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Abstract—In the ever-evolving landscape of automotive tech-
nology, the efficiency and reliability of vehicle storage systems
is paramount importance. Environmental factors, such as ex-
treme weather conditions characterized by either intense cold
or scorching heat, pose significant challenges to the optimal
functioning of these critical components [1] [2]. In this paper,
we investigate the nuanced effects of varying temperatures on
data storage and machine learning workloads on flash based
vehicle storage systems: the read and write operations of car
flash memory. The work employs a multidimensional approach,
incorporating environmental simulations, performance testing,
and data analytics to comprehensively analyze the impact of
temperature variations on the performance and reliability of
vehicle storage. From room temperatures to sweltering heat,
the study investigates how these adverse conditions influence the
speed, reliability, and overall performance of flash memory in
automotive applications. The experimental results reveal intricate
relationships between temperature variations and the through-
put and latency of flash storage for automotive applications,
shedding light on potential vulnerabilities and opportunities
for optimization. Understanding these dynamics is crucial for
enhancing the resilience and adaptability of automotive storage
systems to diverse environmental challenges. This research not
only contributes to the broader understanding of the intersection
between extreme weather conditions and automotive technology
but also provides valuable insights for engineers, manufacturers,
and policymakers working towards the development of robust
and reliable vehicle storage systems capable of withstanding the
rigors of diverse environmental conditions. As the automotive
industry continues to push the boundaries of innovation, this
study serves as a foundation for future advancements in the
realm of vehicular storage technologies.

Index Terms—Vehicle Storage, Flash Devices, Performance,
Reliability, Machine Learning Workload.

I. INTRODUCTION

The rise of autonomous vehicles (AVs) marks a significant

technological advancement in the automotive industry, driven

by rapid developments in sensor technologies, deep learning

algorithms, and computational power. These vehicles rely

on advanced data processing units, essential for interpreting

complex environmental inputs and enabling real-time decision-

making.

AVs are equipped with a multitude of sensors, including

cameras, LiDAR, radar, GPS, and IMUs, among others. These

sophisticated sensors collectively generate terabytes of data ev-

ery hour [3] [4], a critical component for mission-critical tasks

like autonomous navigation and ensuring vehicular safety. To

effectively process this deluge of data, AVs utilize advanced

deep learning models [5] [6]. These models are designed to

learn, perceive, plan, and make decisions. They process an

extensive array of details, encompassing numerous parameters

and features, to function optimally [7] [8] [9]. The sheer

volume of data coupled with the complexity of these deep

learning models necessitates a substantial amount of storage

space.

Flash-based storage, particularly solid-state drives, have

become the preferred choice for vehicular storage due to their

durability, speed, and energy efficiency [10]. However, the

performance of these storage systems under variable environ-

mental conditions, particularly high temperatures, is a concern

that warrants thorough investigation [11].

Elevated temperatures notably affect the performance and

reliability of flash devices [12], a fact that is particularly

critical for AVs. Increased temperatures can induce bit flips

– minor but critical errors in the data stored. Additionally,

the storage system might engage in speed throttling as a self-

protective measure, slowing down its operation. Such issues

are particularly crucial in AVs, which depend on precise and

rapid data processing for safe operations. If the storage system

malfunctions or underperforms, it can affect essential func-

tions, for example, failing to respond appropriately in critical

situations, such as avoiding a collision, or not detecting obsta-

cles on the road. These issues may lead to significant safety

hazards or accidents. For AVs, where reliable and consistent

data storage is essential for both safety and functionality,

understanding and mitigating the impact of high temperatures

on flash-based storage is of significant importance.

In this paper, we delve into the detailed effects of temper-

ature variations on the data storage capacity and efficiency of

machine learning tasks in flash-based vehicle storage systems.

Our study adopts an extensive experimental methodology,
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utilizing a variety of flash storage devices in a controlled

high-temperature environment. We design the experiments

to simulate the real-world operational conditions of AVs,

with a particular emphasis on assessing the performance of

flash storage in managing sensor data storage and executing

machine learning tasks. This approach enables a thorough

exploration and understanding of the specific impacts of vary-

ing temperatures on these vital workloads, offering valuable

insights into the performance and reliability of flash storage

under thermal stress in the context of AVs.

The experimental results uncover interrelations between

temperature changes and key performance metrics of flash

storage, such as throughput and latency, particularly in au-

tomotive applications. These findings illuminate potential vul-

nerabilities in current systems and open avenues for optimiza-

tion. Gaining insights into these temperature-related dynamics

is imperative for improving the resilience and versatility of

automotive storage systems, ensuring they are better equipped

to handle a variety of environmental challenges.

The paper is organized as follows. Section II provides

a literature review, focusing on flash storage in automotive

applications and the effects of temperature on its performance.

Section III details the methodology, describing the flash stor-

age devices used and the experimental setup tailored to AV

workloads. Section IV presents and analyzes the experimental

results. The paper concludes with a summary and future

research directions in Section V.

II. ARCHITECTURE OF FLASH-BASED STORAGE

Depending on the number of bits stored in each flash cell,

there are several types of NAND flash used in SSD. Each

type has its distinct performance, cost, endurance, and density

trade-offs. Single-level cell (SLC) requires 2 voltage levels

(i.e., 0 and 1) to store 1 bit of data, offering the highest write

performance and endurance at the cost of price and density.

Multilevel cell (MLC) requires 4 voltage levels to represent 2

bits of data (i.e., 00, 01, 10, and 11). Triple-level cell (TLC)

and Quadruple-level cell (QLC) require 8 and 16 levels of

voltage to store 3 and 4 bits of data, respectively. As the

number of bits stored in each cell increases from SLC to QLC,

the cost efficiency improves due to higher data density, but

this comes at the expense of decreased write performance and

endurance.

A. Data Storage

A flash-based storage device typically incorporates between

4 to 16 NAND chips [13]. Each chip is composed of multiple

layers, structured as follows. Die: A NAND chip may contain

several NAND memory dies. Plane: Each die consists of 1

to 4 planes. Block: Every plane is made up of thousands

of flash blocks. Page/Wordline: Each block comprises hun-

dreds to thousands of pages (rows, also known as wordlines).

String/Bitline: Each block includes hundreds to thousands of

strings (columns, also known as bitlines). Cell: Each page or

string contains thousands of flash cells.

In 2D NAND architecture, a flash block is a cluster of

wordlines and bitlines. A page is the smallest unit for reading

and writing data, whereas a block is the smallest unit that can

be erased. A page typically holds 2K, 4K, 8K, or 16KB of

data, and the size of a block varies between 256KB and 4MB.

With the transition to TLC and beyond, there has been a

shift from 2D to 3D NAND architecture. Each generation

of 2D NAND saw a reduction in size and an increase in

transistor density, reaching the limits of lithography [14]. 3D

flash architecture differs by expanding vertically, increasing

density and capacity. QLC, for example, uses 3D NAND in its

block-level design. The transition to 3D blocks introduces the

concept of layers, with the number of layers being multiples

of 4 in the case of QLC. These layers are determined by the

count of vertical Control Gates. Common configurations of

3D NAND flash include 32, 36, 48, 56, 96, and 128 layers,

with a higher layer count typically resulting in greater storage

density.

B. Data Placement

A flash storage device comprises two data storage areas: the

main area and the spare area. The main area is primarily used

for storing user data such as files and applications. In contrast,

the spare area is reserved for critical system information,

including bad block markers, Error-Correcting Code (ECC)

data, and other metadata. This spare area is typically not

accessible to users, being exclusively used by the system for

ensuring the correct operations and integrity of the device.

The management of data within a flash device is orches-

trated by the controller. The controller is responsible for a

range of functions: it directs data to be written to one page at

a time, identifies and avoids bad blocks, and implements wear-

leveling algorithms to evenly distribute write and erase cycles.

Additionally, it manages data transfer through I/O algorithms,

efficiently handling tasks like dividing large files across multi-

ple flash chips. To assure data integrity, the controller employs

strategies such as writing parities to a separate flash chip,

thereby enhancing the device’s reliability and error-correction

capabilities.

C. Data Operations

NAND flash devices support three basic operations: read,

write, and erase.

Write: Data from the file system passes through the flash

device connector and then to the controller. The Flash Trans-

lation Layer (FTL) executes an address mapping algorithm to

determine the physical addresses on the NAND chips. In this

process, FTL maps the logical data blocks to NAND pages,

which are then written into a block. The controller applies a

high positive voltage to the targeted NAND pages and strings.

The voltages of the selected cells are altered to represent

a logical ‘0’. Once the cell voltages are updated, the Error

Correction Code (ECC) checks the written data before sending

a success signal back to the OS. If the drive lacks empty

blocks, the controller initiates a garbage collection process to

reclaim invalid data blocks before writing new data to flash.
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Fig. 1. Major Components of a Flash Storage Device.

Erase: The erase operation in NAND flash is performed

only at the block level, whereas write and read can be con-

ducted at the page level. An erase operation involves removing

electrons from the storage layer, changing the state of the

cell to a logical ‘1’. Typically, a delete request sent from

the file system does not immediately remove the data from

flash, the controller marks the data as invalid. The garbage

collection algorithm, running in the background, determines

the appropriate time to apply negative voltage to erase the

entire block.

Read: Reading data from flash is similar to the write

operation. FTL locates the physical address of the requested

data, and the controller applies a read voltage (a medium pos-

itive voltage) to NAND pages and strings. Since the medium

positive voltage does not change the logical representation of

NAND cells, the selected NAND cells respond with the stored

logical ‘0’ or ‘1’. The raw data then goes through the NAND

decoder. After decoding and verification, the data stream is

sent back to the file system.

III. FLASH STORAGE FOR AUTONOMOUS VEHICLES

A. Flash Storage for Vehicular Applications

Flash storage offers several key advantages for automotive

applications. Its resistance to mechanical shock and vibration

makes it ideal for the demanding conditions encountered in

vehicle environments. Furthermore, flash storage boasts low

power consumption, high data throughput, and swift access

times, which are essential for real-time data processing in

vehicles.

Modern flash SSDs typically offer read speeds ranging from

about 500 MB/s to as high as 7,000 MB/s for PCIe 4.0

NVMe drives. Autonomous vehicles (AVs) generate a vast

amount of data from various sensors. High-speed flash devices

can quickly write the data, ensuring that the AV’s computing

system is not bottlenecked by data throughput limitations.

Additionally, for deep learning models used in AVs, the ability

to quickly access and process large datasets is crucial. The

high read speeds of flash storage facilitate faster data retrieval,

which is vital for real-time decision-making for autonomous

driving.

B. Environmental Factors

In vehicular applications, the reliability and performance

of flash storage systems are critically influenced by environ-

mental factors. These include temperature variations, humidity,

vibration, and shock, prevalent in automotive environments,

which can impact the functionality and longevity of flash

storage devices in vehicles.

One of the most significant environmental challenges for

vehicular flash storage is temperature variation. Flash drives

typically operate within a temperature range of 32F to 158F

for consumer-grade products. Vehicles are exposed to a wide

range of temperatures, from the intense cold of winter envi-

ronments to the extreme heat of summer conditions or engine

compartments. Elevated temperatures can lead to accelerated

wear and tear of the flash cells, resulting in reduced lifespan

and reliability [15]. Every 10 degree increase in temperature

can cut the life expectancy of a flash drive in half [15].

Conversely, extremely low temperatures can affect the speed

and efficiency of data read/write operations, potentially leading

to slower response times in critical applications.

C. NVMe QLC SSDs for Vehicles

For vehicular applications, quadruple-level cell (QLC) SSDs

offer serveral advantages. 1) They have a higher storage

capacity, as QLC SSDs store four bits of data per cell, enabling

higher storage densities. This feature makes them ideal for

large-capacity drives in vehicles with big data applications.

2) They are more cost-effective. QLC SSDs have a lower

cost per gigabyte compared to other SSD types, presenting a

budget-friendly option for high-capacity storage requirements.

3) They are more energy-efficient, an essential benefit for

vehicles where power consumption is a critical factor.

The disadvantages of QLC SSDs include lower write en-

durance, slower write speeds, and performance degradation.

Specifically, the lifespan of QLC SSDs is generally shorter

compared to other types, due to fewer write cycles before

cell degradation. Additionally, they tend to have slower write

speeds, a notable drawback for tasks requiring frequent data

writing, and this slowdown becomes more pronounced as the

drive fills up. Moreover, performance can degrade significantly
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under heavy workloads or as the storage capacity is maxi-

mized.

NVMe, a specialized interface protocol for SSDs, works

in conjunction with PCIe to enhance data transfer to and

from SSDs. SSDs that utilize the NVMe protocol, known

as NVMe SSDs, are capable of achieving 64GB/s bandwidth

and a 16GT/s rate with PCIe 4.0, and they do not require

an additional power connector. With the introduction of PCIe

5.0, these SSDs are expected to reach speeds double that of

PCIe 4.0 [16], which is approximately 20 times faster than

those using SATA. Furthermore, NVMe SSDs typically have

a smaller physical size compared to SATA-based SSDs. They

often lack an outer protective casing, exposing the NAND chip

and reducing their overall footprint.

Therefore, QLC SSDs offer a viable solution for high-

capacity storage needs where cost is a primary concern and

performance is not the main focus. Conversely, NVMe SSDs

are ideal for high-performance computing where speed and

low latency are crucial. In this study, our focus is on NVMe

QLC SSDs for vehicular applications.

IV. ANALYSIS OF PERFORMANCE AND RELIABILITY OF

FLASH STORAGE FOR VEHICLES

We have experimentally analyzed different models of

NVMe QLC SSDs for vehicular applications. The tested

models are from the same manufacturer but belong to different

product series. Table I lists their specifications. To protect the

manufacturer’s privacy, we refer to them as Model A and

Model B. Model A SSDs are designed for consumer-grade

applications, while Model B SSDs are intended for industrial-

grade applications.

TABLE I
SPECIFICATIONS OF FLASH STORAGE DEVICES EVALUATED IN

EXPERIMENTS.

Model Cell Type Architecture Capacity Firmware Cost
Model A NVMe QLC 3D 512GB 004c $
Model B NVMe QLC 3D 118GB k4110440 $$$

A. Experiment Setup

We have conducted a series of experiments on QLC SSDs

under various temperatures, observing the behavior of flash

storage and systematically analyzing both performance and

reliability. To simulate vehicular workloads, we utilize the

Flexible I/O Tester (FIO) [17] and HiBench [18] to generate

I/O accesses on the flash storage. The first set of experiments

employ FIO to generate data store and access loads to SSDs.

In the second set, we use HiBench to subject the flash devices

to big data and machine learning loads. These experiments are

conducted on HPE ProLiant servers equipped with 128 GB of

memory, running Ubuntu v22.04.

B. Environmental Factors

Table II outlines the recommended operating temperatures

for various hardware devices, including flash SSDs. The upper

bound temperature refers to the point at which flash SSDs

begin to experience thermal throttling. When the temperature

exceeds this threshold, protective measures are triggered. In

severe situations, the SSD may disconnect, leading to the

termination of running processes. Considering that the default

thermal throttling threshold for NVMe drivers is 66°C, we

have chosen 50°C as the upper bound temperature in our

tests. In alignment with guidelines from the American Society

of Heating, Refrigerating, and Air-Conditioning Engineers

(ASHRAE), we choose 25°C as the low temperature in our

experiments.

C. Flash Performance Under Different Temperatures for Data

Read/Write Workloads

We assess QLC SSDs at 25°C, 35°C, and 50°C to mimic

normal, high, and very high temperature conditions, respec-

tively. We evaluate a number of critical metrics, including stor-

age throughput, Input/Output Operations Per Second (IOPS),

and latency. Within each metric, we examine both sequential

and random read/write performance. The comparative results

from Model A and Model B flash devices are shown in Tables

III and IV. We perform each test on three separate flash SSDs

of the identical model.

D. Experimental Results

Tables III and IV show that both Model A and Model

B SSDs exhibit similar patterns of performance degradation

when the environmental temperature increases from 25°C

to 50°C. However, noticeable differences between them are

observed.

Specifically, at 25°C, both Model A and Model B QLC

SSDs achieve their peak throughput. For both models, the

read throughput significantly exceeds the write throughput in

both sequential and random contexts. Model A shows higher

efficiency in sequential writing compared to random writing,

while it exhibits the opposite trend in reading capabilities.

Conversely, Model B maintains consistent write and read

throughput, whether the operations are sequential or random.

In terms of IOPS, Model B outperforms Model A, particularly

in read operations. Model A registers higher IOPS in writing

than in reading for sequential tasks, but this trend is reversed

for random tasks. Model B, however, shows more consistent

IOPS values across all operations, with reading operations

consistently achieving higher figures. As for latency, reading

operations are markedly quicker than writing for both models,

with the exception of Model A’s random read/write perfor-

mance.

As the temperature rises from 25°C to 35°C, both models

exhibit a decline in throughput, with Model A experiencing

a more noticeable reduction. The most significant decrease

in throughput for Model A is observed in random reads. In

contrast, Model B shows a similar level of degradation in all

reading tasks, both sequential and random. For both models,

reading operations tend to degrade slightly more than writing

operations with the temperature increase. Notably, Model A’s

IOPS values decrease significantly, while Model B’s IOPS

demonstrate a slight improvement, especially in random read
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TABLE II
RECOMMENDED OPERATING TEMPERATURES FOR STORAGE AND NETWORK DEVICES.

Component NVMeSSD[19] HDD[20] Network Card[21] NetworkSwitch[22]

Lower-bound Temperature -40°C 0°C 0°C -40°C
Upper-bound Temperature 85°C 60°C 90°C 85°C

TABLE III
PERFORMANCE RESULTS OF THROUGHPUT, IOPS, AND LATENCY USING MODEL A SSD.

Benchmarks Throughput (MB/s) IOPS Latency (μs)

Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C 35°C 50°C

Sequential

write zero 489.20 462.68 419.34 111154.06 61741.12 81527.78 39.19 44.20 47.46
read zero 1339.71 1142.67 686.95 84253.43 64027.69 76975.22 18.04 20.60 19.35
write random 518.89 455.17 442.80 119787.16 67122.74 90618.69 25.19 41.22 43.79
read random 1288.10 1144.08 698.58 82676.31 63223.44 80812.20 18.11 20.99 19.20

Random
random read 1652.14 1316.74 387.29 84779.91 71160.59 42219.64 100.48 101.42 130.45
random write 273.28 265.02 174.75 35946.24 28676.39 18579.51 34.61 40.43 95.95

TABLE IV
PERFORMANCE RESULTS OF THROUGHPUT, IOPS, AND LATENCY USING MODEL B SSD.

Benchmarks Throughput (MB/s) IOPS Latency (μs)

Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C 35°C 50°C

Sequential

write zero 594.57 580.60 425.38 135355.45 138732.57 108127.24 17.95 16.57 17.98
read zero 1368.11 1302.76 1112.41 323729.82 332679.82 284557.43 12.04 10.95 12.12
write random 594.38 580.40 434.41 135254.17 138623.00 109172.18 17.94 16.46 17.70
read random 1368.32 1303.44 1078.78 322955.72 332516.35 275316.90 12.15 11.08 12.19

Random
random read 1368.12 1302.08 11083.03 324254.89 442449.81 275220.02 12.19 10.98 12.32
random write 587.19 577.45 419.91 134667.87 138015.14 105696.33 17.69 16.52 17.72

operations. In terms of latency, Model A shows an increase

in latency values as the temperature rises from 25°C to 35°C,

whereas Model B displays a minor decrease in latency during

the same temperature change.

That is, as the temperature rises from 25°C to 35°C, Model

A SSD exhibits a decline in performance across throughput,

IOPS, and latency. Conversely, Model B SSD experiences a

decrease in I/O throughput but demonstrates slight improve-

ments in both IOPS and latency.

As the temperature increases from 25°C to 50°C, we ob-

serve a degradation in all performance metrics - throughput,

IOPS, and latency - for both models. Both Model A and Model

B show a noticeable decline in throughput and IOPS, with

Model A experiencing more severe degradation, particularly

in reading operations, a point that will be elaborated upon

in later sections. The reduction in IOPS is similar for both

models. Regarding latency, Model A exhibits a significant

worsening, whereas Model B also undergoes degradation,

albeit less markedly than Model A.

E. Performance Analysis

To provide a thorough understanding of these performance

shifts, we calculate the degradation percentage for both mod-

els, as shown in Tables V and VI. These tables depict how

performance metrics change with an increase in temperature

starting from 25°C.

Furthermore, the calculation of the degradation percentage

is based on the premise that higher values signify improved

performance for throughput and IOPS. Thus, we anticipate

higher values at lower temperatures compared to those at

elevated temperatures. In contrast, for latency, where lower

values are desired, we expect that latency will be lower at

reduced temperatures than at increased temperatures. In the

following equation, l represents the throughput/IOPS value

at the lower temperature, and h denotes the throughput/IOPS

value at the higher temperature.

Throughput/IOPS Degradation =
l − h

l
∗ 100%. (1)

For latency, l denotes latency at a lower temperature, and h
represents latency at a higher temperature.

Latency Degradation =
h− l

l
∗ 100%. (2)

Both Table V and Table VI illustrate that the I/O band-

width performance, i.e., the rate of data transfer, deteriorates

noticeably as the temperature increases from 25°C to 50°C.

The decline in performance is relatively minor when the

temperature rises from 25°C to 35°C. However, it becomes

significantly more pronounced as the temperature continues to

increase.
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TABLE V
PERFORMANCE DEGRADATION W.R.T. THROUGHPUT, IOPS AND LATENCY UNDER INCREASED TEMPERATURE USING MODEL A SSD.

Benchmarks Throughput(MB/S) IOPS Latency(μs)

Temperature 25°C ->35°C 25°C ->50°C 25°C ->35°C 25°C ->50°C 25°C ->35°C 25°C ->50°C

Sequential

write zero 5.42% 14.28% 44.45% 26.65% 12.78% 21.10%
read zero 14.71% 48.72% 24.01% 8.64% 14.21% 7.28%
write random 12.28% 14.66% 43.97% 24.35% 63.64% 73.84%
read random 11.18% 45.77% 23.61% 2.36% 15.88% 5.95%

Random
random read 20.40% 76.56% 16.06% 50.20% 0.93% 29.82%
random write 3.02% 36.05% 20.22% 48.31% 16.80% 177.20%

TABLE VI
PERFORMANCE DEGRADATION W.R.T. THROUGHPUT, IOPS AND LATENCY UNDER INCREASED TEMPERATURE USING MODEL B SSD.

Benchmarks Throughput(MB/S) IOPS Latency(μs)

Temperature 25°C ->35°C 25°C ->50°C 25°C ->35°C 25°C ->50°C 25°C ->35°C 25°C ->50°C

Sequential

write zero 2.35% 28.46% -2.50% 20.12% -7.69% 0.17%
read zero 4.78% 18.69% -2.76% 12.10% -9.05% 0.66%
write random 2.35% 26.91% -2.49% 19.28% -8.25% -1.34%
read random 4.74% 21.16% -2.96% 14.75% -8.81% 0.33%

Random
random read 4.83% 20.84% -36.45% 15.12% -9.93% 1.07%
random write 1.66% 28.49% -2.49% 21.51% -6.61% 0.17%

Model B exhibits a more consistent performance decrease

across read and write tasks compared to Model A. For exam-

ple, with a temperature increase from 25°C to 50°C, all of the

performance degradation for Model B are between 18% and

30%. In contrast, the performance declines for Model A vary

widely from 14% to 76% under the same temperature condi-

tions. Specifically, Model A demonstrates a greater decrease

in performance for read tasks than for write tasks, particularly

under random read operations. Model B, on the other hand,

shows a different pattern. When the temperature increases from

25°C to 35°C, Model B’s performance in read tasks declines

more than in write tasks. However, as the temperature rises

from 25°C to 50°C, its write tasks are more adversely affected

by the temperature change than the read tasks.

Examining IOPS (a metric indicating the number of read or

write operations completed per second), Model A exhibits a

greater decrease in performance for write tasks than for read

tasks. The most significant decline occurs as the temperature

increases from 25°C to 35°C, particularly with sequential I/O

operations. In contrast, Model B’s IOPS performance slightly

improves at 35°C compared to 25°C, especially with random

read operations. However, these improvements are small,

around 2.5%, making it challenging to determine whether they

are meaningful or merely the result of random fluctuations. As

the temperature further rises to 50°C, performance diminishes

again.

F. P-value Analysis

Based on the performance results at 25°C, there is a signif-

icant performance degradation in both values and percentages

when the temperature reaches 50°C. To more confidently val-

idate this finding, we have also employed the T-test to assess

the significance of the results. By analyzing the p-values, we

aim to reliably demonstrate the extent of degradation for each

benchmark.

The T-test is a type of inferential statistic used to determine

if there is a significant difference between the means of two

groups. To analyze the significance levels, a two-tailed equal

variance T-test is utilized in this experiment. The p-values are

calculated using the following equation.

P value =
mean1−mean2

(n1−1)∗var12+(n2−1)∗var22

n1+n2−2 ∗
√

1
n1 + 1

n2

. (3)

In Equation (3), mean1 and mean2 represent the average

values of sample sets. V ar1 and var2 are the variances, while

n1 and n2 are the number of records in sample sets.

P-values are used to assess the likelihood that data can have

occurred by chance [23]. They range from 0 to 1, with a

smaller p-value indicating stronger evidence against the null

hypothesis, which is our initial assumption. In this study,

the null hypothesis posits that there is no difference in the

QLC SSD’s performance between 25°C and 50°C. Typically,

a p-value less than 0.05 is considered statistically significant,

implying there is less than a 5% chance that the initial

assumption is correct. A p-value less than 0.01 is deemed even

more significant, suggesting there is less than a 1% chance that

our initial assumption is correct. Table VII and Table VIII

present the p-values for Model A SSD and Model B SSD,

respectively.

Most p-values for both SSD models point to significant per-

formance degradation, with some indicating more significant

results. For Model A, the majority of throughput benchmarks

yield p-values less than 0.01, marking them as highly signifi-

cant, except for the ’write zero’ benchmark, which exhibits no
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significant change. Within the IOPS category, the ’read zero’

benchmark shows no significant change, while the rest are

significant. In terms of latency, only the random read and write

benchmarks in Model A demonstrate significant degradation.

Compared to sequential I/O operations, random I/O opera-

tions are more susceptible to degradation with temperature

increases. For Model B, all benchmarks within the throughput

and IOPS categories display extremely significant degradation,

whereas the latency category reveals no significant changes.

After examining the average values, percentages, and p-

values from the data read/write benchmark tests, we have the

following major findings.

1) As the temperature exceeds their normal operating

range, QLC SSDs tend to exhibit lower throughput and

IOPS (indicating how quickly they can read/write data).

However, we observed that the latency (the delay before

a transfer of data begins following an instruction) of

the SSDs does not significantly change with higher

temperatures.

2) When comparing two different models of QLC SSDs,

their reactions to temperature changes vary. Model A

is more adversely affected by temperature increases

for read tasks, whereas Model B is more sensitive

to temperature changes for write tasks. At 50°C, the

performance decrease for write by Model B is slightly

greater than for read.

Additionally, when evaluating the overall performance of

the two models, Model B appears to manage performance

drops more effectively and maintains greater consistency in

throughput, IOPS, and latency, even as it degrades. For in-

stance, as temperatures increase from 25°C to 50°C, Model

A’s throughput can decrease by anywhere from 14% to 76%,

whereas Model B’s decreases range from 15% to 28%. A

similar pattern is observed in IOPS. We suspect that the

distinct firmware used by each model might be a contributing

factor.

G. Experiments Using Machine Learning and Big Data Ap-

plications

The FIO benchmark test provides an understanding of how

different QLC SSD models respond to rising temperatures.

However, real-life scenarios are more complex. With the

increasing prevalence of machine learning and big data and

the use of QLC SSDs for high-end storage, examining more

realistic applications is crucial. The experiments enhance our

comprehension of the performance and reliability of flash-

based storage under elevated temperatures for vehicle applica-

tions. In this part of the study, we test QLC SSDs Model A and

Model B in environments of 25°C, 35°C, 45°C, and 50°C. We

subject them to various machine learning and big data tasks to

observe how their data handling performance varies at these

temperatures.

The experiment is conducted in two steps. First, we establish

the big data environment and conduct various benchmarks at

a temperature of 25°C. We utilize Blktrace to monitor the I/O

activity, enabling us to individually record the I/O traces for

Model A and Model B SSDs.

In the subsequent step, we employ FIO to replay these

recorded traces 100 times, albeit under different tempera-

ture conditions. Throughout these replays, we collect data

on throughput and other performance metrics using various

monitoring tools. The rationale behind replaying the traces

100 times stems from preliminary tests, which suggested that

QLC SSDs do not show immediate or consistent degradation

across all benchmarks. It is observed that different benchmarks

exhibit degradation at varying intervals. Repeating the process

100 times ensures that all benchmarks not only show a

reduction in throughput but also maintain this decline steadily

over time, preventing secondary phase of degradation.

H. Machine Learning and Big Data Benchmarks and I/O

Trace Ananlysis

In this set of experiments, the workloads include micro

benchmarks, machine learning applications, and search ap-

plications. For the micro benchmarks, we test DFSIOE-read,

DFSIOE-write, and sort. Additionally, we test the Bayes and

KMeans from the machine learning applications. For the

search benchmarks, we test Nutch indexing and PageRank.

All settings are presented in Table IX.

• Byes: Bayes is a machine learning algorithm used for

classification. In the HiBench benchmark suite, it is

utilized to generate documents with words following a

Zipfian distribution [25].

• Kmeans: Kmeans is a machine learning algorithm des-

ignated for clustering data into groups. In HiBench, the

testing data follow Uniform Distribution and Gaussian

Distribution [25]. In the experiment, it is configured to

produce five clusters. The Kmeans workload operates in

phases, processing one cluster at a time until completion.

• Sort: This benchmark involves sorting a collection of

randomly generated records. It uses simple functions

for map and reduce, like those used in the MapReduce

framework, which actually carries out the sorting task

[24].

• Dfsioe: As part of the HiBench suite, the Dfsioe bench-

mark represents an enhanced version of the DFSIO

benchmark. It aims to evaluate the data management

capability of HDFS in a cluster. This is achieved by

initiating numerous tasks that involve both writing to and

reading from the system. The benchmark assesses three

critical metrics: the average I/O rate per task, the average

data throughput per task, and the total throughput of the

cluster [25].

• Nutchindexing: This workload examines the indexing

component of Nutch, a web crawler software. It simulates

web data, with both links and words adhering to the

Zipfian distribution, to test the effectiveness of data

patterning [25].

• Pagerank: Pagerank is an algorithm employed by search

engines to rank web pages in search results. The Pagerank

benchmark within HiBench evaluates the performance of
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TABLE VII
P-VALUES AND PERFORMANCE OF MODEL A SSD

Benchmarks Throughput(MB/s) IOPS Latency(μs)

Temperature 25°C vs. 50°C 25°C vs. 50°C 25°C vs. 50°C

Sequential

write zero 1.91E − 01
N 1.78E-01* 4.49E − 01

N

read zero 9.95E-05** 8.80E − 02
N

9.59E − 02
N

write random 8.51E-04** 1.16E-03** 1.32E − 01
N

read random 7.26E-04 4.76E-02** 1.68E − 01
N

Random
random read 1.70E-08** 5.94E-07** 1.09E-04**
random write 3.70E-03** 1.13E-02* 3.81E-02*

N indicates p-value > 0.05, i.e., the performance is NOT significant;]
* indicates p- value ≤ 0.05, i.e., the performance is significant;]
** indicates p-value ≤ 0.01, i.e., the difference is highly significant.]

TABLE VIII
P-VALUES AND PERFORMANCE OF MODEL B SSD

Benchmarks Throughput(MB/s) IOPS Latency(μs)

Temperature 25°C vs. 50°C 25°C vs. 50°C 25°C vs. 50°C

Sequential

write zero 8.85E-05** 1.17E-04** 8.39E − 01
N

read zero 7.41E-04** 4.52E-03** 4.01E − 01
N

write random 3.51E-05** 2.81E-04** 5.56E − 01
N

read random 9.12E-04** 2.80E-03** 1.68E − 01
N

Random
random read 9.50E-04** 1.94E-03** 8.49E − 01

N

random write 1.01E-04** 2.04E-04** 2.10E − 01
N

N indicates p-value > 0.05, i.e., the performance is NOT significant;]
* indicates p- value ≤ 0.05, i.e., the performance is significant;]
** indicates p-value ≤ 0.01, i.e., the difference is highly significant.]

TABLE IX
MACHINE LEARNING AND BIG DATA BENCHMARKS TESTED IN EXPERIMENTS.

Benchmarks Dataset Size

Micro

Wordcount Huge 32000MB
Sort Huge 3200MB
Dfsioe-read Huge 256*100MB
Dfsioe-read Huge 256*100MB

Machine Learning

Bayes Large
pages: 100000
classes: 100
ngrams:2

Kmeans Large

number of clusters: 5
dimensions: 20
number of samples: 20000000
samples per input file: 4000000
maximum iteration: 5
k: 10

Search

Nutchindexing Small pages: 1000000

Pagerank Small

pages: 5000
number of iterations: 3
blocks: 0
block width: 16

Pagerank algorithm using web data structured in a Zipfian

distribution [25].

Table X presents the read/write ratios for each benchmark

across both SSD models. In the following equation, nr rep-

resents the number of read operations and nw signifies the

number of write operations.

Ratio(read write) =
nr

nw

. (4)

Model A and Model B SSDs undergo similar workloads as

evaluated through the following benchmarks.

• Bayes and Kmeans: In these benchmarks, read requests

are sporadic throughout the processes. Note Kmeans

exhibits a surge in write requests towards its conclusion.

• Dfsioe: Dfsioe-read and Dfsioe-write function according

to their designations. Dfsioe-read focuses on read re-

quests, whereas Dfsioe-write emphasizes write requests.

Both of them encompass a mix of read and write activi-

ties, not solely one or the other.

• Wordcount: Initially, read and write requests are almost

equally distributed. Over time, however, read requests sig-

nificantly outnumber write requests, rendering Wordcount

predominantly read-intensive.

• Sort: This benchmark experiences a notable surge in write
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TABLE X
READ/WRITE RATIOS OF TESTED BENCHMARK APPLICATIONS.

Benchmarks Model A Model B

Micro

Wordcount 2.05 2.37
Sort 0.38 0.57

Dfsioe-read 0.54 0.81
Dfsioe-write 0.48 0.55

Machine Learning
Bayes 0.17 0.13

Kmeans 0.62 0.69

Web Search
Nutchindexing 1.12 1.17
Pagerank(raw) 0/90 0/98

TABLE XI
THROUGHPUT OF MODEL A SSD UNDER VARYING TEMPERATURES.

Temperature 25°C 35°C 45°C 50°C

Throughput(MB/s) Read Write Read Write Read Write Read Write

Micro

Wordcount 1411.26 5.21 1426.44 5.26 1443.36 5.33 1258.60 4.64
Sort 82.32 777.51 84.57 798.68 82.96 783.61 75.118 710.82
Dfsioe-read 1325.00 39.89 1333.22 40.15 1346.66 40.57 1211.80 36.48
Dfsioe-write 0.09 878.88 0.09 879.34 0.09 842.89 0.08 766.32

Machine Learning
Bayes 73.68 710.12 79.15 763.13 78.19 754.11 65.74 633.71
Kmeans 118.85 758.67 120.49 768.89 117.44 749.81 101.64 649.03

Web Search
Nutchindexing 223.07 534.30 221.57 530.71 218.84 524.31 181.62 435.12
Pagerank NA 167.45 NA 167.52 NA 165.48 NA 155.26

TABLE XII
THROUGHPUT OF MODEL B SSD UNDER VARYING TEMPERATURES.

Temperature 25°C 35°C 45°C 50°C

Throughput(MB/s) Read Write Read Write Read Write Read Write

Micro

Wordcount 1251.92 4.64 1248.90 4.63 1242.98 4.60 931.92 3.45
Sort 127.99 530.67 127.83 529.74 127.40 527.88 85.49 354.63
Dfsioe-read 1179.52 38.97 1174.62 38.78 1173.83 38.78 898.39 29.67
Dfsioe-write 0.06 586.81 0.06 588.60 0.06 576.44 0.04 357.49

Machine Learning
Bayes 50.61 562.66 50.55 564.17 51.09 565.51 32.85 364.28
Kmeans 95.80 537.14 96.17 539.01 96.03 538.17 65.69 368.47

Web Search
Nutchindexing 198.95 490.39 199.70 491.57 199.51 491.51 127.20 313.28
Pagerank NA 437.59 NA 441.89 NA 444.79 NA 444.46

requests midway through the process, peaking at 7,000

requests for Model A SSD and 5,000 for Model B SSD,

while read requests remain comparatively low. Thus, Sort

is characterized as write-intensive.

I. Experimental Results and Performance Degradation Anal-

ysis

Table XI and Table XII display the average I/O throughput

of Model A and Model B SSDs under different temperature.

When the temperature is at or below 45°C, both Model

A and Model B SSDs achieve their highest read throughput

running Wordcount. This benchmark, together with the read-

intensive Dfsioe-read, displays throughput close to their peak

performance. When running Dfsioe-write, both models of

SSDs reach their highest write throughput. Other write-focused

benchmarks, such as Sort, Bayes, and Kmeans, also exhibit a

relatively high write throughput. However, Pagerank, which is

also write-intensive, shows a lower I/O throughput compared

to the other benchmarks that prioritize write.

Figures 2, 3, and 4 compare the performance of Models

A and B SSDs across varying temperatures (25°C, 35°C, and

50°C) for both sequential and random read/write operations.

• Throughput of read/write operations: Model A SSD gen-

erally exhibits a higher throughput at lower temperatures

but experiences a significant drop as the temperature

increases. In contrast, Model B SSD, while starting with a

lower throughput, maintains more consistent performance

across different temperatures.

• IOPS of read/write operations: At lower temperatures,

Model A SSD shows superior IOPS performance but

suffers a notable decrease as the temperature rises. Model

B SSD demonstrates more stable IOPS figures across

increasing temperatures.

• Latency of read/write operations: Model A SSD expe-

riences increased latency with rising temperatures, par-

ticularly for random read and write operations. Model

B SSD, starting with slightly higher latency at lower

temperatures, shows a smaller increase in latency at

higher temperatures, indicating better resilience under

thermal stress.

In summary, Model A SSD performs better at lower

temperatures, whereas Model B SSD offers more consistent

performance across a broader temperature range.
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Fig. 2. Throughput for Flash Read/Write Operations. Fig. 3. IOPS for Flash Read/Write Operations.
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Fig. 4. Latency for Flash Read/Write Operations.

V. CONCLUSIONS

This paper explores the intricate relationship between ex-

treme weather conditions and the efficiency of automotive

flash memory, with a focus on the distinctive characteristics of

different SSDs. Through extensive environments, performance

evaluations, and data analysis, we gain insights into how

temperature extremes affect the read and write operations of

these essential automotive components.

Our work highlights the significant impact of temperature

on automotive flash memory. Different models of SSDs,

each embodying different aspects of automotive technology,

show varied sensitivities to extreme temperatures. Under lower

temperatures, we observe a slowdown in the responsiveness

of certain flash memory components, affecting both read and

write speeds. On the other hand, intense heat is associated

with decreased reliability and higher error rates.

The side-by-side comparison of different models of SSDs

has yielded a thorough understanding of the vulnerabilities

and strengths present in different automotive memory systems.

This information is crucial for designers and manufacturers to

improve the resilience and adaptability of automotive flash

memory in various climates, ensuring consistent performance

regardless of external temperature fluctuations.

As the automotive industry moves toward connected and

autonomous vehicles, the findings from this study are in-

valuable in guiding the design and development of future

automotive memory technologies. The approach taken in this

investigation has offered a detailed perspective, enriching our

overall understanding of the challenges and opportunities that

extreme weather conditions present.

The effect of temperature on automotive flash memory is

clear, and our study lays the groundwork for further research

and innovation in this vital area of automotive technology.

By recognizing and mitigating the impacts of temperature

extremes, we are setting the stage for the development

of more durable, reliable, and adaptable automotive flash

memory systems capable of withstanding the varied climates

encountered on roads.
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