

https://doi.org/10.1093/aje/kwae085 Advance access publication date May 23, 2024 Original Contribution

Childhood adversity and time to pregnancy in a preconception cohort

Sharonda M. Lovett*, 1 , Olivia R. Orta , Renée Boynton-Jarrett 2 , Amelia K. Wesselink 1 , Collette N. Ncube 1 , Yael I. Nillni^{3,4} , Elizabeth E. Hatch 1 , Lauren A. Wise 1

- ¹Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, United States
- ²Division of Health Services Research, Department of Pediatrics, Boston Medical Center, Boston, MA 02118, United States
- ³Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, United States
- ⁴National Center for PTSD, Women's Health Sciences Division, VA Boston Healthcare System, Boston, MA 02130, United States

Abstract

We examined the association between childhood adversity and fecundability (the per-cycle probability of conception), and the extent to which childhood social support modified this association. We used data from 6318 female participants aged 21-45 years in Pregnancy Study Online (PRESTO), a North American prospective preconception cohort study (2013-2022). Participants completed a baseline questionnaire, bimonthly follow-up questionnaires (until pregnancy or a censoring event), and a supplemental questionnaire on experiences across the life course including adverse childhood experiences (ACEs) and social support (using the modified Berkman-Syme Social Network Index [SNI]). We used proportional probabilities regression models to compute fecundability ratios (FRs) and 95% CIs, adjusting for potential confounders and precision variables. Adjusted FRs for ACE scores 1-3 and \geq 4 vs 0 were 0.91 (95% CI, 0.85-0.97) and 0.84 (95% CI, 0.77-0.91), respectively. The FRs for ACE scores \geq 4 vs 0 were 0.86 (95% CI, 0.78-0.94) among participants reporting high childhood social support (SNI \geq 4) and 0.78 (95% CI, 0.56-1.07) among participants reporting low childhood social support (SNI \leq 4). Our findings confirm results from 2 previous studies and indicate that high childhood social support slightly buffered the effects of childhood adversity on fecundability.

Key words: adversity; child abuse; adverse childhood experiences; fertility, time to pregnancy.

Introduction

Adversity during childhood is an established determinant of health, and most US adults have experienced at least 1 form of childhood adversity (eg, abuse, parental separation, living with someone with substance misuse or mental illness).1 Exposure to childhood adversity (hereafter, referred to as any adversity before age 18 years) is associated with reproductive outcomes (eg, early menarche, 2-5 uterine leiomyomata, 6,7 endometriosis, 8 amenorrhea,9 sexually transmitted infections10) as well as other adult outcomes that may influence fertility, including comorbidities (eg, obesity, diabetes), early initiation of behavioral factors (eg, smoking, heavy alcohol consumption), and mental health conditions. 11-13 Mechanisms through which childhood adversity may impair fertility include persistent activation of the hypothalamic-pituitary-adrenal (HPA) axis or autonomic nervous system (eg, elevations in stress biomarkers such as cortisol and α -amylase)¹⁴⁻²² and diminished ovarian function²³ via alterations in the hypothalamic-pituitary-ovarian axis (eg, reduced estradiol concentrations).²⁴ Additional biological pathways, though complex and not fully understood, involve suppressed immune function, inflammatory processes, and epigenetic aging.²⁵⁻²⁹

There is epidemiologic evidence that childhood adversity is associated with reduced fecundability (the probability of conception per menstrual cycle). 9,30 However, to our knowledge, there

has been no assessment of this association in a preconception cohort. In a large British study in which data collection began in childhood, 30,31 childhood adversity was associated with reduced fecundability among married or partnered women.30 That study also found that certain domains of childhood adversity (eg, witnessing abuse, conflict in the home) were associated with increased likelihood of being unable to have children.³⁰ In a US study, childhood adversity also was associated with reduced fecundability and increased risk of fertility difficulties (eg, receipt of fertility drugs or medical procedures to facilitate pregnancy).9 Both investigations adjusted for factors that postdate childhood and represent potential mediators (eg, adult factors like body mass index [BMI], education, household income, social class),9,30 which could introduce bias when estimating the total effect of childhood adversity on fecundability. 32,33 These studies may have also been susceptible to selection bias^{9,30} and differential exposure misclassification (recall bias), to which a preconception cohort study is less susceptible.

Using a prospective cohort study of North American pregnancy planners, we investigated the association between childhood adversity and fecundability. We also evaluated the extent to which social support in childhood modified this association, because previous studies recognized childhood social support as a potential buffer of early life stress. Social support has the potential to provide psychological resources that enhance

^{*}Corresponding author: Sharonda M. Lovett, Boston University School of Public Health, 715 Albany Street, T421E, Boston, MA 02118 (slovett1@bu.edu)

problem-solving skills, improve self-efficacy (influencing coping behavior), and regulate activity of the HPA axis. 34-37 We hypothesized childhood adversity would be associated with reduced fecundability, and that high social support in childhood would mitigate the association of childhood adversity with fecundability.

Methods Study population

Pregnancy Study Online (PRESTO) is an ongoing, internet-based, preconception cohort of couples in the United States and Canada who are trying to conceive.38 Recruitment began in June 2013, primarily through banner advertisements on social media and health-related websites. Eligible participants selfidentified as female, aged 21-45 years, not using contraception or fertility treatments at enrollment, and not pregnant at study entry. Participants completed a baseline questionnaire on sociodemographics (eg, race and ethnicity, education, income, geographic region), lifestyle factors (eg, smoking status, alcohol consumption, multivitamin use), medical conditions (eg, mental health diagnoses), and reproductive history (eg, age at menarche, parity). After enrollment, we mailed 6 home pregnancy tests to participants in the contiguous United States.³⁹ Beginning in July 2019, we invited former and current PRESTO participants to complete the Life Course Experiences Questionnaire (LCEQ), which included questions about childhood experiences. Thereafter, we sent the LCEQ to all newly enrolled participants 30 days after enrollment. PRESTO was approved by the Institutional Review Board at Boston University Medical Campus, and all participants provided informed consent.

Outcome assessment

We assessed time to pregnancy (TTP) prospectively, using data from baseline and follow-up questionnaires. At baseline, participants reported the first day of their last menstrual period (LMP), their usual menstrual cycle length (if having regular menstrual cycles), and the number of menstrual cycles they had been attempting pregnancy. Regarding the validity of self-reported LMP information, approximately 97.7% of PRESTO participants reported their LMP on the baseline questionnaire within 1 day of LMP recorded using FertilityFriend.com, a menstrual charting application.³⁸ On follow-up questionnaires, participants reported their most recent LMP date, whether they conceived since the prior questionnaire (~8 weeks between questionnaires), and method of pregnancy confirmation. We accepted confirmation of pregnancy via a self-reported, positive home pregnancy test, blood or urine test from a doctor's office, or ultrasound. Among participants who reported irregular cycles (ie, not being able to "predict about when [their] next period would start"), we estimated cycle length using baseline LMP date and LMP dates reported during follow-up. We calculated TTP based on the total cycles at risk, as follows: (cycles of attempt at study entry) + [(LMP date from most recent follow-up questionnaire - date of baseline questionnaire completion)/usual cycle length] + 1.

Exposure assessment

We ascertained childhood adversity using the adapted Adverse Childhood Experiences (ACE) module from the Behavioral Risk Factor Surveillance System (Table S1).40 Participants were asked to recall any exposure before age 18 years to adversities across 8 domains: household mental illness, household substance abuse, household incarceration, parental separation or divorce, parental intimate partner violence (IPV), physical abuse, emotional abuse,

and sexual abuse. We further examined experiences of physical and sexual abuse across the life course using modified questions from the Brief Trauma Questionnaire (BTQ; Table S2), in which frequency (ie, "once," "a few times," "more than a few times") and timing (ie, child [age ≤11 years], teen [12-17 years], adult [>18 years]) of the experience also were reported. 41,42 Notably, the BTQ was designed to assess exposure to traumatic events classified as criterion A (life threat or serious injury) in alignment with the Diagnostic and Statistical Manual of Mental Disorders. 41,42 We defined childhood physical abuse as the report of being physically attacked by anyone (eg. pushed, shoved, kicked, hit with something that could hurt) at least once before age 18 years. We defined childhood sexual abuse as the report of ever being made or pressured into having some type of unwanted sexual contact (involving their private parts or someone else's private parts) at least once before age 18 years.

Modifier assessment

We ascertained social support as a child or teen (ie, <18 years) and in adulthood (≥18 years) using 8 questions adapted from the Berkman-Syme Social Network Index (SNI)⁴³ (Table S3). The SNI assesses the type and closeness of contacts, including sociability (number and frequency of close friends or relatives). We summed up the total number of "yes" responses to each of the 8 types of support before age 18 years and defined childhood social support as high (SNI \geq 4) or low (SNI <4) (range of scores, 0-8). Our cutpoint aligns with those "socially integrated" on the SNI with increasing social connectedness (eg, high intimate contacts, membership in community groups) vs fewer social connections ("socially isolated").43

Mediator assessment

On the baseline questionnaire, we collected detailed information on potential mediators, including current BMI (calculated as weight [kg] divided by height squared [m²]; computed from selfreported weight in pounds and height in feet and inches); current intake of alcohol; current smoking status; current intercourse frequency ("in the past month"); current perceived stress ("in the past month") using the 10-item version of the Perceived Stress Scale (score range: 0-40, with a score ≥25 indicating greater perceived stress)44; and current depressive symptoms ("during the past 2 weeks") from the 12-item Major Depression Inventory (score range: 0-50, with a score ≥30 classified as severe depression symptomatology according to the International Statistical Classification of Diseases, 10th Revision). 45,46 Clinical diagnoses of depression (ie, "Have you ever been diagnosed with depression?") or anxiety (i.e., "Have you ever been diagnosed with anxiety/panic disorder?") before study entry, as well as history of gynecologic conditions (eg, uterine leiomyomata ["myomas, leiomyomas, smooth muscle tumors of uterus"], endometriosis ["when uterine lining appears outside of uterus"], polycystic ovary syndrome) were also ascertained at baseline. Using data collected through the LCEQ, we defined probable diagnosis of post-traumatic stress disorder (PTSD) as a score ≥3 for items from the Primary Care PTSD (PC-PTSD-5 instrument; Table S4)42,47 and adult trauma as any report of trauma after age 18 years based on adapted items to the BTQ (Table S2).42

Exclusions

From June 2013 through October 2022, 16736 eligible participants completed a baseline questionnaire and were followed using bimonthly follow-up questionnaires until reported pregnancy or 12 months. We excluded 167 participants whose baseline

Table 1. Baseline characteristics of 6318 PRESTO participants stratified by childhood adversity, June 2013-October 2022

	ACE score			Childhood physical or sexual abuse			
Characteristic ^a	0 (n = 1452)	1-3 (n = 3266)	\geq 4 (n = 1600)	Neither (n = 3882)	Physical only (n = 639)	Sexual only (n = 1087)	Both (n = 710)
Age, mean, years	30.7	30.6	30.0	30.7	30.3	30.2	29.8
Current body mass index, ^b mean	25.6	26.8	28.9	26.6	27.7	27.3	28.9
Current alcohol consumption, mean drinks/week	3.1	2.9	3.0	3.0	2.8	3.0	2.9
Non-Hispanic White, %	90.9	87.2	81.7	88.6	83.5	84.6	82.0
Non-Hispanic Black, %	0.7	1.6	2.8	1.3	1.8	2.2	2.5
Hispanic/Latina, %	3.5	5.7	7.5	4.8	6.6	7.2	7.4
Non-Hispanic other ^c , %	4.9	5.5	8.0	5.3	8.2	6.0	8.1
Married, %	93.4	91.8	83.9	91.9	90.9	88.5	82.4
Parental education: less than Bachelor's degree, %	23.2	34.2	50.9	30.9	42.7	39.7	50.9
Less than Bachelor's degree, %	9.0	14.3	27.9	12.4	18.3	19.7	31.9
Household income <\$50000, %	8.3	10.7	19.1	9.8	11.8	14.3	21.7
Current unemployment, %	9.0	11.2	15.1	10.3	13.9	11.6	17.7
Current smoker, %	2.2	3.7	8.8	3.4	3.9	6.1	10.3
Current intercourse frequency (<1 time/week), %	21.4	22.7	26.0	22.1	26.2	24.2	24.9
Age at menarche <12 years, %	19.6	23.0	28.0	21.3	25.5	25.6	30.6
Parous, %	28.5	30.6	37.5	29.9	28.4	34.3	42.9
Prenatal vitamin or multivitamin use, %	85.9	83.9	82.3	85.0	82.8	82.7	81.5
Last method of contraception: oral contraceptive pills, %	32.3	30.1	29.1	30.9	29.2	31.9	25.9
High perceived stress (PSS score: ≥25), %	4.0	7.9	11.8	6.1	8.4	10.4	14.0
Severe depressive symptoms (MDI score: ≥30), %	0.4	2.6	6.7	1.9	3.4	3.5	8.8
Probable diagnosis of PTSD, %	9.8	21.3	43.5	13.8	35.6	35.1	53.9
Diagnosed with depression, %	15.5	26.6	39.2	22.9	29.0	32.1	43.5
Diagnosed with anxiety, %	18.1	26.6	38.6	23.3	32.2	31.0	42.9
History of uterine leiomyomata, %	2.1	2.2	2.0	2.1	2.0	2.1	2.0
History of endometriosis, %	2.1	2.4	3.6	2.2	3.6	2.6	4.2
History of polycystic ovary syndrome, %	5.2	6.9	9.9	6.1	9.2	8.6	9.8
High childhood social support, %	95.5	90.1	74.8	92.1	79.1	87.0	70.0
High adult social support, %	99.3	97.8	94.2	98.4	96.1	97.1	92.6

Abbreviations: ACE, Adverse Childhood Experiences; MDI, Major Depression Inventory; PRESTO, Pregnancy Study Online; PSS, Perceived Stress Scale; PTSD, post-traumatic stress disorder.

date of LMP was >6 months before study entry and 86 participants with missing or implausible LMP data. To minimize selection bias, we further excluded participants with >6 cycles of attempt time at enrollment (n = 3253). As of October 2022, 6318 of the 13 230 remaining participants completed the LCEQ, 49.9% retrospectively with respect to the outcome (defined as >60 days after enrollment) and 50.1% prospectively with respect to the outcome (defined as within 60 days of enrollment, allowing participants 30 days to complete the LCEQ).

Statistical analysis

Participants contributed observed menstrual cycles at risk from baseline until reported pregnancy (regardless of the outcome of pregnancy), fertility treatment initiation, loss to follow-up, cessation of pregnancy attempt, or 12 menstrual cycles of follow-up, whichever came first. Participants who did not conceive within 12 cycles of attempted conception were censored at 12 cycles, the time after which couples typically seek fertility treatment.⁴⁸ We used life-table methods to calculate the percentage of participants who conceived during follow-up (12 cycles), accounting for censoring events.⁴⁹ We then fit proportional probabilities regression models⁵⁰ to estimate fecundability ratios (FRs) and 95% CIs that were weighted by the inverse probability of LCEQ completion. An FR <1 indicates a longer TTP (reduced fecundability) comparing exposed and unexposed participants, signifying that the exposure is associated with lower chances of conception in any given menstrual cycle. The proportional probabilities regression model differs from discrete proportional hazards models because it includes cycle-specific indicator variables for each menstrual cycle at risk to account for the expected baseline decline in cohort fecundability with increasing pregnancy attempt time. Moreover, the Andersen-Gill data structure (ie, 1 observation per menstrual cycle at risk, excluding earlier unobserved cycles)51 accounts for variation in pregnancy attempts at study entry (range, 0-6 cycles) and reduces left truncation bias. 52,53

Given that the LCEQ in PRESTO is optional and baseline characteristics may influence whether participants complete the supplemental questionnaire, we applied inverse probability weights to the FRs to account for potential selection bias due to differential completion. 54,55 Briefly, participants who were less likely to complete the LCEQ tended to have lower levels of education (<16 years of education: 32.0% vs 17.6%) and household income <\$50000 (22.0% vs 13.3%) (Table S5). We fit pooled logistic regression models predicting the probability of LCEQ completion using factors hypothesized to influence participation (eg, socioeconomic disadvantage, mental health disorders; Table S6). We then computed predicted probabilities and stabilized weights such that participants with a lower probability of completing the LCEQ based on measured characteristics received larger weights.

We characterized exposure to ACEs before age 18 years after summing "yes" vs "no" responses across domains (range of incidents, 0-8) similar to other studies. 12,13,56 We modeled ACEs

^a All characteristics (except age) are standardized to the age distribution of the cohort at baseline.

^bCalculated as weight (kg) divided by the square of height (m²).

cIncludes participants who self-identified as Asian or Pacific Islander, American Indian or Alaskan Native, mixed race, or another race.

Table 2. Associations between childhood adversity and fecundability in PRESTO, June 2013-October 2022

	Overall (n = 6318)								
Exposure	No. of pregnancies	No. of pregnancies No. of cycles		Adjusted FR (95% CI) ^{a,b}					
		ACE Module							
Cumulative score									
0	1065	5839	1.00 (Referent)	1.00 (Referent)					
1-3	2247	13 839	0.89 (0.83-0.95)	0.91 (0.85-0.97)					
≥4	1005	6951	0.79 (0.73-0.86)	0.84 (0.77-0.91)					
Per 1-unit increase in ACE score			0.96 (0.95-0.97)	0.97 (0.95-0.98)					
Substantive domain ^c									
Household mental illness	1948	12 282	0.86 (0.80-0.92)	0.89 (0.82-0.96)					
Household substance abuse	1357	8730	0.84 (0.78-0.90)	0.87 (0.80-0.94)					
Household incarceration	313	2164	0.78 (0.69-0.87)	0.81 (0.70-0.94)					
Parental separation or divorce	1292	8655	0.81 (0.75-0.87)	0.86 (0.79-0.93)					
Parental IPV	637	4366	0.79 (0.72-0.87)	0.86 (0.77-0.96)					
Physical abuse	878	6214	0.78 (0.72-0.84)	0.82 (0.74-0.90)					
Emotional abuse	2053	13 500	0.84 (0.78-0.90)	0.87 (0.81-0.94)					
Sexual abuse	750	5276	0.78 (0.72-0.85)	0.82 (0.75-0.91)					
	Brief Tra	uma Questionnaire							
No abuse	2738	16 109	1.00 (Referent)	1.00 (Referent)					
Physical abuse only	404	2762	0.85 (0.77-0.94)	0.88 (0.80-0.97)					
Sexual abuse only	719	4712	0.89 (0.82-0.96)	0.92 (0.85-0.99)					
Physical and sexual abuse	456	3046	0.90 (0.83-0.99)	0.94 (0.86-1.03)					

Abbreviations: ACE, Adverse Childhood Experiences; FR, fecundability ratio; IPV, intimate partner violence; PRESTO, Pregnancy Study Online.

^a Applies inverse probability weights to adjust for differential completion of the supplemental Life Course Experiences Questionnaire.

categorically (0, 1-3, \geq 4) and continuously (per 1-unit increase) based on the cumulative score. Next, we generated restricted cubic splines 57,58 of associations between ACE score as a continuous variable and fecundability to examine the potential for a nonlinear association. To evaluate potential for buffering effects of social support before age 18 years, we stratified the data by high vs low social support (SNI \geq 4 vs <4). We then modeled child and teen physical and sexual abuse as categories defined by frequency (once, a few times, more than a few times), timing of first exposure (child [\leq 11 years] vs teen [12-17 years]), and chronicity (child only, teen only, child and teen), with no physical or sexual abuse before age 18 years as the common referent for all analyses of abuse.

Selection of potential confounders and precision variables was determined a priori based on a review of the literature and hypothesized pathways using a causal diagram, excluding potential mediators (Figure S1).33,59 Here, we conceptualized precision variables to be baseline characteristics in adulthood (ie, current age, prenatal vitamin or multivitamin use, last method of contraception) that are strong predictors for the outcome (fecundability). Final models were adjusted for current age (continuous), self-reported race and ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic/Latina, Non-Hispanic other [defined as Asian or Pacific Islander, American Indian or Alaskan Native, mixed race, or some other racel), childhood economic resources (ie, limited income for food or housing, loan for medical expenses, public assistance or welfare) (yes vs no), highest level of parental education (≤12, 13-15, 16, ≥17 years), prenatal vitamin or multivitamin use (yes vs no), and last method of contraception (oral contraceptives, other hormonal contraceptives, barrier methods, withdrawal, rhythm, and/or other methods). We view race as a socially and politically constructed variable that shapes many aspects of the lived experience.

We used fully conditional specification methods to impute missing data for exposure, covariate, and outcome information,

assuming data were missing at random conditional on observed data. 60-62 Specifically, we used logistic regression to impute dichotomous and ordinal variables, the discriminant function to impute nominal variables, and linear regression to impute continuous variables.⁶⁰ None of the continuous variables used in the imputation required transformations to deal with non-normality. We then generated 20 imputed data sets across which we pooled effect estimates and SEs. 63 To ensure validity and quality of the imputation, we examined trace plots for continuous variables and compared the frequency distribution of noncontinuous variables before and after imputation.⁶⁴ For participants who did not complete any follow-up questionnaires (2.1%), we assigned 1 cycle of follow-up and multiply imputed their pregnancy status (yes vs no) at the cycle. Missingness for analytic variables ranged from <0.1% (age) to 24.6% (probable diagnosis of PTSD was added to the first version of the LCEQ in July 2019 and was only ascertained among participants reporting ≥1 stressful life events via the BTQ at least once across the life course [skip pattern]). Responses of "don't know" and "prefer not to answer" ranged from <0.1% (parental separation or divorce) to 6.4% (household mental illness) and were coded as missing before imputation.

We performed several sensitivity analyses to assess the potential for selection bias, including stratification by retrospective vs prospective completion of the LCEQ and pregnancy attempt time at enrollment (<3 cycles vs 3-6 cycles). If findings differed across strata, we assumed that results from prospective completion of the LCEQ and <3 cycles of attempt time were more valid. In exploratory analyses, we also investigated potential mediation by possible causal intermediates (eg, current smoking status, current intercourse frequency, probable diagnosis of PTSD, adult trauma) to improve understanding of the childhood adversity–TTP relationship. We used mediation analysis, ⁶⁵ with exposure-mediator interaction (ie, product terms), to estimate natural indirect effects (NIE) of the mediator on the natural direct effects (NDE) of childhood adversity and fecundability. We computed the proportion

bAdjusted for age, race and ethnicity, childhood economic resources, highest level of parental education, prenatal vitamin or multivitamin use, and last method of contraception.

^cExposure referent: no adverse childhood experiences.

Table 3. Associations between childhood adversity and fecundability in PRESTO stratified by social support before age 18 years (June 2013-October 2022)

	High childhoo	d social support (n = 5525) ^a	Low childhood social support $(n = 793)^a$			
Exposure	No. of pregnancies	No. of cycles	Adjusted FR (95% CI) ^{b,c}	No. of pregnancies	No. of cycles	Adjusted FR (95% CI) ^{b,c}	
		A	CE Module				
Cumulative score							
0	1020	5576	1.00 (Referent)	45	263	1.00 (Referent)	
1-3	2046	12339	0.92 (0.86-0.99)	201	1500	0.83 (0.62-1.13)	
≥4	766	5152	0.86 (0.78-0.94)	239	1799	0.78 (0.56-1.07)	
Per 1-unit increase in ACE score			0.97 (0.95-0.99)			0.98 (0.94-1.02)	
Substantive domain ^d							
Household mental illness	1636	10 012	0.91 (0.84-0.98)	312	2270	0.77 (0.57-1.05)	
Household substance abuse	1131	7059	0.89 (0.82-0.97)	226	1671	0.76 (0.55-1.05)	
Household incarceration	243	1621	0.86 (0.74-1.02)	70	543	0.67 (0.40-1.11)	
Parental separation or divorce	1084	7079	0.88 (0.81-0.96)	208	1576	0.76 (0.71-0.82)	
Parental IPV	484	3193	0.89 (0.79-1.00)	153	1173	0.81 (0.56-1.17)	
Physical abuse	658	4509	0.84 (0.76-0.93)	220	1705	0.75 (0.54-1.05)	
Emotional abuse	1691	10812	0.89 (0.83-0.97)	362	2688	0.80 (0.59-1.09)	
Sexual abuse	593	4180	0.81 (0.73-0.90)	157	1096	0.90 (0.63-1.28)	
		Brief Trau	ıma Questionnaire				
No abuse	2556	14 695	1.00 (Referent)	182	1414	1.00 (Referent)	
Physical abuse only	329	2108	0.91 (0.82-1.02)	75	654	0.89 (0.69-1.15)	
Sexual abuse only	625	4089	0.89 (0.82-0.97)	94	623	1.18 (0.94-1.48)	
Physical and sexual abuse	322	2175	0.90 (0.81-1.00)	134	871	1.22 (0.99-1.51)	

Abbreviations: ACE, Adverse Childhood Experiences; FR, fecundability ratio; IPV, intimate partner violence; PRESTO, Pregnancy Study Online. ^aDefined via an adapted Berkman-Syme Social Network Index (score: ≥4 [high] vs <4 [low]).

mediated as follows: $(FR_{NDE} \times [FR_{NIE} - 1])/(FR_{NDE} \times FR_{NIE} - 1)$. All analyses were performed using SAS, version 9.4.66

Results

During 12 menstrual cycles of follow-up, 6318 female participants contributed 4317 pregnancies (cumulative conception percentage after accounting for censoring, 78.4%). At baseline, the mean age of participants was 30.5 years and 86.7% identified as non-Hispanic White. Furthermore, >25% of participants reported a mental health diagnosis (depression: 27.4%, anxiety: 27.8%). The prevalence of childhood adversity domains ranged from 8.1% (household incarceration) to 49.3% (emotional abuse), with 77.0% of participants reporting at least 1 form of childhood adversity (Table S7). Participants with an ACE score ≥4 were more likely to identify as nonmarried, have higher BMI, have lower household

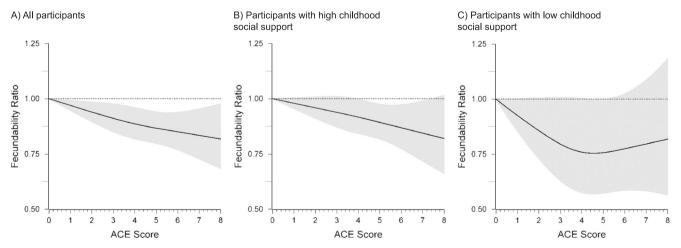


Figure 1. Restricted cubic splines of Adverse Childhood Experiences (ACE) score and fecundability in PRESTO, June 2013-October 2022. Graphs are plots of restricted cubic splines, where observations are trimmed at the 99th percentile and 3 knots are located at the 50th, 75th, and 95th percentiles. The reference level is the minimum value of the exposure (ACE score = 0). The black solid line indicates the fecundability ratio (FR) and the shaded gray area is the 95% CI, adjusted for age, race and ethnicity, childhood economic resources, highest level of parental education, prenatal vitamin or multivitamin use, and last method of contraception. Childhood social support is defined via an adapted Berkman-Syme Social Network Index (score: ≥4 [high] vs <4 [low]). PRESTO, Pregnancy Study Online.

^bApplies inverse probability weights to adjust for differential completion of the supplemental Life Course Experiences Questionnaire.

Adjusted for age, race and ethnicity, childhood economic resources, highest level of parental education, prenatal vitamin or multivitamin use, and last method of contraception.

dExposure referent: no adverse childhood experiences.

Table 4. Associations of abuse before age 18 years (frequency, timing of first exposure, and chronicity) with fecundability in PRESTO, June 2013-October 2022

Exposure	No. of participants	No. of pregnancies	No. of cycles	Crude FR (95% CI) ^a	Adjusted FR (95% CI) ^{a,b}
No physical or sexual abuse before age 18 years	3882	2738	16 109	1.00 (Referent)	1.00 (Referent)
		Frequency ^c			
Physical abuse					
Once	238	154	1011	0.91 (0.78-1.05)	0.93 (0.80-1.08)
A few times	654	432	2824	0.92 (0.84-1.01)	0.94 (0.85-1.03)
More than a few times	457	274	1973	0.82 (0.73-0.91)	0.86 (0.77-0.97)
Sexual abuse					
Once	614	405	2626	0.95 (0.86-1.04)	0.97 (0.89-1.07)
A few times	806	538	3436	0.90 (0.83-0.98)	0.92 (0.85-1.01)
More than a few times	377	232	1696	0.81 (0.72-0.92)	0.84 (0.74-0.95)
	Timir	ng of First Exposure ^c			
Physical abuse					
Child	824	525	3498	0.89 (0.82-0.97)	0.93 (0.85-1.01)
Teen	525	335	2310	0.87 (0.78-0.96)	0.89 (0.80-0.99)
Sexual abuse					
Child	631	408	2715	0.89 (0.81-0.98)	0.94 (0.86-1.04)
Teen	1166	767	5043	0.90 (0.83-0.96)	0.91 (0.84-0.98)
		Chronicity ^c			
Physical abuse					
Child only	281	180	1114	0.97 (0.85-1.11)	1.00 (0.88-1.15)
Teen only	525	335	2310	0.87 (0.78-0.96)	0.89 (0.80-0.99)
Child and teen	543	345	2384	0.85 (0.77-0.94)	0.88 (0.79-0.98)
Sexual abuse					
Child only	373	244	1553	0.92 (0.82-1.03)	0.97 (0.86-1.10)
Teen only	1166	767	5043	0.90 (0.83-0.96)	0.91 (0.84-0.98)
Child and teen	258	164	1162	0.86 (0.75-0.98)	0.91 (0.80-1.05)

Abbreviations: FR, fecundability ratio; PRESTO, Pregnancy Study Online.

income, be current smokers, and report probable diagnosis of PTSD compared with participants reporting no ACEs (Table 1). We observed a similar distribution of baseline characteristics, on average, for participants reporting both physical and sexual abuse before age 18 years.

Adjusted FRs for ACE scores 1-3 and ≥4 vs 0 were 0.91 (95% CI, 0.85-0.97) and 0.84 (95% CI, 0.77-0.91), respectively (Table 2). We observed slight differences in fecundability across domains of childhood adversity (range of FRs, 0.81-0.89). However, the strongest association was with household incarceration (FR = 0.81; 95% CI, 0.70-0.94). The FRs for ACE scores ≥4 vs 0 were 0.86 (95% CI, 0.78-0.94) among participants reporting high childhood social support (SNI ≥4) and 0.78 (95% CI, 0.56-1.07) among participants reporting low childhood social support (SNI <4; Table 3). Analyses of restricted spline curves were generally consistent with the categorical results, indicating decreases in fecundability with higher ACE scores and slightly attenuated associations among those with high childhood social support (Figure 1).

We observed generally stronger associations among participants reporting more frequent incidents of abuse (Table 4). The FRs of physical abuse for "once," "a few times," and "more than a few times" vs never having experienced physical or sexual abuse before age 18 years were 0.93 (95% CI, 0.80-1.08), 0.94 (95% CI, 0.85-1.03), and 0.86 (95% CI, 0.77-0.97), respectively. The FRs for sexual abuse comparing "once," "a few times," and "more than a few times" vs no physical or sexual abuse before age 18 years were 0.97 (95% CI, 0.89-1.07), 0.92 (95% CI, 0.85-1.01), and 0.84 (95% CI, 0.74-0.95). Results based on timing of first exposure to physical or

sexual abuse did not reveal any appreciable differences (Table 4). Fecundability among those first exposed as a child (physical abuse: FR = 0.93, 95% CI, 0.85-1.01; sexual abuse: FR = 0.94, 95% CI, 0.86-1.04) were similar to those first exposed as a teen (physical abuse: FR = 0.89, 95% CI, 0.80-0.99; sexual abuse: 0.91, 95% CI, 0.84-0.98). The FRs were strongest for participants reporting abuse both as a child and as a teen or as a teen only (Table 4). For example, fecundability was lowest among those reporting abuse during both life stages (physical abuse: FR = 0.88, 95% CI, 0.79-0.98; sexual abuse: FR = 0.91, 95% CI, 0.80-1.05).

In sensitivity analyses by completion of the LCEQ retrospectively versus prospectively, we observed similar results across strata, although both physical and sexual abuse, and some domains of childhood adversity (eg, household substance abuse, household incarceration, parental separation or divorce, parental IPV) were slightly stronger among those with prospectively collected LCEQ data (Table S8). Associations across strata of pregnancy attempt time at enrollment were also generally similar, but some domains of childhood adversity were stronger for participants reporting shorter attempt times at enrollment (<3 cycles; Table S9).

In mediation analyses considering exposure-mediator interaction (Table 5), probable diagnosis of PTSD mediated the largest proportion of the association between ACE score ≥4 vs 0 and fecundability (26.2%), followed by mental health diagnosis (anxiety: 20.1%, depression: 15.8%) and adult trauma (12.6%). Proportions mediated by behavioral factors (eg, lower current intercourse frequency, current smoking) were small ($\leq 4.7\%$), whereas

Applies inverse probability weights to adjust for differential completion of the supplemental Life Course Experiences Questionnaire.

bAdjusted for age, race and ethnicity, childhood economic resources, highest level of parental education, prenatal vitamin or multivitamin use, and last

^cExposure referent: no physical or sexual abuse according to responses to modified Brief Trauma Questionnaire.

Table 5. Natural direct and indirect effects of ACE score (>4 vs 0)a and fecundability in PRESTO, June 2013-October 2022

Mediator	Product term	Natural indirect effect Adjusted FR (95% CI) ^{b,c}		Natural direct effect Adjusted FR (95% CI) ^{b,c}		Proportion mediated, % ^d
Household income <\$50 000 (yes vs no)	Yes	0.99	(0.98-1.00)	0.84	(0.77-0.92)	5.6
Current body mass index (≥30 vs <30 kg/m²)	Yes	1.06	(1.04-1.09)	0.83	(0.72-0.95)	
Current alcohol consumption (≥7 vs <7 drinks/week)	Yes	1.00	(1.00-1.00)	0.84	(0.69-1.02)	
Current smoker (yes vs no)	Yes	0.99	(0.98-1.00)	0.84	(0.76-0.92)	4.7
Current intercourse frequency (<1 vs ≥1 times/week)	Yes	1.00	(0.99-1.00)	0.84	(0.76-0.92)	1.6
High perceived stress (PSS score: ≥25 vs < 25)	Yes	1.01	(1.00-1.02)	0.74	(0.54-1.02)	
Severe depressive symptoms (MDI score: ≥30 vs < 30)	Yes	1.02	(1.00-1.03)	0.51	(0.20-1.27)	
Probable diagnosis of PTSD (yes vs no)	Yes	0.95	(0.92-0.98)	0.87	(0.79-0.97)	26.2
Diagnosed with depression (yes vs no)	Yes	0.97	(0.94-0.99)	0.86	(0.78-0.94)	15.8
Diagnosed with anxiety (yes vs no)	Yes	0.96	(0.94-0.98)	0.86	(0.78-0.95)	20.1
History of uterine leiomyomata (yes vs no)	Yes	1.00	(1.00-1.00)	0.83	(0.76-0.91)	
History of endometriosis (yes vs no)	Yes	1.00	(0.99-1.01)	0.83	(0.76-0.92)	0.3
History of polycystic ovary syndrome (yes vs no)	Yes	0.98	(0.97-0.99)	0.85	(0.77-0.93)	8.9
Adult trauma (yes vs no)	Yes	0.97	(0.94-1.01)	0.85	(0.77-0.94)	12.6

Abbreviations: ACE, Adverse Childhood Experiences; FR, fecundability ratio; MDI, Major Depression Inventory; PRESTO, Pregnancy Study Online; PSS, Perceived Stress Scale; PTSD, post-traumatic stress disorder.

selected indicators of socioeconomic disadvantage were slightly larger (<16 years of education, 6.9%; household income <\$50000, 5.6%). Mediation results without interaction were comparable (data not shown).

Discussion

To our knowledge, this is the first study to assess childhood adversity and fecundability using prospectively collected TTP data. In this preconception cohort of North American pregnancy planners, female participants with higher ACE scores had reduced fecundability, and associations of fecundability were relatively similar across domains of childhood adversity. High childhood social support appeared to buffer the effect of childhood adversity on TTP, but the differences in effect were small. Chronicity to physical or sexual abuse as a teen only showed slightly stronger associations with TTP than exposure as a child only, and neither life stage emerged as a more sensitive period of first exposure with respect to timing of abuse.

Our results are consistent with those of 2 prior studies that observed inverse associations between childhood adversity and fertility. 9,30 In the British National Child Development Study, married or partnered women reporting ≥4 vs 0 childhood social hardships had an FR of 0.87 (95% CI, 0.78-0.97) after minimal adjustment.³⁰ However, these results were attenuated after additional adjustment for adult social class and education (FR = 0.99; 95% CI, 0.88-1.10). In another study of reproductive-aged women (18-45 years) residing in southeastern Louisiana, the adjusted FRs were 0.72 (95% CI, 0.52-0.99) and 0.81 (95% CI, 0.60-1.08) for ACE scores ≥4 and 1-3 vs 0, respectively (including adjustment of smoking, education, and income).9

Potential mechanisms for the inverse association observed between childhood adversity and fecundability, in addition to the mechanisms analytically explored in our mediation analysis, include chronic activation of the HPA axis (which can lead to amenorrhea9 and dysregulation of ovarian hormones that are critical for reproduction^{67,68}). Childhood adversity may also increase the risk of mental health disorders (eg, probable diagnosis of PTSD, depression, anxiety)69-73 and reproductive outcomes (eg, polycystic ovary syndrome⁷⁴). In our study, not all hypothesized factors (eg, current perceived stress, uterine leiomyomata, 6,7 endometriosis8) showed evidence of meaningful mediation, despite being linked to reduced fertility in prior literature. 75-80 Collectively, these findings suggest that the mechanism(s) by which childhood adversity affects fertility may differ depending on the study population examined.

Our findings should be interpreted in light of several limitations. Individuals with higher levels of childhood adversity may have been less likely to complete the LCEQ. Participants reporting childhood adversity are also less likely to plan their pregnancies^{81,82} (an eligibility criterion for this study) and are more likely to identify with a racial or ethnic group that has historically been marginalized⁸³⁻⁸⁶ (which constitutes only 18.5% of the PRESTO cohort). Thus, the study may have limited generalizability. However, we implemented inverse probability weights to compensate for underrepresentation of selected participants in our cohort. Results comparing weighted and unweighted FRs (data not shown) were similar, suggesting selection bias may only play a minimal role in this analysis.

Another key limitation in our study is selection bias, because participants with longer pregnancy attempt times had greater opportunity to complete the LCEQ.87 However, further exploration of this possibility indicated little evidence of selection bias. Although self-reported measures of childhood adversity have high validity (ie, few false-positive reports) in several populations, 88-90 there is potential for recall bias among participants who retrospectively completed the LCEQ. Nevertheless, findings were similar comparing those who completed the LCEQ retrospectively vs prospectively.

Our measures of childhood adversity do not capture variation in duration, severity, perpetrator, or co-occurrence of multiple adversities (which is likely prevalent),91 and frequency, timing, and chronicity of only some adversities were explored (physical and/or sexual abuse only) using the BTQ vs ACE module. Thus, we

^aParticipants with an ACE score 1-3 are excluded.

^bAdjusted for age, race and ethnicity, childhood economic resources, highest level of parental education, prenatal vitamin or multivitamin use, and last method of contraception.

All FRs are unweighted (ie, inverse probability weights are not applied).

dProportion mediated is not reported when the natural indirect and natural direct effects are in opposite directions.

cannot speak to the evaluation of sensitive periods (child vs teen) across all domains of childhood adversity. 92 Cumulative ACE score is not a clinical indicator and should only be viewed as 1 operationalization of childhood adversity. 91,93,94 For example, we did not evaluate "expanded ACEs," which include community-level experiences (eg, neighborhood crime, environmental stressors like natural disasters) and experiences less often explored (eg, bullying, homelessness, discrimination), to more comprehensively assess childhood adversity on fecundability across multiple levels. 95

Limited data on other determinants in early life (eg, household income, household composition or family dynamics, food insecurity) may have contributed to residual or unmeasured confounding. We also did not assess mediation by biomarkers of preconception stress (eg, cortisol, α-amylase, dehydroepiandrosterone) or other hypothesized mediators debated in literature (eg, neighborhood environment). 18,96 Finally, continuous variables used in our mediation analysis were subject to measurement error following categorization.97

Study strengths include prospective collection of TTP data and enrollment of participants during preconception soon after discontinuing contraception, allowing an investigation of couples across the full fertility spectrum.^{87,98} We also ascertained adversity in early life across multiple domains (eg, household substance abuse, household incarceration, parental IPV), including frequency and timing of certain adversities. Our study builds upon previous studies and implements a causal mediation analysis to elucidate selected paths of potential mediators.

Conclusion

This study indicates that childhood adversity is associated with reduced fecundability, especially among those with low childhood social support. Our results highlight the importance of continued efforts to prevent childhood adversity and their long-lasting health effects.

Acknowledgments

We are grateful to the contributions of PRESTO participants and staff. We thank Michael Bairos for his development of the internet-based infrastructure used in the study. We also acknowledge Tanran R. Wang, Alina Chaiyasarikul, Jessica S. Levinson, Martha R. Koenig, Andrea S. Kuriyama, and Yiwen Cheng for their assistance with data management and participant study support. This work was presented in abstract form as part of an oral presentation at the 2022 Society for Epidemiologic Research Conference in Chicago, Illinois, June 14-17, 2022.

Supplementary material

Supplementary material is available at the American Journal of Epidemiology online.

Funding

This work was supported by the National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01-HD086742).

Conflict of interest

L.A.W. has received in-kind donations from Kindara.com and Swiss Precision Technologies, and also serves as a consultant for AbbVie Inc. and the Gates Foundation. The other authors declare no competing interests.

Disclaimer

The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation of this article.

Data availability

Individual-level data related to this article cannot be shared publicly because PRESTO participants did not provide informed consent to share their information with external entities.

References

- 1. Centers for Disease Control and Prevention. About adverse childhood experiences. Updated May 16, 2024. Accessed August 15, 2024. https://www.cdc.gov/aces/about/index.html
- 2. Wise LA, Palmer JR, Rothman EF, et al. Childhood abuse and early menarche: findings from the Black Women's Health Study. Am J Public Health. 2009;99(Suppl 2):S460-S466. https://doi. org/10.2105/AJPH.2008.149005
- 3. Boynton-Jarrett R, Wright RJ, Putnam FW, et al. Childhood abuse and age at menarche. J Adolescent Health. 2013;52(2):241-247. https://doi.org/10.1016/j.jadohealth.2012.06.006
- 4. Zhang L, Zhang DD, Sun Y. Adverse childhood experiences and early pubertal timing among girls: a meta-analysis. Int J Env Res Pub He. 2019;16(16):2887. https://doi.org/10.3390/ijerph16162887
- 5. Boynton-Jarrett R, Harville EW. A prospective study of childhood social hardships and age at menarche. Ann Epidemiol. 2012; 22(10):731-737.https://doi.org/10.1016/j.annepidem.2012.08.005
- 6. Wise LA, Palmer JR, Rosenberg L. Lifetime abuse victimization and risk of uterine leiomyomata in black women. Am J Obstet Gynecol. 2013;208(4):272.e1-272.e13. https://doi. org/10.1016/j.ajog.2012.12.034
- 7. Boynton-Jarrett R, Rich-Edwards JW, Jun HJ, et al. Abuse in childhood and risk of uterine leiomyoma: the role of emotional support in biologic resilience. Epidemiology. 2011;22(1):6-14. https:// doi.org/10.1097/EDE.0b013e3181ffb172
- 8. Harris HR, Wieser F, Vitonis AF, et al. Early life abuse and risk of endometriosis. Hum Reprod. 2018;33(9):1657-1668. https://doi. org/10.1093/humrep/dey248
- 9. Jacobs MB, Boynton-Jarrett RD, Harville EW. Adverse childhood event experiences, fertility difficulties and menstrual cycle characteristics. J Psychosom Obstet Gynaecol. 2015;36(2):46-57. https:// doi.org/10.3109/0167482X.2015.1026892
- 10. Hillis SD, Anda RF, Felitti VJ, et al. Adverse childhood experiences and sexually transmitted diseases in men and women: a retrospective study. Pediatrics. 2000;106(1):E11. https://doi. org/10.1542/peds.106.1.e11
- 11. Hughes K, Bellis MA, Hardcastle KA, et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. 2017;2(8): e356-e366. https://doi.org/10.1016/S2468-2667(17)30118-4
- 12. Petruccelli K, Davis J, Berman T. Adverse childhood experiences and associated health outcomes: a systematic review and meta-analysis. Child Abuse Negl. 2019;97:104127. https://doi. org/10.1016/j.chiabu.2019.104127
- 13. Campbell JA, Walker RJ, Egede LE. Associations between adverse childhood experiences, high-risk behaviors, and morbidity

- in adulthood. Am J Prev Med. 2016;50(3):344-352. https://doi. org/10.1016/j.amepre.2015.07.022
- 14. Neigh GN, Gillespie CF, Nemeroff CB. The neurobiological toll of child abuse and neglect. Trauma Violence Abuse. 2009;10(4): 389-410. https://doi.org/10.1177/1524838009339758
- 15. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338(3):171-179. https://doi.org/10.1056/ NEJM199801153380307
- 16. De Bellis MD, Chrousos GP, Dorn LD, et al. Hypothalamicpituitary-adrenal axis dysregulation in sexually abused girls. J Clin Endocrinol Metab. 1994;78(2):249-255. https://doi.org/10. 1210/jcem.78.2.8106608
- 17. Bucci M, Marques SS, Oh D, et al. Toxic stress in children and adolescents. Adv Pediatr. 2016;63(1):403-428. https://doi. org/10.1016/j.yapd.2016.04.002
- 18. Berens AE, Jensen SKG, Nelson CA 3rd. Biological embedding of childhood adversity: from physiological mechanisms to clinical implications. BMC Med. 2017;15(1):135. https://doi.org/10.1186/ s12916-017-0895-4
- 19. Raymond C, Marin MF, Wolosianski V, et al. Early childhood adversity and HPA axis activity in adulthood: the importance of considering minimal age at exposure. Psychoneuroendocrinology. 2021;124:105042. https://doi.org/10.1016/j. psyneuen.2020.105042
- 20. Young-Southward G, Svelnys C, Gajwani R, et al. Child maltreatment, autonomic nervous system responsivity, and psychopathology: current state of the literature and future directions. Child Maltreat. 2020;25(1):3-19. https://doi. org/10.1177/1077559519848497
- 21. Louis GM, Lum KJ, Sundaram R, et al. Stress reduces conception probabilities across the fertile window: evidence in support of relaxation. Fertil Steril. 2011;95(7):2184-2189. https://doi. org/10.1016/j.fertnstert.2010.06.078
- 22. Lynch CD, Sundaram R, Maisog JM, et al. Preconception stress increases the risk of infertility: results from a couplebased prospective cohort study—the LIFE study. Hum Reprod. 2014;29(5):1067-1075. https://doi.org/10.1093/humrep/deu032
- 23. Allsworth JE, Zierler S, Krieger N, et al. Ovarian function in late reproductive years in relation to lifetime experiences of abuse. Epidemiology. 2001;12(6):676-681. https://doi. org/10.1097/00001648-200111000-00016
- 24. Valsamakis G, Chrousos G, Mastorakos G. Stress, female reproduction and pregnancy. Psychoneuroendocrinology. 2019;100:48-57. https://doi.org/10.1016/j.psyneuen.2018.09.031
- 25. Chen MA, LeRoy AS, Majd M, et al. Immune and epigenetic pathways linking childhood adversity and health across the lifespan. Front Psychol. 2021;12:788351. https://doi.org/10.3389/ fpsyg.2021.788351
- 26. Elwenspoek MMC, Kuehn A, Muller CP, et al. The effects of early life adversity on the immune system. Psychoneuroendocrinology. 2017;82:140-154. https://doi.org/10.1016/j.psyneuen.2017.05.012
- 27. Slopen N, Koenen KC, Kubzansky LD. Childhood adversity and immune and inflammatory biomarkers associated with cardiovascular risk in youth: a systematic review. Brain Behav Immun. 2012;26(2):239-250. https://doi.org/10.1016/j.bbi.2011.11.003
- 28. Woo JMP, Parks CG, Hyde EE, et al. Early life trauma and adult leucocyte telomere length. Psychoneuroendocrinology. 2022;144: 105876. https://doi.org/10.1016/j.psyneuen.2022.105876
- 29. Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, et al. Maternal adverse childhood experiences before pregnancy are associated with epigenetic aging changes in their children. Aging (Albany NY). 2021;13(24):25653-25669. https://doi.org/10.18632/ aging.203776

- 30. Harville EW, Boynton-Jarrett R. Childhood social hardships and fertility: a prospective cohort study. Ann Epidemiol. 2013;23(12): 784-790. https://doi.org/10.1016/j.annepidem.2013.10.001
- 31. Harville EW, Boynton-Jarrett R, Power C, et al. Childhood hardship, maternal smoking, and birth outcomes: a prospective cohort study. Arch Pediatr Adolesc Med. 2010;164(6):533-539. https://doi.org/10.1001/archpediatrics.2010.61
- 32. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20(4):488-495. https://doi.org/10.1097/EDE.0b013e3181
- 33. Jaen J, Lovett SM, Lajous M, et al. Adverse childhood experiences and adult outcomes using a causal framework perspective: challenges and opportunities. Child Abuse Negl. 2023;143:106328. https://doi.org/10.1016/j.chiabu.2023.106328
- Cohen S, Wills TA. Stress, social support, and the buffering hypothesis. Psychol Bull. 1985;98(2):310-357. https://doi. org/10.1037/0033-2909.98.2.310
- 35. Gunnar MR, Donzella B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002; 27(1-2):199-220. https://doi.org/10.1016/s0306-4530(01)00045-2
- 36. Gunnar MR, Quevedo KM. Early care experiences and HPA axis regulation in children: a mechanism for later trauma vulnerability. Prog Brain Res. 2008;167:137-149. https://doi.org/10.1016/ S0079-6123(07)67010-1
- 37. Hostinar CE, Gunnar MR. Future directions in the study of social relationships as regulators of the HPA axis across development. J Clin Child Adolesc Psychol. 2013;42(4):564-575. https:// doi.org/10.1080/15374416.2013.804387
- Wise LA, Rothman KJ, Mikkelsen EM, et al. Design and conduct of an internet-based preconception cohort study in North America: Pregnancy Study Online. Paediatr Perinat Ep. 2015;29(4):360-371. https://doi.org/10.1111/ppe.12201
- Wise LA, Wang TR, Willis SK, et al. Effect of a home pregnancy test intervention on cohort retention and pregnancy detection: a randomized trial. Am J Epidemiol. 2020;189(8):773-778. https:// doi.org/10.1093/aje/kwaa027
- 40. Centers for Disease Control and Prevention. BRFSS questionnaires. Last reviewed August 29, 2023. Accessed January 10, 2023. https://www.cdc.gov/brfss/questionnaires/index.htm
- Schnurr PP, Spiro AI, Vielhauer MJ, et al. Trauma in the lives of older men: findings from the Normative Aging Study. J Clin Geropsychol. 2002;3:175-187. https://doi.org/10.1023/ A:1015992110544
- 42. Schnurr P, Vielhauer M, Weathers F, et al. The Brief Trauma Questionnaire. 1999. Accessed January 10, 2023. https://www. ptsd.va.gov/professional/assessment/te-measures/brief_ trauma_questionnaire_btq.asp
- 43. Berkman LF, Syme SL. Social networks, host resistance, and mortality: a nine-year follow-up study of Alameda County residents. Am J Epidemiol. 1979;109(2):186-204. https://doi.org/10.1093/ oxfordjournals.aje.a112674
- Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385-396.
- 45. Bech P. Quality of life instruments in depression. Eur Psychiatry. 1997;12(4):194-198. https://doi.org/10.1016/s0924-9338(97) 89104-3
- 46. Olsen LR, Jensen DV, Noerholm V, et al. The internal and external validity of the Major Depression Inventory in measuring severity of depressive states. Psychol Med. 2003;33(2):351-356. https://doi. org/10.1017/s0033291702006724
- 47. Prins A, Bovin MJ, Smolenski DJ, et al. The Primary Care PTSD Screen for DSM-5 (PC-PTSD-5): development and evaluation

- within a veteran primary care sample. J Gen Intern Med. 2016; 31(10):1206-1211. https://doi.org/10.1007/s11606-016-3703-5
- 48. Baird DD, Wilcox AJ, Weinberg CR. Use of time to pregnancy to study environmental exposures. Am J Epidemiol. 1986;124(3): 470-480. https://doi.org/10.1093/oxfordjournals.aje.a114417
- 49. Cox DR. Regression models and life-tables. J R Stat Soc B Methodol. 1972;34(2):187-202. https://doi.org/10.1111/j.2517-6161.1972. tb00899.x
- 50. Weinberg CR, Wilcox AJ, Baird DD. Reduced fecundability in women with prenatal exposure to cigarette smoking. Am J Epidemiol. 1989;129(5):1072-1078. https://doi.org/10.1093/ oxfordjournals.aje.a115211
- 51. Andersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. Ann Stat. 1982;10(4):1100-1120. https://doi.org/10.1214/aos/1176345976
- 52. Schisterman EF, Cole SR, Ye A, et al. Accuracy loss due to selection bias in cohort studies with left truncation. Paediatr Perinat Epidemiol. 2013;27(5):491-502. https://doi.org/10.1111/ ppe.12073
- 53. Howards PP, Hertz-Picciotto I, Poole C. Conditions for bias from differential left truncation. Am J Epidemiol. 2007;165(4):444-452. https://doi.org/10.1093/aje/kwk027
- 54. Howe CJ, Cole SR, Lau B, et al. Selection bias due to loss to follow up in cohort studies. Epidemiology. 2016;27(1):91-97. https://doi. org/10.1097/EDE.00000000000000409
- 55. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5): 550-560. https://doi.org/10.1097/00001648-200009000-00011
- 56. Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults—the Adverse Childhood Experiences (ACE) study. Am J Prev Med. 1998;14(4):245-258. https://doi.org/10.1016/ S0749-3797(98)00017-8
- 57. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8(5):551-561. https://doi.org/10.1002/ sim.4780080504
- 58. Hertzmark E, Li R, Hong B, Spiegelman D. The SAS GLMCURV9 Macro. 2014. Accessed January 10, 2023. https://cdn1.sph. harvard.edu/wp-content/uploads/sites/271/2014/10/glmcurv9.
- 59. Howe CJ, Bailey ZD, Raifman JR, Jackson JW. Recommendations for using causal diagrams to study racial health disparities. Am J Epidemiol 2022;191(12):1981-1989. https://doi.org/10.1093/aje/ kwac140
- 60. Liu Y, De A. Multiple imputation by fully conditional specification for dealing with missing data in a large epidemiologic study. Int J Stat Med Res. 2015;4(3):287-295. https://doi.org/10.6000/1929-6029.2015.04.03.7
- 61. Zhou XH, Eckert GJ, Tierney WM. Multiple imputation in public health research. Stat Med. 2001;20(9-10):1541-1549. https://doi. org/10.1002/sim.689
- 62. Cole SR, Zivich PN, Edwards JK, et al. Missing outcome data in epidemiologic studies. Am J Epidemiol. 2023;192(1):6-10. https:// doi.org/10.1093/aje/kwac179
- 63. Rubin DB. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons; 2004.
- 64. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. https://doi.org/10.1136/bmj.
- 65. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and

- SPSS macros. Psychol Methods. 2013;18(2):137-150. https://doi. org/10.1037/a0031034
- 66. SAS Institute Inc. SAS/STAT® 9.4 User's Guide. SAS Institute Inc.; 2013
- 67. Kellner M, Muhtz C, Peter F, et al. Increased DHEA and DHEA-S plasma levels in patients with post-traumatic stress disorder and a history of childhood abuse. J Psychiatr Res. 2010;44(4): 215-219. https://doi.org/10.1016/j.jpsychires.2009.08.009
- 68. Orta OR, Huang T, Kubzansky LD, et al. The association between abuse history in childhood and salivary rhythms of cortisol and DHEA in postmenopausal women. Psychoneuroendocrinology. 2020; 112:104515. https://doi.org/10.1016/j.psyneuen.2019.104515
- 69. Sahle BW, Reavley NJ, Li W, et al. The association between adverse childhood experiences and common mental disorders and suicidality: an umbrella review of systematic reviews and meta-analyses. Eur Child Adolesc Psychiatry. 2022;31(10): 1489-1499. https://doi.org/10.1007/s00787-021-01745-2
- 70. McKay MT, Kilmartin L, Meagher A, et al. A revised and extended systematic review and meta-analysis of the relationship between childhood adversity and adult psychiatric disorder. J Psychiatr Res. 2022;156:268-283. https://doi.org/10.1016/j. ipsychires.2022.10.015
- 71. Juwariah T, Suhariadi F, Soedirham O, et al. Childhood adversities and mental health problems: a systematic review. J Public Health Res. 2022;11(3):22799036221106613. https://doi. org/10.1177/22799036221106613
- 72. McLaughlin KA, Koenen KC, Bromet EJ, et al. Childhood adversities and post-traumatic stress disorder: evidence for stress sensitisation in the World Mental Health Surveys. Br J Psychiatry. 2017;211(5):280-288. https://doi.org/10.1192/bjp.bp.116.197640
- 73. El-Khoury F, Rieckmann A, Bengtsson J, et al. Childhood adversity trajectories and PTSD in young adulthood: a nationwide Danish register-based cohort study of more than one million individuals. J Psychiatr Res. 2021;136:274-280. https://doi. org/10.1016/j.jpsychires.2021.02.034
- 74. Pringle D, Suliman S, Seedat S, et al. The impact of childhood maltreatment on women's reproductive health, with a focus on symptoms of polycystic ovary syndrome. Child Abuse Negl. 2022;133:105831. https://doi.org/10.1016/j.chiabu.2022.105831
- 75. McKinnon CJ, Hatch EE, Rothman KJ, et al. Body mass index, physical activity and fecundability in a North American preconception cohort study. Fertil Steril. 2016;106(2):451-459. https:// doi.org/10.1016/j.fertnstert.2016.04.011
- 76. Wise LA, Palmer JR, Rosenberg L. Body size and time-topregnancy in black women. Hum Reprod. 2013;28(10):2856-2864. https://doi.org/10.1093/humrep/det333
- 77. Wise LA, Rothman KJ, Mikkelsen EM, et al. An internet-based prospective study of body size and time-to-pregnancy. Hum Reprod. 2010;25(1):253-264. https://doi.org/10.1093/humrep/
- 78. Mikkelsen EM, Riis AH, Wise LA, et al. Alcohol consumption and fecundability: prospective Danish cohort study. BMJ. 2016;354:i4262. https://doi.org/10.1136/bmj.i4262
- 79. Wesselink AK, Hatch EE, Rothman KJ, et al. Prospective study of cigarette smoking and fecundability. Hum Reprod. 2019;34(3): 558-567. https://doi.org/10.1093/humrep/dey372
- 80. Nillni YI, Wesselink AK, Gradus JL, et al. Depression, anxiety, and psychotropic medication use and fecundability. Am J Obstet Gynecol. 2016;215(4):453.e1-453.e8. https://doi. org/10.1016/j.ajog.2016.04.022
- 81. Hall KS, Beauregard JL, Rentmeester ST, et al. Adverse life experiences and risk of unintended pregnancy in adolescence and early adulthood: implications for toxic stress and reproductive

- health. SSM Popul Health. 2019;7:100344. https://doi.org/10.1016/ i.ssmph.2018.100344
- 82. Dietz PM, Spitz AM, Anda RF, et al. Unintended pregnancy among adult women exposed to abuse or household dysfunction during their childhood. JAMA. 1999;282(14):1359-1364. https://doi.org/10.1001/jama.282.14.1359
- 83. Flanagin A, Frey T, Christiansen SL. AMA Manual of Style Sommittee. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA. 2021;326(7):621-627. https://doi.org/10.1001/jama.2021.13304
- 84. Crouch E, Probst JC, Radcliff E, et al. Prevalence of adverse childhood experiences (ACEs) among US children. Child Abuse Negl. 2019;92:209-218. https://doi.org/10.1016/j.chiabu.2019.04. 010
- 85. Mersky JP, Choi C, Plummer Lee C, et al. Disparities in adverse childhood experiences by race/ethnicity, gender, and economic status: intersectional analysis of a nationally representative sample. Child Abuse Negl. 2021;117:105066. https://doi. org/10.1016/j.chiabu.2021.105066
- 86. Maguire-Jack K, Lanier P, Lombardi B. Investigating racial differences in clusters of adverse childhood experiences. Am J Orthopsychiatry. 2020;90(1):106-114. https://doi.org/10.1037/ ort0000405
- 87. Weinberg CR, Baird DD, Wilcox AJ. Sources of bias in studies of time to pregnancy. Stat Med. 1994;13(5-7):671-681. https://doi. org/10.1002/sim.4780130528
- 88. Hardt J. Rutter M. Validity of adult retrospective reports of adverse childhood experiences: review of the evidence. J Child Psychol Psychiatry. 2004;45(2):260-273. https://doi.org/10.1111/ j.1469-7610.2004.00218.x
- 89. Widom CS, Shepard RL. Accuracy of adult recollections of childhood victimization: part 1. Childhood physical abuse. Psychol Assess. 1996;8(4):412-421. https://doi.org/10.1037/1040-3590.8.4. 412

- 90. Widom CS, Morris S. Accuracy of adult recollections of childhood victimization, part 2: childhood sexual abuse. Psychol Assess. 1997;9(1):34-46. https://doi.org/10.1037/1040-3590.9. 1.34
- 91. Putnam FW, Amaya-Jackson L, Putnam KT, et al. Synergistic adversities and behavioral problems in traumatized children and adolescents. Child Abuse Negl. 2020;106:104492. https://doi. org/10.1016/j.chiabu.2020.104492
- 92. Kuh D, Ben-Shlomo Y, Lynch J, et al. Life course epidemiology. J Epidemiol Community Health. 2003;57(10):778-783. https://doi. org/10.1136/jech.57.10.778
- 93. Anda RF, Porter LE, Brown DW. Inside the adverse childhood experience score: strengths, limitations, and misapplications. Am J Prev Med. 2020;59(2):293-295. https://doi.org/10.1016/ j.amepre.2020.01.009
- 94. Anda RF, Porter LE, Brown DW. Author response to "letter to the editor regarding 'Inside the adverse childhood experience score: strengths, limitations, and misapplications". Am J Prev Med. 2021;60(1):e47-e48. https://doi.org/10.1016/j. amepre.2020.07.019
- 95. Cronholm PF, Forke CM, Wade R, et al. Adverse childhood experiences: expanding the concept of adversity. Am J Prev Med. 2015;49(3):354-361. https://doi.org/10.1016/j.amepre.2015. 02.001
- 96. Nelson CA, Bhutta ZA, Burke Harris N, et al. Adversity in childhood is linked to mental and physical health throughout life. BMJ. 2020;371:m3048. https://doi.org/10.1136/bmj.m3048
- 97. Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol. 1991;134(10):1233-1244. https://doi.org/10.1093/ oxfordjournals.aje.a116026
- Joffe M, Key J, Best N, et al. Studying time to pregnancy by use of a retrospective design. Am J Epidemiol. 2005;162(2):115-124. https:// doi.org/10.1093/aje/kwi172