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ABSTRACT 

Objective: To develop an Artificial Intelligence (AI)-based anomaly detection 

model as a complement of an “astute physician” in detecting novel disease 

cases in a hospital and preventing emerging outbreaks. 

 

Methods: Data included hospitalized patients (n=120,714) at a safety-net 

hospital in Massachusetts. A novel Generative Pre-trained Transformer (GPT)-

based clinical anomaly detection system was designed and further trained 

using Empirical Risk Minimization (ERM), which can model a hospitalized 

patient's Electronic Health Records (EHR) and detect atypical patients. 

Methods and performance metrics, similar to the ones behind the recent Large 

Language Models (LLMs), were leveraged to capture the dynamic evolution of 

the patient's clinical variables and compute an Out-Of-Distribution (OOD) 

anomaly score. 

 

Results: In a completely unsupervised setting, hospitalizations for Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection could 

have been predicted by our GPT model at the beginning of the COVID-19 

pandemic, with an Area Under the Receiver Operating Characteristic Curve 

(AUC) of 92.2%, using 31 extracted clinical variables and a 3-day detection 

window. Our GPT achieves individual patient-level anomaly detection and 

mortality prediction AUC of 78.3% and 94.7%, outperforming traditional linear 



models by 6.6% and 9%, respectively. Different types of clinical trajectories of 

a SARS-CoV-2 infection are captured by our model to make interpretable 

detections, while a trend of over-pessimistic outcome prediction yields a more 

effective detection pathway. Furthermore, our comprehensive GPT model can 

potentially assist clinicians with forecasting patient clinical variables and 

developing personalized treatment plans. 

 

Conclusion: This study demonstrates that an emerging outbreak can be 

accurately detected within a hospital, by using a GPT to model patient EHR 

time sequences and labeling them as anomalous when actual outcomes are 

not supported by the model. Such a GPT is also a comprehensive model with 

the functionality of generating future patient clinical variables, which can 

potentially assist clinicians in developing personalized treatment plans. 

 

Keywords: Novel disease detection; Pandemic prevention; EHR modeling; 

Deep learning; GPT. 

 

  



1. INTRODUCTION 

Pandemics can be devastating, as the COVID-19 pandemic plainly 

demonstrated.1,2 An effective, early novel infectious disease detection system 

could potentially be used to trigger a response and implement mitigation 

measures within a hospital, which is essential to prevent a future pandemic. 

Manual detection of a new disease cluster depends on an astute physician 

realizing the atypical nature of encountered cases, which requires expertise, 

time, and inquisitiveness.3,4 Artificial Intelligence (AI) processes may provide a 

scalable solution with the potential to yield more rapid and accurate detection 

of emerging threats. 

 

The transformer5 architecture is responsible for the most recent successes of 

AI,6–8 revolutionizing clinical Natural Language Processing (NLP),6,9 clinical 

image analysis,10,11 Electronic Health Records (EHR) modeling,12 and protein 

structure prediction.13 Specifically, the Generative Pre-trained Transformer 

(GPT)14 is a special type of unidirectional transformer which can generate new 

sequence instances. A GPT trained on large corpora using Causal Language 

Modeling (CLM) gave rise to Large Language Models (LLMs) such as 

ChatGPT.8 GPT-based generative AI models do not simply memorize 

associations between words,15 but are able to represent the semantics 

underlying the training data.16,17  

 



Despite GPT’s outstanding analytical and generative ability showed in a variety 

of biomedical applications,18–21 to the best of our knowledge, it has not been 

applied to structured EHR sequence modeling for unsupervised novel disease 

detection. Current transformer-based EHR anomaly detection and modeling 

systems were trained using BERT-like methods,12,22 and they were not 

successfully applied to detect novel diseases and prevent pandemics. Instead, 

recent disease detection systems utilized Convolutional Neural Networks 

(CNN),23–25 and Recurrent Neural Networks (RNN)26 using different types of 

data and trained in a supervised manner, which achieved decent detection 

accuracy. However, supervised training limits their generalizability to unknown 

diseases. Unsupervised COVID-19 detection models based on CNN and 

variational autoencoders were designed,4,27,28 though these models relied on 

lung X-ray or CT scans, which limits their applicability. Pandemic surveillance 

strategies were based on the population distribution29 and admission number 

time series,30 but these methods cannot detect individual patient anomalies. An 

unsupervised NLP method was proposed to detect an outbreak in dogs from 

EHRs,31 but this approach only used free text and was not applied to human 

subjects. An One-Class Support Vector Machine (OCSVM) approach was 

applied to spike protein sequences to detect SARS-CoV-2 variants,32 but did 

not use EHR data or deep neural networks. The availability of GPT and EHR 

data creates an opportunity for innovation by training a comprehensive GPT for 



EHR modeling, similar to how ChatGPT was developed for natural language 

tasks. 

 

This study leverages GPT, language modeling schemes, and Out-Of-

Distribution (OOD) detection to exploit the evolutionary characteristics in EHR 

time series, seeking to detect anomalies in EHRs associated with a potential 

new disease or emerging pandemic. Clinical variables in the EHRs were 

separated into consecutive periods to form a sequence. We used a Causal 

(electronic health) Record Modeling (CRM) method based on the CLM for GPT 

Language Models (LM). To compute OOD anomaly scores for each patient, we 

modified the perplexity metric in language modeling to evaluate how well a new 

EHR sequence fits models pre-trained on the in-distribution EHR.  

 

Statement of Significance 

Issue 

Rapid detection of a novel disease is essential in pandemic 

prevention, though traditional detection requires much 

expertise, time and inquisitiveness. 

What is 

already 

known 

Transformer-based AI models show great strength in 

biomedical tasks including Electronic Health Record (EHR) 

modeling, while they have hardly been applied to real-world 

novel disease detection. 



What this 

paper adds 

This study aims to build a Generative Pre-trained Transformer 

(GPT)-based structured EHR modeling system for real-time, 

unsupervised novel disease detection and hospital-level 

outbreak surveillance, which requires no prior knowledge of 

new diseases. This comprehensive EHR model can also 

potentially support a variety of EHR-based prediction tasks. 

 

 

2. MATERIAL AND METHODS 

2.1. Data description 

Our data set contains de-identified EHRs of 120,714 hospitalized patients from 

the Boston Medical Center (BMC), which is the largest safety-net hospital in 

New England. Each patient may have multiple admissions; overall 230,026 

admissions from January 1, 2016 to January 24, 2023 were included. For each 

admission, 31 clinical variables were extracted, including SARS-CoV-2 test 

results, vital signs, demographics, past medical history, hospitalization status, 

Intensive Care Unit (ICU) status, mechanical ventilation records, and death 

(see Supplement for details). 

 

2.2. Clinical rationale 

Predictive modeling exploits correlations between clinical variables and 

outcomes of interest.33,34 Earlier work35,36 found that patient outcomes such as 

ICU admission and death can be predicted at an early stage of the infection by 

a few predictors, including vital signs and laboratory results. More complex 



models that captured the evolution of a patient’s clinical condition showed even 

stronger predictive power.37 Given that each disease is associated with specific 

patterns, modeling these patterns in a structured EHR time series with 

sequence modeling algorithms has the potential to detect a new disease by 

identifying cases that do not fit the model. 

 

2.3. EHR sequentialization 

We defined a period to correspond to 𝜏 consecutive hours and separated the 

patient's EHR into a sequence of periods. We set 𝜏 ൌ 4 in this study, since the 

vital signs were typically collected every 4 hours in the hospital. For a 

hospitalization with 𝐻  hours in total, 𝑛 ൌ ⌈𝐻/𝜏⌉  consecutive periods 

ሼ𝑡ଵ, … , 𝑡௡ሽ  were defined starting from the admission time. In each period, 

continuous variables (e.g., vital signs) were averaged, while categorical 

variables (e.g., ICU status) were binarized into 0/1 indicator variables. Hence, 

for each variable 𝑓 out of the 𝑚 total clinical features/outcomes in a set ℳ ൌ

ሼ𝑓ଵ, … ,𝑓௠ሽ, its value can be extracted for a period 𝑡௜, denoted as 𝑥௧೔
௙ , and 𝐱௧೔ ൌ

൫𝑥௧೔
௙భ , … , 𝑥௧೔

௙೘൯ ∈ ℝ௠ is a (column) feature vector for 𝑡௜. Thus, each admission is 

represented by a sequence 𝐱௧భ:௧೙ ൌ ൛𝐱௧భ , … , 𝐱௧೙ൟ. We exclude a specific patient 

sequence if more than 20% of the continuous variables are missing, and we 

impute the missing values for a continuous variable using the median of the 

non-missing values in the training set. Finally, all continuous variables were 



standardized using the mean and standard deviation computed from the 

training set. 

 

2.4. Causal EHR modeling 

CLM is a powerful language modeling scheme, which we modify to develop our 

CRM method for EHR modeling. In NLP, for a text sequence with tokens 

ሼ𝑦ଵ, … ,𝑦௡ሽ, the CLM training for an LM aims at maximizing the conditional 

probability of the correct next-token given the previous tokens, i.e., 

𝑃ሺ𝑦௜|𝑦ଵ, … ,𝑦௜ିଵ,𝜽௅ெሻ, where 𝜽௅ெ are the parameters of the model. Therefore, 

the trained LM can generate new text by predicting the next token in an 

autoregressive way. For EHR modeling, rather than predicting the next token, 

we use a GPT with parameters 𝜽 to define a discriminative probability model 

P൫𝐱௜|𝐱௧భ:௧೔షభ ,𝜽൯ and predict the next-period clinical variables, given only the 

current and past periods. We make the assumption that due to the EHR data 

correlations we discussed in Sec. 2.2, all the next-period variables are 

predictable given the historical and current-period EHR, i.e., a statistical 

assumption that all the future variables are conditionally independent given the 

past and present. As a result, the parameters can be learned by maximizing the 

likelihood on all variables and periods (with a history) using a training set of 𝑁 

admissions from the EHR dataset: 

max
𝜽

∏ ∏ ∏ 𝑃ቀ𝑥௞,௧೔
௙ |𝐱௞,௧భ:௧೔షభ ,𝜽ቁ௙∈ℳ

௡
௜ୀଶ

ே
௞ୀଵ , 



where the index 𝑘 denotes the 𝑘-th admission sample. By taking the negative 

logarithm, we can formulate our CRM problem as an Empirical Risk 

Minimization (ERM) with a loss function defined by the discriminative model: 

                min
𝜽
෍෍ ෍ െ log𝑃ቀ𝑥௞,௧೔

௙ |𝐱௞,௧భ:௧೔షభ ,𝜽ቁ
௙∈ℳ

௡

௜ୀଶ

ே

௞ୀଵ

.                ሺ1ሻ 

Note that our causal EHR modeling is a framework inspired by Causal 

Language Modeling (CLM) and further trained using ERM, rather than a 

traditional causal inference method in clinical study. We use GPT to build this 

discriminative model, which is illustrated in Figure 1. Each 𝐱௧೔ is first mapped 

into the initial hidden state 𝐡଴,௧೔, where the positional embedding is also added 

to discriminate different periods during the hospitalization. For each self-

attention layer in GPT, the previous layer's output hidden states will be first 

mapped into Query, Key and Value vectors 𝐐௧భ ,𝐊௧భ and 𝐕௧భ for each period, 

and the attention score of 𝑡௝ w.r.t 𝑡௜ is computed as: 

𝐴௧೔,௧ೕ ൌ

⎩
⎪
⎨

⎪
⎧ 〈𝐐௧೔ ,𝐊௧ೕ〉

ටdim൫𝐊௧೔൯
, 𝑖 ൒ 𝑗,

െ∞,           𝑖 ൏ 𝑗,

 

where 〈∙, ∙〉  denotes inner product and dimሺ∙ሻ  the dimension of a vector.  

Therefore, in the updated hidden state 𝐡௧೔
ᇱ ൌ ∑ ቆ

ୣ୶୮ቀ஺೟೔,೟ೕቁ

∑ ୣ୶୮ቀ஺೟೔,೟೥ቁ
೙
೥సభ

ቇ௡
௝ୀଵ 𝐕௧ೕ , the 

weights for the future periods after 𝑡௜ become 0, which forces the multi-head 

attention mechanism to be unidirectional and implemented only across the 

current and past periods. The attention layers in GPT exploit the dependency 

of the clinical variables from different periods, and the hidden state 𝐡௧೔  for 



period 𝑡௜ output by the last attention layer utilizes all the present/past but no 

future information, which naturally suits the definition of the loss function in 

CRM (cf. Eq. (1)). For each continuous variable 𝑓, a linear regression layer with 

parameters 𝐰௙ ∈ ℝௗ , 𝑏௙ ∈ ℝ  is defined to predict the next-period 𝑥ො௧೔
௙ሺ𝜽ሻ ൌ

〈𝐰௙,𝐡௧೔షభ〉 ൅ 𝑏௙, where 𝜽 are all parameters in the entire GPT model (including 

𝐰௙ and 𝑏௙). If 𝑓 is binary, a softmax classifier is defined instead to derive the 

predicted positive probability 𝑥ො௧೔
௙ሺ𝜽ሻ. The loss function 𝐿  is defined by the 

absolute error and cross-entropy loss between the target and GPT prediction: 

𝐿௧೔
௙ ሺ𝜽ሻ ൌ ቐ

ห𝑥௧೔
௙ െ 𝑥ො௧೔

௙ሺ𝜽ሻห,                                   if 𝑓 continuous,

െ𝑥௧೔
௙ log 𝑥ො௧೔

௙ሺ𝜽ሻ െ ൫1 െ 𝑥௧೔
௙൯ log ቀ1 െ 𝑥ො௧೔

௙ሺ𝜽ሻቁ ,   otherwise.
 

Finally, the CRM training for a GPT model amounts to minimizing the total loss: 

min
𝜽
෍෍ ෍ 𝐿௞,௧೔

௙ ሺ𝜽ሻ
௙∈ℳ

௡

௜ୀଶ

ே

௞ୀଵ

. 

In practice, we do not predict the past medical history and demographics, but 

only use them as features to predict other variables, which is because these 

features are typically time-invariant within an admission.  

 



 

Figure 1. GPT for causal EHR modeling. 

 

2.5. Out-Of-Distribution (OOD) anomaly detection 

We regard novel disease detection as an OOD anomaly detection task, which 

detects data instances that are drawn far away from the training distribution. 

We use all the EHR data before January 1, 2019 as the in-distribution training 

data, as COVID-19 that is regarded as the novel disease to detect in this work,  

did not appear before 2019. Therefore, a GPT pre-trained on normal EHR using 

our CRM method can represent the in-distribution patterns and be used to 

detect anomalies in a new EHR. 

 



Transformer-based LMs have shown significant distribution-specific 

characteristics,9,38,39 with perplexity38 being a key metric in evaluating how an 

LM fits the text. We define our perplexity metric to evaluate how our GPT model 

fits the EHR of a hospitalized patient w.r.t a certain clinical variable 𝑓: 

PPL௙ሺ𝐱,𝜽ሻ ൌ
1

𝑛 െ 1
෍𝐿௧೔

௙ ሺ𝜽ሻ

௡

௜ୀଶ

. 

A higher perplexity of an admission indicates a higher chance of OOD, i.e., a 

potential novel disease. We use the perplexities w.r.t ICU care, mechanical 

ventilation, and death as the main anomaly scores. To make our detection 

interpretable, we further designed two types of perplexities to discriminate 

different abnormal clinical trajectories. We define the type-1 perplexity as the 

perplexity computed only from periods with label 0, which measures the chance 

of mistakenly predicting a negative outcome as positive (a.k.a type-1 error, or 

false alarm). Similarly, the type-2 perplexity is computed only from the periods 

with label 1, which measures the chance of mistakenly predicting a positive 

outcome as negative (a.k.a type-2 error, or miss). 

 

We define a 𝛾-day interval 𝑇 as 𝛾 consecutive days, so that the time axis can 

be separated into a sequence of ሼ𝑇௜ , 𝑖 ൌ 1, … ሽ. To mitigate noise, we further 

average the perplexities of all the admission cases whose admission time were 

within the same interval 𝑇௜ , hence, computing an interval-level perplexity 

PPL்೔
௙ ሺ𝜽ሻ. As long as at least one anomaly admission exists in 𝑇௜, we regard 𝑇௜ 

as an anomaly interval to detect. We design two statistical methods to detect 



the anomaly intervals in the time series ൛PPL்೔
௙ ሺ𝜽ሻൟ. In Method 1, we simply 

assume that during the normal years without a pandemic, the time series 

൛PPL்೔
௙ ሺ𝜽ሻൟ is stationary, where all PPL்೔

௙ ሺ𝜽ሻ are i.i.d Gaussian observations. 

Therefore, we directly use the mean 𝜇  and standard deviation 𝜎  of all 

PPL்೔
௙ ሺ𝜽ሻ in the training set to define the threshold, and detect all the 𝑇௜ in the 

test set with PPL்೔
௙ ሺ𝜽ሻ ൐ 𝜇 ൅ 𝛿𝜎 as anomalies, where 𝛿 is a scalar affecting 

the confidence. In Method 2, the stationary assumption does not hold, so we 

train a differenced autoregressive model (i.e., ARIMAሺ𝑝,𝑑, 0ሻ40) on the training 

set to forecast every PPL்೔
௙ ሺ𝜽ሻ using the previous intervals, and the prediction 

absolute residual time series ൛ห𝑅்೔
௙ ሺ𝜽ሻหൟ is used to compute appropriate 𝜇,𝜎 

and detect the anomaly intervals in the same manner as in Method 1. 

 

3. RESULTS 

We regard COVID-19 as the novel disease to detect. Based on whether the 

patient has a positive COVID-19 test result within 7 days before or after the 

admission time, we label each admission as 1 (anomaly) or 0 (normal). Table 

1 shows characteristics of admitted individuals. 

 

Table 1. Characteristics of individuals admitted. 

 All admissions 
Admissions before 

1/1/2020 

Admissions after 

1/1/2020 

Mean age 48.56 46.91 51.21 

Female % 53.82% 54.08% 53.41% 

Race - Black % 42.37% 42.12% 42.77% 



Ethnicity - Hispanic or 

Latino % 
23.63% 23.17% 24.35% 

Intensive care % 15.88% 16.73% 14.53% 

Mechanical ventilation % 4.28% 4.22% 4.39% 

Death % 1.63% 1.37% 2.03% 

SARS-CoV-2 infection % 2.39% 0.00% 6.21% 

 

The EHR data between January 1, 2019 and May 15, 2020 were used as the 

test set, which covered the epidemic and initial pandemic stage of COVID-19. 

Table 2 shows the individual-level mortality prediction and COVID-19 detection 

Area Under the Receiver Operating Characteristic Curve (AUC) of different 

methods on the test set, as well as the 1-day interval-level ICU anomaly 

detection AUC. 𝑓 indicates the variable used for perplexity computing. The 

GPT predicts mortality with a high AUC of 94.7% on the test set. Using the 

general perplexity, an unsupervised detection AUC of 77.7% is obtained by 

GPT when the intubation outcome is chosen, while the best individual-level 

COVID-19 detection AUC of 78.3% is achieved by GPT when all variables and 

the type-1 perplexity of the ICU outcome were used. When vital signs are 

excluded from variables and the type-2 perplexity computed from ICU 

prediction is used, a COVID-19 detection AUC of up to 65.7% can be obtained. 

The ICU type-1 perplexity achieves a high interval-level detection AUC of 

87.2% when a 1-day interval is applied for COVID detection, which indicates a 

strong detection power for novel diseases. 

 



 

Table 2. Model performance for mortality prediction and COVID-19 detection. 

Model Variables  Anomaly score 

Mortality 

prediction 

AUC 

COVID detection AUC 

𝒇 =  

Death 

𝒇 = 

Intubation 

𝒇 = 

ICU 

𝒇 = ICU 

(daily) 

Kernel 

OCSVM 
All 

- Distance to 

decision 

boundary 

- 0.735 0.739 0.737 0.768 

Linear 

regression / 

classification 

w/o vitals 

PPL 

0.722 

0.570 0.618 0.582 0.714 

PPL (type-1) 0.521 0.513 0.469 0.462 

PPL (type-2) 0.605 0.613 0.648 0.688 

All 

PPL 

0.857 

0.658 0.668 0.696 0.715 

PPL (type-1) 0.623 0.601 0.717 0.787 

PPL (type-2) 0.535 0.584 0.447 0.419 

GPT 

w/o vitals 

PPL 

0.750 

0.615 0.624 0.595 0.715 

PPL (type-1) 0.573 0.505 0.478 0.404 

PPL (type-2) 0.614 0.625 0.657 0.675 

All 

PPL 

0.947 

0.772 0.777 0.722 0.807 

PPL (type-1) 0.754 0.775 0.783 0.872 

PPL (type-2) 0.487 0.457 0.372 0.341 

 

By setting different thresholds 𝛿  (cf. Sec. 2.5), we further evaluate the 

decisions for 3-day intervals in Table 3. Among the 166 intervals in the test set, 

21 of them show an anomaly. By using 3-day intervals, COVID-19 detection 

AUC is overall higher than the individual-level AUC. The best AUC of 92.2% 

and weighted F1-score of 93% indicates that our GPT model accurately detects 

COVID-19 as a novel disease at the beginning of the pandemic, without raising 

serious false alarms before that time. 

 



Table 3. AUC and weighted F1-score of 3-day interval-level COVID-19 
detection using different decision thresholds. 
 

Variable for PPL (Type 1) Threshold AUC Weighted F1-score 

ICU 
𝛿 ൌ 3 

0.922 
0.930 

𝛿 ൌ 4 0.912 

Intubation 
𝛿 ൌ 3 

0.889 
0.941 

𝛿 ൌ 4 0.891 

Death 
𝛿 ൌ 3 

0.861 
0.896 

𝛿 ൌ 4 0.909 

 

To better assess the effectiveness of GPT in detecting the COVID-19 

anomalies, in Figure 2 we plot perplexity over time. Specifically, Figure 2(a) 

plots the weekly COVID-19 admissions (as a percentage of overall admissions) 

and Figure 2(b) plots weekly interval-level type-1 perplexities for the three 

variables reported in Table 2, along with detection thresholds for Methods 1 

and 2 and the ARIMA forecast used in Method 2. As all the EHR data before 

January 1, 2019 were used as in-distribution training data, the corresponding 

weekly perplexities are relatively low and stable, and an anomaly week was 

hardly detected as a false alarm. Between January 1, 2019 and January 1, 

2020, COVID-19 was not present in the U.S., and the weekly anomaly scores 

for all three outcomes also remained low, indicating that our GPT model pre-

trained on a large amount of EHR data can generalize well to new EHRs 

presented to it.  



 

Figure 2. Weekly anomaly scores and detection. 

 

Starting from March 2020, both weekly COVID admission percentage and 

weekly perplexity began to rise sharply, and a peak emerges. Given that the 

first COVID-19 admission in BMC was on March 13, 2020 (62.3-th week) and 

the first anomaly week around this time was the 63-th week detected by the 

mortality perplexity, our model successfully identified the initial anomaly weeks 

in the plot, without showing many false alarms. The perplexity peak and COVID 

admission percentage fell together around June, 2020, potentially due to the 



improvements in prevention and treatments, such as mask orders and use of 

an IL-6 inhibitor (tociluzimab)41 and dexamethasone.42  Nevertheless, the 

weekly perplexity continued showing an overall higher level compared to the 

time before 2020, and anomaly weeks could still be detected, especially by the 

ICU perplexity.  

 

4. DISCUSSION 

The best mortality prediction and interval-level novel disease detection AUCs 

achieved by our novel GPT models are 94.7% and 92.2%, respectively, 

showing that our method can successfully model EHRs and handle both 

supervised and unsupervised predictive tasks. Note that training our GPT and 

computing the perplexities require no prior knowledge or labels for a novel 

disease. Therefore, for practical outbreak surveillance, monitoring the 

perplexity plots shown in Figure 2 can help detect a new infectious disease and 

trigger steps to prevent wider spread of infection. Traditional EHR clinical 

variable analysis typically uses linear models and the latest variables to make 

interpretable predictions.35,37 In Table 2, we considered a baseline linear model 

where we replace the GPT by a simple linear regression/classification layer. 

GPT outperformed the best linear model by 9% and 6.6% for mortality 

prediction and individual-level COVID-19 detection, respectively. We also 

compared our method to Kernel One-Class SVM (OCSVM), which is one of the 



most powerful non-linear anomaly detection methods;32 GPT outperformed 

OCSVM by 4.4%.  

 

The type-1 perplexity explains most of the detection power of our GPT model 

when all variables are used, achieving the highest individual-level COVID 

detection AUC of 78.3% and outperforming the best AUC achieved by type-2 

perplexity by 12.6%. The detection ability driven by both type-1 (false alarm) 

and type-2 (miss) perplexity can be interpreted by the characteristics of COVID-

19. On the one hand, although COVID-19 can cause severe symptoms such as 

high fever and dyspnea which can be reflected in the vital signs, its mortality 

rate is relatively low (about 3.4% in the U.S. in 202043) compared to other 

infectious diseases (e.g., Ebola, MERS). Therefore, for a significant proportion 

of patients, mortality outcomes and related ICU/intubation status can be more 

favorable than what the historical patterns for patients with similar clinical 

condition may suggest, which “surprises” the GPT and leads to a high type-1 

perplexity. To illustrate the above argument, we present the following case: 

 

“Patient 156932, a 76 y.o. Black female with a past medical history of 

hypertension, chronic kidney disease and chronic heart disease, was admitted 

during the 64-th week in Figure 2 (an anomaly week) with a positive SARS-

CoV-2 RT-PCR test sampled on the same day. The patient showed an SpO2 

93% - 94% at admission and was admitted to ICU and intubated immediately. 



In the first 72 hours, the patient remained intubated, while the averaged 

respiratory rate was mostly above 20. Three days later, the respiratory rate was 

up to 30, while SpO2 was mostly below 95%. The patient’s condition improved 

after two additional days and she was discharged from the hospital 6 days after 

admission. Our GPT model for death prediction analyzes the situation in the 

first 72 hours and predicts that the patient has a high likelihood of dying, so 

when she was discharged, GPT showed a high type-1 perplexity of 0.31, among 

the top 3% in the same anomaly week.” 

 

On the other hand, patient characteristics such as age, male gender, and 

underlying conditions such as diabetes are risk factors for severe SARS-CoV-

2 infection.35 When the GPT was trained without vital signs, such demographic 

information and underlying conditions became the major variables used by the 

model. Some admissions can surprisingly lead to severe outcomes if the patient 

is infected by SARS-CoV-2 (e.g., an old male without any prior conditions35), 

which explains the model performance based on type-2 perplexity. Our GPT-

based EHR modeling system offers an unsupervised learning framework for 

detecting novel disease clusters. In practice, depending on the disease, 

abnormal admissions may be indicated by type-1 or type-2 perplexity or both. 

Our detection method based on different types of outcome prediction errors and 

feature sets also injects interpretability and transparency into the system, which 



helps clinicians to understand the basic characteristics and trajectories of a 

novel disease in real-world outbreak surveillance. 

 

The issue of false alarms is a critical aspect of any outbreak surveillance 

system. As shown in Figure 2, almost all the anomaly points detected were after 

March 2020, and few anomalies were detected before COVID-19 appeared in 

the U.S., which indicates that our GPT-based system has a low false-alarm rate 

for novel disease detection. Still, one relatively obvious false alarm can be 

observed around January 2019. This could be explained by the flu season, with 

the 2018 – 2019 season being unusually long and marked by two separate 

waves of influenza A.44 An unusually significant occurrence of a known disease 

might be detected as a novel disease outbreak as well, which is a cause of false 

alarms in our system. Nevertheless, Figure 2 and the high weighted F1-score 

of 93% establish that our current system has a satisfying balance between 

novel disease detection precision and recall, which effectively reduces false 

alarms. 

 

Although we trained GPT for novel disease detection, it can also be viewed as 

a comprehensive EHR predictive model which can, potentially, be used for a 

variety of clinical purposes. In addition to the accurate mortality prediction we 

have shown, our GPT model can be applied to generate new EHR sequences 

and forecast future clinical variables for any given patient. This can be useful in 



anticipating the patient's future clinical status and inform a personalized 

treatment plan. 

 

More specifically, and similarly to the text generation strategy in ChatGPT,8 we 

can generate future clinical variables in an autoregressive manner. To initially 

assess the accuracy of the model's predictions, we tested all admissions 

between January 1, 2019 and January 1, 2020, with a hospitalization duration 

of at least 18 periods. In Figure 3, we forecast the sequence of future vital signs 

including Systolic Blood Pressure (SBP), pulse, and SpO2 at different times 

during the hospitalization. The later the period we consider as the current 

period, the longer the history we can use to make the predictions, which, as 

seen in Figure 3, reduces the prediction error. To quantify this error, we use the 

Mean Absolute Error (MAE) overall tested admissions. Using the mean of the 

feature values in the training set as the prediction serves as a simple baseline, 

and GPT predictions always outperform this baseline. Forecasting further into 

the future with GPT is more difficult than the near future. Moreover, while using 

a longer history is helpful, the benefit is less significant when predicting the next 

period. These observations indicate that our model is utilizing the dependencies 

underlying different periods and variables to make a better long-term prediction. 

Nevertheless, in this study, the major purpose of developing our GPT 

architecture and CRM framework is to detect novel diseases, and the extra 

functionalities (e.g., clinical variable forecasting ability) can be seen as side 



benefits brought by our approach. However, more validation is needed for this 

additional functionality to become useful in a clinical setting.  

 

 

Figure 3. Error of future EHR sequences generated by GPT. 

 

Our model is highly applicable since the 31 generic variables we used are 

available across multiple EHR systems. Compared with previous novel disease 

detection works4,24,25,27,28 based on chest radiology data, our model can also 

capture non-respiratory illnesses. There is a trade-off between using a limited 

number of variables (which makes the model easier to use and more generally 

applicable) and training with more variables (e.g., laboratory results and 

symptoms from clinical notes) larger GPT models (which may improve 

detection ability). In practice, hospitals can select which features to include in 

GPT and flexibly determine the cut-off year for EHR training data collection, 

based on the availability of clinical variables and the intended use. Although 

EHR data are widely accessible as the input to our model in practical pandemic 

surveillance, for research purposes, obtaining the accurate timestamps for 

(a) SBP forecasting error. (b) Pulse forecasting error. (c) SpO2 forecasting error. 



variables is challenging due to deidentification requirements. Therefore, the 

EHR data from other hospital systems were not collected for a multi-center 

analysis, which is a limitation of this work. Nevertheless, collected from the 

largest safety-net system in New England, our real-world data set contains a 

large and racially diverse patient cohort over a span of seven years, which is 

sufficient to support our method’s effectiveness on a hospital-level outbreak 

surveillance. When more EHR data from multiple hospitals are available in the 

future, our work can be expanded to a multi-center analysis for broader, 

population-level outbreak detection. 

 

5. CONCLUSION 

In this study, we designed a causal EHR modeling method to build GPT models 

for EHR-based novel disease detection within a hospital. Our GPT models can 

potentially be implemented to assist a variety of other clinical tasks, such as 

EHR sequence embedding, patient outcome prediction and clinical variable 

sequence forecasting. Future work may consider further validating our GPT 

model’s practical capability in these extra scenarios above, and expanding our 

hospital-level outbreak detection to a broader population level by introducing 

EHR data from multiple hospitals. 

 

Acknowledgments: This research was partially supported by the NSF under 

grants ECCS-2317079, CCF-2200052, DMS-1664644, and IIS-1914792, by 



the ONR under grant N00014-19-1-2571, by the DOE under grant DE-AC02-

05CH11231, by the NIH under grant UL54 TR004130 and 1UL1TR001430, and 

by Boston University. We thank Melissa Hofman, MSIS and the BMC Clinical 

Data Warehouse for Research team for preparing the dataset for our analysis 

and answering many related questions. 

 

Competing interests: All authors declare no financial or non-financial 

competing interests. 

 

Author contributions: BH co-processed the data, developed the models, 

obtained results, and co-wrote the manuscript. YH co-processed the data. 

WGA, SAA, HEH, and NB provided access to data, offered medical insights, 

contributed to writing the manuscript, and reviewed the manuscript. ICP 

designed/led the study, contributed to model development, and co-wrote the 

manuscript. 

 

Data availability: The de-identified data set used in this study was considered 

a limited dataset for HIPAA purposes. The study was approved by the pertinent 

Institutional Review Board (IRB), which also waived informed consent. The data 

that support the findings of this study are available from the Boston Medical 

Center (BMC) in Massachusetts but restrictions apply to the availability of these 

data, which were used under license for the current study, and so are not 



publicly available. Data are however available from the authors upon 

reasonable request and with permission of the Boston Medical Center. 

 

Code availability: The underlying code for this study can be accessed via this 

link https://github.com/noc-lab/gpt_anomaly_detection. 

 

References 

1. WHO Coronavirus (COVID-19) Dashboard. Published online 2023. 
https://covid19.who.int/ 

2. Hlávka J, Rose A. COVID-19’s total cost to the U.S. economy will reach 
$14 trillion by end of 2023. Published online May 16, 2023. 
https://healthpolicy.usc.edu/article/covid-19s-total-cost-to-the-economy-in-
us-will-reach-14-trillion-by-end-of-2023-new-research/ 

3. Ajagbe SA, Adigun MO. Deep learning techniques for detection and 
prediction of pandemic diseases: a systematic literature review. Multimed 
Tools Appl. Published online 2023:1-35. 

4. Chharia A, Upadhyay R, Kumar V, et al. Deep-precognitive diagnosis: 
Preventing future pandemics by novel disease detection with biologically-
inspired conv-fuzzy network. IEEE Access. 2022;10:23167-23185. 

5. Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. 
ArXiv170603762 Cs. Published online December 5, 2017. Accessed May 
15, 2021. http://arxiv.org/abs/1706.03762 

6. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep 
bidirectional transformers for language understanding. ArXiv Prepr 
ArXiv181004805. Published online 2018. 

7. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 
words: Transformers for image recognition at scale. ArXiv Prepr 
ArXiv201011929. Published online 2020. 

8. OpenAI. GPT-4 Technical Report. ArXiv. 2023;abs/2303.08774. 

9. Alsentzer E, Murphy JR, Boag W, et al. Publicly available clinical BERT 
embeddings. ArXiv Prepr ArXiv190403323. Published online 2019. 



10. Felsch M, Meyer O, Schlickenrieder A, et al. Detection and localization of 
caries and hypomineralization on dental photographs with a vision 
transformer model. NPJ Digit Med. 2023;6(1):198. 

11. Yun D, Yang HL, Kwon S, et al. Automatic segmentation of atrial 
fibrillation and flutter in single-lead electrocardiograms by self-supervised 
learning and Transformer architecture. J Am Med Inform Assoc. 
2024;31(1):79-88. 

12. Li Y, Rao S, Solares JRA, et al. BEHRT: transformer for electronic health 
records. Sci Rep. 2020;10(1):7155. 

13. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure 
prediction with AlphaFold. Nature. 2021;596(7873):583-589. 

14. Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language 
understanding by generative pre-training. Published online 2018. 

15. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the dangers of 
stochastic parrots: Can language models be too big? In: Proceedings of 
the 2021 ACM Conference on Fairness, Accountability, and Transparency. 
; 2021:610-623. 

16. Jin C, Rinard M. Evidence of Meaning in Language Models Trained on 
Programs. ArXiv Prepr ArXiv230511169. Published online 2023. 

17. Gurnee W, Tegmark M. Language Models Represent Space and Time. 
Published online 2023. 

18. Frei J, Kramer F. Annotated dataset creation through large language 
models for non-english medical NLP. J Biomed Inform. 2023;145:104478. 

19. Guo Y, Qiu W, Leroy G, Wang S, Cohen T. Retrieval augmentation of 
large language models for lay language generation. J Biomed Inform. 
2024;149:104580. 

20. Guevara M, Chen S, Thomas S, et al. Large language models to identify 
social determinants of health in electronic health records. Npj Digit Med. 
2024;7(1):6. 

21. Chen A, Chen DO, Tian L. Benchmarking the symptom-checking 
capabilities of ChatGPT for a broad range of diseases. J Am Med Inform 
Assoc. Published online 2023:ocad245. 

22. Niu H, Omitaomu OA, Langston MA, et al. EHR-BERT: A BERT-based 
model for effective anomaly detection in electronic health records. J 
Biomed Inform. Published online 2024:104605. 



23. Jain S, Sindhwani N, Anand R, Kannan R. COVID Detection Using Chest 
X-Ray and Transfer Learning. In: International Conference on Intelligent 
Systems Design and Applications. Springer; 2021:933-943. 

24. Kundu R, Singh PK, Mirjalili S, Sarkar R. COVID-19 detection from lung 
CT-Scans using a fuzzy integral-based CNN ensemble. Comput Biol Med. 
2021;138:104895. 

25. Shaik NS, Cherukuri TK. Transfer learning based novel ensemble 
classifier for COVID-19 detection from chest CT-scans. Comput Biol Med. 
2022;141:105127. 

26. Amin S, Uddin MI, Hassan S, et al. Recurrent neural networks with TF-IDF 
embedding technique for detection and classification in tweets of dengue 
disease. IEEE Access. 2020;8:131522-131533. 

27. Mansour RF, Escorcia-Gutierrez J, Gamarra M, Gupta D, Castillo O, 
Kumar S. Unsupervised deep learning based variational autoencoder 
model for COVID-19 diagnosis and classification. Pattern Recognit Lett. 
2021;151:267-274. 

28. Scarpiniti M, Ahrabi SS, Baccarelli E, Piazzo L, Momenzadeh A. A novel 
unsupervised approach based on the hidden features of Deep Denoising 
Autoencoders for COVID-19 disease detection. Expert Syst Appl. 
2022;192:116366. 

29. Bhatia S, Lassmann B, Cohn E, et al. Using digital surveillance tools for 
near real-time mapping of the risk of infectious disease spread. NPJ Digit 
Med. 2021;4(1):73. 

30. Fox SJ, Lachmann M, Tec M, et al. Real-time pandemic surveillance using 
hospital admissions and mobility data. Proc Natl Acad Sci. 
2022;119(7):e2111870119. 

31. Noble PJM, Appleton C, Radford AD, Nenadic G. Using topic modelling for 
unsupervised annotation of electronic health records to identify an 
outbreak of disease in UK dogs. Plos One. 2021;16(12):e0260402. 

32. Nicora G, Salemi M, Marini S, Bellazzi R. Predicting emerging SARS-CoV-
2 variants of concern through a One Class dynamic anomaly detection 
algorithm. BMJ Health Care Inform. 2022;29(1). 

33. Fang L, Xie H, Liu L, et al. Early predictors and screening tool developing 
for severe patients with COVID-19. BMC Infect Dis. 2021;21(1):1-8. 

34. Gallo Marin B, Aghagoli G, Lavine K, et al. Predictors of COVID-19 
severity: a literature review. Rev Med Virol. 2021;31(1):1-10. 



35. Hao B, Sotudian S, Wang T, et al. Early prediction of level-of-care 
requirements in patients with COVID-19. eLife. 2020;9:e60519. 
doi:10.7554/eLife.60519 

36. Hu CA, Chen CM, Fang YC, et al. Using a machine learning approach to 
predict mortality in critically ill influenza patients: a cross-sectional 
retrospective multicentre study in Taiwan. BMJ Open. 
2020;10(2):e033898. 

37. Hao B, Hu Y, Sotudian S, et al. Development and validation of predictive 
models for COVID-19 outcomes in a safety-net hospital population. J Am 
Med Inform Assoc. 2022;29(7):1253--1262. doi:10.1093/jamia/ocac062 

38. Yang X, Bian J, Hogan WR, Wu Y. Clinical concept extraction using 
transformers. J Am Med Inform Assoc. 2020;27(12):1935-1942. 

39. Hao B, Zhu H, Paschalidis ICh. Enhancing Clinical BERT Embedding 
using a Biomedical Knowledge Base. In: Proceedings of the 28th 
International Conference on Computational Linguistics. ; 2020:657-661. 

40. Box GE, Jenkins GM, Reinsel GC, Ljung GM. Time Series Analysis: 
Forecasting and Control. John Wiley & Sons; 2015. 

41. Sinha P, Mostaghim A, Bielick CG, et al. Early administration of 
interleukin-6 inhibitors for patients with severe COVID-19 disease is 
associated with decreased intubation, reduced mortality, and increased 
discharge. Int J Infect Dis. 2020;99:28-33. doi:10.1016/j.ijid.2020.07.023 

42. Ledford H. Coronavirus breakthrough: dexamethasone is first drug shown 
to save lives. Nature. 2020;582(7813):469-470. 

43. Karmakar M, Lantz PM, Tipirneni R. Association of social and 
demographic factors with COVID-19 incidence and death rates in the US. 
JAMA Netw Open. 2021;4(1):e2036462-e2036462. 

44. Scutti S. Longer than usual and M-shaped: CDC says 2018-19 flu season 
was odd but not as severe as the previous deadly season. Published 
online June 20, 2019. 

 

 

 

 



 


