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Abstract 

A large number of structures in the U.S. and worldwide include non-ductile reinforced concrete 

(RC) frames with columns and beams that are prone to shear failure. Due to the brittle nature 

of shear failures, accurate simulation of RC structures with shear-critical members is essential 

to predicting their overall capacity under severe loading scenarios (e.g. earthquakes) and 

designing effective retrofits and upgrades. In this paper, a previously developed gradient 

inelastic (GI) force-based (FB) beam-column element formulation capable of capturing axial-

flexural interaction and predicting flexural failures is extended to account for axial-flexural-

shear interactions in RC members in order to predict shear failures. The proposed shear-

enhanced GI FB element formulation advances the original GI FB element formulation by 

developing higher-order cross-section kinematics, i.e., beyond the plane sections assumption, 

and by developing a 3D concrete constitutive model. The higher-order cross-section kinematics 

can simulate strain distribution of the cross-section more accurately, while using 3D concrete 

constitutive models at the element’s cross-sections permit simulation of axial-flexural-shear 

interactions. To incorporate the confinement effects of transverse steel reinforcement, through-

the-depth stress equilibrium is strictly enforced in the transverse directions of the member’s 

cross-section. To eliminate strain localization phenomena, new gradient nonlocality 

relationships are introduced, in addition to those of the original GI FB formulation. The 

proposed element formulation is implemented in the OpenSees structural analysis software and 

is shown to maintain continuous macroscopic section strain distributions over the element 

length during softening and discretization convergent responses, thereby eliminating the strain 
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localization phenomena. In addition, the predictions of the shear-enhanced GI FB element 

formulation are compared with data available from experiments on RC beams and columns. 

 

Keywords: reinforced concrete, beam element, strain localization, gradient inelastic element, axial-shear-flexural 

interaction, shear critical   
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1. Introduction 

Reinforced concrete (RC) structures are usually subjected to a variety of loading conditions 

that simultaneously generate flexural, shear and axial internal loads in their members, resulting 

in triaxial stress/strain states. RC members are nowadays designed to fail in a ductile manner 

in flexure, but members with small span-to-depth ratios or those designed using outdated codes 

can suffer from brittle failures, such as shear or flexure-shear failures. Therefore, accurate 

numerical simulation of axial-flexural-shear interactions in RC members is crucial to 

accurately evaluating the performance of such members under extreme loading scenarios. 

Two approaches are generally adopted for efficient finite element modeling of RC 

members: (i) using elastic beam-column elements with concentrated plasticity at their ends 

(Kunnath et al. 1990; Ricles et al. 1998; Lee et al. 2009; Xu and Zhang 2011; Roh et al. 2012; 

LeBorgne and Ghannoum 2014), and (ii) using distributed-plasticity beam-column elements 

(Filippou et al. 1992; Mergos and Kappos 2008; Sezen and Chowdhury 2009; Mergos and 

Beyer 2014). Because of its superior computational efficiency, the former approach is vastly 

employed in the literature (Haselton 2007; Haselton et al. 2016; Aghajani Delavar and Bargi 

2018; Aghajani Delavar and Bargi 2020Hellesland and Scordelis 1981; Spacone et al. 1996; 

Neuenhofer and Filippou 1997); however, it cannot predict spread of damage/plasticity and 

relies on calibrations based on component/member testing. Despite their higher computational 

cost, distributed-plasticity beam-column elements can predict the spread of damage/plasticity 

along the modeled beams/columns by using several integration points (IPs) representing 

nonlinear cross section responses along their lengths. Because those IPs are usually represented 

via fiber sections, distributed-plasticity beam-column elements are also known as fiber 

elements. Two major groups of fiber element formulations have been developed, namely, 

stiffness/displacement-based (DB) and flexibility/force-based (FB). DB formulations employ 

predefined displacement interpolation functions along their lengths and satisfy the force 

equilibrium only in an average sense (through the virtual work method) (Priestley 1997; 

Limkatanyu and Spacone 2002). Contrarily, FB formulations strictly satisfy force equilibrium, 

making them capable of capturing the section strain/curvature distributions over the element 

lengths more accurately. However, in the presence of softening, conventional FB formulations 

lead to unrealistic strain singularities that are manifested as strain localization and result in 

secondary problems, such as lack of response objectivity and numerical instability (Zeris and 

Mahin 1988; Coleman and Spacone 2001; Sideris 2012; Sideris and Salehi 2016). To eliminate 

the strain localization phenomenon, several methods have been proposed that introduce a 
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characteristic length into either the material constitutive models or the element formulation, 

including constitutive law re-scaling (Coleman and Spacone 2001), plastic hinge integration 

methods (Scott and Fenves 2006; Scott and Hamutçuoğlu 2008; Almeida et al. 2012), nonlocal 

models (Khaloo and Tariverdilo 2002; Valipour and Foster 2009, Feng et al. 2016; Nikoukalam 

and Sideris 2019), and gradient models (Sideris and Salehi 2016; Salehi and Sideris 2017; 

Salehi and Sideris 2018).  

Fiber beam-column element formulations have commonly focused on flexural responses 

as they are based on the Euler-Bernoulli (EB) beam theory (e.g., Feng et al. 2019) and do not 

explicitly consider shear effects. The majority of fiber element formulations for shear critical 

elements are based on the Timoshenko beam theory (e.g., Filippou and Saritas 2006; Feng and 

Ren 2021), which accounts for shear behavior in an average sense by assuming a linear 

variation of transverse displacement of the cross-section, which results in a uniform shear strain 

profile over the cross-section. In the case of linear elastic beams, and in order to avoid the beam 

prediction errors due to the uniform strain profile assumption, correction factors are applied to 

the shear stiffness coefficients of the respective member stiffness matrices (e.g., Mindlin and 

Deresiewicz 1953; Cowper 1966; Kaneko 1975; Jensen 1983). However, no such correction 

factors are available for inelastic beams. Beam theories with higher-order cross-section 

kinematics have been shown to reproduce more accurate strain profiles due to nonlinear 

variation of the deformation fields of the cross-section. Popular higher-order beam theories 

include (Zia and Khan 2018) the third-order beam theory, the trigonometric shear deformation 

beam theory, the hyperbolic shear deformation beam theory, and the exponential shear 

deformation beam theory. In these theories, the additional parameters introduced by the higher-

order cross-section kinematics are determined by enforcing zero shear stress conditions at the 

boundaries of the cross-section under the assumption of linear elastic material response.  

Most available flexural-shear fiber beam element formulations follow two main 

approaches: (a) incorporating axial-flexural-shear interaction at the element level by inserting 

shear springs at the element ends (e.g., D'Ambrisi and Filippou 1999; Marini and Spacone 

2006; Mergos and Kappos 2008; Xu and Zhang 2011; Lodhi and Sezen 2012; Xu and Zhang 

2012), and (b) considering shear deformation at the cross-section by adopting Timoshenko or 

higher-order beam theories rather than EB beam theory (e.g., Petrangeli et al. 1999; Bairan and 

Mari 2007; Ceresa et al. 2007; Ceresa et al. 2009; Saritas and Filippou 2009; Mohr et al. 2010; 

Mullapudi and Ayoub 2012; Stramandinoli and La Rovere 2012; Correia et al. 2015; Li et al. 

2016). In the second approach, which is more straightforward, the accuracy and efficiency of 
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the element mainly relies on the selection of multiaxial concrete models. Commonly used 

models are the microplane models (e.g., Petrangeli et al. 1999; Jiang and Kurama 2010), 

smeared crack models (e.g. Vecchio and Collins 1988; Bentz 2000; Remino and Trento 2004; 

Garcia and Bernat 2006; Rajapakse et al. 2019; Hippola et al. 2022) and damage plasticity 

models (e.g., Ju 1989; Lee and Fenves 1998; Wu et al. 2006; Mullapudi and Ayoub 2012; Feng 

et al. 2019). Some research studies have also focused on integrating combined shear and 

torsional effects within frame elements (e.g., Saadé et al. 2004; Garcia and Bernat 2006; Garcia 

and Mari 2006; Kagermanov and Ceresa 2018; Nguyen et al. 2019). While higher-order cross-

section kinematics have been employed in some DB formulations investigating shear failures 

(e.g., Garcia and Bernat 2006; Garcia and Mari 2006), use of higher-order cross-section 

kinematics in FB element formulations intending to capture axial-flexural-shear interaction 

remain limited (Mohr et al. 2010; Correia et al. 2015; Di Re et al. 2018).  

In the presence of material models with softening branches, conventional FB 

formulations (and simulations of members with series of DB elements) suffer from strain 

localizations and loss of response objectivity. While strain localization phenomena have been 

more extensively studied for flexure-critical elements (Khaloo and Tariverdilo 2002; Valipour 

and Foster 2009; Sideris and Salehi 2016; Salehi and Sideris 2017; Kenawy et al. 2018; 

Kenawy et al. 2020), similar studies are fairly limited for shear-critical elements and for 

flexure-shear-critical elements (Feng et al. 2019; Feng and Ren 2021). In more recent years, 

the majority of studies addressing flexural softening have focused on incorporating concepts 

from nonlocal and gradient mechanics (Khaloo and Tariverdilo 2002; Valipour and Foster 

2009; Sideris and Salehi 2016; Salehi and Sideris 2017; Kenawy et al. 2018; Kenawy et al. 

2020). As part of these studies, the gradient inelastic (GI) beam theory together with a 

flexibility-based element formulation were recently proposed by Sideris and Salehi (2016) and 

Salehi and Sideris (2017), and were later extended to incorporate finite strains (Salehi and 

Sideris 2018). A major advantage of the GI FB beam element formulation is its capability to 

integrate any type of uniaxial material model, such as elastic, plastic, hardening, softening, and 

combinations of those because its gradient nonlocality relations are decoupled from the 

constitutive laws (Salehi and Sideris 2017). Such advantages have allowed the use of this 

element formulation in the collapse analysis of RC building and bridge structures (Salehi et al. 

2017; 2020). In the original GI FB element formulation, the “plane sections” assumption results 

in uniform shear strain distribution over the cross-section, and the shear response is decoupled 
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from the normal stress/strain response. Herein, the GI element formulation is extended to 

capture shear failures and axial-flexural-shear interactions in RC members.  

2. Scope and Innovations 

This paper extends the original GI beam theory and the corresponding GI flexibility-based 

beam-column element formulation, which is capable of capturing axial-flexural interactions 

and predicting flexural failures, to account for axial-flexural-shear interactions and predict 

shear failures in RC members, while simultaneously achieving response objectivity. This is 

achieved by incorporating (i) higher-order cross-section kinematics to describe higher-order 

deformation profiles, (ii) cross-sectional through-the-depth equilibrium to predict normal strain 

distributions in the transverse directions and to compensate for confinement effects, and (iii) 

3D concrete constitutive relations to simulate triaxial stress/strain interactions. The adopted 3D 

concrete constitutive relations are based on the plastic-damage model of Lee and Fenves 

(1998), which, amongst other modifications, it is also modified to include the effect of 

compression softening due to the presence of reinforcement. The higher-order cross-section 

kinematics are determined through satisfaction of cross-section boundary conditions (BCs) and 

do not introduce additional element degrees of freedom. To eliminate strain localization 

phenomena, new gradient nonlocality relationships are introduced, in addition to those of the 

original GI FB formulation. The resulting shear-enhanced GI element formulation is 

implemented in the structural analysis software OpenSees and is shown to eliminate strain 

localization phenomena during softening, thus, providing mesh-convergent (objective) 

responses. Additionally, the predictions of the shear-enhanced GI element formulation are 

compared with available experimental data from a number of tests on RC columns and beams.   

3. Cross-section Kinematics  

In order to capture shear effects, the following 3rd order cross-section kinematics (in 3D) with 

six degrees of freedom, which result from those proposed by Levinson (1981) in 2D, are 

adopted herein: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 3, ,

, ,

, ,

o z y z y

o x x

o x x

u x y z u x y x z x y x z x

v x y z v x z x z x

w x y z w x y x y x

θ θ ψ ψ

θ ψ

θ ψ

 = − + − +
 = − +
 = + +   

(1) 
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In the above equations, u(x,y,z), v(x,y,z) and w(x,y,z) are the displacements of a point at the 

reference coordinates (x,y,z) in x, y, and z directions, respectively; ( )ou x , ( )ov x  and ( )ow x  

are the displacements in x, y and z directions, respectively, at the location x of the beam 

reference axis; ( )x xθ , ( )y xθ  and ( )z xθ  are the rotations about the x, y and z axes, 

respectively, at the location x of the beam reference axis; and ( )x xψ , ( )y xψ , and ( )z xψ  are 

the shear rotations about the x, y and z axes, respectively, at the location x of the beam reference 

axis.  

The corresponding infinitesimal strain field can be computed from Eq. (1) as: 

( ) ( )
( )

( )
( )

( )
( )

( ) ( )

( )

( )

( ) ( ) ( )
( )

( ) ( )
( )

( )

( ) ( ) ( )
( )

3 3
, , , , ,

2
, , ,

,

, ,

, , 0

, , 0

, , 3

, ,

xo z y

xyo x

xzo

xx o x z x y x z x y x

x x x

yy

zz

xy z o x z x x x x

x x

xz y o x

x

dux y z u x y x z x y x z x
dx

dvx y z
dy
dwx y z
dz
u vx y z x v x y x z x z x
y x

u wx y z x w x
z x

ε φ φ

γ φ

γ

ε θ θ ψ ψ

ε

ε

γ θ ψ θ ψ

γ θ

= = − + − +

= =

= =

∂ ∂
= + = − + − − +
∂ ∂

∂ ∂
= + = +
∂ ∂

  

 


( )
( )

( ) ( )

( ) ( )

2
, ,3

, , 2

x

x x y x x

x

yz x

y x z x y x

v wx y z x
z y

φ

θ ψ ψ

γ ψ














 + + +

 ∂ ∂ = + =
 ∂ ∂



  (2) 

where the subscript “,x” represents the first derivative with respect to x; ( ), ,xx x y zε , 

( ), ,yy x y zε  and ( ), ,zz x y zε  are the normal strains in the x, y and z directions, respectively; 

and ( ), ,xy x y zγ , ( ), ,xz x y zγ  and ( ), ,yz x y zγ  are the independent engineering shear strains; 

( )xo xε  is the macroscopic axial section strain at the location x on the beam reference axis; 

( )x xφ , ( )y xφ  and ( )z xφ  are the macroscopic section curvatures about the x, y and z axes, 

respectively, at the location x on the beam reference axis; and ( )xyo xγ  and ( )xzo xγ  are the 

macroscopic shear section strains in y and z directions, respectively, at the location x on the 

beam reference axis (Fig. 1(a)). 
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Fig. 1 – (a) Section strains; (b) section forces 

Compared to the linear cross sectional displacement field obtained from Navier’s 

assumption of plane sections, the 3rd order displacement field introduces three additional 

unknowns, namely, the shear rotations ( )x xψ , ( )y xψ  and ( )z xψ . For a given cross-section 

shape and under the assumption of linearly elastic material response, these rotations can often 

be calculated by applying zero-traction conditions at the cross-section boundaries. This 

approach is often adopted in the analysis of framed structures because it eliminates the need to 

build beam element formulations with more than six degrees of freedom per node (Reddy 

1997). For a rectangular solid cross-section, which is very common in RC structures, and for a 

beam reference axis passing through the cross-section centroid, there are zero tractions at the 

boundaries of the cross-section. These BCs would require: 

( )
( )
( )

, / 2, 0

, / 2, 0

, / 2, 0

xy

yy

zy

x y h z

x y h z

x y h z

σ

σ

σ

 = ± =
 = ± =
 = ± =

   and   
( )
( )
( )

, , / 2 0

, , / 2 0

, , / 2 0

xz

yz

zz

x y z b

x y z b

x y z b

σ

σ

σ

 = ± =


= ± =
 = ± =

 (3) 

where b and h are the cross-section width and height, respectively. For a linear elastic beam, 

the shear stress BCs in Eq. (3) result in the following shear strain BCs: 

( )
( )
( )

, / 2, 0

, , / 2 0

, , / 2 0

xy

xz

yz

x y h z

x y z b

x y z b

γ

γ

γ

= ± =


= ± =
 = ± =

 (4) 

Focusing on the special conditions ( ), / 2, 0 0xy x y h zγ = ± = =  and 

( ), 0, / 2 0xz x y z bγ = = ± = , and according to Eq. (2), the shear rotations ( )x xψ , ( )y xψ  and 

( )z xψ  are obtained as:  

εxo , exo 

ϕx , κx 
γxzo , sxzo 

ϕy , κy 

ϕz , κz 

γxyo , sxyo 
x 

y 

z 

N 

Tx 

My 

Mz 

Vz 

Vy 

(a) (b) 
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( ) ( ) ( )( )

( ) ( ) ( )( )
( )

2

2

4
3

4
3

0

z xyo x

y xzo x

x

x x z x
h

x x y x
b

x

ψ γ φ

ψ γ φ

ψ

 = −

 = − +

 =


 (5) 

Because the strain field of Eq. (2) predicts zero lateral strains ( 0yy zzε ε= = ), an 

unrealistically high confinement effect would always be predicted by this model. To capture 

the confinement effects more reasonably, the transverse strain components, yyε  and zzε , are 

herein computed via through-the-depth cross-section equilibrium (Mullapudi and Ayoub 

2012). The resulting equations, which express the equilibrium between the concrete and the 

transverse reinforcement, are enforced at any point located at the coordinates (x,y,z) as: 

( ) ( )
( ) ( )
( )

, , , , 0

, , , , 0

, , 0

cy sy sy

cz sz sz

cyz

x y z x y z

x y z x y z

x y z

σ ρ σ

σ ρ σ

τ

+ =


+ =
 =

 (6) 

where σcy and σcz are the concrete stresses in y and z directions, respectively; σsy and σsz are the 

transverse steel stresses in y and z directions, respectively; cyzτ is the yz-component of the 

concrete shear stresses; and ρsy and ρsz are the transverse steel ratios in y and z directions, 

respectively, which are assumed to be constant and independent of coordinates. In the above 

equations, σcy and σcz are computed from a multiaxial constitutive model (see next section), 

while σsy and σsz depend on εyy and εzz, respectively, through separate uniaxial constitutive 

models for the transverse steel. The latter models can be of any desired form (e.g., bilinear to 

capture the yielding of the transverse steel). 

By substituting Eq. (5) into Eq. (2) and considering the above modification, the strain 

field becomes: 
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( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
( )
( )

( )

3 3

, , , ,2 2

, ,

4 4                   
3 3

, , : Obtained from through-the-depth equilibrium

, , : Obtained from through-the-depth equilibrium

, , 1

xx xo z y

xyo x x x xzo x x x

yy

zz

xy

x y z x y x z x

y zx z x x y x
h b

x y z

x y z

x y z

ε ε φ φ

γ φ γ φ

ε

ε

γ

= − + −

− − +

= ( ) ( )( )

( ) ( ) ( )( )

( )

2

2

2

2

4

4, , 1

, , Obtained from through-the-depth equilibrium

xyo x

xz xzo x

yz

y x z x
h

zx y z x y x
b

x y z

γ φ

γ γ φ

γ













  − −   
 

= − + 
 

 =

 (7) 

This field is a function of the six macroscopic section strains/curvatures shown in Fig. 1(a), 

i.e., ( )xo xε , ( )x xφ , ( )y xφ , ( )z xφ , ( )xyo xγ  and ( )xzo xγ . It also includes the spatial 

derivatives of ( )xyo xγ  and ( )xzo xγ . While this field is valid for linear elastic beams, it is often 

used for the analysis of inelastic beams as well (Bhimaraddi and Chandrashekhara 1993; 

Ghugal and Sharma 2009).  

4. Shear-Enhanced GI Element  

4.1. Formulation 

Similar to the original GI beam-column element formulation (Sideris and Salehi 2016; Salehi 

and Sideris 2017), the shear-enhanced formulation is based on four fundamental sets of 

equations, namely, macroscopic section strain-displacement equations, force equilibrium 

equations, section constitutive relations and nonlocality relations. 

The macroscopic section strain-displacement equations relate the macroscopic section 

strains, εxo, ϕz, ϕy, γxyo, γxzo and ϕx, with the cross-section displacements/rotations along the beam 

reference axis,  uo, vo, wo, θx, θy and θz. According to Eq.(7), these equations are:  
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( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

,

,

,

,

,

,

xo o x

z z x

y y x

xyo o x z

xzo o x y

x x x

x u x

x x

x x

x v x x

x w x x

x

ε

φ θ

φ θ

γ θ

γ θ

φ θ

=


=
 =


= −
 = +
 =

 (8) 

Neglecting inertial effects and body loads, the force equilibrium equations in the 

undeformed configuration of the beam are expressed in terms of the section forces as: 

( )
( )
( )
( ) ( )
( ) ( )

( )

,

,

,

,

,

,

0

0

0

0

0

0

x

y x

z x

z x y

y x z

x

N x

V x

V x

M x V x

M x V x

T x

=


=
 =


+ =
 − =
 =

 (9) 

where N(x) is the axial force; Vy(x) and Vz(x) are the shear forces in y and z directions, 

respectively; My(x) and Mz(x) are the bending moments about the y and z axes; and T(x) is the 

torsional moment; all at the location x along the beam reference axis (Fig. 1 (b)).  

The section constitutive relations express the section forces, D(x), as a function of the 

material section strains, de(x), and their derivatives, ( ),
e
x xd , as: 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

,

, , , , , , ,

,

with

e e
ms x

T

z y y z

Te
xo z y xyo xzo x

Te
x xo x z x y x xyo x xzo x x x

x x x

x N x M x M x V x V x T x

x e x x x s x s x x

x e x x x s x s x x

κ κ κ

κ κ κ

=

  =  
  =  


  =  

D f d d

D

d

d

 (10) 

where exo(x) is the material axial section strain; κx(x), κy(x) and κz(x) are the material section 

curvatures about the x, y, and z axes, respectively; sxyo(x) and sxzo(x) are the material shear 

section strains in y and z directions, respectively (Fig. 1 (a)); and fms(.) is a vector function 

dependent on the cross-section material properties and dimensions. Unlike the original GI beam 

theory, for which fms(.) solely depends on ( )e xd , in the shear-enhanced GI beam theory,  fms(.) 

depends on both ( )e xd  and ( ),
e
x xd  and the reasons are clarified below. 
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In order to build the relationship between D(x), ( )e xd  and ( ),
e
x xd , i.e., the function 

fms(.), the material strain fields, de(x), are assumed to have the same forms as those of the 

macroscopic strains (see Eq. (7)), which yields:   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

3 3

, ,2 2

2

2

2

2

4 4, ,
3 3

, , , ,

, , , ,

4, , 1

4, , 1

, , 0

xx xo z y xyo x xzo x

yy yy

zz zz

xy xyo x

xz xzo x

yz

y ze x y z e x y x z x s x s x
h b

e x y z x y z

e x y z x y z

ys x y z s x z x
h

zs x y z s x y x
b

s x y z

κ κ

ε

ε

κ

κ


= − + − −


=


=


  = − −   

  
= − +  

 
 =

 (11) 

and furthermore the macroscopic and material normal transverse strains are assumed to be 

identical, i.e. ( ) ( ), , , ,yy yye x y z x y zε=  and ( ) ( ), , , ,zz zze x y z x y zε=  as shown above. The 

strains of Eq. (11) are used to calculate the stresses at any point over any cross-section of the 

beam via a 3D material model discussed later (Section 5.1). The section forces, D(x), can be 

calculated by integrating these stresses, which are acting on a cross-section, as: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )( )

, ,

, ,

, ,

, ,

, ,

, , , ,

xx

y xy

z xz

z xx

y xx

xz xy

N x x y z dA

V x x y z dA

V x x y z dA

M x y x y z dA

M x z x y z dA

T x y x y z z x y z dA

σ

τ

τ

σ

σ

τ τ

 =

 =

 =


= −


=

 = −

∫
∫
∫
∫
∫
∫

 (12) 

where ( ), ,xx x y zσ is the normal stress, ( ), ,xy x y zτ  is the shear stress in y direction, and 

( ), ,xz x y zτ  is the shear stress in z direction, respectively, all of those acting at the coordinates 

(y, z) of the cross-section at the location x on the beam reference axis. These stresses are 

functions of the material strains over the cross-section, i.e., exx, eyy, ezz, sxy, sxz and syz, which are 

related to the material section strains, de(x), and its derivatives, ( ),
e
x xd , via Eqs. (11).  
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The gradient nonlocality relations associate the material section strains, ( )e xd , with the 

macroscopic section strains, ( )xd , per Salehi and Sideris (2017), as: 

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
,

1
2

with 1
2

e
c xx s

T

xo z y xyo xzo x

e
s

x l H W x x

x x x x x x x

W x x x

ε φ φ γ γ φ

− =

  =  


= ⋅


d d d

d

D d

  

 

 (13) 

where the overdot represents differentiation with respect to time, d (x) and ed (x) are the rates 

of the macroscopic and material section strains, respectively; lc is a characteristic length 

controlling the spread of damage/plasticity; H(.) is the Heaviside step function; D (x) is the rate 

of the section forces; and sW (x) is a quantity that is based on the material section strain energy 

density and is used to identify non-hardening section response. The two BCs to Eq. (13) are 

selected to be of the Dirichlet type and are applied at the beam ends Salehi and Sideris (2017). 

These BCs are expressed as: 

( ) ( )
( ) ( )
0 0e

eL L

 =


=

d d

d d

 

 
 (14) 

where L is the initial length of the element. Consistently, the spatial derivative of the material 

section strains, ( ),
e
x xd , which is also needed in the section constitutive relations (Eq. (10)), is 

taken to satisfy the nonlocality relations of Eq. (13) and thus obtained by the spatial derivatives 

of the macroscopic section strains, ( ),x xd , as: 

( ) ( )( ) ( )2
, , ,

1
2

e
x c xxx s xx l H W x x− =d d d    (15) 

This approach ensures boundedness of the solution and response objectivity, i.e. 

convergence with mesh refinements. It is noted that direct differentiation of the material strain 

fields is not recommended, because they constitute an internal quantity whose smoothness 

cannot be guaranteed, thus often resulting in loss of the existence of spatial derivatives.  

4.2. Analytical Solution  

The GI FB beam-column element formulation is obtained from the exact analytical solution of 

the shear-enhanced GI beam theory. In this paper, a simply-supported reference beam with the 

force/displacement BCs shown in Fig. 2 is considered. With respect to the selected six force 
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BCs, the force equilibrium equations (Eq. (9)) can be solved analytically for the section forces, 

D(x), as: 

( ) ( )

[ ]

( )

1 2 3 4 5 6

1 0 0 0 0 0
0 1 0 0 0

with 0 0 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

Q Q Q Q Q Q

x L x L
x x x L x L

x
L L

L L

 =


 
  − 

=  −
=   − − 
 
 
 

Q

D b Q
b

 (16) 

where Q is the vector of the force BCs; and b(x) is the matrix of the force shape functions. 

The corresponding end displacement BCs, q, (see Fig. 2), are obtained from the 

macroscopic section strains, d(x), through direct integration of Eqs. (8) as: 

( ) ( ) [ ]1 2 3 4 5 6
0

 with
L

TTx x dx q q q q q q= =∫q b d q  (17) 

The solution of the gradient nonlocality relations of Eq. (13) with the BCs of Eq. (14) may be 

assumed to have the following generic form: 

( ) ( )( )e
nlx x=d f d   (18) 

where fnl(.) is a general solution. By substituting Eq. (16) into Eq. (10), the system of equations 

representing the analytical form of the shear-enhanced GI FB element formulation is obtained: 

( ) ( ) ( )( )

( ) ( )

,

0

,e e
ms x

L
T

x x x

x x dx

 − =



− =


∫

b Q f d d 0

q b d 0
 (19) 

The material section strains, ( )e xd , and the end forces, Q, are the two unknowns of the above 

system of two equations for given end displacements, q. The macroscopic section strain rates, 

( )xd , can be explicitly computed from Eq. (18), while the total macroscopic section strains 

are calculated from the time integration of ( )xd . Similarly, the spatial derivative of the 

material section strains, ( ),
e
x xd , is computed through Eq. (15)..  
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Fig. 2 – Simply-supported reference beam and its associated displacement/force boundary 

conditions  

4.3. Discretization and Numerical Solution  

Due to the nonlinearity of the section constitutive relations of Eq. (10) and the impracticality 

of the explicit analytical solution of the gradient nonlocality relations of Eq. (13), Eqs. (19) 

have to be evaluated at spatially discrete locations, xi, and numerically solved at discrete time 

instants, tk (k denotes the time step). In the discretization process, the force equilibrium 

equations (first of Eq. (19)) should be satisfied at the discrete locations, while the integral of 

the displacement compatibility equations (second of Eq. (19)) is approximated through a 

numerical integration scheme. With N IPs (i = 1, 2, …, N), the discretized form of Eq. (19) at 

the time instant tk is: 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

1 1 , 1

2 2 , 2

,

1

,

,

                                

,

e e
k ms k k x

e e
k ms k k x

e e
N k ms k N k x N

N
T

k i i k i
i

x x x

x x x

x x x

w x x
=

 − =

 − =
 − =


− =


∑

b Q f d d 0

b Q f d d 0

b Q f d d 0

q b d 0

    (20) 

where 1 0x =  and Nx L= , and iw is the integration weight at ix with 
1

N
ii

w L
=

=∑ .  

By enforcing the nonlocality relations of Eq. (13) at discrete locations and replacing the 

second spatial derivative with its 2nd-order accurate finite difference approximation, the 

following relation is obtained in a discretized form between the macroscopic and material 

section strain rates at the location xi (ith IP) and at the time kt : 

( ) ( ) ( ) ( )
( )

( )( ) ( )1 12
,2

21
2 k

k i k i k i e
k i c s k i i

x x x
x l H W x x

x
+ −

 − +
− = 

∆  

d d d
d d

  
   (21) 

where x∆ is the spacing between adjacent IPs, which are assumed to be equally spaced. In 

addition, applying the Dirichlet BCs of Eq. (14) gives: 

q1, Q1

q5, Q5

q2, Q2q3, Q3

q4, Q4

q6, Q6

x
y

z
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( ) ( )
( ) ( )

1 1k

k

e
k

e
k N N

x x

x x

 =


=

d d

d d

 

 
 (22) 

If Ws,k(xi) > 0 for all discrete locations (i.e., no localization is identified over the element), 

combining the first of Eq. (21) with Eq. (22) yields: 

( )

( ) ( ) ( )

( ) ( ) ( )

1
, ,

, 1 2

, 1 2

with 

e
tot k k tot k i

Te eT eT eT
tot k k k k N

TT T T
tot k k k k N

x

x x x

x x x

−=

  =  


  =  

d H d

d d d d

d d d d

 

   

   

 (23) 

where the material and macroscopic section strain rates at all IPs are included in the vectors 

,
e
tot kd  and ,tot kd , respectively, and kH  is a 6 6N N×  matrix defined as: 

6 6 6 6 2

6 6 6 6 6 6

2

6 6 6 6 6 6

6 6 6 6

1
   with  

1
2

c
c c c c

k

c
c c c c

lB A B A
x

lB A B B
x

× ×

× × ×

× × ×

× ×

      = +    ∆   = 
    = −    ∆   

I O
I I I

H
I I I

O I

    (24) 

where 6 6×I and 6 6×O are 6 6×  identity and zero matrices, respectively, cA  and cB  are 

constants, and the discretized form of Ws,k(xi) is: 

( ) ( ) ( ) ( ) ( ), 1 1
1
2

e e
s k i k i k i k i k iW x x x x x− − = − ⋅ −    D D d d  (25) 

Upon localization identification at an IP of coordinate ix , at the time instant kt , i.e., when 

Ws,k(xi) ≤ 0 in Eq. (21), the corresponding rows of kH  are replaced with zeros, except for the 

diagonal elements, which are replaced with unities. Using explicit time discretization, the total 

macroscopic section strains at kt  are obtained as ( )1
, , 1 1 , , 1

e e
tot k tot k k tot k tot k

−
− − −= + −d d H d d . The 

explicit discretization is used because calculation of H requires knowledge of the section 

forces, which are function of the spatial derivatives of the macroscopic strains. This would 

require an internal set of iterations, which is herein bypassed by this explicit discretization.     

Similarly, Eq. (15) can also be discretized using 2nd-order accurate finite difference 

approximations, which have different forms depending on the IP location, as: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 2 1 2 3 42
,3

1 1 1 1 2 32
3

3 4 5 18 24 14 31 , 1
2 2 2

3 10 12 61
2 2 2

k i k i k i k i k i k i k i k i e
c k x i

k i k i k i k i k i k i k i
c

x x x x x x x x
l x i

x x

x x x x x x x
l

x x

+ + + + + +

− + − + + +

  − + − − + − + −
− = =    ∆ ∆   

  − + − + − + −
− =    ∆ ∆   

d d d d d d d d
d

d d d d d d d
d

       


      
 ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

,

1 1 2 1 1 22
,3

1 1 3 2 1 12
,3

, 2

2 21 , 3 2
2 2 2

6 12 10 31 ,
2 2 2

e
k x i

k i k i k i k i k i k i e
c k x i

k i k i k i k i k i k i k i e
c k x i

x i

x x x x x x
l x i N

x x

x x x x x x x
l x

x x

− + − − + +

− + − − − +

=

  − + − + − +
− = ≤ ≤ −    ∆ ∆   

  − + − + − +
− =    ∆ ∆   

d d d d d d
d

d d d d d d d
d

     


      


( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )2 1 4 3 2 12
,3

1

4 3 3 14 24 18 51 ,
2 2 2

k i k i k i k i k i k i k i k i e
c k x i

i N

x x x x x x x x
l x i N

x x
− − − − − −















= −

   − + − + − + − = =    ∆ ∆   

d d d d d d d d
d

       


 

(26) 

Through these discretizations, a matrix form is built as: , , , ,
e

tot k x tot k x=G d d  , where G  is the 

differential finite difference operator matrix, which is constant. The spatial derivative of 

material section strains, which are used in the section constitutive relations (Eq. (10)), can then 

be numerically computed as ( ), , , 1, , , , 1,
e e
tot k x tot k x tot k x tot k x− −= + −d d G d d . The above discretization 

scheme also implies that a shear-enhanced GI element should include at least five integration 

points.  

The condensed discretized form of Eq. (20) at kt  can be written as: 

( ), , ,

,

,e e
Q k ms tot k tot k x

k q tot k

 − =


− =

B Q F d d 0

q B d 0
 (27) 

with 

( )
( )

( )

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( ) ( )

1 , 1
1

2 2 , 2
,

6 6 , 6 1

1 1 2 2
6 6

,

,
,

,

e e
ms k k x

e e
ms k k xe

Q ms tot k

e eN N ms k N k x N N

T T T
q N N

N

x xx
x x x

x x x

w x w x w x

×
×

×

         = =             

 =  

f d db
b f d d

B F d

b f d d

B b b b

 



 (28) 

where ( ).msF  is the vector of internal section forces, which are function of the material section 

strains, ,
e
tot kd  and their derivatives, , ,

e
tot k xd ; BQ is the time-invariant matrix of discretized force 

shape functions; and Bq is the time-invariant matrix of macroscopic section strain integration.  

The material section strains, ,
e
tot kd , and the force BCs, kQ , can be computed for given 

displacement BCs, kq , through a Newton-Raphson iterative scheme as follows: 
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( )1
, , ,,

1
6 6, , ,1

,e e
Q k ms tot k tot k xQ ms kk k

e e
q ktot k tot k k q tot kj j j j

−

−
×+

 −−      = −      − −        

B Q F d dB KQ Q
O B Hd d q B d

 (29) 

where Kms,k is the matrix of total tangential section stiffness at the time kt , defined as: 

( )
( )

( )

, 1 6 6 6 6

6 6 , 2 6 6
,

6 6 6 6 ,

ms k

ms k
ms k

ms k N

x
x

x

× ×

× ×

× ×

 
 
 =
 
 
  

k O O
O k O

K

O O k





   



 (30) 

with kms,k(xi) representing the tangent stiffness matrix at the location xi (ith IP) at the time tk. It 

is noted that in order to maintain simplicity, the Jacobian in Eq. (29) is approximate, because 

it does not include the effect of , ,
e
tot k xd . This approach was found to provide acceptable 

convergence rates. 

5. Concrete Constitutive Model 

5.1. Formulation 

Due to the interactions between concrete and steel bars in RC elements, the response of plain 

concrete is different than the concrete’s response in the presence of steel reinforcement. Major 

response differences that are manifested in RC members include two phenomena, namely, 

tension stiffening and compression softening. Tension stiffening refers to the contribution of 

the steel reinforcement in the apparent stress transfer by concrete tension cracks which results 

in a much slower degradation (as opposed to brittle degradation) of the concrete stress-strain 

response in the post-peak tensile range (Floegl and Mang 1982; Massicotte et al. 1990). 

Compression softening refers to the reduction in the compressive strength of concrete in one 

direction due to large tensile stresses in the orthogonal direction (Vecchio and Collins 1986; 

Hsu 1988). Reasonable representation of both of these phenomena is important in modeling 

axial-flexural-shear interactions of RC elements. Tension stiffening is often simulated by 

adjusting the material parameters that control the post-peak tensile response of concrete 

material laws. However, in this study, this phenomenon is more naturally reproduced by the 

through-the-depth equilibrium, which explicitly accounts for the effect of the transverse 

reinforcement on the concrete response, while the longitudinal reinforcement is also accounted 

for through the axial and flexural beam equilibrium. Compression softening will be herein 

accounted for via an additional damage factor.  
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The proposed 3D constitutive model is developed to predict the concrete stress 

components at any point on the cross section, 
T

xx yy zz xy xz yzσ σ σ τ τ τ =  σ , as a 

function of corresponding material strain components, 
T

xx yy zz xy xz yze e e s s s =  e , 

where sxy, sxz and syz are engineering shear strains. The proposed constitutive laws adopt the 

widely used concrete damage plasticity model proposed by Lee and Fenves (1998) and modify 

it by including compression softening effects and by removing the fracture energy-based re-

scaling conditions with the element size, because objectivity is treated at the element-level via 

the gradient inelastic beam mechanics.  

In the proposed model, the total material strains, e, are additively decomposed into an 

elastic and a plastic material strain component as: el pl= +e e e , with ele  and ple  being the 

vector of the elastic and plastic material strains, respectively. Stiffness/modulus degradation is 

coupled with classical plasticity, resulting in the stress vector as:  

( ) ( )1 1 elD D= − = −σ σ Ee  (31) 

where D is a scalar isotropic degradation damage factor with 0 1D≤ ≤ , σ  is the effective stress 

vector of the undamaged material, and E is the elastic (undamaged) modulus matrix which is 

given as:  

( )( )

1 0 0 0
1 0 0 0

1 0 0 0
1 20 0 0 0 0

21 1 2
1 20 0 0 0 0

2
1 20 0 0 0 0

2

E

ν ν ν
ν ν ν
ν ν ν

ν

ν ν
ν

ν

− 
 − 
 −
 − 

=  + −  − 
 
 −
 
 

E  (32) 

where E is the Young’s modulus and v is the Poisson’s ratio. 

The damage factor, D, is determined as: 

( ) ( )( )1 1 1t c ctD D D β= − − −  (33) 

where Dt and Dc are the tension and compression damage factors ( 0 , 1t cD D≤ ≤ ), which are 

determined as: 
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( )
( )

1 exp

1 exp
t t t

c c c

D d

D d

κ

κ

= − −


= − −
 (34) 

where tκ  and cκ are damage variables that represent accumulated straining in tension and 

compression, respectively, and are discussed later, while td  and cd are nonnegative damage 

constants that control the rate of degradation for tension and compression damage. Also, ctβ is 

a compression softening factor ( 0 1ctβ< ≤ ), which is based on Hsu (1988) as simplified by 

Feng et al. (2018). In the present paper, the principal tensile strain used to compute ctβ  in the 

above studies (Hsu 1988; Feng et al. 2018) is replaced with the accumulated straining in 

tension, κt, as shown below: 

1.0
1ct

ct td
β

κ
=

+
 (35) 

which makes ctβ  representative of the accumulated influence of compression softening under 

reversed loading taking place under complex multiaxial stress/strain conditions. 

The adopted yield criterion is given by Lubliner et al. (1989) as: 

( ) ( )( ) ( )1 2 max max
1 ˆ ˆ, 3

1 c cF I J Cα β σ γ σ κ
α

= + + − − −
−

σ κ κ  (36) 

with: 

( ) ( )
( ) ( ) ( )

13
2 1

1 1

2

c

c

c c

t t

bo co

bo co

K
K
C
C

f f
f f

γ

κ
β α α

κ

α

− = −
 = − − +

 −

=
−

κ  (37) 

where [ ]Tt cκ κ=κ , 1I  is the first invariant of the effective stress tensor; 2J is the second 

invariant of the deviatoric effective stress tensor; α , ( )β κ  and γ  are dimensionless constants 

with 0 0.5α≤ ≤ ; Kc is the ratio of the second stress invariant on the tensile meridian to that on 

the compressive meridian with 0.5 1.0cK< < ; maxσ̂ is the peak algebraic principal effective 

stress (positive in tension); bof  is biaxial initial yield compressive stress; cof  is the uniaxial 

initial yield compressive stress; and ( )c cC κ and ( )t tC κ are effective compressive and tensile 

cohesion strengths, respectively, which are functions of the damage variables cκ  and tκ , 
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respectively. Per Lubliner et al. (1989), the cohesion strengths in the total stress domain may 

be expressed as: 

( ) ( ) ( )
( ) ( ) ( )

0

0

1 exp( ) exp 2

1 exp( ) exp 2
t t t t t t t t t

c c c c c c c c c

C f a b a b

C f a b a b

κ κ κ

κ κ κ

 = + − − −   


= + − − −   
 (38) 

Based on Eq. (31), the cohesion strengths can be expressed in the effective stress space as: 

( ) ( ) ( )
( ) ( ) ( )

1

1
c c c c c

t t t t t

C C D

C C D

κ κ

κ κ

 = −


= −
 (39) 

The adopted flow rule is expressed as:  

( ) ( )e
pl λ λ

∂Φ
= =

∂
σ

e m σ
σ

   (40) 

where λ is the plastic multiplier and ( )Φ σ  is the hyperbolic form of the Drucker-Prager plastic 

potential computed as:  

( ) ( )2

0 2 13 3p t pf J Iα ρ αΦ = + +σ  (41) 

with 0tf  is the uniaxial tensile yield stress, ρ  is the eccentricity parameter and ap (= tanψ) is 

a constant that represents the dilatancy of concrete with ψ being the dilation angle. 

The evolution of the damage variables tκ  and cκ , is determined in rate form as: 

( )ˆλ=κ H σ  (42) 

where ( )ˆH σ  is a plastic modulus given as: 

( )
( )

( )( )
( )ˆ 0 0

ˆ
ˆˆ0 0 1

r

r

  ∂Φ =
  ∂− −  

σ σ
H σ

σσ
 (43) 

with the weight function ( )ˆr σ  being defined as: 

( )
3

1
3

1

ˆ0 if

ˆˆ
otherwise

ˆ

i
i

i
i

r σ

σ

=

=

 =

  =  

      

∑

∑

σ 0

σ  (44) 
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In Eq. (42) through (44), σ̂  is the vector of the principal effective stresses, i.e., 

1 2 3
ˆ ˆ ˆ ˆ T

σ σ σ =  σ  with 1 2 3
ˆ ˆ ˆσ σ σ≥ ≥ . 

5.2. Calculation of Tangent 

The tangent of stress vs. strain model is computed through direct differentiation as: 

( )1 DD∂ ∂ ∂
= − −

∂ ∂ ∂
σ σ σ
e e e

 (45) 

For elastic response ( )0λ = : 

( )1D D∂ ∂
= ⇒ = −

∂ ∂
σ0 E

e e
 (46) 

For inelastic response ( )0λ > , the consistency condition, 0ysFλ =  , is adopted to find the 

relation between λ , σ , and ε , as: 

( ), 0ys ys
ys

F F
F λ

λ
∂ ∂ ∂

= + =
∂ ∂ ∂

κσ κ σ
σ κ

   (47) 

and solving for λ : 

1
ys ysF F

λ
λ

−∂ ∂   ∂
= −   ∂ ∂ ∂   

κ σ
κ σ

   (48) 

which, using ( )p= −σ E e e  , further becomes:  

( )


1
ys ys pF F

λ

λ
λ

−

∂Φ
∂

 
∂ ∂   ∂  

= − −     ∂ ∂ ∂     
 

σ
σ

κ E e e
κ σ



    (49) 

and further using Eq. (40) gives:  

( ) 1
ys ys ysF F F

λ
λ

−
∂ ∂ ∂∂Φ   ∂

= −   ∂ ∂ ∂ ∂ ∂  

σ κE E e
σ σ κ σ

   (50) 

By substituting Eq. (50) into Eq. (47), we get: 

( )
11

1

6 6

ys ysF F
λ

−−

−

×

 ∂ ∂∂Φ    ∂ ∂ = −     ∂ ∂ ∂ ∂ ∂    

σσ κE
e σ κ σ

 (51) 

The rate of the damage factor can be calculated as: 
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DD λ
λ

∂ ∂
=
∂ ∂

κ
κ

  (52) 

and using Eq. (50): 

( ) 1
ys ys ysF F FDD

λ λ

−
∂ ∂ ∂∂Φ   ∂ ∂ ∂

= −   ∂ ∂ ∂ ∂ ∂ ∂ ∂  

σκ κE E e
κ σ σ κ σ

   (53) 

resulting in: 

( ) 1
ys ys ysF F FD D

λ λ

−
∂ ∂ ∂∂Φ   ∂ ∂ ∂ ∂ = −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

σκ κE E
e κ σ σ κ σ

 (54) 

By substituting Eqs. (51) and (54) into Eq. (45), the tangent of the stress vs. strain model is 

obtained. 

5.3. Numerical Solution of Concrete Constitutive Relations 

At each cross-sectional fiber that is represented by a concrete constitutive model, the variables 

{ }, ,p
k k kσ e κ  at time tk should be computed according to the variables { }1 1 1, ,p

k k k− − −σ e κ  at the 

previous converged time tk–1 and the total applied strain, ek. This paper adopts an explicit time 

discretization method for Eqs. (40) and (42). Also, the yield function of Eq. (36) and the elastic 

equilibrium are expressed at the time tk. The resulting set of algebraic equations at the time tk 

is: 

( )
( ) ( ) ( )( ) ( )

( )
( )

1 2 max, max, ,

1 1

1 1

1 ˆ ˆ, 3 0
1

ˆ

p
k k k

k k k k k k c c k

p p
k k k k

k k k k

F I J Cα β σ γ σ κ
α

λ

λ
− −

− −

 = −

 = + + − − − = −
 = +

 = +

σ C e e

σ κ σ σ

e e m σ

κ κ H σ





 (55) 

Because the first, third and fourth equation of Eq. (55) are linear, they can be substituted into 

the second equation of Eq. (55) resulting in one equation, ( ) 0kF λ = , in one unknown, kλ . A 

Newton-Raphson solution strategy combining a secant method with bracketing is used to solve 

at each time instant tk. 

Because for elastic steps, 0kλ = , 1k k−=κ κ  and 1
p p
k k−=e e , the solution process first 

assumes that the entire increment, 1k k−−e e  is elastic, and finds a trial stress as: 

( )1
p

k k k−= −σ C e e . Then, this assumption is evaluated by calculating the yield function 
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( ),k kF σ κ . If ( ), 0k kF ≤σ κ , the assumption of elastic response is valid. If not, inelastic 

response occurs during that step and the nonlinear equation ( ) 0kF λ =  (representing the 

system of Eqs. (55)) has to be solved to determine kλ  and subsequently, kκ , p
ke , and kσ . The 

damage factor, ( )kD κ , is subsequently calculated from Eqs. (33), (34) and (35) and total stress 

is obtained as: ( )( )1k k kD= −σ κ σ . 

6. Assessment of Proposed Element Formulation 

The proposed shear-enhanced GI element formulation and multiaxial concrete model were 

implemented in the structural analysis program OpenSees (McKenna et al. 2000). The 

formulation’s performance in terms of response objectivity and accuracy is evaluated through 

examples and comparisons with experimental data as discussed in the following sections. The 

experimental data cover shear span-to-depth ratios, a/d, ranging from 2.1 to 7. The concrete 

material parameters adopted in all models are shown in . As indicated, some of these parameters 

are directly associated with experimentally measurable material properties, such as the concrete 

compressive strength, f’c, and the concrete compressive strength at onset of inelastic response, 

fco. The analysis run times for the shear-enhanced GI element varied depending on the number 

of IPs (NIPs), number of fibers per cross-section, and the values of the material parameters 

which affect convergence mainly in the post-peak range of the response. Overall, for all 

analyses presented, the run times varied between 3 and 8 hours on a desktop PC with Intel(R) 

Core(TM) i7-8700 CPU @ 3.20GHz   3.19 GHz.  

 

Table 1 – Default material parameters used in numerical models 
at ac bc bt dc dt dct Kc fto fco fbo ψ ρ 

0.135 * 500 550 250 500 400 2/3 ** 0.25f’c 1.15fco π/6 0.1 

* 0 0

0

2 1 0.5 1 1
/

c c
c

c c c c

f fa
f f f f

 
= − − + >  ′ ′ ′ 

          **  0 0.56 (MPa) 6.7 (psi)t c cf f f′ ′= =  

 

6.1. Response Objectivity 

A major objective of the shear-enhanced GI element formulation is that it achieves response 

objectivity, i.e., convergence of global and local responses with progressive mesh refinement, 
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during shear damage and failure. In order to demonstrate this capability, the shear-flexure-

critical column specimen R3 from Xiao et al. (1993), which was tested under lateral load and 

fixed top end rotation, is analyzed herein (Fig. 3). The shear span-to-depth ratio, a/d, for this 

column is about 2.1. The longitudinal and volumetric shear reinforcement ratios were 2.5% 

and 0.25%, respectively. The concrete compressive strength was 4.95 ksi. The yield strengths 

of the longitudinal bars and the stirrups were 68 ksi and 47 ksi, respectively. The vertical load, 

P, applied to the column was constant and equal to 114 kips. 

 
Fig. 3 – Details of column R3 tested by Xiao et al. (1993) 

The entire column length is modeled via a single shear-enhance GI element. The 

composite Simpson’s rule is adopted for the numerical integration of the strain-displacement 

equations (see second of Eqs. (20)). Different numbers of IPs (providing different levels of 

mesh refinement) are considered and each IP is represented through a higher-order fiber 

section. Each cross section is discretized into 8 by 12 fibers for the concrete and 22 separate 

fibers for the longitudinal steel. Concrete is modeled through the triaxial plasticity model 

discussed earlier. The response of the longitudinal reinforcement is represented via triaxial J2 

plasticity material model, available in OpenSees. Bond-slip effects are accounted for according 

to Sharifi et al. (2020). The uniaxial material model representing the transverse reinforcement 

(used to enforce through-the-depth equilibrium) is Steel-02 with deterioration parameters, 

available in OpenSees. 

The characteristic length, lc, was taken to be 12 in. (i.e., half of the cross-section depth). 

Based on the previous studies with the GI formulation (Sideris and Salehi 2016; Salehi and 

Sideris 2017), a value of lc between half and full cross-section depth has been found to provide 

a good agreement with the experimental data for ductile flexure-critical columns. In shear-

critical elements, values of lc between half and twice the cross-section depth may be reasonable, 

mainly because each single diagonal crack is expected to propagate within this range depending 

on the shear span to depth ratio.    
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The predicted lateral force vs. displacement responses are compared with the envelope 

of the (cyclic) test data in Fig. 4(a). It is observed that the element’s pre-peak response remains 

almost unaffected by the NIPs. The post-peak responses converge with the number of IPs, 

which confirms the response objectivity of the proposed shear-enhanced GI element 

formulation. According to Fig. 4(b), an lc/Δx ratio greater than 3 is found to ensure the 

convergence of the force-displacement response. 

  
Fig. 4 – Response objectivity: (a) force-displacement responses; (b) variation of strength with 

lc/Δx at a lateral displacement of 1 in.  

The predicted distributions of macroscopic shear strain (on the reference axis, i.e., γxyo) 

and curvature at 1 in. of lateral displacement as well as the corresponding variations of peak 

shear strain and curvature with lc/Δx are shown in Fig. 5. As expected, both the peak shear 

strains and curvatures are predicted to occur at the column ends (Fig. 5(a,c)), where the ultimate 

failure occurred during the experiment (Xiao et al. 1993). Similar to the force-displacement 

responses (Fig. 4), the predicted macroscopic section strains appear to converge as lc/Δx 

exceeds 3 (per Fig. 5 (b,d)). 
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Fig. 5 – Response objectivity – Macroscopic section strain distributions at lateral displacement 
of 1.0 in.: (a) shear strain; (c) curvature; variations of maximum section strains with lc/Δx at 

lateral displacement of 1.0 in.: (b) shear strain; (d) curvature 
 

6.2. Effect of Characteristic Length 

The effect of characteristic length, lc, on the response of the shear-enhanced GI FB element 

formulation is examined using the column model from the previous example. The lateral load 

vs. displacement response predictions for three different values of lc, namely, half, one-, and 

two-times cross-section depths, are shown in Fig. 6(a). In each case, the number of IPs is 

selected to satisfy lc/Δx ≥ 2.5 to ensure mesh-independent responses, i.e., 7 IPs, 11 IPs, and 21 

IPs for lc equal to half, one-, and two-times cross-section depths, hcol, respectively. It is 

observed that larger values of lc increase the lateral displacement corresponding to the peak 

column strength (i.e., delay the onset of softening) and reduce the rate of the post-peak strength 

deterioration. As seen in the macroscopic shear strain and curvature distributions (Fig. 6(b,c)), 

the delay in softening is caused by the spread of plasticity/damage over a larger length as lc 

increases. Moreover, when compared to the experimental response, it is confirmed that an lc 

value around half a column depth leads to a reasonably accurate model prediction. 
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Fig. 6 – Effect of characteristic length: (a) force-displacement responses; macroscopic section 

strain distributions at lateral displacement of 1.3 in.: (b) shear strain; (c) curvature  

 

6.3. Comparison with Original GI Element 

The lateral load-displacement response predictions of the original and shear-enhanced GI 

elements are compared using the column adopted in the previous two sections (see Fig. 3). In 

both models, the characteristic length, lc, is selected to be 12 in. (half the cross-section depth) 

and the number of IPs is taken as 21 to ensure response objectivity (lc/Δx ≥ 2.5). In the fiber 

sections of the original GI element, the response of the concrete material and the longitudinal 

steel are modeled by the Mander’s material model (Mander et al. 1988) and Giuffre-

Menegotto-Pinto model (Giuffrè and Pinto 1970), respectively, which are available in 

OpenSees.  

The force vs. displacement responses and macroscopic section strain distributions of the 

two models are compared with each other and the experimental data in Fig. 7. The shear-

enhanced GI element predicts a much lower strength and rapid post-peak degradation (Fig. 7 

(a)), which are driven by shear damage. On the contrary, the original GI predicts a significantly 

more ductile response that is driven by flexural failure, which would only occur if the RC 
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member was capacity-protected against shear failure. In fact, while both the original and the 

shear-enhanced GI element formulation predict similar curvature distributions over the 

member (Fig. 7 (b)), the shear-enhanced GI element predicts large, nonlinear shear strain 

distributions (Fig. 7 (c)), which are indicative of its capability to predict shear failures. 

However, the original GI predicts very small, linearly distributed, shear strains (Fig. 7 (c)). 

This is because it adopts the (linear) cross-section kinematics of Timoshenko beams and 

uniaxial stress vs. strain constitutive laws normal to the cross-section plane that are decoupled 

from the shear stress vs. shear strain relations, which are often taken to be linear. On the 

contrary, the shear-enhanced GI formulation adopts cubic cross-section kinematics and 3D 

constitutive relations that can describe the coupled effect of normal and shear stresses and the 

resulting higher order field. 

 
Fig. 7 – Comparison of responses with original GI element: (a) force-displacement response; (b) 

macroscopic section shear strain distribution at a lateral displacement of 1.3 in.; (c) 
macroscopic section curvature distribution at a lateral displacement of 1.3 in. 

 

6.4. Comparison with Experimental Data 

The performance of the shear-enhanced GI FB element formulation is further evaluated by 

simulating eleven different RC members, namely nine beams (Vecchio and Shim 2004) and 
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two columns (Prakash et al. 2012; Pan and Li 2013), from three experimental studies available 

in the literature.  

6.4.1. Shear-critical Reinforced Concrete Beams 

The cross-section dimensions and reinforcement details of the examined beams (Vecchio and 

Shim 2004) are provided in Fig. 8, , and . As shown in Fig. 8, the beam series A, B, and C have 

different cross-section dimensions. Each series consists of three sub-series, namely 1, 2 and 3. 

Sub-series 1 and 2 had shear span-to-depth ratios, a/d, of 4 and 5, respectively, and exhibited 

shear failure starting with diagonal-tension cracking and later also exhibiting splitting in the 

compression zone. Sub-series 3 had a/d of 7 and exhibited flexural-compression failures with 

less shear deformations, but still showing diagonal cracking. The concrete compressive 

strengths were 22.6, 25.9 and 43.5 MPa for sub-series 1, 2 and 3, respectively. The yield 

strengths of the longitudinal steel bars were 315, 440, 445 and 436 MPa for M10, M25 in sub-

series 2, M25 in sub-series 1 & 3, and M30, respectively. The yield strength of the stirrups was 

600 MPa. 

Considering the geometry and loading symmetry as provided in Fig. 9, only half of the 

length of each beams is modeled via a single shear-enhanced GI FB element with pinned-fixed 

BCs. The characteristic length, lc, is selected to equal each beam’s cross-section depth and the 

number of IPs is chosen such that lc/Δx ≥ 2.5 to ensure response objectivity. Each cross section 

is discretized into 8 by 14 fibers for the concrete materials, and additional separate fibers are 

introduced for the longitudinal steel bars. The concrete is modeled by the 3D concrete damage 

plasticity model discussed earlier with the material parameters of . The responses of the 

transverse and longitudinal reinforcement are represented via the Giuffré-Menegotto-Pinto 

uniaxial material model (Giuffrè and Pinto 1970) and triaxial J2 plasticity material model 

available in OpenSees, respectively. No bond-slip effect is considered in the beam models 

which was the case in the experimental tests. Monotonic loading was applied to failure. 
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(a) 

 
(b) 

 
(c) 

Fig. 8 – Details of examined RC beams: (a) series A; (b) series B; (c) series C (Vecchio and Shim 
2004) 

Table 2 – Cross-section details of Toronto beams (Vecchio and Shim 2004) 

Beam ID 
b 

(mm) 

h 

(mm) 

d 

(mm) 

L 

(mm) 

Span 

(mm) 
a/d 

Concrete 

strength 

(MPa) 

Bottom steel 
Top 

steel 
Stirrups 

VS-A1 305 552 457 4100 3660 4 22.6 2M30, 2M25 3M10 D5@210 

VS-A2 305 552 457 5010 4570 5 25.9 3M30, 2M25 3M10 D5@210 

VS-A3 305 552 457 6840 6400 7 43.5 4M30, 2M25 3M10 D4@168 

VS-B1 229 552 457 4100 3660 4 22.6 2M30, 2M25 3M10 D5@190 
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VS-B2 229 552 457 5010 4570 5 25.9 2M30, 2M25 3M10 D5@190 

VS-B3 229 552 457 6840 6400 7 43.5 3M30, 2M25 3M10 D4@152 

VS-C1 152 552 457 4100 3660 4 22.6 2M30 3M10 D5@210 

VS-C2 152 552 457 5010 4570 5 25.9 2M30, 2M25 3M10 D5@210 

VS-C3 152 552 457 6840 6400 7 43.5 2M30, 2M25 3M10 D4@168 

Table 3 – Steel material properties of Toronto beams (Vecchio and Shim 2004) 
Bar size Diameter (mm) Area (mm2) fy (MPa) fu (MPa) 

M10 11.3 100 315 460 

M25a 25.2 500 440 615 

M25b 25.2 500 445 680 

M30 29.9 700 436 700 

D4 3.7 25.7 600 651 

D5 6.4 32.2 600 649 

 

 
Fig. 9 – Loading and boundary conditions in examined beams 

The response predictions of the shear-enhanced GI FB element formulation with and 

without the through-the-depth stress equilibrium are compared with the experimental data 

(Vecchio and Shim 2004) in Fig. 10 and Fig. 11 for the shear-dominant beams and the flexural 

compression beams, respectively. As shown in Fig. 10, incorporation of the through-the-depth 

equilibrium negligibility affects the pre-peak range, but it significantly affects the post-peak 

range by predicting slower softening that better aligns with the experimental data. This 

observation also aligns with the findings of Vecchio and Shim (2004) who noted the 

importance of simulating out-of-plane confinement effects in predicting the response of such 

beams. The shear-enhanced GI element formulation predicts the lateral strength very accurately 

with a mean strength prediction error of about 2.78% for the selected specimens as shown in . 

The shear-enhanced GI element formulation also captures the initial stiffness and the peak 

strength reasonably well. However, a later change in the stiffness in the pre-peak portion of the 

curve, which may be associated with initial cracking, is not accurately captured for the shear-

dominant members of sub-series 1 and 2 (see Fig. 10). Analyses conducted with lc equal to the 

P

Cross-section details 
provided in Figure 8

& Table 2

span

b

h

L



 

33 

cross-section height (lc = h) and twice the cross-section height (lc = 2h) – see Fig. 10 (c), (d) 

and (e) – did not affect the pre-peak range predictions, however the case of lc = 2h provided 

more ductile post-peak responses that better followed the experimental data. For these 

specimens, the selected lc (= 2h) was also compatible with the average inclination of the shear 

cracks. Fine-tuning in the material parameters of , such as bc and bt, which affect the pre-peak 

response could improve the pre-peak response prediction, but such a fine-tuning search would 

be beyond the scope of this work.   

 

  
Fig. 10 – Comparison of force-displacement response predictions of proposed element 

formulation with experimental data for shear-dominant beams 

(a) VS-A1 (b) VS-A2

(c) VS-B1 (d) VS-B2

(e) VS-C1 (f) VS-C2

0 5 10 15 20 25 30

Displacement (mm)

0

100

200

300

400

500

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhanced GI element
w/o through-the-depth EQ
Experimental

0 5 10 15 20 25 30 35 40 45

Displacement (mm)

0

100

200

300

400

500

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhance GI element
w/o through-the-depth EQ
Experimental

0 10 20 30 40 50

Displacement (mm)

0

100

200

300

400

500

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhanced GI element
w/o through-the-depth EQ
Experimental

0 10 20 30 40 50 60

Displacement (mm)

0

100

200

300

400

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhanced GI element
w/o through-the-depth EQ
Experimental

0 10 20 30 40 50

Displacement (mm)

0

50

100

150

200

250

300

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhanced GI element
w/o through-the-depth EQ
Experimental

0 5 10 15 20 25 30 35 40

Displacement (mm)

0

50

100

150

200

250

300

350

Sh
ea

r F
or

ce
 (k

N
)

Shear-enhanced GI element
w/o through-the-depth EQ
Experimental



 

34 

  
Fig. 11 – Comparison of force-displacement response predictions of proposed element 

formulation with experimental data for flexural compression beams 

Table 4 – Comparison of the maximum load predictions of the shear-enhanced GI element with 
experimental data 

Beam ID 
Maximum Vertical Load (kN) 

δ (%) 
Experiment, PExp Shear-enhanced GI Element, PSGI 

A1 459 464.5 1.20 

A2 439 462.6 5.38 

A3 420 425.7 1.36 

B1 434 434.7 0.16 

B2 365 359.8 1.42 

B3 342 344.7 0.79 

C1 282 262 7.09 
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C2 290 308.9 6.52 

C3 265 262 1.13 

Mean 2.78 

Median 1.36 

 

6.4.2. Shear-critical Reinforced Concrete Columns 

The properties of the examined columns are shown in Fig. 12 and . For each analysis, the entire 

column is modeled via a single shear-enhanced GI element with the composite Simpson’s 

integration rule. The selected characteristic lengths, lc, and the shear span-to-depth ratio, a/d, 

for the different columns are listed in , and number of IPs are considered for each element such 

that lc/Δx ≥ 2.5 to ensure mesh-converged responses. Each cross section is discretized into 12 

by 16 fibers for concrete and separate fibers to represent longitudinal steel. The concrete is 

represented by the 3D concrete damage plasticity model discussed earlier. The responses of the 

transverse and longitudinal reinforcement are represented via the Giuffré-Menegotto-Pinto 

uniaxial material model (Giuffrè and Pinto 1970) and triaxial J2 plasticity material model 

available in OpenSees, respectively. The bond-slip effects are modeled per Sharifi et al. (2020). 

Table 5 – Details of selected columns 

Test Specimen ID B.C.  Material properties P lc 
f'c fy fys 

Pan & Li (2013) SC-2.4-0.3 Fixed-Fixed  49.3 MPa 409 MPa 392.6 MPa 0.3f'cAg 350 mm 

Prakash et al. 
(2012) 

H/B(6)-T/M(0) Cantilever  36.3 MPa 512 MPa 454 MPa 0.07f'cAg 560 mm 

 

  
(a) (b) 

Fig. 12 – Details of examined columns: (a) Pan & Li (2013); (b) Prakash et al. (2012) 

The pushover responses predicted from the shear-enhanced GI element formulation are 

compared with the envelope curves of the experimental cyclic response from both tests in Fig. 
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13. The three different analysis strategies were adopted, namely: (1) including both through-

the-depth equilibrium and bond-slip effects, (2) disregarding through-the-depth equilibrium 

and calculating the lateral strains through Poisson’s ratio ( yy zz xxε ε νε= = − ) while keeping 

bond-slip effects, and (3) disregarding bond-slip effects while keeping through-the-depth 

equilibrium. As expected, considering the bond-slip effects generally improves the model 

response predictions – especially, in terms of the pre-peak stiffness. Also, the models with no 

through-the-depth force equilibrium, in which lateral strains were calculated from Poisson’s 

ratio relation, exhibit less ductility due to their inability to capture out-of-plane confinement 

effects. The shear-enhanced GI elements with both bond-slip and through-the-depth 

equilibrium not only closely captures the overall shapes of the force-displacement responses 

obtained from the experiments, but also predict the lateral strengths of the columns with only 

about 3% error.  

It is noted that while the actual lateral loading histories were cyclic (for this section and 

for Section 6.1), and despite the fact that the shear GI formulation can inherently account for 

cyclic loading through the use of a concrete constitutive model that belongs to the family of 

classical incremental plasticity models, the analyses conducted herein for the RC columns were 

selected to be monotonic. This is because simulating the deterioration from repeated cyclic 

loading at various amplitudes requires more complex definitions for κc and κt. The adopted 

definition of Eqs. (42) to (44) implies that κc and κt represent accumulated plastic traveling in 

compression and tension, respectively. While this definition (or similar definitions, e.g. Lee 

and Fenves (1998)) has been found to satisfactorily predict deterioration under uniaxial 

monotonic loading or simple uniaxial cyclic loading, the material model in the present study is 

subjected to complex triaxial loading due to the through-the-depth equilibrium, for which this 

definition of κc and κt may not be suitable. For example, a recent study by McKee et al. (2023) 

on steel rebar showed that strength deterioration and damage depend both on the accumulated 

plastic traveling and the strain magnitude at which the traveling takes place, showing that 

cycles at larger strains may be more damaging than cycles at lower strains, and demonstrating 

the need for more complex definitions of damage parameters. Exploring definitions of κc and 

κt that can account for similar observations in concrete, while being of value, are deemed to be 

beyond the scope of this paper.  
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Fig. 13 – Comparison of force-displacement response predictions with experimental data: (a) 
Pan & Li (2013); (b) Prakash et al. (2012) 

7. Summary and Conclusions 

This paper extends a previously developed gradient inelastic (GI) force-based (FB) beam-

column element formulation capable of capturing axial-flexural interactions and predicting 

flexural failures to account for axial-flexural-shear interactions in order to predict shear failures 

in RC members. This is achieved by incorporating (i) higher-order cross-section kinematics to 

describe higher-order transverse deformation profiles, (ii) cross-sectional through-the-depth 

equilibrium to predict normal strain distributions in the transverse directions and to compensate 

for confinement effects, and (iii) 3D concrete constitutive relations to simulate triaxial 

stress/strain interactions. The higher-order cross-section kinematics are determined through 

satisfaction of cross-section boundary conditions (BCs) and, as a result, do not introduce 

additional element degrees of freedom. The adopted 3D concrete constitutive relations are 

based on the plastic damage model of Lee and Fenves (1998), which, amongst other 

modifications, it is also modified herein to include the effect of compression softening due to 

the presence of reinforcement. To eliminate strain localization phenomena, new gradient 

nonlocality relationships are introduced, in addition to those of the original GI FB formulation. 

The proposed element formulation is implemented in the OpenSees structural analysis software 

(McKenna et al. 2000). Some additional observations include:  

• The shear-enhanced GI element formulation was found to eliminate strain localization 

phenomena during softening and provide mesh-convergent responses. For the analyses 

performed, convergence was achieved for lc/Δx of 2.5 to 3 or larger.   

• Incorporation of the through-the-depth equilibrium led to more ductile shear-dominant 

post-peak responses, which were found to better match the experimental data.  
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• Comparisons with experimental data showed that the original GI element (without shear 

effects) overestimated the peak lateral strength of shear-critical RC members, whereas the 

shear-enhanced GI element was able to predict such strength with less than 3% error (on 

average) based on comparisons with test data from 12 different RC members. 

• While the shear-enhanced GI element provide similar accuracy in predicting the strength 

in RC beams and columns, it provided more accurate predictions of the post-peak response 

of columns compared to the post-peak response of beams. Use of more accurate values of 

the characteristic length, lc, improved the predictions for shear-dominant columns. 

• While the shear-enhanced GI formulation inherently accounts for arbitrary loading 

conditions, all analyses focused on monotonic loading. Refinements of the material model, 

most likely with respect to the damage parameters and damage factors, are needed through 

future research to better describe material degradation with repeated loading cycles at 

varying strain amplitudes and under triaxial conditions.    

The shear-enhanced GI element formulation could contribute to the analysis of non-

ductile RC framed structures in the U.S. and worldwide. Such structures often pose an 

imminent threat to catastrophic failure due to earthquakes and/or other natural hazards. While 

this study focused on two-dimensional loading conditions, future research may extend this 

work to account for biaxial bending and torsional effects resulting from complex three-

dimensional loading conditions.   
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