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Abstract

A large number of structures in the U.S. and worldwide include non-ductile reinforced concrete
(RC) frames with columns and beams that are prone to shear failure. Due to the brittle nature
of shear failures, accurate simulation of RC structures with shear-critical members is essential
to predicting their overall capacity under severe loading scenarios (e.g. earthquakes) and
designing effective retrofits and upgrades. In this paper, a previously developed gradient
inelastic (GI) force-based (FB) beam-column element formulation capable of capturing axial-
flexural interaction and predicting flexural failures is extended to account for axial-flexural-
shear interactions in RC members in order to predict shear failures. The proposed shear-
enhanced Gl FB element formulation advances the original GI FB element formulation by
developing higher-order cross-section kinematics, i.e., beyond the plane sections assumption,
and by developing a 3D concrete constitutive model. The higher-order cross-section kinematics
can simulate strain distribution of the cross-section more accurately, while using 3D concrete
constitutive models at the element’s cross-sections permit simulation of axial-flexural-shear
interactions. To incorporate the confinement effects of transverse steel reinforcement, through-
the-depth stress equilibrium is strictly enforced in the transverse directions of the member’s
cross-section. To eliminate strain localization phenomena, new gradient nonlocality
relationships are introduced, in addition to those of the original GI FB formulation. The
proposed element formulation is implemented in the OpenSees structural analysis software and
is shown to maintain continuous macroscopic section strain distributions over the element

length during softening and discretization convergent responses, thereby eliminating the strain
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localization phenomena. In addition, the predictions of the shear-enhanced GI FB element

formulation are compared with data available from experiments on RC beams and columns.

Keywords: reinforced concrete, beam element, strain localization, gradient inelastic element, axial-shear-flexural

interaction, shear critical



1. Introduction

Reinforced concrete (RC) structures are usually subjected to a variety of loading conditions
that simultaneously generate flexural, shear and axial internal loads in their members, resulting
in triaxial stress/strain states. RC members are nowadays designed to fail in a ductile manner
in flexure, but members with small span-to-depth ratios or those designed using outdated codes
can suffer from brittle failures, such as shear or flexure-shear failures. Therefore, accurate
numerical simulation of axial-flexural-shear interactions in RC members is crucial to

accurately evaluating the performance of such members under extreme loading scenarios.

Two approaches are generally adopted for efficient finite element modeling of RC
members: (7) using elastic beam-column elements with concentrated plasticity at their ends
(Kunnath et al. 1990; Ricles et al. 1998; Lee et al. 2009; Xu and Zhang 2011; Roh et al. 2012;
LeBorgne and Ghannoum 2014), and (i7) using distributed-plasticity beam-column elements
(Filippou et al. 1992; Mergos and Kappos 2008; Sezen and Chowdhury 2009; Mergos and
Beyer 2014). Because of its superior computational efficiency, the former approach is vastly
employed in the literature (Haselton 2007; Haselton et al. 2016; Aghajani Delavar and Bargi
2018; Aghajani Delavar and Bargi 2020Hellesland and Scordelis 1981; Spacone et al. 1996;
Neuenhofer and Filippou 1997); however, it cannot predict spread of damage/plasticity and
relies on calibrations based on component/member testing. Despite their higher computational
cost, distributed-plasticity beam-column elements can predict the spread of damage/plasticity
along the modeled beams/columns by using several integration points (IPs) representing
nonlinear cross section responses along their lengths. Because those IPs are usually represented
via fiber sections, distributed-plasticity beam-column elements are also known as fiber
elements. Two major groups of fiber element formulations have been developed, namely,
stiffness/displacement-based (DB) and flexibility/force-based (FB). DB formulations employ
predefined displacement interpolation functions along their lengths and satisfy the force
equilibrium only in an average sense (through the virtual work method) (Priestley 1997;
Limkatanyu and Spacone 2002). Contrarily, FB formulations strictly satisfy force equilibrium,
making them capable of capturing the section strain/curvature distributions over the element
lengths more accurately. However, in the presence of softening, conventional FB formulations
lead to unrealistic strain singularities that are manifested as strain localization and result in
secondary problems, such as lack of response objectivity and numerical instability (Zeris and
Mahin 1988; Coleman and Spacone 2001; Sideris 2012; Sideris and Salehi 2016). To eliminate

the strain localization phenomenon, several methods have been proposed that introduce a



characteristic length into either the material constitutive models or the element formulation,
including constitutive law re-scaling (Coleman and Spacone 2001), plastic hinge integration
methods (Scott and Fenves 2006; Scott and Hamutguoglu 2008; Almeida et al. 2012), nonlocal
models (Khaloo and Tariverdilo 2002; Valipour and Foster 2009, Feng et al. 2016; Nikoukalam
and Sideris 2019), and gradient models (Sideris and Salehi 2016; Salehi and Sideris 2017;
Salehi and Sideris 2018).

Fiber beam-column element formulations have commonly focused on flexural responses
as they are based on the Euler-Bernoulli (EB) beam theory (e.g., Feng et al. 2019) and do not
explicitly consider shear effects. The majority of fiber element formulations for shear critical
elements are based on the Timoshenko beam theory (e.g., Filippou and Saritas 2006; Feng and
Ren 2021), which accounts for shear behavior in an average sense by assuming a linear
variation of transverse displacement of the cross-section, which results in a uniform shear strain
profile over the cross-section. In the case of linear elastic beams, and in order to avoid the beam
prediction errors due to the uniform strain profile assumption, correction factors are applied to
the shear stiffness coefficients of the respective member stiffness matrices (e.g., Mindlin and
Deresiewicz 1953; Cowper 1966; Kaneko 1975; Jensen 1983). However, no such correction
factors are available for inelastic beams. Beam theories with higher-order cross-section
kinematics have been shown to reproduce more accurate strain profiles due to nonlinear
variation of the deformation fields of the cross-section. Popular higher-order beam theories
include (Zia and Khan 2018) the third-order beam theory, the trigonometric shear deformation
beam theory, the hyperbolic shear deformation beam theory, and the exponential shear
deformation beam theory. In these theories, the additional parameters introduced by the higher-
order cross-section kinematics are determined by enforcing zero shear stress conditions at the

boundaries of the cross-section under the assumption of linear elastic material response.

Most available flexural-shear fiber beam element formulations follow two main
approaches: (a) incorporating axial-flexural-shear interaction at the element level by inserting
shear springs at the element ends (e.g., D'Ambrisi and Filippou 1999; Marini and Spacone
2006; Mergos and Kappos 2008; Xu and Zhang 2011; Lodhi and Sezen 2012; Xu and Zhang
2012), and (b) considering shear deformation at the cross-section by adopting Timoshenko or
higher-order beam theories rather than EB beam theory (e.g., Petrangeli et al. 1999; Bairan and
Mari 2007; Ceresa et al. 2007; Ceresa et al. 2009; Saritas and Filippou 2009; Mohr et al. 2010;
Mullapudi and Ayoub 2012; Stramandinoli and La Rovere 2012; Correia et al. 2015; Li et al.

2016). In the second approach, which is more straightforward, the accuracy and efficiency of



the element mainly relies on the selection of multiaxial concrete models. Commonly used
models are the microplane models (e.g., Petrangeli et al. 1999; Jiang and Kurama 2010),
smeared crack models (e.g. Vecchio and Collins 1988; Bentz 2000; Remino and Trento 2004;
Garcia and Bernat 2006; Rajapakse et al. 2019; Hippola et al. 2022) and damage plasticity
models (e.g., Ju 1989; Lee and Fenves 1998; Wu et al. 2006; Mullapudi and Ayoub 2012; Feng
et al. 2019). Some research studies have also focused on integrating combined shear and
torsional effects within frame elements (e.g., Saadé et al. 2004; Garcia and Bernat 2006; Garcia
and Mari 2006; Kagermanov and Ceresa 2018; Nguyen et al. 2019). While higher-order cross-
section kinematics have been employed in some DB formulations investigating shear failures
(e.g., Garcia and Bernat 2006; Garcia and Mari 2006), use of higher-order cross-section
kinematics in FB element formulations intending to capture axial-flexural-shear interaction

remain limited (Mohr et al. 2010; Correia et al. 2015; Di Re et al. 2018).

In the presence of material models with softening branches, conventional FB
formulations (and simulations of members with series of DB elements) suffer from strain
localizations and loss of response objectivity. While strain localization phenomena have been
more extensively studied for flexure-critical elements (Khaloo and Tariverdilo 2002; Valipour
and Foster 2009; Sideris and Salehi 2016; Salehi and Sideris 2017; Kenawy et al. 2018;
Kenawy et al. 2020), similar studies are fairly limited for shear-critical elements and for
flexure-shear-critical elements (Feng et al. 2019; Feng and Ren 2021). In more recent years,
the majority of studies addressing flexural softening have focused on incorporating concepts
from nonlocal and gradient mechanics (Khaloo and Tariverdilo 2002; Valipour and Foster
2009; Sideris and Salehi 2016; Salehi and Sideris 2017; Kenawy et al. 2018; Kenawy et al.
2020). As part of these studies, the gradient inelastic (GI) beam theory together with a
flexibility-based element formulation were recently proposed by Sideris and Salehi (2016) and
Salehi and Sideris (2017), and were later extended to incorporate finite strains (Salehi and
Sideris 2018). A major advantage of the GI FB beam element formulation is its capability to
integrate any type of uniaxial material model, such as elastic, plastic, hardening, softening, and
combinations of those because its gradient nonlocality relations are decoupled from the
constitutive laws (Salehi and Sideris 2017). Such advantages have allowed the use of this
element formulation in the collapse analysis of RC building and bridge structures (Salehi et al.
2017;2020). In the original GI FB element formulation, the “plane sections” assumption results

in uniform shear strain distribution over the cross-section, and the shear response is decoupled



from the normal stress/strain response. Herein, the GI element formulation is extended to

capture shear failures and axial-flexural-shear interactions in RC members.
2. Scope and Innovations

This paper extends the original GI beam theory and the corresponding GI flexibility-based
beam-column element formulation, which is capable of capturing axial-flexural interactions
and predicting flexural failures, to account for axial-flexural-shear interactions and predict
shear failures in RC members, while simultaneously achieving response objectivity. This is
achieved by incorporating (i) higher-order cross-section kinematics to describe higher-order
deformation profiles, (ii) cross-sectional through-the-depth equilibrium to predict normal strain
distributions in the transverse directions and to compensate for confinement effects, and (iii)
3D concrete constitutive relations to simulate triaxial stress/strain interactions. The adopted 3D
concrete constitutive relations are based on the plastic-damage model of Lee and Fenves
(1998), which, amongst other modifications, it is also modified to include the effect of
compression softening due to the presence of reinforcement. The higher-order cross-section
kinematics are determined through satisfaction of cross-section boundary conditions (BCs) and
do not introduce additional element degrees of freedom. To eliminate strain localization
phenomena, new gradient nonlocality relationships are introduced, in addition to those of the
original GI FB formulation. The resulting shear-enhanced GI element formulation is
implemented in the structural analysis software OpenSees and is shown to eliminate strain
localization phenomena during softening, thus, providing mesh-convergent (objective)
responses. Additionally, the predictions of the shear-enhanced GI element formulation are

compared with available experimental data from a number of tests on RC columns and beams.
3. Cross-section Kinematics

In order to capture shear effects, the following 3" order cross-section kinematics (in 3D) with
six degrees of freedom, which result from those proposed by Levinson (1981) in 2D, are

adopted herein:

(1)



In the above equations, u(x,y,z), v(x,y,z) and w(x,y,z) are the displacements of a point at the
reference coordinates (x,y,z) in x, y, and z directions, respectively; u, (x), v, (x) and w, (x)
are the displacements in x, y and z directions, respectively, at the location x of the beam

reference axis; 6, (x), 0, (x) and 6. (x) are the rotations about the x, y and z axes,

respectively, at the location x of the beam reference axis; and y_ (x), v, (x), and v, (x) are

the shear rotations about the x, y and z axes, respectively, at the location x of the beam reference

axis.

The corresponding infinitesimal strain field can be computed from Eq. (1) as:

d
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where the subscript “,x” represents the first derivative with respect to x; & . (x, y,z) ,
&, (x, y,z) and &€ (x, y,z) are the normal strains in the x, y and z directions, respectively;
and Ve (x, y,Z), Vi (X, y,z) and 7\ (x, y,z) are the independent engineering shear strains;
g, (x) is the macroscopic axial section strain at the location x on the beam reference axis;
P, (x) 9, (x) and ¢, (x) are the macroscopic section curvatures about the x, y and z axes,

respectively, at the location x on the beam reference axis; and 7, (x) and y_, (x) are the

macroscopic shear section strains in y and z directions, respectively, at the location x on the

beam reference axis (Fig. 1(a)).



(a) (b)

Fig. 1 — (a) Section strains; (b) section forces

Compared to the linear cross sectional displacement field obtained from Navier’s

assumption of plane sections, the 3™ order displacement field introduces three additional
unknowns, namely, the shear rotations y/, (x), v, (x) and v, (x) For a given cross-section

shape and under the assumption of linearly elastic material response, these rotations can often
be calculated by applying zero-traction conditions at the cross-section boundaries. This
approach is often adopted in the analysis of framed structures because it eliminates the need to
build beam element formulations with more than six degrees of freedom per node (Reddy
1997). For a rectangular solid cross-section, which is very common in RC structures, and for a
beam reference axis passing through the cross-section centroid, there are zero tractions at the

boundaries of the cross-section. These BCs would require:

o, (x,y=%h/2,2z)=0 o.(xy,z=%b/2)=0
o, (x,yzih/2,z):0 and 0, (x,y,z=ib/2)=0 (3)
O'Zy(x,yzih/2,z)=0 o.(xy,z=%b/2)=0

where b and £ are the cross-section width and height, respectively. For a linear elastic beam,

the shear stress BCs in Eq. (3) result in the following shear strain BCs:

}/xy(x,y:ih/Z,z):O
Ve (x,y,zzib/2)=0 4)
}/yz(x,y,z=ib/2)=0

Focusing on the special conditions Vi (x, y=xh/2,z= 0) =0 and
7. (x, y=0,z=1b/ 2) =0, and according to Eq. (2), the shear rotations ¥, (x), v, (x) and

v, (x) are obtained as:



- -0

{7 (2)40.(4) ©)

0

v, (x)=

v, (x)

Because the strain field of Eq. (2) predicts zero lateral strains (&, =¢_=0), an

unrealistically high confinement effect would always be predicted by this model. To capture

the confinement effects more reasonably, the transverse strain components, £, and ¢_, are

herein computed via through-the-depth cross-section equilibrium (Mullapudi and Ayoub
2012). The resulting equations, which express the equilibrium between the concrete and the

transverse reinforcement, are enforced at any point located at the coordinates (x,y,z) as:

O-Cy (x’ y’Z) + pspvo-&v (x,y,z) =0
o, (x,y,z) +p,.0,. (x, y,z) =0
T, (x, y,z) =0

(6)

where 0., and o, are the concrete stresses in y and z directions, respectively; oy, and oy are the

transverse steel stresses in y and z directions, respectively; z,_is the yz-component of the

concrete shear stresses; and ps, and p,. are the transverse steel ratios in y and z directions,
respectively, which are assumed to be constant and independent of coordinates. In the above
equations, g, and o.; are computed from a multiaxial constitutive model (see next section),
while oy, and o5 depend on &), and &, respectively, through separate uniaxial constitutive
models for the transverse steel. The latter models can be of any desired form (e.g., bilinear to

capture the yielding of the transverse steel).

By substituting Eq. (5) into Eq. (2) and considering the above modification, the strain

field becomes:



& (x, y.z)=¢€, (x) ~ e, (x) +20, (x) —
4y’ 47
7 o (0720, (1)) =5 (P (4) #3,, (v)

g,,(x,y,z): Obtained from through-the-depth equilibrium
¢..(x,y,z): Obtained from through-the-depth equilibrium (7)
4y°

Yy (%,2,2) =£1— e ](nya (x)-z¢,(x))

yxz(x,y,z)=(1—4—22j(nw(x>+y¢x (x)

bZ
7,.(x,y,z) = Obtained from through-the-depth equilibrium

This field is a function of the six macroscopic section strains/curvatures shown in Fig. 1(a),
ie, &,(x), 6.(x), &,(x), 4.(x). 7,(x) and 7., (x). It also includes the spatial
derivatives of y,, (x) and y_, (x) While this field is valid for linear elastic beams, it is often

used for the analysis of inelastic beams as well (Bhimaraddi and Chandrashekhara 1993;

Ghugal and Sharma 2009).
4. Shear-Enhanced GI Element

4.1. Formulation

Similar to the original GI beam-column element formulation (Sideris and Salehi 2016; Salehi
and Sideris 2017), the shear-enhanced formulation is based on four fundamental sets of
equations, namely, macroscopic section strain-displacement equations, force equilibrium

equations, section constitutive relations and nonlocality relations.

The macroscopic section strain-displacement equations relate the macroscopic section
strains, €xo, @z, Py, Yrvo, Yxzo and @y, with the cross-section displacements/rotations along the beam

reference axis, uo, Vo, Wo, Ox, 6, and .. According to Eq.(7), these equations are:
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= gy,x (X) (8)

Neglecting inertial effects and body loads, the force equilibrium equations in the

undeformed configuration of the beam are expressed in terms of the section forces as:

©)

where N(x) is the axial force; V)(x) and V.(x) are the shear forces in y and z directions,

respectively; M,(x) and M-(x) are the bending moments about the y and z axes; and 7(x) is the

torsional moment; all at the location x along the beam reference axis (Fig. 1 (b)).

The section constitutive relations express the section forces, D(x), as a function of the

material section strains, d°(x), and their derivatives, d; (x) , as:

D(x)=1,, (d (x).4, (x))

with

D(x)=[N(x) M.(x) M,(3) 7 o
@ (x)=[e, (x) £(x) (1) 5,0(x) so(x) &)
dfx(x):[exo,X(x) Kz,X(x) Ky,x(x) Swo,x(x) szo,x(x) Kx,x(x)]

T

where ex(x) is the material axial section strain; xx(x), x,(x) and x-(x) are the material section

curvatures about the x, y, and z axes, respectively; syo(x) and syo(x) are the material shear

section strains in y and z directions, respectively (Fig. 1 (a)); and fi.s(.) 1s a vector function

dependent on the cross-section material properties and dimensions. Unlike the original GI beam

theory, for which f,.(.) solely depends on d° (x) , in the shear-enhanced GI beam theory, fius(.)

depends on both d°(x) and d, (x) and the reasons are clarified below.
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In order to build the relationship between D(x), de(x) and d°, (x), 1.e., the function

f.s(.), the material strain fields, d°(x), are assumed to have the same forms as those of the

macroscopic strains (see Eq. (7)), which yields:

4y’ 4z’
e, (x, ,z) =e, (x)—sz (x) +2K, (x) - e S o (x) —Wsm’x (x)
e, (x.y.2)=¢,(x.y.2)
e (x, ,z) =¢_ (x, y,z)
4y° 11
Sy (x, ,Z) =S, (x)(l— ; j—zzcx (x) (11)
4z*
s (% y.2)=s_, (%) 1-— |+ yx, (x)
S, (x, y,z) =0

and furthermore the macroscopic and material normal transverse strains are assumed to be

identical, i.e. e, (x,y,z)=¢,(x,y,z) and e_(x,y,z)=¢_(x,y,z) as shown above. The

strains of Eq. (11) are used to calculate the stresses at any point over any cross-section of the

beam via a 3D material model discussed later (Section 5.1). The section forces, D(x), can be

calculated by integrating these stresses, which are acting on a cross-section, as:

(12)

where o (x, y,z) is the normal stress, 7 (x, y,z) is the shear stress in y direction, and

7. (x,,z) is the shear stress in z direction, respectively, all of those acting at the coordinates

(y, z) of the cross-section at the location x on the beam reference axis. These stresses are

functions of the material strains over the cross-section, i.€., exx, €yy, €z, Sy, Sx- and sy, which are

related to the material section strains, d°(x), and its derivatives, d’, (x) , via Egs. (11).

12



The gradient nonlocality relations associate the material section strains, d° (x) , with the

macroscopic section strains, d(x), per Salehi and Sideris (2017), as:

()= 2 H (0, (x)) = (x)

- d(x)=[e,(x) 4.(x) ¢(x) 7.,(x) 7.(x) 4.(x)] (13)
7, (x) =3 D(x)-d ()

where the overdot represents differentiation with respect to time, d (x) and d° (x) are the rates
of the macroscopic and material section strains, respectively; /. is a characteristic length
controlling the spread of damage/plasticity; H(.) is the Heaviside step function; D (x) is the rate

of the section forces; and W, (x) is a quantity that is based on the material section strain energy

density and is used to identify non-hardening section response. The two BCs to Eq. (13) are
selected to be of the Dirichlet type and are applied at the beam ends Salehi and Sideris (2017).

These BCs are expressed as:
{ﬁ(o)#e(o) (14
d(L)=d*(L)
where L is the initial length of the element. Consistently, the spatial derivative of the material
section strains, d', (x), which is also needed in the section constitutive relations (Eq. (10)), is
taken to satisfy the nonlocality relations of Eq. (13) and thus obtained by the spatial derivatives

of the macroscopic section strains, d | (x) , as:

. 1 ,- i
d,x(x)—Elfd’mH(Ws(x)):dfx(x) (15)
This approach ensures boundedness of the solution and response objectivity, i.e.
convergence with mesh refinements. It is noted that direct differentiation of the material strain
fields is not recommended, because they constitute an internal quantity whose smoothness

cannot be guaranteed, thus often resulting in loss of the existence of spatial derivatives.

4.2. Analytical Solution

The GI FB beam-column element formulation is obtained from the exact analytical solution of
the shear-enhanced GI beam theory. In this paper, a simply-supported reference beam with the

force/displacement BCs shown in Fig. 2 is considered. With respect to the selected six force

13



BCs, the force equilibrium equations (Eq. (9)) can be solved analytically for the section forces,

D(x), as:

Q:[Ql Qz Q3 Q4 QS Q6]

1 0 0 0 0 0]

0 x/L x/L-1 0 0 0

D(x)=b(x)Q with 0 0 0 x/L x/L-1 0 (16)

b(x):

0 -1/L -1/L 0 0 0

0 0 0 /L  1/L 0

0 0 0 0 0 1]

where Q is the vector of the force BCs; and b(x) is the matrix of the force shape functions.

The corresponding end displacement BCs, q, (see Fig. 2), are obtained from the

macroscopic section strains, d(x), through direct integration of Egs. (8) as:

L

q=[b(x) d(x) dr with q=[q, ¢ ¢ @ ¢ g (17)

0
The solution of the gradient nonlocality relations of Eq. (13) with the BCs of Eq. (14) may be

assumed to have the following generic form:

d(x)zfn, (de(x)) (18)
where f,(.) is a general solution. By substituting Eq. (16) into Eq. (10), the system of equations

representing the analytical form of the shear-enhanced GI FB element formulation is obtained:
b(x)Q—f, (d°(x).d’ (x))=0

L (19)
q—jb(x)Td(x)dXZO

The material section strains, d° (x) , and the end forces, Q, are the two unknowns of the above

system of two equations for given end displacements, q. The macroscopic section strain rates,

d(x) , can be explicitly computed from Eq. (18), while the total macroscopic section strains
are calculated from the time integration of d(x). Similarly, the spatial derivative of the

material section strains, d°, (x), is computed through Eq. (15)..

14
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Fig. 2 — Simply-supported reference beam and its associated displacement/force boundary
conditions

4.3. Discretization and Numerical Solution

Due to the nonlinearity of the section constitutive relations of Eq. (10) and the impracticality
of the explicit analytical solution of the gradient nonlocality relations of Eq. (13), Egs. (19)
have to be evaluated at spatially discrete locations, x;, and numerically solved at discrete time
instants, # (k denotes the time step). In the discretization process, the force equilibrium
equations (first of Eq. (19)) should be satisfied at the discrete locations, while the integral of
the displacement compatibility equations (second of Eq. (19)) is approximated through a
numerical integration scheme. With N IPs (i = 1, 2, ..., N), the discretized form of Eq. (19) at

the time instant # is:
b(xl )Qk _fms (di (xl )’di,x (xl )) = 0

b(xz)Qk —f (d; (xz),d;x (x2 )) =0
: : : (20)

b(x,)Q, —f, (di (xy).d;  (x )) =0

q; _Zwib(xi)T d, (xi)zo

i=1

: . : . : N
where x, =0 and x, =L, and w, is the integration weight at x; with Z[:l w=0L.

By enforcing the nonlocality relations of Eq. (13) at discrete locations and replacing the
second spatial derivative with its 2"-order accurate finite difference approximation, the
following relation is obtained in a discretized form between the macroscopic and material

section strain rates at the location x; (ith IP) and at the time ¢, :

dk(x,.)—%lf dk(xi+1)—2?££;;)+dk(xi_l) H(W, (x))=d: (x) 1)

where Axis the spacing between adjacent IPs, which are assumed to be equally spaced. In

addition, applying the Dirichlet BCs of Eq. (14) gives:

15



L (5) = (=) 2)
d, (xy)=di (xy)
If Wsi(xi) > 0 for all discrete locations (i.e., no localization is identified over the element),

combining the first of Eq. (21) with Eq. (22) yields:

dtot,k = H;ldfat,k (‘Xi)
. . . . T
o =[d7 () 47 (x) o dT (xy)] (23)
with . . . . T
dtot,k = [df (xl) di (xz) e dz (xN ):I

where the material and macroscopic section strain rates at all IPs are included in the vectors

('ifm,k and ('imt,k , respectively, and H, is a 6 N x6N matrix defined as:

I I O 7V
Bl Algs Bl 4. = 1+(A;cj
H, - o with 2 (24)
Blg, Alg, Bl B = _%(Alcxj
L O P

where I, , and O,  are 6x6 identity and zero matrices, respectively, 4 and B, are

constants, and the discretized form of W i(x;) is:

VVs,k ('xi) = %[Dk (xi ) -D, (‘xi ):I ) [di (xi)_di—l (xi ):I (25)

Upon localization identification at an IP of coordinate x,, at the time instant ¢, , 1.e., when

Wsi(xi) <0 in Eq. (21), the corresponding rows of H, are replaced with zeros, except for the
diagonal elements, which are replaced with unities. Using explicit time discretization, the total

—d¢

macroscopic section strains at f, are obtained as d,,, =d ot k1

+H, (de

tot ,k

). The

tot k-1
explicit discretization is used because calculation of H requires knowledge of the section
forces, which are function of the spatial derivatives of the macroscopic strains. This would

require an internal set of iterations, which is herein bypassed by this explicit discretization.

Similarly, Eq. (15) can also be discretized using 2™d-order accurate finite difference

approximations, which have different forms depending on the IP location, as:
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*3(.1/( (x,)+4dk (x,+1)7dk (x1+2) 7112 75dk (xr)+18d/< (xr+l)724dk (xl+2)+l4dk (xz+3)73dk (xx+4) ,dc’ ()C ) i=1
2Ax 2° 2(Ax) Sk
(76/\' (xfl)+d/< (xwl)]_llf -3d, (xi—1)+106k (x)-12d, (xi+1)+6dk(xi+2)7dk (%.5) =d (v) i=2
2Ax 2 2(Ax)
[7dk (xfl)+dk (xwl)]_llcz 7dk (xi—z)Jerk (xifl)iz:‘lk(xiﬂ)*»dk (xi+2) =dz((xl)’ 3<i<N-2 (26)
2Ax 2 2(Ax) :
{—dk (x,,)+d, (x,-ﬂ)]_ll3 d, (x.,)-6d, (x,)+12d, (x‘;I)—IOdk (x)+3d, (x,,) _é(x), vt
2Ax 2 2(Ax) i
[dk (%) —4d, (x_,)+3d, (x")]—llf 3d, (x,,)-14d, (x.)+24d, (x}lfz)—ISd,\, (%) +5d, (x,) —d:(x). =N
2Ax 2 2(Ax) ’
Through these discretizations, a matrix form is built as: Gd otdx = dfm, (x> Where G is the

differential finite difference operator matrix, which is constant. The spatial derivative of

material section strains, which are used in the section constitutive relations (Eq. (10)), can then

be numerically computed as d;,, =d; +G(dmt’k’x —dmt,k_l,x). The above discretization

tot k,x tot k-1,x
scheme also implies that a shear-enhanced GI element should include at least five integration

points.

The condensed discretized form of Eq. (20) at ¢, can be written as:

BQQk —F,, (dzeoz,k’dreoz,k,x) =0

27)
qk _Bqdmt,k = 0
with
b(xl) fms (dz (xl)’dle@x (xl))
B. = b(x2) F ( e )_ fms (di (XZ)’dZ,x ()C2))
o~ : > ms tot,k | (28)
b(xN) 6Nx6 fms (d; (XN),d;x ()CN)) ol
B, = [Wlb (xl )T w,b (x2 )T WNb(xN )T :|6><6N

where F, () is the vector of internal section forces, which are function of the material section

e

strains, d;, and their derivatives, d; , ; Bp is the time-invariant matrix of discretized force

shape functions; and By is the time-invariant matrix of macroscopic section strain integration.

The material section strains, d,, ., and the force BCs, Q,, can be computed for given

displacement BCs, q,, through a Newton-Raphson iterative scheme as follows:

17



tot k tot k

-1 e e

{ Qk } _{ Qk } _|: BQ _KmS,k :| BQQk _Fms (dmt,k’dzot,k,x) (29)
e - e -1

d Jj+l d j O6><6 _Bqu j qk_Bqd )

tot ,k

where K« 1s the matrix of total tangential section stiffness at the time ¢, , defined as:

kms,k (xl ) O6><6 T 06><6
Koo O e O 0
O6><6 O6><6 T kms,k (xN)

with K. x(x;) representing the tangent stiffness matrix at the location x; (ith IP) at the time #. It

is noted that in order to maintain simplicity, the Jacobian in Eq. (29) is approximate, because

it does not include the effect of d;,, .. This approach was found to provide acceptable

convergence rates.
5. Concrete Constitutive Model

5.1. Formulation

Due to the interactions between concrete and steel bars in RC elements, the response of plain
concrete is different than the concrete’s response in the presence of steel reinforcement. Major
response differences that are manifested in RC members include two phenomena, namely,
tension stiffening and compression softening. Tension stiffening refers to the contribution of
the steel reinforcement in the apparent stress transfer by concrete tension cracks which results
in a much slower degradation (as opposed to brittle degradation) of the concrete stress-strain
response in the post-peak tensile range (Floegl and Mang 1982; Massicotte et al. 1990).
Compression softening refers to the reduction in the compressive strength of concrete in one
direction due to large tensile stresses in the orthogonal direction (Vecchio and Collins 1986;
Hsu 1988). Reasonable representation of both of these phenomena is important in modeling
axial-flexural-shear interactions of RC elements. Tension stiffening is often simulated by
adjusting the material parameters that control the post-peak tensile response of concrete
material laws. However, in this study, this phenomenon is more naturally reproduced by the
through-the-depth equilibrium, which explicitly accounts for the effect of the transverse
reinforcement on the concrete response, while the longitudinal reinforcement is also accounted
for through the axial and flexural beam equilibrium. Compression softening will be herein

accounted for via an additional damage factor.
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The proposed 3D constitutive model is developed to predict the concrete stress

XX » zz Xy Xz

. . T
components at any point on the cross section, c:[a o, o. T, T T}J ,as a

. . . . T
function of corresponding material strain components, e:[exx e, €. S, S. syZ] ,

where sy, Sx: and s,. are engineering shear strains. The proposed constitutive laws adopt the
widely used concrete damage plasticity model proposed by Lee and Fenves (1998) and modify
it by including compression softening effects and by removing the fracture energy-based re-
scaling conditions with the element size, because objectivity is treated at the element-level via

the gradient inelastic beam mechanics.

In the proposed model, the total material strains, e, are additively decomposed into an

elastic and a plastic material strain component as: e=e, +e,, with e, and e, being the

pl >
vector of the elastic and plastic material strains, respectively. Stiffness/modulus degradation is

coupled with classical plasticity, resulting in the stress vector as:
6=(1-D)o=(1-D)Ee, 1)

where D is a scalar isotropic degradation damage factor with 0 < D <1, 5 is the effective stress

vector of the undamaged material, and E is the elastic (undamaged) modulus matrix which is

given as:
[1-v v 0 0 0 |
1-v 0 0 0
v 1-v 0 0 0
____E 0 0 o =2 o o (32)
(1+v)(1-2v) 2
o o o o =2
2
o 0 0 0 "
L 2
where E is the Young’s modulus and v is the Poisson’s ratio.
The damage factor, D, is determined as:
D-1-(1-D)((1-D.).) 63

where D, and D, are the tension and compression damage factors (0<D,,D_<1), which are

determined as:
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{Dt =1-exp(—d,x,) (34)

D, =1-exp (_dc’(c )
where x, and x, are damage variables that represent accumulated straining in tension and
compression, respectively, and are discussed later, while d, and d_ are nonnegative damage
constants that control the rate of degradation for tension and compression damage. Also, S, is
a compression softening factor (0 < £, <1), which is based on Hsu (1988) as simplified by

Feng et al. (2018). In the present paper, the principal tensile strain used to compute £, in the

above studies (Hsu 1988; Feng et al. 2018) is replaced with the accumulated straining in

tension, x;, as shown below:

B = 1.0
“ J1+d, K,

which makes [, representative of the accumulated influence of compression softening under

(35)

reversed loading taking place under complex multiaxial stress/strain conditions.

The adopted yield criterion is given by Lubliner et al. (1989) as:

F(8,k)= i(az BT, + B (6) (G )= 7 (-G )) - C. () (36)

with:
— I_KC
"0k 1
AP 37
IB(K)_E,(’Q)(I a)-(1+a) (37)
_ w1
2 oo = foo

" I, is the first invariant of the effective stress tensor; J, is the second

where k =[x, & ]
invariant of the deviatoric effective stress tensor; «, (K) and 7 are dimensionless constants
with 0 <a £0.5; K. is the ratio of the second stress invariant on the tensile meridian to that on
the compressive meridian with 0.5<K_ <1.0; c?max is the peak algebraic principal effective
stress (positive in tension); f, is biaxial initial yield compressive stress; f, is the uniaxial

initial yield compressive stress; and 5c (Kc)and 5; (Kt) are effective compressive and tensile

cohesion strengths, respectively, which are functions of the damage variables x. and «,,
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respectively. Per Lubliner et al. (1989), the cohesion strengths in the total stress domain may

be expressed as:
C, ()= fi[ (1+a,)exp(~b,x,)—a, exp(-2b,x, )]
C.(k.)=f, [(1 +a,)exp(-b,k.)—a, exp(—2b,k, )]

Based on Eq. (31), the cohesion strengths can be expressed in the effective stress space as:

{Q(KC)—CC(KC)/(I—DC) (39)
C (x)=C(x)/(1-D,)

The adopted flow rule is expressed as:

(38)

¢ - im(s)=1220) (40)
06

where / is the plastic multiplier and @ (E) is the hyperbolic form of the Drucker-Prager plastic

potential computed as:

®(5)=(3a,pf,) +37, +a,], (1)
with £, is the uniaxial tensile yield stress, p is the eccentricity parameter and a, (= tany) is

a constant that represents the dilatancy of concrete with y being the dilation angle.

The evolution of the damage variables x, and x,, is determined in rate form as:
k= AH (o) (42)

where H(é) is a plastic modulus given as:

O AN @)
0 0 —(1-r(3))|
with the weight function » (é) being defined as:
0 if 6=0
3 A
(3)-1(26)] | @)
—— otherwise
(2¥)
i=1
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In Eq. (42) through (44), ¢ is the vector of the principal effective stresses, i.c.,

al el Eas Ean r . Eal el ol
cz[al 0, 0'3] with 0,20, 20,.

5.2. Calculation of Tangent

The tangent of stress vs. strain model is computed through direct differentiation as:

% _(1-p)® 5P (43)
oe oe oe
For elastic response (i = 0) :
a_D:():a_“:(l_D)E (46)
oe oe

For inelastic response (/i > 0), the consistency condition, iFys =0, is adopted to find the

relation between 4, 6, and ¢, as:

. oF . OF, .
E, (a,x)z—_”6+—”a—"ﬂ.=o (47)
! 0o ok 0
and solving for A
-1
PR L R Ry (48)
ok 04 0o

which, using ¢ = E(é —e&’ ) , further becomes:

ok OA

. oF 1 oF
/1:—( G_KJ [—_JE s o (49)
06

and further using Eq. (40) gives:

_ -1
i [ap L 00(3)_oF, a_xj ( OF,, Ejé (50)

0o 06 ok 04 0o

By substituting Eq. (50) into Eq. (47), we get:

5 _ (El o0®(5) (ﬂi“} (ﬂj} (51

de 6 | ok or) | o

The rate of the damage factor can be calculated as:
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5 9D 0K 4

D= (52)
Ok OA

and using Eq. (50):

. OF . od(G) OF “(oF
D:a_Da_K o Ea EG)_ s OK ZXE |é (53)
Ok 04\ Oo 06 Ok 04 06

resulting in:

_ -1
aD - (a_Da_KJ OF, E GCD(G) _ OF, oK %E (54)
oe ok 04 )\ Oc 06 ok OA 06

By substituting Egs. (51) and (54) into Eq. (45), the tangent of the stress vs. strain model is

obtained.

5.3. Numerical Solution of Concrete Constitutive Relations

At each cross-sectional fiber that is represented by a concrete constitutive model, the variables
{ck,e,f,lck} at time # should be computed according to the variables {ka],e,ffl,l(kfl} at the
previous converged time #—1 and the total applied strain, ex. This paper adopts an explicit time
discretization method for Egs. (40) and (42). Also, the yield function of Eq. (36) and the elastic

equilibrium are expressed at the time #. The resulting set of algebraic equations at the time #

1S:

Because the first, third and fourth equation of Eq. (55) are linear, they can be substituted into

the second equation of Eq. (55) resulting in one equation, F (/Ik) =0, in one unknown, Zk LA

Newton-Raphson solution strategy combining a secant method with bracketing is used to solve

at each time instant #.

Because for elastic steps, 4, =0, K, =K, , and e’ =e? , the solution process first
assumes that the entire increment, e, —e, , is elastic, and finds a trial stress as:

G, =C(ek —efﬁl). Then, this assumption is evaluated by calculating the yield function
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F(o,.,x,). If F(o,,x,)<0, the assumption of elastic response is valid. If not, inelastic
response occurs during that step and the nonlinear equation F(/ik)=0 (representing the

system of Egs. (55)) has to be solved to determine }Lk and subsequently, K, , e/, and &,. The
damage factor, D (K . ) , 1s subsequently calculated from Eqgs. (33), (34) and (35) and total stress

is obtained as: 6, =(1-D(k, ))s, .

6. Assessment of Proposed Element Formulation

The proposed shear-enhanced GI element formulation and multiaxial concrete model were
implemented in the structural analysis program OpenSees (McKenna et al. 2000). The
formulation’s performance in terms of response objectivity and accuracy is evaluated through
examples and comparisons with experimental data as discussed in the following sections. The
experimental data cover shear span-to-depth ratios, a/d, ranging from 2.1 to 7. The concrete
material parameters adopted in all models are shown in . As indicated, some of these parameters
are directly associated with experimentally measurable material properties, such as the concrete
compressive strength, /”c, and the concrete compressive strength at onset of inelastic response,
feco. The analysis run times for the shear-enhanced GI element varied depending on the number
of IPs (NIPs), number of fibers per cross-section, and the values of the material parameters
which affect convergence mainly in the post-peak range of the response. Overall, for all
analyses presented, the run times varied between 3 and 8 hours on a desktop PC with Intel®

Core™) {7-8700 CPU @ 3.20GHz 3.19 GHz.

Table 1 — Default material parameters used in numerical models
a; dac b b: d. d; det K. fm fco fbo 4 P

0.135 * 500 | 550 | 250 | 500 | 400 | 2/3 | ** 0.257° 1.15/co /6 0.1

*ac=L( 1=do _gstaip|sr s £, =056f (MPa)=6.7,7 (psi)

Joo ! 1 1 I

6.1. Response Objectivity

A major objective of the shear-enhanced GI element formulation is that it achieves response

objectivity, i.e., convergence of global and local responses with progressive mesh refinement,
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during shear damage and failure. In order to demonstrate this capability, the shear-flexure-
critical column specimen R3 from Xiao et al. (1993), which was tested under lateral load and
fixed top end rotation, is analyzed herein (Fig. 3). The shear span-to-depth ratio, a/d, for this
column is about 2.1. The longitudinal and volumetric shear reinforcement ratios were 2.5%
and 0.25%, respectively. The concrete compressive strength was 4.95 ksi. The yield strengths
of the longitudinal bars and the stirrups were 68 ksi and 47 ksi, respectively. The vertical load,

P, applied to the column was constant and equal to 114 kips.
1 P =114 kips
r,

24 in

22#
I #2@5 1n

Fig. 3 — Details of column R3 tested by Xiao et al. (1993)

wor

— W96

(=2}

The entire column length is modeled via a single shear-enhance GI element. The
composite Simpson’s rule is adopted for the numerical integration of the strain-displacement
equations (see second of Egs. (20)). Different numbers of IPs (providing different levels of
mesh refinement) are considered and each IP is represented through a higher-order fiber
section. Each cross section is discretized into 8 by 12 fibers for the concrete and 22 separate
fibers for the longitudinal steel. Concrete is modeled through the triaxial plasticity model
discussed earlier. The response of the longitudinal reinforcement is represented via triaxial J2
plasticity material model, available in OpenSees. Bond-slip effects are accounted for according
to Sharifi et al. (2020). The uniaxial material model representing the transverse reinforcement
(used to enforce through-the-depth equilibrium) is Steel-02 with deterioration parameters,

available in OpenSees.

The characteristic length, /., was taken to be 12 in. (i.e., half of the cross-section depth).
Based on the previous studies with the GI formulation (Sideris and Salehi 2016; Salehi and
Sideris 2017), a value of /. between half and full cross-section depth has been found to provide
a good agreement with the experimental data for ductile flexure-critical columns. In shear-
critical elements, values of /. between half and twice the cross-section depth may be reasonable,
mainly because each single diagonal crack is expected to propagate within this range depending

on the shear span to depth ratio.
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The predicted lateral force vs. displacement responses are compared with the envelope
of the (cyclic) test data in Fig. 4(a). It is observed that the element’s pre-peak response remains
almost unaffected by the NIPs. The post-peak responses converge with the number of IPs,
which confirms the response objectivity of the proposed shear-enhanced GI element
formulation. According to Fig. 4(b), an /./Ax ratio greater than 3 is found to ensure the

convergence of the force-displacement response.

140 T T T T T T T T

100

80

3 =y A = AT
H w0 | NiP=9 1 CAT NiP=25 (1 /AT ]
= NIP=13 (1 x= 19 NIP=33 1 I Ax=40)
20 - cA - <A |
Nip=17( AT Euperimental - envelope curve
0 I I I I I I I I
0 0 04 0.6 08 1 1 14 16 18
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5 9 13 17 21 25 33
136 :
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<
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0.5 1 1.5 2 25 3 5 4
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(b)

Fig. 4 — Response objectivity: (a) force-displacement responses; (b) variation of strength with
I./Ax at a lateral displacement of 1 in.

The predicted distributions of macroscopic shear strain (on the reference axis, i.e., yx0)
and curvature at 1 in. of lateral displacement as well as the corresponding variations of peak
shear strain and curvature with /./Ax are shown in Fig. 5. As expected, both the peak shear
strains and curvatures are predicted to occur at the column ends (Fig. 5(a,c)), where the ultimate
failure occurred during the experiment (Xiao et al. 1993). Similar to the force-displacement
responses (Fig. 4), the predicted macroscopic section strains appear to converge as [./Ax

exceeds 3 (per Fig. 5 (b,d)).
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Fig. 5 — Response objectivity — Macroscopic section strain distributions at lateral displacement
of 1.0 in.: (a) shear strain; (c) curvature; variations of maximum section strains with /./Ax at
lateral displacement of 1.0 in.: (b) shear strain; (d) curvature

6.2. Effect of Characteristic Length

The effect of characteristic length, /., on the response of the shear-enhanced GI FB element
formulation is examined using the column model from the previous example. The lateral load
vs. displacement response predictions for three different values of /., namely, half, one-, and
two-times cross-section depths, are shown in Fig. 6(a). In each case, the number of IPs is
selected to satisfy /./Ax > 2.5 to ensure mesh-independent responses, i.e., 7 IPs, 11 IPs, and 21
IPs for /. equal to half, one-, and two-times cross-section depths, /.., respectively. It is
observed that larger values of /. increase the lateral displacement corresponding to the peak
column strength (i.e., delay the onset of softening) and reduce the rate of the post-peak strength
deterioration. As seen in the macroscopic shear strain and curvature distributions (Fig. 6(b,c)),
the delay in softening is caused by the spread of plasticity/damage over a larger length as /.
increases. Moreover, when compared to the experimental response, it is confirmed that an /.

value around half a column depth leads to a reasonably accurate model prediction.
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Fig. 6 — Effect of characteristic length: (a) force-displacement responses; macroscopic section
strain distributions at lateral displacement of 1.3 in.: (b) shear strain; (¢) curvature

6.3. Comparison with Original GI Element

The lateral load-displacement response predictions of the original and shear-enhanced GI
elements are compared using the column adopted in the previous two sections (see Fig. 3). In
both models, the characteristic length, /., is selected to be 12 in. (half the cross-section depth)
and the number of IPs is taken as 21 to ensure response objectivity (I./Ax > 2.5). In the fiber
sections of the original GI element, the response of the concrete material and the longitudinal
steel are modeled by the Mander’s material model (Mander et al. 1988) and Giuffre-
Menegotto-Pinto model (Giuffr¢ and Pinto 1970), respectively, which are available in

OpenSees.

The force vs. displacement responses and macroscopic section strain distributions of the
two models are compared with each other and the experimental data in Fig. 7. The shear-
enhanced GI element predicts a much lower strength and rapid post-peak degradation (Fig. 7
(a)), which are driven by shear damage. On the contrary, the original GI predicts a significantly

more ductile response that is driven by flexural failure, which would only occur if the RC
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member was capacity-protected against shear failure. In fact, while both the original and the
shear-enhanced GI element formulation predict similar curvature distributions over the
member (Fig. 7 (b)), the shear-enhanced GI element predicts large, nonlinear shear strain
distributions (Fig. 7 (c)), which are indicative of its capability to predict shear failures.
However, the original GI predicts very small, linearly distributed, shear strains (Fig. 7 (c)).
This is because it adopts the (linear) cross-section kinematics of Timoshenko beams and
uniaxial stress vs. strain constitutive laws normal to the cross-section plane that are decoupled
from the shear stress vs. shear strain relations, which are often taken to be linear. On the
contrary, the shear-enhanced GI formulation adopts cubic cross-section kinematics and 3D
constitutive relations that can describe the coupled effect of normal and shear stresses and the

resulting higher order field.
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Fig. 7 — Comparison of responses with original GI element: (a) force-displacement response; (b)
macroscopic section shear strain distribution at a lateral displacement of 1.3 in.; (c)
macroscopic section curvature distribution at a lateral displacement of 1.3 in.

6.4. Comparison with Experimental Data

The performance of the shear-enhanced GI FB element formulation is further evaluated by

simulating eleven different RC members, namely nine beams (Vecchio and Shim 2004) and
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two columns (Prakash et al. 2012; Pan and Li 2013), from three experimental studies available

in the literature.

6.4.1. Shear-critical Reinforced Concrete Beams

The cross-section dimensions and reinforcement details of the examined beams (Vecchio and
Shim 2004) are provided in Fig. 8, , and . As shown in Fig. 8, the beam series A, B, and C have
different cross-section dimensions. Each series consists of three sub-series, namely 1, 2 and 3.
Sub-series 1 and 2 had shear span-to-depth ratios, a/d, of 4 and 5, respectively, and exhibited
shear failure starting with diagonal-tension cracking and later also exhibiting splitting in the
compression zone. Sub-series 3 had a/d of 7 and exhibited flexural-compression failures with
less shear deformations, but still showing diagonal cracking. The concrete compressive
strengths were 22.6, 25.9 and 43.5 MPa for sub-series 1, 2 and 3, respectively. The yield
strengths of the longitudinal steel bars were 315, 440, 445 and 436 MPa for M10, M25 in sub-
series 2, M25 in sub-series 1 & 3, and M30, respectively. The yield strength of the stirrups was
600 MPa.

Considering the geometry and loading symmetry as provided in Fig. 9, only half of the
length of each beams is modeled via a single shear-enhanced GI FB element with pinned-fixed
BCs. The characteristic length, /., is selected to equal each beam’s cross-section depth and the
number of IPs is chosen such that /./Ax > 2.5 to ensure response objectivity. Each cross section
is discretized into 8 by 14 fibers for the concrete materials, and additional separate fibers are
introduced for the longitudinal steel bars. The concrete is modeled by the 3D concrete damage
plasticity model discussed earlier with the material parameters of . The responses of the
transverse and longitudinal reinforcement are represented via the Giuffré-Menegotto-Pinto
uniaxial material model (Giuffré¢ and Pinto 1970) and triaxial J2 plasticity material model
available in OpenSees, respectively. No bond-slip effect is considered in the beam models

which was the case in the experimental tests. Monotonic loading was applied to failure.
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Fig. 8 — Details of examined RC beams: (a) series A; (b) series B; (c) series C (Vecchio and Shim
2004)
Table 2 — Cross-section details of Toronto beams (Vecchio and Shim 2004)
Concrete
b h d L Span Top
Beam ID a/d strength Bottom steel Stirrups
(mm) | (mm) | (mm) | (mm) | (mm) steel
(MPa)
VS-Al 305 | 552 | 457 | 4100 | 3660 | 4 22.6 2M30,2M25 | 3M10 | D5@210
VS-A2 | 305 | 552 | 457 | 5010 | 4570 | 5 25.9 3M30,2M25 | 3M10 | D5@210
VS-A3 305 | 552 | 457 | 6840 | 6400 | 7 43.5 4M30,2M25 | 3M10 | D4@168
VS-B1 229 | 552 | 457 | 4100 | 3660 | 4 22.6 2M30,2M25 | 3M10 | D5@190
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VS-B2 229 552 | 457 | 5010 | 4570 | 5 259 2M30,2M25 | 3M10 | D5@190
VS-B3 229 552 | 457 | 6840 | 6400 | 7 43.5 3M30,2M25 | 3MI10 | D4@l152
VS-Cl1 152 552 | 457 | 4100 | 3660 | 4 22.6 2M30 3M10 | D5@210
VS-C2 152 552 | 457 | 5010 | 4570 | 5 259 2M30,2M25 | 3M10 | D5@210
VS-C3 152 552 | 457 | 6840 | 6400 | 7 43.5 2M30,2M25 | 3M10 | D4@168

Table 3 — Steel material properties of Toronto beams (Vecchio and Shim 2004)

Bar size Diameter (mm) Area (mm?) Jfy(MPa) fu (MPa)
M10 11.3 100 315 460
M252 25.2 500 440 615
M25Pb 25.2 500 445 680
M30 299 700 436 700

D4 3.7 25.7 600 651
D5 6.4 32.2 600 649
b
Cross-section details
provided in Figure 8 l h
& Table 2 P l
< span >

« L >
Fig. 9 — Loading and boundary conditions in examined beams

The response predictions of the shear-enhanced GI FB element formulation with and
without the through-the-depth stress equilibrium are compared with the experimental data
(Vecchio and Shim 2004) in Fig. 10 and Fig. 11 for the shear-dominant beams and the flexural
compression beams, respectively. As shown in Fig. 10, incorporation of the through-the-depth
equilibrium negligibility affects the pre-peak range, but it significantly affects the post-peak
range by predicting slower softening that better aligns with the experimental data. This
observation also aligns with the findings of Vecchio and Shim (2004) who noted the
importance of simulating out-of-plane confinement effects in predicting the response of such
beams. The shear-enhanced GI element formulation predicts the lateral strength very accurately
with a mean strength prediction error of about 2.78% for the selected specimens as shown in .
The shear-enhanced GI element formulation also captures the initial stiffness and the peak
strength reasonably well. However, a later change in the stiffness in the pre-peak portion of the
curve, which may be associated with initial cracking, is not accurately captured for the shear-

dominant members of sub-series 1 and 2 (see Fig. 10). Analyses conducted with /. equal to the
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cross-section height (/. = /&) and twice the cross-section height (/. = 2h) — see Fig. 10 (¢), (d)
and (e) — did not affect the pre-peak range predictions, however the case of /. =24 provided
more ductile post-peak responses that better followed the experimental data. For these
specimens, the selected /. (= 24) was also compatible with the average inclination of the shear
cracks. Fine-tuning in the material parameters of , such as b. and b,, which affect the pre-peak

response could improve the pre-peak response prediction, but such a fine-tuning search would

be beyond the scope of this work.
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Fig. 10 — Comparison of force-displacement response predictions of proposed element
formulation with experimental data for shear-dominant beams
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Fig. 11 — Comparison of force-displacement response predictions of proposed element
formulation with experimental data for flexural compression beams

Table 4 — Comparison of the maximum load predictions of the shear-enhanced GI element with
experimental data

Maximum Vertical Load (kN)
Beam ID J (%)
Experiment, Pk, Shear-enhanced GI Element, Pscr

Al 459 464.5 1.20
A2 439 462.6 5.38
A3 420 425.7 1.36
B1 434 434.7 0.16
B2 365 359.8 1.42
B3 342 344.7 0.79
C1 282 262 7.09
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6.52

C2 290 308.9
C3 265 262 1.13
Mean 2.78
Median 1.36

6.4.2. Shear-critical Reinforced Concrete Columns

The properties of the examined columns are shown in Fig. 12 and . For each analysis, the entire

column is modeled via a single shear-enhanced GI element with the composite Simpson’s

integration rule. The selected characteristic lengths, /., and the shear span-to-depth ratio, a/d,

for the different columns are listed in , and number of IPs are considered for each element such

that /./Ax > 2.5 to ensure mesh-converged responses. Each cross section is discretized into 12

by 16 fibers for concrete and separate fibers to represent longitudinal steel. The concrete is

represented by the 3D concrete damage plasticity model discussed earlier. The responses of the

transverse and longitudinal reinforcement are represented via the Giuffré-Menegotto-Pinto

uniaxial material model (Giuffré and Pinto 1970) and triaxial J2 plasticity material model

available in OpenSees, respectively. The bond-slip effects are modeled per Sharifi et al. (2020).

Table 5 — Details of selected columns

Specimen ID Material properties /
Test B.C. P ¢
fe fr Jis
Pan & Li (2013) | SC24-03 | pixed-Fixed 493 MPa | 409 MPa | 392.6 MPa | 0.3f.4, | 350 mm
Pral(‘;(s)?;)t al. | /BOX-TMO) | 0y piiever 36.3MPa | 512MPa | 454MPa | 0.07/.4, | 560 mm
1 P=1812 kN
P=797 kN
r, 4 1
—_—

H

wur L1
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I D6@125 mm
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Fig. 12 — Details of examined columns: (a) Pan & Li (2013); (b) Prakash et al. (2012)

The pushover responses predicted from the shear-enhanced GI element formulation are

compared with the envelope curves of the experimental cyclic response from both tests in Fig.
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13. The three different analysis strategies were adopted, namely: (1) including both through-
the-depth equilibrium and bond-slip effects, (2) disregarding through-the-depth equilibrium

and calculating the lateral strains through Poisson’s ratio (&, =¢_ =—-Vve, ) while keeping

bond-slip effects, and (3) disregarding bond-slip effects while keeping through-the-depth
equilibrium. As expected, considering the bond-slip effects generally improves the model
response predictions — especially, in terms of the pre-peak stiffness. Also, the models with no
through-the-depth force equilibrium, in which lateral strains were calculated from Poisson’s
ratio relation, exhibit less ductility due to their inability to capture out-of-plane confinement
effects. The shear-enhanced GI elements with both bond-slip and through-the-depth
equilibrium not only closely captures the overall shapes of the force-displacement responses
obtained from the experiments, but also predict the lateral strengths of the columns with only

about 3% error.

It is noted that while the actual lateral loading histories were cyclic (for this section and
for Section 6.1), and despite the fact that the shear GI formulation can inherently account for
cyclic loading through the use of a concrete constitutive model that belongs to the family of
classical incremental plasticity models, the analyses conducted herein for the RC columns were
selected to be monotonic. This is because simulating the deterioration from repeated cyclic
loading at various amplitudes requires more complex definitions for x. and ;. The adopted
definition of Egs. (42) to (44) implies that x. and x; represent accumulated plastic traveling in
compression and tension, respectively. While this definition (or similar definitions, e.g. Lee
and Fenves (1998)) has been found to satisfactorily predict deterioration under uniaxial
monotonic loading or simple uniaxial cyclic loading, the material model in the present study is
subjected to complex triaxial loading due to the through-the-depth equilibrium, for which this
definition of k. and x; may not be suitable. For example, a recent study by McKee et al. (2023)
on steel rebar showed that strength deterioration and damage depend both on the accumulated
plastic traveling and the strain magnitude at which the traveling takes place, showing that
cycles at larger strains may be more damaging than cycles at lower strains, and demonstrating
the need for more complex definitions of damage parameters. Exploring definitions of x. and
k; that can account for similar observations in concrete, while being of value, are deemed to be

beyond the scope of this paper.
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Fig. 13 — Comparison of force-displacement response predictions with experimental data: (a)
Pan & Li (2013); (b) Prakash et al. (2012)

7. Summary and Conclusions

This paper extends a previously developed gradient inelastic (GI) force-based (FB) beam-
column element formulation capable of capturing axial-flexural interactions and predicting
flexural failures to account for axial-flexural-shear interactions in order to predict shear failures
in RC members. This is achieved by incorporating () higher-order cross-section kinematics to
describe higher-order transverse deformation profiles, (i7) cross-sectional through-the-depth
equilibrium to predict normal strain distributions in the transverse directions and to compensate
for confinement effects, and (iii) 3D concrete constitutive relations to simulate triaxial
stress/strain interactions. The higher-order cross-section kinematics are determined through
satisfaction of cross-section boundary conditions (BCs) and, as a result, do not introduce
additional element degrees of freedom. The adopted 3D concrete constitutive relations are
based on the plastic damage model of Lee and Fenves (1998), which, amongst other
modifications, it is also modified herein to include the effect of compression softening due to
the presence of reinforcement. To eliminate strain localization phenomena, new gradient
nonlocality relationships are introduced, in addition to those of the original GI FB formulation.
The proposed element formulation is implemented in the OpenSees structural analysis software

(McKenna et al. 2000). Some additional observations include:

e The shear-enhanced GI element formulation was found to eliminate strain localization
phenomena during softening and provide mesh-convergent responses. For the analyses
performed, convergence was achieved for /./Ax of 2.5 to 3 or larger.

e Incorporation of the through-the-depth equilibrium led to more ductile shear-dominant

post-peak responses, which were found to better match the experimental data.
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e Comparisons with experimental data showed that the original GI element (without shear
effects) overestimated the peak lateral strength of shear-critical RC members, whereas the
shear-enhanced GI element was able to predict such strength with less than 3% error (on
average) based on comparisons with test data from 12 different RC members.

e While the shear-enhanced GI element provide similar accuracy in predicting the strength
in RC beams and columns, it provided more accurate predictions of the post-peak response
of columns compared to the post-peak response of beams. Use of more accurate values of
the characteristic length, /., improved the predictions for shear-dominant columns.

e While the shear-enhanced GI formulation inherently accounts for arbitrary loading
conditions, all analyses focused on monotonic loading. Refinements of the material model,
most likely with respect to the damage parameters and damage factors, are needed through
future research to better describe material degradation with repeated loading cycles at

varying strain amplitudes and under triaxial conditions.

The shear-enhanced GI element formulation could contribute to the analysis of non-
ductile RC framed structures in the U.S. and worldwide. Such structures often pose an
imminent threat to catastrophic failure due to earthquakes and/or other natural hazards. While
this study focused on two-dimensional loading conditions, future research may extend this
work to account for biaxial bending and torsional effects resulting from complex three-

dimensional loading conditions.
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