EHR of a hospitalized patient w.r.t a certain clinical variable f:
1 n
PPL/ (%, 0 =—ZLf 0).
(.0 == 1®
=

A higher perplexity of an admission indicates a higher chance of OOD, i.e., a
potential novel disease. We use the perplexities w.r.t ICU care, mechanical
ventilation, and death as the main anomaly scores. To make our detection
interpretable, we further designed two types of perplexities to discriminate
different abnormal clinical trajectories. We define the type-1 perplexity as the
perplexity computed only from periods with label 0, which measures the chance
of mistakenly predicting a negative outcome as positive (a.k.a type-1 error, or
false alarm). Similarly, the type-2 perplexity is computed only from the periods
with label 1, which measures the chance of mistakenly predicting a positive

outcome as negative (a.k.a type-2 error, or miss).

We define a y-day interval T as y consecutive days, so that the time axis can
be separated into a sequence of {T;,i = 1,...}. To mitigate noise, we further
average the perplexities of all the admission cases whose admission time were
within the same interval T;, hence, computing an interval-level perplexity
PPLfTi(B). As long as at least one anomaly admission exists in T;, we regard T;

as an anomaly interval to detect. We design two statistical methods to detect



the anomaly intervals in the time series {PPL’;i(G)}. In Method 1, we simply
assume that during the normal years without a pandemic, the time series
{PPL’;L,(O)} is stationary, where all PPL’;L,(O) are i.i.d Gaussian observations.
Therefore, we directly use the mean p and standard deviation ¢ of all
PPLfTi(G) in the training set to define the threshold, and detect all the T; in the
test set with PPL];i(O) > u + 60 as anomalies, where § is a scalar affecting
the confidence. In Method 2, the stationary assumption does not hold, so we
train a differenced autoregressive model (i.e., ARIMA(p, d, 0)*°) on the training
set to forecast every PPL’;i(B) using the previous intervals, and the prediction
absolute residual time series {|R£i(0)|} is used to compute appropriate u, o

and detect the anomaly intervals in the same manner as in Method 1.

3. RESULTS

We regard COVID-19 as the novel disease to detect. Based on whether the
patient has a positive COVID-19 test result within 7 days before or after the
admission time, we label each admission as 1 (anomaly) or 0 (normal). Table

1 shows characteristics of admitted individuals.

Table 1. Characteristics of individuals admitted.

Lo Admissions before = Admissions after
All admissions

1/1/2020 1/1/2020
Mean age 48.56 46.91 51.21
Female % 53.82% 54.08% 53.41%

Race - Black % 42.37% 42.12% 42.77%




Ethnicity - Hispanic or

Latino % 23.63% 23.17% 24.35%
Intensive care % 15.88% 16.73% 14.53%
Mechanical ventilation % 4.28% 4.22% 4.39%
Death % 1.63% 1.37% 2.03%
SARS-CoV-2 infection % 2.39% 0.00% 6.21%

The EHR data between January 1, 2019 and May 15, 2020 were used as the
test set, which covered the epidemic and initial pandemic stage of COVID-19.
Table 2 shows the individual-level mortality prediction and COVID-19 detection
Area Under the Receiver Operating Characteristic Curve (AUC) of different
methods on the test set, as well as the 1-day interval-level ICU anomaly
detection AUC. f indicates the variable used for perplexity computing. The
GPT predicts mortality with a high AUC of 94.7% on the test set. Using the
general perplexity, an unsupervised detection AUC of 77.7% is obtained by
GPT when the intubation outcome is chosen, while the best individual-level
COVID-19 detection AUC of 78.3% is achieved by GPT when all variables and
the type-1 perplexity of the ICU outcome were used. When vital signs are
excluded from variables and the type-2 perplexity computed from ICU
prediction is used, a COVID-19 detection AUC of up to 65.7% can be obtained.
The ICU type-1 perplexity achieves a high interval-level detection AUC of
87.2% when a 1-day interval is applied for COVID detection, which indicates a

strong detection power for novel diseases.



Table 2. Model performance for mortality prediction and COVID-19 detection.

Mortality COVID detection AUC

Model Variables Anomaly score prediction f= f= f= f =IcuU
AuC Death Intubation ICU (daily)

- Distance to
Kernel
All decision - 0.735 0.739 0.737 0.768
OCSVM
boundary
PPL 0.570 0.618 0.582 0.714
w/o vitals  PPL (type-1) 0.722 0.521 0.513 0.469 0.462
Linear PPL (type-2) 0.605 0613  0.648  0.688
regression /
I PPL 0.658 0.668 0.696 0.715
classification
All PPL (type-1) 0.857 0.623 0.601 0.717 0.787
PPL (type-2) 0.535 0.584 0.447 0.419
PPL 0.615 0.624 0.595 0.715
w/o vitals  PPL (type-1) 0.750 0.573 0.505 0.478 0.404
PPL (type-2) 0.614 0.625 0.657 0.675
GPT
PPL 0.772 0.777 0.722 0.807
All PPL (type-1) 0.947 0.754 0.775 0.783 0.872
PPL (type-2) 0.487 0.457 0.372 0.341

By setting different thresholds § (cf. Sec. 2.5), we further evaluate the
decisions for 3-day intervals in Table 3. Among the 166 intervals in the test set,
21 of them show an anomaly. By using 3-day intervals, COVID-19 detection
AUC is overall higher than the individual-level AUC. The best AUC of 92.2%
and weighted F1-score of 93% indicates that our GPT model accurately detects
COVID-19 as a novel disease at the beginning of the pandemic, without raising

serious false alarms before that time.



Table 3. AUC and weighted F1-score of 3-day interval-level COVID-19
detection using different decision thresholds.

Variable for PPL (Type 1) Threshold AUC Weighted F1-score
6= 0.930
ICU — 0922
§=4 0.912
6=3 0.941
Intubation 0.889
§=4 0.891
§=3 0.896
Death 0.861
6=4 0.909

To better assess the effectiveness of GPT in detecting the COVID-19
anomalies, in Figure 2 we plot perplexity over time. Specifically, Figure 2(a)
plots the weekly COVID-19 admissions (as a percentage of overall admissions)
and Figure 2(b) plots weekly interval-level type-1 perplexities for the three
variables reported in Table 2, along with detection thresholds for Methods 1
and 2 and the ARIMA forecast used in Method 2. As all the EHR data before
January 1, 2019 were used as in-distribution training data, the corresponding
weekly perplexities are relatively low and stable, and an anomaly week was
hardly detected as a false alarm. Between January 1, 2019 and January 1,
2020, COVID-19 was not present in the U.S., and the weekly anomaly scores
for all three outcomes also remained low, indicating that our GPT model pre-
trained on a large amount of EHR data can generalize well to new EHRs

presented to it.
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Figure 2. Weekly anomaly scores and detection.

Starting from March 2020, both weekly COVID admission percentage and
weekly perplexity began to rise sharply, and a peak emerges. Given that the
first COVID-19 admission in BMC was on March 13, 2020 (62.3-th week) and
the first anomaly week around this time was the 63-th week detected by the
mortality perplexity, our model successfully identified the initial anomaly weeks
in the plot, without showing many false alarms. The perplexity peak and COVID

admission percentage fell together around June, 2020, potentially due to the



improvements in prevention and treatments, such as mask orders and use of
an IL-6 inhibitor (tociluzimab)*' and dexamethasone.*> Nevertheless, the
weekly perplexity continued showing an overall higher level compared to the
time before 2020, and anomaly weeks could still be detected, especially by the

ICU perplexity.

4. DISCUSSION

The best mortality prediction and interval-level novel disease detection AUCs
achieved by our novel GPT models are 94.7% and 92.2%, respectively,
showing that our method can successfully model EHRs and handle both
supervised and unsupervised predictive tasks. Note that training our GPT and
computing the perplexities require no prior knowledge or labels for a novel
disease. Therefore, for practical outbreak surveillance, monitoring the
perplexity plots shown in Figure 2 can help detect a new infectious disease and
trigger steps to prevent wider spread of infection. Traditional EHR clinical
variable analysis typically uses linear models and the latest variables to make
interpretable predictions.3%37 In Table 2, we considered a baseline linear model
where we replace the GPT by a simple linear regression/classification layer.
GPT outperformed the best linear model by 9% and 6.6% for mortality
prediction and individual-level COVID-19 detection, respectively. We also

compared our method to Kernel One-Class SVM (OCSVM), which is one of the



most powerful non-linear anomaly detection methods;*? GPT outperformed

OCSVM by 4.4%.

The type-1 perplexity explains most of the detection power of our GPT model
when all variables are used, achieving the highest individual-level COVID
detection AUC of 78.3% and outperforming the best AUC achieved by type-2
perplexity by 12.6%. The detection ability driven by both type-1 (false alarm)
and type-2 (miss) perplexity can be interpreted by the characteristics of COVID-
19. On the one hand, although COVID-19 can cause severe symptoms such as
high fever and dyspnea which can be reflected in the vital signs, its mortality
rate is relatively low (about 3.4% in the U.S. in 2020*%) compared to other
infectious diseases (e.g., Ebola, MERS). Therefore, for a significant proportion
of patients, mortality outcomes and related ICU/intubation status can be more
favorable than what the historical patterns for patients with similar clinical
condition may suggest, which “surprises” the GPT and leads to a high type-1

perplexity. To illustrate the above argument, we present the following case:

“‘Patient 156932, a 76 y.o. Black female with a past medical history of
hypertension, chronic kidney disease and chronic heart disease, was admitted
during the 64-th week in Figure 2 (an anomaly week) with a positive SARS-
CoV-2 RT-PCR test sampled on the same day. The patient showed an SpO2

93% - 94% at admission and was admitted to ICU and intubated immediately.



In the first 72 hours, the patient remained intubated, while the averaged
respiratory rate was mostly above 20. Three days later, the respiratory rate was
up to 30, while SpO2 was mostly below 95%. The patient’s condition improved
after two additional days and she was discharged from the hospital 6 days after
admission. Our GPT model for death prediction analyzes the situation in the
first 72 hours and predicts that the patient has a high likelihood of dying, so
when she was discharged, GPT showed a high type-1 perplexity of 0.31, among

the top 3% in the same anomaly week.”

On the other hand, patient characteristics such as age, male gender, and
underlying conditions such as diabetes are risk factors for severe SARS-CoV-
2 infection.3® When the GPT was trained without vital signs, such demographic
information and underlying conditions became the major variables used by the
model. Some admissions can surprisingly lead to severe outcomes if the patient
is infected by SARS-CoV-2 (e.g., an old male without any prior conditions3®),
which explains the model performance based on type-2 perplexity. Our GPT-
based EHR modeling system offers an unsupervised learning framework for
detecting novel disease clusters. In practice, depending on the disease,
abnormal admissions may be indicated by type-1 or type-2 perplexity or both.
Our detection method based on different types of outcome prediction errors and

feature sets also injects interpretability and transparency into the system, which



helps clinicians to understand the basic characteristics and trajectories of a

novel disease in real-world outbreak surveillance.

The issue of false alarms is a critical aspect of any outbreak surveillance
system. As shown in Figure 2, almost all the anomaly points detected were after
March 2020, and few anomalies were detected before COVID-19 appeared in
the U.S., which indicates that our GPT-based system has a low false-alarm rate
for novel disease detection. Still, one relatively obvious false alarm can be
observed around January 2019. This could be explained by the flu season, with
the 2018 — 2019 season being unusually long and marked by two separate
waves of influenza A.** An unusually significant occurrence of a known disease
might be detected as a novel disease outbreak as well, which is a cause of false
alarms in our system. Nevertheless, Figure 2 and the high weighted F1-score
of 93% establish that our current system has a satisfying balance between
novel disease detection precision and recall, which effectively reduces false

alarms.

Although we trained GPT for novel disease detection, it can also be viewed as
a comprehensive EHR predictive model which can, potentially, be used for a
variety of clinical purposes. In addition to the accurate mortality prediction we
have shown, our GPT model can be applied to generate new EHR sequences

and forecast future clinical variables for any given patient. This can be useful in



anticipating the patient's future clinical status and inform a personalized

treatment plan.

More specifically, and similarly to the text generation strategy in ChatGPT,? we
can generate future clinical variables in an autoregressive manner. To initially
assess the accuracy of the model's predictions, we tested all admissions
between January 1, 2019 and January 1, 2020, with a hospitalization duration
of at least 18 periods. In Figure 3, we forecast the sequence of future vital signs
including Systolic Blood Pressure (SBP), pulse, and SpO2 at different times
during the hospitalization. The later the period we consider as the current
period, the longer the history we can use to make the predictions, which, as
seen in Figure 3, reduces the prediction error. To quantify this error, we use the
Mean Absolute Error (MAE) overall tested admissions. Using the mean of the
feature values in the training set as the prediction serves as a simple baseline,
and GPT predictions always outperform this baseline. Forecasting further into
the future with GPT is more difficult than the near future. Moreover, while using
a longer history is helpful, the benefit is less significant when predicting the next
period. These observations indicate that our model is utilizing the dependencies
underlying different periods and variables to make a better long-term prediction.
Nevertheless, in this study, the major purpose of developing our GPT
architecture and CRM framework is to detect novel diseases, and the extra

functionalities (e.g., clinical variable forecasting ability) can be seen as side



benefits brought by our approach. However, more validation is needed for this

additional functionality to become useful in a clinical setting.
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Figure 3. Error of future EHR sequences generated by GPT.

Our model is highly applicable since the 31 generic variables we used are
available across multiple EHR systems. Compared with previous novel disease
detection works*242527.28 hased on chest radiology data, our model can also
capture non-respiratory illnesses. There is a trade-off between using a limited
number of variables (which makes the model easier to use and more generally
applicable) and training with more variables (e.g., laboratory results and
symptoms from clinical notes) larger GPT models (which may improve
detection ability). In practice, hospitals can select which features to include in
GPT and flexibly determine the cut-off year for EHR training data collection,
based on the availability of clinical variables and the intended use. Although
EHR data are widely accessible as the input to our model in practical pandemic

surveillance, for research purposes, obtaining the accurate timestamps for



variables is challenging due to deidentification requirements. Therefore, the
EHR data from other hospital systems were not collected for a multi-center
analysis, which is a limitation of this work. Nevertheless, collected from the
largest safety-net system in New England, our real-world data set contains a
large and racially diverse patient cohort over a span of seven years, which is
sufficient to support our method’s effectiveness on a hospital-level outbreak
surveillance. When more EHR data from multiple hospitals are available in the
future, our work can be expanded to a multi-center analysis for broader,

population-level outbreak detection.

5. CONCLUSION

In this study, we designed a causal EHR modeling method to build GPT models
for EHR-based novel disease detection within a hospital. Our GPT models can
potentially be implemented to assist a variety of other clinical tasks, such as
EHR sequence embedding, patient outcome prediction and clinical variable
sequence forecasting. Future work may consider further validating our GPT
model’s practical capability in these extra scenarios above, and expanding our
hospital-level outbreak detection to a broader population level by introducing

EHR data from multiple hospitals.
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