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Abstract Current eddy‐permitting and eddy‐resolving ocean models require dissipation to prevent a
spurious accumulation of enstrophy at the grid scale. We introduce a new numerical scheme for momentum
advection in large‐scale ocean models that involves upwinding through a weighted essentially non‐oscillatory
(WENO) reconstruction. The new scheme provides implicit dissipation and thereby avoids the need for an
additional explicit dissipation that may require calibration of unknown parameters. This approach uses the
rotational, “vector invariant” formulation of the momentum advection operator that is widely employed by
global general circulation models. A novel formulation of the WENO “smoothness indicators” is key for
avoiding excessive numerical dissipation of kinetic energy and enstrophy at grid‐resolved scales. We test the
new advection scheme against a standard approach that combines explicit dissipation with a dispersive
discretization of the rotational advection operator in two scenarios: (a) two‐dimensional turbulence and (b)
three‐dimensional baroclinic equilibration. In both cases, the solutions are stable, free from dispersive artifacts,
and achieve increased “effective” resolution compared to other approaches commonly used in ocean models.

Plain Language Summary High‐resolution climate models that resolve the cyclones and
anticyclones in the ocean, often called “eddies,” must prevent an artificial build‐up of whirl‐like movements, or
“enstrophy,” at the model's grid‐scale. Even though methods that prevent artificial accumulation of enstrophy
are included only to ensure numerical stability, they unfortunately also negatively impact the accuracy of model
predictions even at scales larger than the grid‐scale. Here, we devise a novel numerical method to overcome this
deficiency. Our method has the best of both worlds: it removes just enough enstrophy so that the flow is as close
to reality as possible and it achieves this without accumulating enstrophy at grid‐scale.

1. Introduction
Mesoscale ocean turbulence, characterized by eddies ranging from 10 to 100 km in size, plays a crucial role in
mixing heat, salt, momentum, and biogeochemical tracers throughout the ocean. This mixing in turn exerts a
leading‐order control on the large‐scale ocean circulation and its impact on climate (Vallis, 2017). Until recently,
climate models used ocean grids coarser than 100 km and resorted to parameterize this turbulence. The existing
parameterizations (Gent & Mcwilliams, 1990) remain quite uncertain and contribute significant uncertainties to
climate projections. In the last few years, it has become possible to run global ocean simulations with fine grids in
the 10–25 km range that partially resolve the mesoscale turbulence. This resolution is referred to as “eddy‐
permitting” in contrast to the “eddy‐resolving” resolution that requires even finer grids, beyond presently
available computational resources for climate projections (Ding et al., 2022; Silvestri et al., 2024). The eddy‐
permitting regime shares conceptual similarities with the well‐established Large Eddy Simulation (LES) tech-
nique used in computational fluid dynamics for three‐dimensional turbulence. In both cases, the grid resolution
resolves only the largest turbulent eddies. The goal of this paper is to exploit this similarity and develop an
accurate numerical scheme for mesoscale turbulence.

Numerical schemes for momentum advection can be categorized into two types based on the numerical char-
acteristics of the leading order truncation term: dispersive and diffusive. Global ocean models typically rely on
dispersive schemes and mitigate the dispersive “noise” by adding explicit diffusive closures (Adcroft et al., 2019;
Su et al., 2018). These closures range from simple laplacian/bilaplacian diffusion with static viscosity (Li
et al., 2020; Schwarzkopf et al., 2019) to more complex dynamical viscosities inspired by LESs (Bachman
et al., 2017; Fox‐Kemper & Menemenlis, 2004; Smagorinsky, 1963). Conversely, diffusive numerical schemes
exhibit a leading order diffusive error that ensures stability, eliminating the need for additional explicit closures.
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Examples of such schemes include flux‐limited advection (Van Leer, 1977; Zalesak, 1979), piecewise‐parabolic
methods (Sytine et al., 2000; Woodward & Colella, 1984), semi‐Lagrangian advection (Bates & McDo-
nald, 1982), and essentially non‐oscillatory schemes (Osher & Shu, 1991).

A major advantage of diffusive numerical schemes is that they avoid a key drawback of explicit closures: the need
to calibrate unknown free parameters to adapt to resolution. As importantly, they suppress spurious numerical
modes caused by dispersion errors typical of centered reconstruction schemes. Explicit closures, instead, often
require additional tweaking to dampen spurious computational modes as will be illustrated in idealized test cases.
This reduces the effective resolution of the simulation, because the smallest scales are compromised by numerics,
and may even affect the accuracy of the large‐scale solutions since the mesoscale regime is characterized by a
vigorous inverse energy cascade (Pressel et al., 2017).

A disadvantage of diffusive schemes is that momentum diffusion is built in the numerical reconstruction, rather
than explicitly prescribed. Thus the overall dissipation cannot be easily controlled and can exceed that of explicit
closures. To avoid this, the reconstruction schemes must be designed to minimize energy dissipation by utilizing
stencils of sufficiently high order. Another notable drawback of implicit diffusion is that assessing energy budgets
is more complicated than with energy‐conserving dispersive methods stabilized by explicit dissipation. Hence,
the choice of a diffusive method over a dispersive approach requires substantial evidence of significant accuracy
benefits.

In this paper, we introduce a novel diffusive numerical scheme designed to reduce both the energy dissipation and
the noise at the grid scale, thereby increasing the effective resolution of the model and improving numerical
stability. Importantly, the new scheme holds promise to reduce the computational cost of “eddy‐resolving” ocean
simulations which could be achieved with coarser grids than with presently used schemes.

Diffusive numerical schemes have seen application in various computational fluid dynamics fields, especially
in combination with the conservative (or “flux‐form”) formulation of the advection operator (Karaca
et al., 2012; Maulik & San, 2018; Zeng et al., 2021), including in atmospheric models (Norman et al., 2023;
Smolarkiewicz & Margolin, 1998; Souza et al., 2023) and regional ocean models (Holland et al., 1998;
Mohammadi‐Aragh et al., 2015; Shchepetkin & McWilliams, 1998a). However, finite‐volume general cir-
culation models (GCMs) often favor the rotational formulation of the advection operator due to its ease of
implementation with non‐regular grids, such as the cubed sphere grid (Ronchi et al., 1996), the latitude‐
longitude capped grid (Fenty & Wang, 2020), or the tripolar grid (Madec & Imbard, 1996). Within the
rotational framework, the application of upwinding‐based numerical schemes is far less common. Hahn and
Iaccarino (2008) introduced upwinding in the rotational three‐dimensional Navier–Stokes equations applied to
the kinetic energy gradient, while Ringler (2011) described the upwinding of vorticity in the vorticity flux
term as a possible monotone, diffusive discretization of the advection operator in the rotational form. The
latter approach, which aligns more with the intrinsic dynamics of two‐dimensional flows that are charac-
terized by a forward enstrophy cascade, has been implemented by Roullet and Gaillard (2022) in the rota-
tional form of the shallow‐water equations using a weighted essentially non‐oscillatory (WENO)
reconstruction scheme.

Despite this recent progress, a mature formulation of a rotational‐based upwind‐biased numerical scheme for
the primitive equations (the Navier‐Stokes equations under the hydrostatic approximation are referred to as the
primitive equations in the atmospheric and ocean modeling literature) solved by GCMs, is still lacking. Here,
we take inspiration from Roullet and Gaillard (2022) and develop a WENO reconstruction scheme tailored to
the rotational formulation of the advection operator, applicable to both the two‐dimensional Navier–Stokes
and the primitive equations. We propose this scheme as an alternative to the commonly used approach for
tackling mesoscale turbulence in eddy‐permitting ocean simulations, which employs explicit viscous closures
paired with low‐order oscillatory (dispersive) advection schemes (Adcroft et al., 2019; Ding et al., 2022). Our
method is constructed with two objectives in mind: (a) ensuring stability through variance dissipation of both
rotational and divergent motions, eliminating the need for additional explicit dissipation, and (b) controlling
the implicit numerical diffusion through a novel approach to smoothness metrics in the WENO framework.
The outcome is a method that delivers a higher “effective” resolution of the mesoscale turbulent spectra in
eddy‐permitting ocean simulations when compared to the approaches tested in this paper. Figure 1 shows
snapshots of the surface kinetic energy from a global ocean simulation run at the “eddy permitting” lateral
resolution of 1/12th degree using the novel method. The solution is characterized by a rich web of well‐
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resolved sharp jets without grid‐scale noise. We will show that traditional explicit schemes generate much
noisier solutions at the grid‐scale at the same resolution.

The paper is organized as follows. In Section 2 we derive the new formulation of the rotational advection operator
that lends itself to a diffusive discretization. In Section 3, we describe the WENO reconstruction scheme and show
how it can be applied to fluxed quantities in the context of the rotational form of the primitive equations. We test
our newly defined WENO reconstruction in the context of two‐dimensional decaying turbulence in Section 4 and,
finally, in Section 5 we test the new rotational‐based advection operator in an idealized baroclinic jet case. We
conclude with some discussion in Section 6.

2. An Upwinding Approach Applied to the Rotational Form of the Primitive Equations
Ocean mesoscale turbulence is characterized by an inverse cascade of energy from small to large scales, weak
energy dissipation, and a forward cascade of enstrophy terminated by enstrophy dissipation at small scales.
Typical finite‐volume discretizations of the primitive equations generate oscillatory noise at small scales that
must be countered with explicit dissipation, typically via an empirical hyperviscosity. The objective of this
section is to explore an alternative discretization of the primitive equations that is inherently diffusive and
therefore does not generate oscillatory grid‐scale noise. Specifically, we propose a discretization that effectively
diffuses vorticity and horizontal divergence, enabling precise control of the dissipation of both rotational and
divergent modes.

2.1. High‐Level Description of the Upwinding Strategy

To provide an introductory sketch of our discretization, consider the rotational form of the advective terms in the
horizontal momentum equations,

Figure 1. Near‐surface kinetic energy in the Gulf stream (top panel) and the Kuroshio current (bottom panel) on March 1st
from a global ocean simulation at 1/12‐th of a degree horizontal resolution and 100 vertical levels that uses the novel
advection scheme we introduce here as a momentum closure.
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Dtu = ∂t u
⏞⏟⏟⏞

time
derivative

− ζv
⏞⏟⏟⏞

vorticity
flux

+ w∂z u
⏞⏟⏟⏞

vertical
advection

+ ∂x K
⏞⏟⏟⏞

kinetic
energy

gradient

, (1)

Dtv = ∂tv
⏟⏞⏞⏟

time
derivative

+ ζu
⏟⏞⏞⏟

vorticity
flux

+ w∂zv
⏟⏞⏞⏟

vertical
advection

+ ∂yK
⏟⏞⏞⏟

kinetic
energy

gradient

, (2)

where u, v are the horizontal velocity components, ζ =
def∂xv − ∂yu is the vertical vorticity, and K =

def 1
2(u2 + v2) is

the horizontal kinetic energy. Mass conservation is enforced by the continuity equation for an incompressible
fluid like seawater,

∂xu + ∂yv
⏟̅⏞⏞̅⏟

=
defd

= − ∂zw, (3)

where we have defined the horizontal divergence, d.

To lighten the notation we outline our discretization on a horizontally‐isotropic rectilinear grid with regular
horizontal spacing Δx = Δy = Δ. The discretization follows the staggered C‐grid finite volume approach shown in
Arakawa and Lamb (1977). A simplified representation of the variables' relative location on the discrete grid is
shown in Figure 2.

We use the vorticity flux to exemplify the numerical error associated with the widely used momentum advection
schemes in computational oceanography. In a finite volume framework, it is customary to approximate the cell‐
averaged vorticity flux as the product of the average vorticity and the averaged velocity. An “enstrophy‐
conserving” (Arakawa, 1966) discretization on a C‐grid requires the reconstruction of average vorticity at the
velocity locations (see Figure 2) where ζu and ζv express the true value of vorticity averaged in the volumes
corresponding to velocity locations. Using a centered second‐order approximation, denoted here with angle
brackets:

Figure 2. A sketch showing the variables' relative location on a staggered C‐grid. Red and blue arrows denote the location of
u‐ and v‐velocity components, respectively; green stars show the location of vertical vorticity and horizontal divergence.
Purple circles (ζu and ζv) are the average vorticities required to calculate the vorticity flux at u locations (left) and at v
locations (right).
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ζu ≈ 〈ζ〉 j =
def ζi,j+1 + ζi,j

2
, for use in ζv, (4)

ζv ≈ 〈ζ〉i =
def ζi+1,j + ζi,j

2
, for use in ζu . (5)

We compute the numerical error Nζ by assuming that Δ is small and performing a Taylor expansion

ζi,j+1 = ζu +
Δ
2

∂yζ +
Δ2

8
∂2

yζ +
Δ3

48
∂3

yζ + O(Δ4), (6)

ζi,j = ζu −
Δ
2

∂yζ +
Δ2

8
∂2

yζ −
Δ3

48
∂3

yζ + O(Δ4), (7)

where

ζi,j+1 + ζi,j
2

= ζu + Nζ, with Nζ =
Δ2

8
∂2

yζ + O(Δ4) . (8)

In the same way, a centered discretization of the y‐momentum vorticity flux leads to Nζ ∼ Δ2∂2
xζ in Equation 2.

This truncation error is proportional to an even derivative of the vorticity field and therefore an odd derivative of
the momentum field, acting as an additional spurious dispersion term in the momentum equations. By con-
structing ∂x(2) − ∂y(1), we can see that the same error is dispersive also in the vorticity evolution equation and
leads to additional numerical rotational modes.

The vorticity flux is not the only term that leads to dispersion. The same analysis (not done here) shows that a
centered reconstruction of the vertical velocity in the vertical advection term leads to a numerical error that is
proportional to the horizontal divergence

Nd ∼ Δ2∫

z

0
(∂2

xd) dz in (1), and Nd ∼ Δ2∫

z

0
(∂2

yd) dz in (2) . (9)

here we have neglected the errors associated with the z‐discretization since dispersive errors generated by the
horizontal discretization are generally larger than vertical ones in typical ocean simulations where the grid cells
are highly anisotropic.

We seek to improve the numerical error associated with vorticity reconstruction both by reducing its magnitude
and also by computing the reconstruction so that the error is diffusive, and therefore “smooth,” rather than
dispersive and “noisy.” For this we follow Ringler (2011), who proposed an upwind reconstruction of vorticity in
the context of two‐dimensional turbulence. Upwind reconstructions are diffusive: an upwind reconstruction of
quantity a with respect to a velocity u leads to a truncation error that is proportional to |u|∂na, with n an odd
exponent equal to the upwinding order (Norman et al., 2023). The error of upwind vorticity reconstruction is
proportional to an odd derivative of vorticity—hence an even derivative of the velocity field—and acts as a
diffusion of momentum in the momentum equations:

Nζ ∼ Δn|v|∂n
yζ in (1), Nζ ∼ Δn|u|∂n

xζ in (2) . (10)

This error will act diffusively also in the vorticity evolution equation as it is an even derivative of the vorticity,
dissipating enstrophy in accordance with the forward enstrophy cascade characteristic of a two‐dimensional flow.

Next, we turn to the vertical advection term. An upwind reconstruction of vertical advection in the rotational
formulation is not achieved as easily as vorticity reconstruction or flux‐form reconstruction (e.g., as in Shche-
petkin and McWilliams (1998b)), since the major source of dispersion is the advecting variable (w) rather than the
vertical reconstruction of the advected quantity (∂zu). One of the major contributions of this work is to disentangle
the dispersion related to the divergence field from a conservative vertical advection, by rewriting the vertical
advection term using Equation 3 such that
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Dtu = ∂t u
⏞⏟⏟⏞

time
derivative

− ζv
⏞⏟⏟⏞

vorticity
flux

+ u d
⏞⏟⏟⏞

divergence
flux

+ ∂z(wu)

⏞⏟⏟⏞

conservative
vertical

advection

+ ∂x K
⏞⏟⏟⏞

kinetic
energy

gradient

, (11)

Dtv = ∂tv
⏟⏞⏞⏟

time
derivative

+ ζu
⏟⏞⏞⏟

vorticity
flux

+ v d
⏟⏞⏞⏟

divergence
flux

+ ∂z(wv)
⏟⏞⏞⏟

conservative
vertical

advection

+ ∂yK
⏟⏞⏞⏟

kinetic
energy

gradient

. (12)

We have thus relegated the horizontal dispersive error, tied to the vertical velocity w, to a “divergence flux” term,
akin to the vorticity flux. Contrary to the vertical advection terms in Equations 1 and 2, the “divergence fluxes” in
Equations 11 and 12 are clearly amenable to an upwinding strategy. In particular, we use an upwind recon-
struction of d with respect to u in the ud term in Equation 11, and vice versa an upwind reconstruction of d with
respect to v in the vd term in Equation 12, which changes the dispersive error in Equation 9 to

Nd ∼ Δn|u|∂n
xd in (1), and Nd ∼ Δn|v|∂n

yd in (2) . (13)

Deriving the horizontal divergence evolution equation ∂x(1) + ∂y(2) shows that this approach leads to a direct
diffusion of the horizontal divergence. This implementation allows a mitigation of the dispersion inherent in the
vertical velocity field as it removes spurious numerical divergent modes similar to how vorticity upwinding
removes spurious numerical rotational modes.

2.2. Detailed Implementation in the Discrete Primitive Equations

We concretize the approach explained above on an orthogonal C‐grid, where we define cell volumes Vu, Vv, Vw,
and Vc for volumes at the u − , v − , w − velocity and tracer locations, respectively. The facial areas are denoted
with Ax, Ay, and Az and the spacings with Δx, Δy, and Δz. As for volumes, we will use subscripts u, v, and w to
denote the location of spacings Δx, Δy, and Δz. We use double brackets and δ to express double‐centered re-
constructions and finite differences, respectively:

〈〈a〉〉ij =
def

⟨〈a〉i⟩
j, and δia =

def ai+1 − ai . (14)

Additionally, we use curly braces {⋅} to indicate upwinding where {a}i denotes an upwind reconstruction of
variable a in the x‐direction with respect to the x‐velocity component (u). The specific formulation of the upwind
reconstruction we use in this paper will be shown in Section 3.

We indicate the discrete counterpart to the vorticity flux, the vertical advection, and the kinetic energy gradient,
with Z, V, and K, respectively. We use subscripts u and v to denote the x‐momentum and y‐momentum com-
ponents of the discrete terms. As such, the material derivative of momentum (1)–(2) is discretized as follows:

Dtu = ∂tu − Zu + Vu + Ku, (15)

Dtv = ∂tv + Zv + Vv + Kv, (16)

We review here the centered‐second order discretization schemes typically used in ocean modeling. The “energy
conserving” centered second‐order discretization of the vorticity flux term (Arakawa, 1966), later used as a
reference, is

ZE
u =

⟨〈Δxvv〉iζ⟩
j

Δxu
, ZE

v =
⟨⟨Δyuu⟩

jζ⟩
i

Δyv
. (17)
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The “enstrophy conserving” centered second‐order discretization of the vorticity flux term (Arakawa, 1966) in
this notation is

Zu =
〈〈Δxvv〉〉ij

Δxu
〈ζ〉 j, Zv =

〈〈Δyuu〉〉ij

Δyv
〈ζ〉i . (18)

K is usually formulated as (Madec et al., 2022)

Ku =
⟨δiu2⟩

i
+ ⟨δiv2⟩

j

2Δxu
, Kv =

⟨δju2⟩
i
+ ⟨δjv2⟩

j

2Δyv
, (19)

while the discrete vertical advection V is derived from K to ensure the following integral energy conservation
property (Madec et al., 2022):

∑
i,j,k

(uVuVu + vVvVv) + ∑
i,j,k

(uVuKu + vVvKv) = 0. (20)

This property ensures that the change in discrete energy from the vertical advection term is balanced by the kinetic
energy gradient. When paired with an energy‐conserving vorticity flux implementation, the overall scheme
conserves discrete energy in the system. The resulting formulation for V is:

Vu =
〈〈W〉iδku〉k

Vu
, Vv =

〈〈W〉 jδkv〉k

Vv
. (21)

The first step is to derive a suitable discrete form for the conservative vertical advection—divergence flux form of
the material derivatives Equations 11 and 12. We denote with C and D the discrete counterpart to the conservative
vertical advection and the divergence flux. To derive suitable candidates for C and D, we manipulate V to ensure
discrete energy conservation through

∑
i,j,k

(uVuVu + vVvVv) = ∑
i,j,k

[uVu (Cu + Du) + vVv (Cv + Dv)]. (22)

The derivation is performed in Appendix B (note that V ≠ C + D locally). The resulting discrete formulations read

Cu =
δk (〈W〉i〈u〉k)

Vu
, Cv =

δk (〈W〉 j〈v〉k)

Vv
, (23)

Du =
u〈D〉i

Vu
, Dv =

v〈D〉 j

Vv
, (24)

where D = δiU + δjV is the discrete horizontal divergence, U = Axu, V = Ayv, and W = Azw. With a formulation
for C and D, we have found a suitable, energy‐conserving discretization of Equations 11 and 12:

Dtu = ∂tu − Zu + Du + Cu + Ku, (25)

Dtv = ∂tv + Zv + Dv + Cv + Kv . (26)

The second step consists in correctly upwinding fluxed variables. Following our approach, we implement an
upwind reconstruction of vorticity in Equation 18 by substituting the following terms

〈ζ〉i ↦ {ζ}i and 〈ζ〉 j ↦ {ζ} j . (27)

The same can be done for C and D, where an upwind reconstruction is ensured by
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〈u〉k ↦ {u}k and 〈v〉k ↦ {v}k, (28)

〈D〉i ↦ {D}i and 〈D〉 j ↦ {D} j . (29)

As we show in Appendix C, numerical errors that scale with a cross‐derivative of the velocity field can lead to
grid‐scale energy generation instead of energy dissipation. For example, since d = ∂xu + ∂yv, a straightforward
first‐order upwind reconstruction of d in the x‐direction leads to

Nd ∼ |u|(∂2
xu + ∂x∂yv), (30)

where ∂2
xu is diffusive while ∂x∂yv has the potential to be anti‐diffusive. The opposite happens in the y‐direction.

To avoid injecting energy at the grid scale, we define the upwind reconstruction of the discrete divergence as a
reconstruction that guarantees discrete energy dissipation. For this reason, we implement upwinding of D as
follows

{D}i =
def

{δiU}
i + 〈δjV〉i, (31)

{D} j =
def

〈δiU〉 j + {δjV}
j. (32)

We follow the same implementation for K, where we recognize the similarity between D and K (u∂xu = 1
2∂xu2

and v∂yv = 1
2∂yv2) and can safely substitute

⟨δiu2⟩
i ↦ {δiu2}

i and ⟨δjv2⟩
j ↦ {δjv2}

j, (33)

in Equation 19.

The approach we sketched results in a method that is energetically dissipative, tackles stability issues through an
upwinding strategy, and removes grid‐scale variance when applied to the rotational form of the primitive
equations. The main ingredients are the splitting of the vertical advection term Equations 11 and 12, the discrete
energy conserving implementation Equations 23 and 24 followed by the targeted upwind substitutions Equa-
tions 27–29 and 33. We have not yet described how to perform the upwinding, which, in principle, can be done
with any diffusive reconstruction scheme. In the next section, we propose a WENO‐based reconstruction that
pairs with the discretization detailed above by allowing a notably lower level of energy dissipation compared to
other upwinding strategies.

3. WENO Reconstruction Scheme for the Rotational Primitive Equations
The Weighted Essentially Non‐Oscillatory (WENO) scheme is a particular implementation of the Essentially
Non‐Oscillatory schemes first introduced by Harten et al. (1987) and refined by Shu (1997). The WENO scheme
is especially appropriate to resolve shocks that develop in solutions of partial differential equations such as the
Euler equations or the shallow water equations. The central idea behind the WENO scheme is to dynamically
approximate a numerical flux with multiple low‐order reconstructing polynomials. These polynomials are
combined using nonlinear weights that depend on the smoothness of each individual polynomial, with the
objective of obtaining a high‐order upwind reconstruction in smooth regions and lower‐order upwind recon-
struction in regions where the solution is less smooth. This approach allows the scheme to achieve high accuracy
even in regions of high gradients and discontinuities while, at the same time, avoiding artificial oscillations
(dispersive artifacts) that plague conventional high‐order methods.

We start by reviewing the mathematical implementation of a WENO reconstruction. Given a discrete quantity ϕ,
we denote with [ϕ]

i
r the one‐dimensional reconstruction obtained by the rth candidate polynomial of order s (prϕ

for r ∈ {0, …, s − 1}) in the ith direction, that is:
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[ϕ]
i
r =

def prϕ (xi+1/2) = ∑
s− 1

j=0
crjϕi− r+j, with r ∈ {0,…,s − 1} . (34)

where ϕi− r+j is the average ϕ in cell i − r + j, crj are linear reconstructing weights and xi+1/2 is the final x position
of [ϕ]

i
r on the discrete grid (Shu, 1997). The WENO reconstruction procedure is a convex combination of the

candidate reconstructions and is implemented as follows:

{ϕ}i = ∑
s− 1

r=0
ξrϕ[ϕ]

i
r, with ξrϕ =

αrϕ

∑s− 1
r=0 αrϕ

and αrϕ = f (α⋆
r ,βrϕ) . (35)

Above, ξr are the nonlinear WENO weights, which are functions of the optimal linear weights (α⋆
r ) weighted by a

smoothness measure βrϕ, where the subscript ϕ indicates that β is calculated from field ϕ. The α⋆
r optimal linear

weights are obtained by equating the final reconstruction {ϕ}i to a classical upwind biased reconstruction of order
2s − 1 when the field ϕ is smooth (βrϕ = 0 for each r ∈ {0, …, s − 1}). Several formulations for smoothness
weighting ( f ) have been put forth, and, while the exact formulation of the α weights is not a central concern of this
work, it is noteworthy to mention that we employ the WENO‐Z formulation (Balsara & Shu, 2000). In terms of
smoothness indicators, the most widespread approach is to use a Sobolev norm of the reconstructing polynomial
prϕ over the interval (xi− 1/2, xi+1/2) (Shu, 1997):

βrϕ =
def

∑
s− 1

ℓ=1
∫

xi+1/2

xi− 1/2

Δx2ℓ− 1(∂ℓ
x prϕ)

2dx. (36)

The Sobolov norm is larger for polynomials characterized by larger gradients, thus connecting the “smoothness”
of a polynomial to the size of its derivatives of order 1 to s − 1 (in the range xi− 1/2 to xi+1/2).

For “flux‐form” advection, the reconstructed field is typically the same as the field that is advanced in time. As
such, using ϕ to compute βr, directly connects the smoothness evaluation to the evolved quantity. This is not the
case in the rotational form of the Navier–Stokes equations where the field evolved in time is typically not the same
as the field being reconstructed. Specifically, in the derivation outlined in the preceding section, upwind
reconstruction is applied to six distinct quantities:

{ζ} j, {u}k, {D}i, {δiu2}
i in the u evolution equation, (37)

{ζ}i, {v}k, {D} j, {δjv2}
j in the v evolution equation. (38)

Many terms in Equations 37 and 38 above involve derivatives of the velocities and thus exhibit rapid variations at
the grid scale compared to the dynamics of the horizontal momentum fields. In this context, we found that βrϕ is
an inadequate smoothness measure since it lacks an intuitive connection with the dynamics of the evolved field—
specifically, the velocity field, which is significantly smoother than the upwinded quantities. Due to this
discrepancy, βrϕ in Equation 35 causes an artificial decrease of the WENO reconstruction order leading to a
larger‐than‐necessary dissipation. We demonstrate this in Section 4 within the context of two‐dimensional
decaying turbulence and in Section 5 within the context of a three‐dimensional baroclinic jet.

Based on the above discussion, we propose here an alternative approach to assess smoothness, wherein we
employ the reconstructing polynomials of a “parent” (smoother) field constructed directly from velocities, rather
than from their derivatives. An exception is the divergence flux: we find that the divergence flux term contributes
the most to grid‐scale noise and, as such, we choose to diffuse it consistently with its intrinsic smoothness. We
introduce notation to facilitate the description and understanding of our approach. In this notation, a WENO
reconstruction is denoted as

{ϕ; ψ}, (39)
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where ϕ represents the field being reconstructed and ψ is the field used for assessing the smoothness. We use the
notation {ϕ; ψ}

i as short‐hand for the following reconstruction

{ϕ; ψ}
i = ∑

s− 1

r=0
ξrψ [ϕ]

i
r, (40)

where ξrψ is calculated using Equations 35 and 36 and prψ (the reconstructing polynomials of quantity ψ). Under
the conventional WENO scheme, where the reconstructed and smoothness‐diagnosed fields are identical, this
notation simplifies to {ϕ; ϕ}. Where not explicitly stated, {ϕ} denotes a WENO reconstruction with standard
smoothness stencils, that is {ϕ} = {ϕ; ϕ} .

The smoothness‐optimized upwind WENO reconstructions, written in the above‐presented notation, are

{ζ; u}
j, {u}k, {D; D}

i, {δiu2; 〈u〉i}
i in the u evolution equation, (41)

{ζ; u}
i, {v}k, {D; D}

j, {δjv2; 〈v〉 j}
j in the v evolution equation, (42)

where we define the upwinding of ζ as an average between a u‐based and a v‐based reconstruction:

{ζ; u} =
def {ζ; 〈u〉 j} + {ζ; 〈v〉i}

2
. (43)

Using reconstructed variables 〈v〉 and 〈u〉 as smoothness metrics and not u and v directly is a consequence of the
staggered C‐grid discretization. Note the difference between {D} and {D; D} : while the first uses the individual
velocity derivatives as a smoothness measure, the second uses the whole discrete divergence:

{D}i = {δiU; δiU}
i + 〈δjV〉i, {D} j = 〈δiU〉 j + {δjV; δjV}

j, (44)

{D; D}
i = {δiU; D}

i + 〈δjV〉i, {D; D}
j = 〈δiU〉 j + {δjV; D}

j. (45)

This difference has a large impact on the solution as, usually, δjV and δiU have a cancellation effect.

4. Two‐Dimensional Homogeneous Decaying Turbulence Test Case
We begin by evaluating our novel momentum advection scheme using simulations of decaying two‐dimensional
homogeneous turbulence. The purpose of this test is to compare our momentum advection scheme with dispersive
numerics in a setting where it is computationally feasible to run Direct Numerical Simulations (DNS), that is,
simulations that resolve scales down to the physical dissipation. The DNS serves as the benchmark, allowing us to
assess the performance of the different approaches at coarser resolutions. To further investigate the impact of
decoupling the reconstruction polynomials from the smoothness assessment, we examine the reconstruction of
vorticity using both {ζ; u} and {ζ}. This test case is well‐suited to assess the discrete properties of the vorticity flux
reconstruction, because there are no horizontally divergent motions in two dimensions.

We solve the incompressible two‐dimensional Navier–Stokes equations in non‐dimensional form, that is,

∂tu + ζ k̂ × u = − ∇( p + K) +
1

Re
∇2u + ∇ ⋅ τSGS, (46)

∇ ⋅ u = 0. (47)

Notice that u and ∇ denote the two‐dimensional rather than the three‐dimensional velocity vector and gradient in
this section. The simulations are run with a Re = 3.3 × 104 on a doubly periodic box of nondimensional size
2π × 2π. The equations are evolved using a low‐storage third‐order Runge‐Kutta scheme and a pressure projection
method that utilizes an FFT elliptical solver (Williamson, 1980).
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We initialize the simulations with velocities generated through a narrow‐band
energy spectrum as proposed by Ishiko et al. (2009),

E(k) =
1
2

ask− 1
p (

k
kp

)

7

exp[−
7
2

(
k
kp

)

2

], (48)

where k=
def

(k2
x + k2

y)
1/ 2 is the magnitude of the wavenumber vector, as = 16/3,

and kp = 12 is the wavenumber corresponding to the energy peak. With this
choice of initial condition and Reynolds number, we achieve a good spectral
separation between the energy‐containing and dissipation scales. To construct
a velocity field with this energy spectrum, we first generate a vorticity field in
Fourier space

ζ̂(kx,ky) = [
k
π

E(k)]

1/2

eiϕ(kx ,ky), (49)

where ϕ(kx, ky) are random phases chosen such that that the vorticity field in physical space is real (Ishiko
et al., 2009). The initial velocity distributions are then given by:

û(kx,ky) =
iky

k2 ζ̂(kx,ky), v̂(kx,ky) = −
ikx

k2 ζ̂(kx,ky). (50)

The simulations are run for t = 6 nondimensional time units. Given that the initial eddy turnover time, defined as

Te = (∫

∞

0
k2E(k)dk)

0.5

, (51)

Is roughly 0.33 non‐dimensional time units, a time of t = 6 would correspond to about 18 eddy turnovers.

The fully resolved benchmark solution employs the second‐order energy‐conserving advection discretization, as
per Equation 17 and N = 4,096 × 4,096 grid points. We compare it with solutions obtained using coarser grids and
three distinct methods. The first is a second‐order energy‐conserving advection operator stabilized by the Leith
closure (see Appendix A). We do not consider the adaptive Leith scheme, because it is too expensive for
oceanographic applications. Instead, we consider the traditional Leith scheme for two different values of the
nondimensional parameter C: C = 1 and C = 2. The second method involves the rotational WENO, using
standard smoothness diagnosis {ζ} as in the work by Roullet and Gaillard (2022). The third method employs the
new rotational WENO, where vorticity is reconstructed as {ζ; u} . For the WENO schemes, we compare fifth‐ and
ninth‐order reconstruction. All the different methods are summarized in Table 1.

The grid size for the under‐resolved simulations is ramped up from 64 × 64, where only the largest structures are
resolved, to 128 × 128, 256 × 256, and finally 1,024 × 1,024, where the grid is fine enough to resolve most of the
energy and enstrophy spectra. For reference, in a high‐resolution global ocean simulation, the grid barely resolves
the largest‐scale eddies and is therefore more similar to the 64 × 64 or 128 × 128 case than the 1,024 × 1,024.

Figure 3 shows a comparison of the vertical vorticity at t = 3.6, which corresponds to 11 turnovers referenced to
the initial eddy turnover time. The top panel shows the DNS solution, while the center and bottom panels show the
under‐resolved simulations. The Leith closure, even when using the larger parameter C = 2, results in substantial
nonphysical noise at the grid scale. In contrast, all WENO‐based reconstructions yield a turbulent solution
completely devoid of grid‐scale noise. The dynamics at small scales is better resolved with higher WENO order as
evidenced by the appearance of well‐resolved structures close to the grid‐scale. The same result can be noticed
when switching from standard WENO smoothness stencils to {ζ; u} .

Figure 4 illustrates the evolution of kinetic energy (top panels) and enstrophy (bottom panels) for the various
methods at different resolutions. The evolution of both quantities converges to the DNS solution at 1,024 × 1,024
for all methods as the resolution is increased, except for the WENO fifth‐order with standard vorticity

Table 1
Description of Test Cases

Name Legend Vorticity flux Vorticity smoothness SGS closure

DNS Energy conserving — —

Leith1 Energy conserving — Leith, C = 1

Leith2 Energy conserving — Leith, C = 2

W5D WENO 5th order {ζ} —

W9D WENO 9th order {ζ} —

W5V WENO 5th order {ζ; u} —

W9V WENO 9th order {ζ; u} —
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reconstruction (W5D) which exhibits excessive energy dissipation. As for the Leith closures, they do converge to
the DNS solution at the highest resolution (1,024 × 1,024) but are severely deficient at coarser resolutions. With
C = 1, the solutions have too large enstrophy as the closure fails to remove grid‐scale vorticity stemming from the
centered advection scheme. WithC = 2 the enstrophy levels are reduced, but at the cost of too low kinetic energy.
The difference between C = 1 and C = 2 illustrates the fundamental challenge with using dispersive numerical
methods: removing spurious dispersive artifacts can require excessively high dissipation with the unintended
consequence of reducing the large scale energy in the system. Conversely, the WENO reconstruction schemes are
designed to limit dispersive artifacts while maintaining high‐order reconstruction that retains large‐scale energy.
Figure 4 shows that, as expected, the accuracy of the WENO approach increases with a higher discretization
order. Most importantly the smoothness measure obtained with the new stencils {ζ; u} achieves a higher effective
resolution, that is, converges faster to the DNS solution.

Figure 5 shows the energy (top panels) and enstrophy (bottom panels) spectra at t = 3.6. Again, all methods
converge to the DNS solution at 1,024 × 1,024 (in the inertial range), except for the W5D case. At lower

Figure 3. Vorticity at t = 3.6 after initialization. Comparison between Direct Numerical Simulation (top panel), explicit Large
Eddy Simulation (LES) with a Leith viscosity (left panels), and implicit LES with a rotational weighted essentially non‐
oscillatory (WENO) discretization and N = 2562. Of the WENO schemes, the top panels show the results obtained with a
standard WENO reconstruction of vorticity {ζ; ζ} (W5D and W9D in Table 1) while the bottom panels show a reconstruction
using the velocity field as smoothness measure {ζ; u} (W5V and W9V in Table 1).
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resolutions, the Leith closure withC = 1 fails to match the DNS spectra and exhibits a pile‐up of variance at small
scales. Using a larger parameter (C = 2) reduces the bias in small‐scale variance at the expense of excessive
damping of energy, especially at large scales; this is hard to appreciate in Figure 5 because of the logarithmic
scale, but is clear in Figure 4. WENO reconstructions do overly dissipate enstrophy at small scales, as they are
designed to do, but the energy spectra are much better captured especially with the {ζ; u} reconstruction. This is
vindication that the upwinding of vorticity dissipates enstrophy, but not energy, at small scales. In this case, a
ninth‐order WENO reconstruction of vorticity, using {ζ; u} stencils (W9V), captures the DNS energy spectrum at
all resolutions, down to 64 × 64.

In conclusion, in the context of two‐dimensional decaying turbulence, the explicit Leith closure accurately
represents the DNS solution only at the highest resolution but fails at lower resolutions. This failure stems from
the oscillatory dynamics of the centered advection scheme that produce grid‐scale noise which is not selectively
damped by the Leith closure. In practice, the closure results in either too much enstrophy at small scales or too
little energy at all scales depending on parameter choices. In contrast, a WENO reconstruction of vorticity using
{ζ; u} dissipates enstrophy at small scales and preserves an accurate energy spectrum at all scales. Additionally,
this test case demonstrates the benefit of using high‐order reconstruction stencils, as the ninth‐order scheme

Figure 4. Evolution in time of integrated kinetic energy (top row) and integrated enstrophy (bottom row). Advection schemes and numerical details are shown in Table 1.

Figure 5. Kinetic energy spectra (top panels) and enstrophy spectra (bottom panels) at t = 3.6. Advection schemes and numerical details are shown in Table 1.
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produces a much more energetic solution that converges to DNS at coarser resolution compared to the fifth‐order
counterpart. We conclude that, for this case, the W9V approach comes closer to achieving the LES goal of
resolution independence than the other methods explored in this section.

5. Baroclinic Jet Test Case
Next, we test our rotational WENO reconstruction in a baroclinic jet setup. The setup consists of a periodic
channel in a spherical sector between 60°S and 40°S, 20° wide, and one km deep. The simulations are initialized
with a constant vertical stratification N2 = 4 × 10− 6 s− 2 and a meridional buoyancy front given by:

b(ϕ,z) = N2z + Δb
⎧⎪⎪⎨

⎪⎪⎩

0 if γ(ϕ)< 0,

[γ(ϕ) − sin γ(ϕ)cos γ(ϕ)]/π if 0 ≤ γ(ϕ)≤ π,

1 if π < γ(ϕ),

(52)

γ(ϕ) =
π
2

− 2π
ϕ − ϕ0

Δϕ
, (53)

where ϕ0 = 50°S is the central latitude of the domain, Δϕ = 20° the domain's latitudinal extent,
Δb = 5 × 10− 3 m s− 2 corresponding to a 2.5°C temperature difference. The initial velocity is in thermal‐wind
balance with the buoyancy field and vanishes at z = − H. Thus the initial conditions are an equilibrium solu-
tion to the primitive equations, but one that is unstable to the development of baroclinic instability (Vallis, 2017).

The initial buoyancy and velocity profiles are shown in Figure 6. We add a weak white noise to the profile to kick‐
start the baroclinic instability (not shown in the figure). We impose no‐flux and free‐slip boundary conditions on
all solid walls. We also prescribe a background vertical viscosity ν = 10− 4 m2 s− 1 and a vertical diffusivity
κ = 10− 5 m2 s− 1. To sustain turbulence and allow an equilibrated solution, we linearly restore the zonally averaged
buoyancy and velocity to the initial profiles with a timescale of 50 days (in a similar manner as done by Soufflet
et al. (2016)). This restoring sets the zonal transport without interfering with the development of mesoscale
eddies, which are the focus of this test. We run the simulations for a total of 1,000 days.

We conduct a series of simulations using different momentum advection approaches. We test three diffusive
schemes: (a) our novel advection scheme (W9V) with ninth‐order WENO reconstruction of vorticity (Z) and
divergence (D), and a 5th order for C, and K as their order has minimal impact on the solution; (b) a WENO
reconstruction of the same order with standard smoothness stencils (W9D) for both vorticity flux {ζ}, divergence

Figure 6. Left: The initial conditions (52): buoyancy (shading) and zonal velocity (contours). Right: The evolution of the
domain‐average deformation radius for the W9V case at 7 km resolution.
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flux {D}, and kinetic energy gradient {δ ⋅ u2} ; (c) a third‐order flux‐form upwind‐biased advection (UP3),
commonly used in regional ocean modeling (Madec et al., 2022; Shchepetkin & McWilliams, 1998b).

Dispersive schemes are unstable without lateral diffusion, therefore, to benchmark against dispersive schemes, we
consider a second‐order energy‐conserving discretization of the momentum advection term in the rotational form,
stabilized by two different explicit closures: (a) a lateral friction closure composed by a laplacian and a bilaplacian
combination of a static viscosity (function of the grid size) and a Smagorinsky‐type eddy viscosity (SM2)
described in Appendix A (Smagorinsky, 1963); (b) a quasi‐geostrophic (QG) counterpart to the two‐dimensional
Leith closure, with C = 2 (QG2), designed to satisfy the forward cascade of potential vorticity (Bachman
et al., 2017). The details of these explicit closures are summarized in Appendix A. These explicit closures are not
chosen because we believe that they are best in class, but rather because most OGMs use either a Smagorinsky
closure, a Leith closure, a constant viscosity, or a combination of the three. Additional information about the test
cases is given in Tables 2 and 3.

Tracer advection is more expensive than rotational‐form momentum advection given the three‐dimensional
nature of the scheme when compared to the two‐dimensional vorticity flux. We find that a 7th‐order tracer
advection scheme is a good compromise between efficiency and accuracy, and for this reason, we use a 7th‐order
WENO scheme for buoyancy advection in all test cases. Each set consists of three simulations run with horizontal
resolutions of 1/8th, 1/16th, and 1/32nd of a degree, equivalent to a maximum (meridional) grid spacing of 14, 7,
and 3.5 km, respectively. The vertical grid spacing is fixed at 20 m. The equations are evolved in time using a
second‐order Adams‐Bashforth scheme and a subcycling scheme for the two‐dimensional free surface.

The jet undergoes an initial baroclinic instability that develops into a statistically steady state around the 250th
day, when the eddy kinetic energy dissipation balances the injection of potential energy generated by the
buoyancy restoring. The most unstable mode of a baroclinically unstable jet is close to the deformation radius
defined as (Vallis, 2017):

Ld =
def 1

π| f |
∫

0

− H
(∂zb)

1/2 dz. (54)

Table 2
Details of the Different Advection Schemes Used

Method name Dispersive Upwind WENO

Rotational form Z Energy conserving (17) — WENO 9th‐order

Rotational form V Centered 2nd‐order (21) — —

Rotational form D — — WENO 9th‐order

Rotational form C — — WENO 5th‐order

Rotational form K Centered 2nd‐order (19) — WENO 5th‐order

Flux‐form advection — Upwind 3rd‐order —

Tracer advection WENO 7th‐order WENO 7th‐order WENO 7th‐order

Table 3
Computational Details of the Test Cases

Advection Smoothness Explicit closure

UP3 Upwind — —

W9V WENO Equations 41 and 42 —

W9D WENO Equations 37 and 38 —

SM2 Dispersive — Smagorinsky (Appendix A)

QG2 Dispersive — QG Leith with C = 2 (Appendix A)

Note. The advection column refers to the details shown in Table 2. Each case consists of three simulations with a horizontal
resolution of 1/8th, 16th, and 1/32nd of a degree.
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A fully resolved simulation requires a horizontal spacing finer than Ld. How much finer depends on the numerical
scheme: given the vigorous inverse energy cascade characteristic of QG turbulence, a lower dissipation results in
convergence at a coarser resolution. An eddy‐permitting simulation has a grid size of the same order as the
deformation radius (10–50 km in the ocean). In this baroclinic jet setup, the initial deformation radius is 5.5 km
and adjusts to an equilibrium value of about 6.75 km as shown in Figure 6. Thus, the highest resolution simu-
lations are barely “resolved” with slightly more than one grid cell per deformation radius, while the 14 km tests
are “under‐resolved.” The 7‐km simulations are in a dynamical regime representative of typical eddy‐permitting
ocean models, which are run with a horizontal spacing between 10 and 20 km.

Figure 7 shows surface vorticity at different resolutions at the end of the initial transient (day 220). The panels are
organized by increasing resolution from top to bottom and increasing kinetic energy from left to right (except the
leftmost panels which show the W9V solution). As resolution increases, eddy activity spreads to higher and lower
latitudes, indicating that the frontal slumping has extended further in the domain. Interestingly, W9V shows a
large spread of vorticity even in the 14 km case where the deformation radius is severely under‐resolved. The
dispersive cases show evidence of spectral ringing at 7 and 3.5 km resolutions.

The time series of total kinetic energy, eddy kinetic energy, and eddy potential energy are shown in Figure 8. In
the top panels, W9V is compared to the dispersive approaches (SM2, and QG2), while in the bottom panels W9V
is compared to the diffusive schemes (UP3 and W9D). As expected, increasing resolution results in more APE to

Figure 7. Near‐surface vorticity at 14 (top panels), 7 (center panels), and 3.5‐km (bottom panels) resolution during the initial instability phase (day 230). The leftmost
panel shows W9V while the remaining panels (from left to right) are ordered by increasing kinetic energy.
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EKE conversion. The length of the initial transient until the solution becomes fully turbulent decreases with
increasing resolution until it converges at 7 km for W9V, and at 3.5 km for all the other cases. We attribute this
difference to the fact that all explicit closures assume fully turbulent flow, whereas during the initial transient the
growth of baroclinic instability is laminar. The amount of implicit dissipation with W9V, instead, is proportional
to the smoothness of the resolved flow and thus smaller during the laminar phase as it should be. The panels in
Figure 8 show that solutions using W9V converge at half the resolution (or more) during the initial instability
growth.

The transformation of mean APE to EKE occurs through generation of eddy APE by baroclinic instability of the
mean flow. The eddy APE is then converted to EKE through the vertical eddy flux (w′b′). Eddy available potential
energy and eddy kinetic energy are further removed from the system by dissipation and by the restoring to thermal
wind balance. The much larger EKE in the W9V cases when compared to the other test cases suggests that the
implicit dissipation intrinsic in the W9V scheme is significantly lower than the (explicit) energy dissipation
provided by the explicit closures and the (implicit) dissipation provided by the other diffusive schemes. This is
supported by the near‐surface spectra (averaged over days 250–1,000) of energy, enstrophy, and vertical
buoyancy flux, shown in Figure 9. In particular, a larger dissipation when compared to W9V (a) damps the

Figure 8. 10‐day running average of integrated total kinetic energy, eddy kinetic energy, and eddy available potential energy.
The solid lines are W9V at 14 km (blue), 7 km (steel blue), and 3.5 km resolution (light blue). The banded lines of the same
colors show the maximum and minimum trajectory for the dispersive cases (top: SM2, QG2) and diffusive schemes (bottom:
UP3, W9D).

Figure 9. Time‐averaged zonal energy spectra (left), enstrophy spectra (center), and w′b′ cospectra (right) averaged over the
top 200 m. The solid lines are W9V at 14 km (blue), 7 km (steel blue), and 3.5 km resolution (light blue). The banded lines of
the same colors show the maximum and minimum trajectory for the dispersive cases (top: SM2, QG2) and diffusive schemes
(bottom: UP3, W9D). The vertical dashed line shows the deformation radius.
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baroclinic instability as seen by the drop in w′b′ and (b) inhibits the transfer of energy to larger scales resulting in
weaker large‐scale flows (see the energy spectra in Figure 9). Interestingly, despite the numerical similarity,
there's a marked difference between W9V and W9D, demonstrating the critical importance of selecting an
appropriate smoothness measure when employing WENO‐based reconstruction within the rotational framework.
While the kinetic energy plots exhibit significant differences between schemes and resolutions, the disparity isn't
as pronounced in the eddy APE. However, in the lowest resolution dispersive cases, strong explicit energy
dissipation inhibits the development of baroclinic instability by mitigating meridional velocity fluctuations.
Consequently, there's a discernible effect on the eddy APE, which consistently remains lower compared to other
solutions.

To judge the “effective” resolution of the different approaches we look at zonal mean buoyancy averaged between
250 and 1,000 days. The final buoyancy slope is determined by a balance between the mean buoyancy restoring,
forcing the system toward the initial low‐stratification jet state, and mesoscale eddies which tend to restratify the
system. We expect a larger stratification for cases that can maintain higher levels of eddy kinetic energy as the
equilibrium is pushed toward a lower APE state. Figure 10 shows mean buoyancy contours for the different cases
compared to W9V, where the filled contours show QG2 (top left), SM2 (top right), W9D (bottom left), and UP3
(bottom right) at 3.5‐km resolution, respectively. Figure 10 shows that, indeed, an increase in resolution leads to a
more strongly stratified buoyancy profile, with W9V having a larger stratification than all the other cases, in virtue
of the larger EKE expressed by the model. Notably, the W9V buoyancy contours at 7‐km resolution are prac-
tically indistinguishable from the buoyancy contours of the other cases at 3.5‐km resolution, suggesting a
similarly resolved mesoscale eddy field. Stratification for the W9V case at 3.5‐km resolution (not shown), is
slightly larger than the other cases at 3.5‐km resolution indicating that convergence is still not achieved at 3.5 km.
However, convergence in this case is not expected, given that the deformation radius is only 6.75 km. Achieving
full conversion at this resolution would probably require a representation of the inverse energy cascade through a
backscattering parameterization. This test case in a more complex mesoscale turbulence simulation confirmed
that the W9V method achieves a higher “effective” resolution compared to the other test cases.

6. Summary and Conclusions
We introduced a new momentum advection scheme for the rotational form of the primitive equation based on the
WENO reconstruction of fluxed variables (vorticity, horizontal divergence, and kinetic energy gradient). We
constructed the new momentum advection scheme as an alternative to using oscillatory advection schemes paired
with explicit viscous closures, taking inspiration from “implicit” LES. We achieved this by (a) rewriting the
primitive equations to expose both vorticity and horizontal divergence, (b) implementing a diffusive recon-
struction of fluxed variables (vorticity, horizontal divergence, and kinetic energy gradient), and (c) choosing
smoothness indicators for the WENO scheme that reduce the energy dissipation inherent in the method.

Figure 10. Left: Time and zonally averaged buoyancy for the different cases when compared to W9V. The filled contour
shows the results of the comparative case (not W9V) at 3.5‐km resolution, acting as a reference, while the dashed and solid
contours show solutions at 7 and 14‐km resolution, respectively. Black contours are the W9V case, while the light blue show
the other case mentioned in the title of each frame (top left: QG2, top right: SM2, bottom left: W9D, bottom right: UP3).
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We found that our proposed WENO scheme outperforms the Leith closure in decaying homogeneous two‐
dimensional turbulence across a broader range of resolutions. The scheme performed well also in an idealized
“eddy‐permitting” setting when compared to other approaches typically used in ocean modeling. Importantly, the
scheme does not require any calibration of unknown coefficients, but rather it adjusts to varying resolutions
attaining an intrinsic “scale‐awareness.”

By design the novel scheme significantly reduces energy dissipation, while efficiently removing variance at the
grid‐scale. We demonstrated that solutions obtained with our scheme are highly energetic and free from
dispersive artifacts—a combination that has proven challenging to attain in “eddy‐permitting” ocean flow re-
gimes. In summary, our approach achieves a noise‐free higher “effective” resolution when compared to the other
dissipation approaches tested in this manuscript. The advantage of a higher “effective” resolution must be
weighed against the additional cost of a numerical method involving high‐order reconstruction stencils. In our
GPU‐based implementation, the W9V scheme in the idealized three‐dimensional setting is only 20% more
expensive than the most economical approach (UP3), while it has the same cost as the more complicated explicit
closures (SM2 and QG2). It might be possible to obtain a similar time‐to‐solution with a lower order (7th for
example) and a smaller grid‐size as shown in Sanderson (1998).

We conclude by illustrating that the W9V advection scheme shows promise when implemented in an “eddy‐
permitting” near‐global ocean model. The simulation is performed on a latitude‐longitude grid with a horizontal
resolution of 1/12‐th of a degree spanning from 75°S to 75°N, 100 vertical levels, and realistic topography. The
model is initialized from rest with temperature and salinity fields obtained from the data‐constrained ECCO state
estimate version 4 (Forget et al., 2015). The heat and salt fluxes are computed by restoring to the ECCO surface
temperature and salinity fields. The surface wind stress is also taken from ECCO. The simulation is run for
10 years with a time step of 270 s. The W9V method results in a stable and noise‐free solution at the same
computational cost of the QGLeith method, with the major advantage of requiring no tuning of parameters like a
viscosity coefficient. Figure 1 shows the surface kinetic energy for the Gulf Stream and the Kuroshio current
regions on March 1st, after 5 years of integration. The solution is characterized by vigorous turbulence that
comprises of a web of frontal currents, without any signature of grid‐scale noise. This near‐global solution is only
intended to showcase the feasibility of the proposed advection scheme in a realistic “eddy‐permitting” ocean
simulation. A detailed analysis of the accuracy of the solution and the degree of numerical mixing across density
surfaces induced by the scheme, is left for future work.

Appendix A: Explicit Closures Used Throughout the Manuscript
A1. Two‐Dimensional Leith Closure

The Leith closure is specifically designed for two‐dimensional turbulence, where enstrophy undergoes a forward
cascade and is removed at small scales by viscous dissipation. The explicit form of the effective viscosity is
derived from spectral scaling arguments, where the scaling of the Kolmogorov wavenumber in two‐dimensional
isotropic homogeneous turbulence follows (Kraichnan, 1967). A series of assumptions on the shape of the
spectral slope lead to an explicit eddy viscosity of the following form Leith (1996):

ν⋆ = (
CΔ
π

)

3

|∇ζ|, (A1)

where C is a tunable parameter of order 1.

A2. Quasi‐Geostrophic (QG) Leith Closure

Building upon the principles of the original Leith subgrid‐scale model, the quasi‐geostrophic (QG) Leith model
(Bachman et al., 2017; Pearson et al., 2017), expands its applicability specifically to the simulation of geophysical
flows. Unlike the original Leith model, the QG Leith model accounts for the peculiar characteristics of
geophysical turbulence, where potential vorticity, instead of two‐dimensional vorticity, undergoes a forward
cascade. To account for this difference, Bachman et al. (2017) propose to substitute the gradient of vertical
vorticity in Equation A1 with the gradient of potential vorticity. Where QG dynamics do not hold (e.g., on the
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equator or in mixed layers), the closure reverts to the classical two‐dimensional Leith formulation. The effective
viscosity in the QG Leith formulation is expressed by

ν⋆ = (
CΔ
π

)

3

(min(
⃒
⃒∇q1|,|∇q2|,|∇q3|)

2
+ |∇(∇ ⋅ u)|2)

1/2
, (A2)

where

∇q1 = ∇q + ∂z (
f

N2∇b), ∇q2 = ∇q(1 +
1

Bu
), ∇q3 = ∇q(1 +

1
Ro2), (A3)

and ∇q = ∇(ζ + f). Bu and Ro above are the grid‐scale Burger and Rossby numbers,

Bu =
def Δ2

L2
d

and Ro =
def V

| f |Δ
, (A4)

where V is a velocity scale (here assumed to be equal to 1)

A3. Smagorinsky Closure

The “Smagorinsky” based closure we used here is the OM4p25 lateral friction closure (Adcroft et al., 2019), a
combination of a laplacian and a bilaplacian dissipation, with the viscosity calculated as a maximum between a
static viscosity and a “Smagorinsky” type viscosity (Smagorinsky, 1963). Specifically,

ν4,⋆ = max[C4(D2
s + D2

t )
0.5Δ4, Cu

4Δ3], (A5)

ν2,⋆ = max[C2(D2
s + D2

t )
0.5Δ2, Cu

2Δ]F, (A6)

where ν4,⋆ and ν2,⋆ are the bilaplacian and the laplacian viscosity, respectively, and

Ds = ∂xu − ∂yv, Dt = ∂xv + ∂yu . (A7)

Finally, F = (1 + 0.25Bu− 2)
− 1 reduces the Laplacian viscosity where the deformation radius is resolved, and the

value of the free parameters is

C4 = 0.06, Cu
4 = 0.01, C2 = 0.15, Cu

2 = 0.01 . (A8)

Appendix B: Divergence Flux, Conservative Vertical Advection Form
We set out to demonstrate that in terms of discrete kinetic energy conservation, V is equivalent to C + D, or more
specifically,

∑
i,j,k

(uVuVu + vVvVv) = ∑
i,j,k

[uVu (Cu + Du) + vVv (Cv + Dv)]. (B1)

Note that the influence of boundary fluxes is not taken into account in the following derivation. Given two fields ϕ
and ψ defined on a staggered C‐grid, centered second‐order reconstructions and differences satisfy these point-
wise properties (Adcroft et al., 1997)
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〈ψ〉i〈ϕ〉i = 〈ψϕ〉i −
1
4

δiψ δiϕ, (B2)

〈δiψ〉i = δi〈ψ〉i, (B3)

⟨〈ψ〉iϕ⟩
i

= ψ〈ϕ〉i +
1
4

δi (ϕδiψ), (B4)

δi (〈ψ〉iϕ) = ψδiϕ + 〈ϕδiψ〉i, (B5)

and these integral properties (Madec et al., 2022)

∑
i

ψ〈ϕ〉i = ∑
i

〈ψ〉iϕ, (B6)

∑
i

〈ψϕ〉
i = ∑

i
ψϕ. (B7)

Note that the volumes associated with variables ϕ and ψ (denoting the “location” of the two quantities) are implied
and not explicitly indicated. Combining Equation B6 with Equations B2 and B7, we can derive an additional
integral property

∑
i

ψ⟨〈ϕ〉i⟩
i

= ∑
i

ψϕ −
1
4

∑
i

δiψ δiϕ. (B8)

Focusing on the vertical advection term in the x‐momentum equation (Vu) and using property Equation B5:

∑
i,j,k

uVu
〈〈W〉iδku〉k

Vu
= ∑

i,j,k
uVu

〈δk〈〈W〉i〉ku〉k

Vu
⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

term1

− ∑
i,j,k

uVu
〈〈uδk〈W〉i〉k〉k

Vu
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

term2

. (B9)

Applying property Equation B3 followed by Equation B4 to term 1:

term1 = ∑
i,j,k

uVu
δk (〈W〉i〈u〉k)

Vu⏟̅̅̅̅⏞⏞̅̅̅̅⏟
Cu

−
1
4

∑
i,j,k

uδk (δk (u〈D〉i)). (B10)

where we made use of the discrete incompressibility condition (D = − δkW). Applying the same incompressibility
condition to term 2 followed by Equations B3 and B8 yields.

term2 = ∑
i,j,k

uVu
u〈D〉i

Vu⏟⏞⏞⏟
Du

−
1
4

∑
i,j,k

(δku)δk (u〈D〉i). (B11)

Combining the two terms:

∑
i,j,k

uVuVu = ∑
i,j,k

uVu (Cu + Du)

−
1
4

∑
i,j,k

(u δk (δk (u〈D〉i)) + (δku)δk (u〈D〉i)).
(B12)

Focusing on the second term on the RHS, using property Equation B7 on the second element in the summation
yields
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∑
i,j,k

uVuVu = ∑
i,j,k

uVu (Cu + Du)

−
1
4

∑
i,j,k

(u δk (δk (u〈D〉i)) + ⟨(δku)δk (u〈D〉i)⟩
k
).

(B13)

The second term on the RHS can now be reduced using Equation B5, where ψ = u and ϕ = δk (u〈D〉i) , leading to

∑
i,j,k

uVuVu = ∑
i,j,k

uVu (Cu + Du) −
1
4

∑
i,j,k

δk (u〈δk (u〈D〉i)〉k), (B14)

where the second term is the divergence of a vertical flux and, as such, its integral in the domain is equal to zero,
leaving

∑
i,j,k

uVuVu = ∑
i,j,k

uVu (Cu + Du). (B15)

The same can be done for the v component leading to Equation B1.

Appendix C: Upwinding of the Discrete Horizontal Divergence
Contrary to vorticity reconstruction, straightforward upwinding of the horizontal divergence might not always
lead to a decrease in discrete kinetic energy. To demonstrate this, we consider a first‐order upwind reconstruction,
for which

u{c}i = u〈c〉i −
|u|

2
δic. (C1)

With the above reconstruction scheme, the discrete divergence flux is

u
{D}i

Vu
ı̂ + v

{D} j

Vv
ȷ̂ = Di ı̂ + Dj ȷ̂

⏟̅⏞⏞̅⏟
energy

conserving

− (|u|
δiD
2Vu

ı̂ + |v|
δjD
2Vv

ȷ̂)
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

not energy conserving

. (C2)

The associated change in discrete integrated kinetic energy reads

∂t∑
i,j,k

(u2Vu + v2Vv) =

∑
i,j,k

(u|u|δiδiU + v|v|δjδjV)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
negative definite

+ ∑
i,j,k

(u|u|δiδjV + v|v|δjδiU), (C3)

where D has been divided into its two components (δiU and δjV). Using Equation B5, we can show that the first
term on the RHS is negative definite:

u|u|δiδiU = δi (〈u|u|〉
iδiU) − 〈|u|δiUδiu〉i − 〈uδiUδi|u|〉i, (C4)

where the first term is the divergence of a flux and, provided that the discrete areas do not change drastically in
neighboring cells,

uδiUδi|u| = |u|δiUδiu ≥ 0. (C5)

The same can be shown for v|v|δjδjV. Assuming that horizontally divergent motions are small
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δiU ∼ − δjV, (C6)

the second term on the RHS of Equation C3 is

∑
i,j,k

(u|u|δiδjV + v|v|δjδiU) ∼ − ∑
i,j,k

(u|u|δiδiU + v|v|δjδjV), (C7)

which is positive definite and counteracts the energy dissipation provided by the first term on the RHS of
Equation C3. As such, upwinding the discrete divergence might have the undesired effect of injecting energy at
the grid scale instead of removing it. To avoid adding kinetic energy at the grid scale, we apply a diffusive
reconstruction only to the terms that lead to discrete energy dissipation (where the reconstruction direction is the
same as the difference direction) while maintaining a centered reconstruction for the terms that could lead to
energy production (where reconstruction and difference directions are perpendicular).

Data Availability Statement
The momentum advection scheme described in this paper is implemented in Oceananigans.jl (Ramadhan
et al., 2020) starting from version 0.84.0 (https://github.com/CliMA/Oceananigans.jl/releases/tag/v0.84.0). Vi-
sualizations were made using Makie.jl (Danisch & Krumbiegel, 2021). Scripts for reproducing and visualizing the
idealized baroclinic setups are available at Silvestri (2024).
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