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Abstract—In the ever-evolving landscape of automotive tech-
nology, the efficiency and reliability of vehicle storage systems
is paramount importance. Environmental factors, such as ex-
treme weather conditions characterized by either intense cold
or scorching heat, pose significant challenges to the optimal
functioning of these critical components [1] [2]. In this paper,
we investigate the nuanced effects of varying temperatures on
data storage and machine learning workloads on flash based
vehicle storage systems: the read and write operations of car
flash memory. The work employs a multidimensional approach,
incorporating environmental simulations, performance testing,
and data analytics to comprehensively analyze the impact of
temperature variations on the performance and reliability of
vehicle storage. From room temperatures to sweltering heat,
the study investigates how these adverse conditions influence the
speed, reliability, and overall performance of flash memory in
automotive applications. The experimental results reveal intricate
relationships between temperature variations and the through-
put and latency of flash storage for automotive applications,
shedding light on potential vulnerabilities and opportunities
for optimization. Understanding these dynamics is crucial for
enhancing the resilience and adaptability of automotive storage
systems to diverse environmental challenges. This research not
only contributes to the broader understanding of the intersection
between extreme weather conditions and automotive technology
but also provides valuable insights for engineers, manufacturers,
and policymakers working towards the development of robust
and reliable vehicle storage systems capable of withstanding the
rigors of diverse environmental conditions. As the automotive
industry continues to push the boundaries of innovation, this
study serves as a foundation for future advancements in the
realm of vehicular storage technologies.

Index Terms—Vehicle Storage, Flash Devices, Performance,
Reliability, Machine Learning Workload.

I. INTRODUCTION

The rise of autonomous vehicles (AVs) marks a significant
technological advancement in the automotive industry, driven
by rapid developments in sensor technologies, deep learning
algorithms, and computational power. These vehicles rely
on advanced data processing units, essential for interpreting
complex environmental inputs and enabling real-time decision-
making.

AVs are equipped with a multitude of sensors, including
cameras, LiDAR, radar, GPS, and IMUs, among others. These
sophisticated sensors collectively generate terabytes of data ev-
ery hour [3] [4], a critical component for mission-critical tasks
like autonomous navigation and ensuring vehicular safety. To
effectively process this deluge of data, AVs utilize advanced
deep learning models [5] [6]. These models are designed to
learn, perceive, plan, and make decisions. They process an
extensive array of details, encompassing numerous parameters
and features, to function optimally [7] [8] [9]. The sheer
volume of data coupled with the complexity of these deep
learning models necessitates a substantial amount of storage
space.

Flash-based storage, particularly solid-state drives, have
become the preferred choice for vehicular storage due to their
durability, speed, and energy efficiency [10]. However, the
performance of these storage systems under variable environ-
mental conditions, particularly high temperatures, is a concern
that warrants thorough investigation [11].

Elevated temperatures notably affect the performance and
reliability of flash devices [12], a fact that is particularly
critical for AVs. Increased temperatures can induce bit flips
— minor but critical errors in the data stored. Additionally,
the storage system might engage in speed throttling as a self-
protective measure, slowing down its operation. Such issues
are particularly crucial in AVs, which depend on precise and
rapid data processing for safe operations. If the storage system
malfunctions or underperforms, it can affect essential func-
tions, for example, failing to respond appropriately in critical
situations, such as avoiding a collision, or not detecting obsta-
cles on the road. These issues may lead to significant safety
hazards or accidents. For AVs, where reliable and consistent
data storage is essential for both safety and functionality,
understanding and mitigating the impact of high temperatures
on flash-based storage is of significant importance.

In this paper, we delve into the detailed effects of temper-
ature variations on the data storage capacity and efficiency of
machine learning tasks in flash-based vehicle storage systems.
Our study adopts an extensive experimental methodology,
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utilizing a variety of flash storage devices in a controlled
high-temperature environment. We design the experiments
to simulate the real-world operational conditions of AVs,
with a particular emphasis on assessing the performance of
flash storage in managing sensor data storage and executing
machine learning tasks. This approach enables a thorough
exploration and understanding of the specific impacts of vary-
ing temperatures on these vital workloads, offering valuable
insights into the performance and reliability of flash storage
under thermal stress in the context of AVs.

The experimental results uncover interrelations between
temperature changes and key performance metrics of flash
storage, such as throughput and latency, particularly in au-
tomotive applications. These findings illuminate potential vul-
nerabilities in current systems and open avenues for optimiza-
tion. Gaining insights into these temperature-related dynamics
is imperative for improving the resilience and versatility of
automotive storage systems, ensuring they are better equipped
to handle a variety of environmental challenges.

The paper is organized as follows. Section II provides
a literature review, focusing on flash storage in automotive
applications and the effects of temperature on its performance.
Section III details the methodology, describing the flash stor-
age devices used and the experimental setup tailored to AV
workloads. Section IV presents and analyzes the experimental
results. The paper concludes with a summary and future
research directions in Section V.

II. ARCHITECTURE OF FLASH-BASED STORAGE

Depending on the number of bits stored in each flash cell,
there are several types of NAND flash used in SSD. Each
type has its distinct performance, cost, endurance, and density
trade-offs. Single-level cell (SLC) requires 2 voltage levels
(i.e., 0 and 1) to store 1 bit of data, offering the highest write
performance and endurance at the cost of price and density.
Multilevel cell (MLC) requires 4 voltage levels to represent 2
bits of data (i.e., 00, 01, 10, and 11). Triple-level cell (TLC)
and Quadruple-level cell (QLC) require 8 and 16 levels of
voltage to store 3 and 4 bits of data, respectively. As the
number of bits stored in each cell increases from SLC to QLC,
the cost efficiency improves due to higher data density, but
this comes at the expense of decreased write performance and
endurance.

A. Data Storage

A flash-based storage device typically incorporates between
4 to 16 NAND chips [13]. Each chip is composed of multiple
layers, structured as follows. Die: A NAND chip may contain
several NAND memory dies. Plane: Each die consists of 1
to 4 planes. Block: Every plane is made up of thousands
of flash blocks. Page/Wordline: Each block comprises hun-
dreds to thousands of pages (rows, also known as wordlines).
String/Bitline: Each block includes hundreds to thousands of
strings (columns, also known as bitlines). Cell: Each page or
string contains thousands of flash cells.
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In 2D NAND architecture, a flash block is a cluster of
wordlines and bitlines. A page is the smallest unit for reading
and writing data, whereas a block is the smallest unit that can
be erased. A page typically holds 2K, 4K, 8K, or 16KB of
data, and the size of a block varies between 256KB and 4MB.

With the transition to TLC and beyond, there has been a
shift from 2D to 3D NAND architecture. Each generation
of 2D NAND saw a reduction in size and an increase in
transistor density, reaching the limits of lithography [14]. 3D
flash architecture differs by expanding vertically, increasing
density and capacity. QLC, for example, uses 3D NAND in its
block-level design. The transition to 3D blocks introduces the
concept of layers, with the number of layers being multiples
of 4 in the case of QLC. These layers are determined by the
count of vertical Control Gates. Common configurations of
3D NAND flash include 32, 36, 48, 56, 96, and 128 layers,
with a higher layer count typically resulting in greater storage
density.

B. Data Placement

A flash storage device comprises two data storage areas: the
main area and the spare area. The main area is primarily used
for storing user data such as files and applications. In contrast,
the spare area is reserved for critical system information,
including bad block markers, Error-Correcting Code (ECC)
data, and other metadata. This spare area is typically not
accessible to users, being exclusively used by the system for
ensuring the correct operations and integrity of the device.

The management of data within a flash device is orches-
trated by the controller. The controller is responsible for a
range of functions: it directs data to be written to one page at
a time, identifies and avoids bad blocks, and implements wear-
leveling algorithms to evenly distribute write and erase cycles.
Additionally, it manages data transfer through I/O algorithms,
efficiently handling tasks like dividing large files across multi-
ple flash chips. To assure data integrity, the controller employs
strategies such as writing parities to a separate flash chip,
thereby enhancing the device’s reliability and error-correction
capabilities.

C. Data Operations

NAND flash devices support three basic operations: read,
write, and erase.

Write: Data from the file system passes through the flash
device connector and then to the controller. The Flash Trans-
lation Layer (FTL) executes an address mapping algorithm to
determine the physical addresses on the NAND chips. In this
process, FTL maps the logical data blocks to NAND pages,
which are then written into a block. The controller applies a
high positive voltage to the targeted NAND pages and strings.
The voltages of the selected cells are altered to represent
a logical ‘0’. Once the cell voltages are updated, the Error
Correction Code (ECC) checks the written data before sending
a success signal back to the OS. If the drive lacks empty
blocks, the controller initiates a garbage collection process to
reclaim invalid data blocks before writing new data to flash.
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Fig. 1. Major Components of a Flash Storage Device.

Erase: The erase operation in NAND flash is performed
only at the block level, whereas write and read can be con-
ducted at the page level. An erase operation involves removing
electrons from the storage layer, changing the state of the
cell to a logical ‘1’. Typically, a delete request sent from
the file system does not immediately remove the data from
flash, the controller marks the data as invalid. The garbage
collection algorithm, running in the background, determines
the appropriate time to apply negative voltage to erase the
entire block.

Read: Reading data from flash is similar to the write
operation. FTL locates the physical address of the requested
data, and the controller applies a read voltage (a medium pos-
itive voltage) to NAND pages and strings. Since the medium
positive voltage does not change the logical representation of
NAND cells, the selected NAND cells respond with the stored
logical ‘0’ or ‘1’. The raw data then goes through the NAND
decoder. After decoding and verification, the data stream is
sent back to the file system.

III. FLASH STORAGE FOR AUTONOMOUS VEHICLES
A. Flash Storage for Vehicular Applications

Flash storage offers several key advantages for automotive
applications. Its resistance to mechanical shock and vibration
makes it ideal for the demanding conditions encountered in
vehicle environments. Furthermore, flash storage boasts low
power consumption, high data throughput, and swift access
times, which are essential for real-time data processing in
vehicles.

Modern flash SSDs typically offer read speeds ranging from
about 500 MB/s to as high as 7,000 MB/s for PCle 4.0
NVMe drives. Autonomous vehicles (AVs) generate a vast
amount of data from various sensors. High-speed flash devices
can quickly write the data, ensuring that the AV’s computing
system is not bottlenecked by data throughput limitations.
Additionally, for deep learning models used in AVs, the ability
to quickly access and process large datasets is crucial. The
high read speeds of flash storage facilitate faster data retrieval,
which is vital for real-time decision-making for autonomous
driving.
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B. Environmental Factors

In vehicular applications, the reliability and performance
of flash storage systems are critically influenced by environ-
mental factors. These include temperature variations, humidity,
vibration, and shock, prevalent in automotive environments,
which can impact the functionality and longevity of flash
storage devices in vehicles.

One of the most significant environmental challenges for
vehicular flash storage is temperature variation. Flash drives
typically operate within a temperature range of 32F to 158F
for consumer-grade products. Vehicles are exposed to a wide
range of temperatures, from the intense cold of winter envi-
ronments to the extreme heat of summer conditions or engine
compartments. Elevated temperatures can lead to accelerated
wear and tear of the flash cells, resulting in reduced lifespan
and reliability [15]. Every 10 degree increase in temperature
can cut the life expectancy of a flash drive in half [15].
Conversely, extremely low temperatures can affect the speed
and efficiency of data read/write operations, potentially leading
to slower response times in critical applications.

C. NVMe QLC SSDs for Vehicles

For vehicular applications, quadruple-level cell (QLC) SSDs
offer serveral advantages. 1) They have a higher storage
capacity, as QLC SSDs store four bits of data per cell, enabling
higher storage densities. This feature makes them ideal for
large-capacity drives in vehicles with big data applications.
2) They are more cost-effective. QLC SSDs have a lower
cost per gigabyte compared to other SSD types, presenting a
budget-friendly option for high-capacity storage requirements.
3) They are more energy-efficient, an essential benefit for
vehicles where power consumption is a critical factor.

The disadvantages of QLC SSDs include lower write en-
durance, slower write speeds, and performance degradation.
Specifically, the lifespan of QLC SSDs is generally shorter
compared to other types, due to fewer write cycles before
cell degradation. Additionally, they tend to have slower write
speeds, a notable drawback for tasks requiring frequent data
writing, and this slowdown becomes more pronounced as the
drive fills up. Moreover, performance can degrade significantly
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under heavy workloads or as the storage capacity is maxi-
mized.

NVMe, a specialized interface protocol for SSDs, works
in conjunction with PCIe to enhance data transfer to and
from SSDs. SSDs that utilize the NVMe protocol, known
as NVMe SSDs, are capable of achieving 64GB/s bandwidth
and a 16GT/s rate with PCle 4.0, and they do not require
an additional power connector. With the introduction of PCle
5.0, these SSDs are expected to reach speeds double that of
PCIe 4.0 [16], which is approximately 20 times faster than
those using SATA. Furthermore, NVMe SSDs typically have
a smaller physical size compared to SATA-based SSDs. They
often lack an outer protective casing, exposing the NAND chip
and reducing their overall footprint.

Therefore, QLC SSDs offer a viable solution for high-
capacity storage needs where cost is a primary concern and
performance is not the main focus. Conversely, NVMe SSDs
are ideal for high-performance computing where speed and
low latency are crucial. In this study, our focus is on NVMe
QLC SSDs for vehicular applications.

IV. ANALYSIS OF PERFORMANCE AND RELIABILITY OF
FLASH STORAGE FOR VEHICLES

We have experimentally analyzed different models of
NVMe QLC SSDs for vehicular applications. The tested
models are from the same manufacturer but belong to different
product series. Table I lists their specifications. To protect the
manufacturer’s privacy, we refer to them as Model A and
Model B. Model A SSDs are designed for consumer-grade
applications, while Model B SSDs are intended for industrial-
grade applications.

TABLE I
SPECIFICATIONS OF FLASH STORAGE DEVICES EVALUATED IN
EXPERIMENTS.
Model Cell Type Architecture  Capacity ~ Firmware  Cost
Model A° NVMe QLC 3D 512GB 004c $
Model B NVMe QLC 3D 118GB k4110440  $$$

A. Experiment Setup

We have conducted a series of experiments on QLC SSDs
under various temperatures, observing the behavior of flash
storage and systematically analyzing both performance and
reliability. To simulate vehicular workloads, we utilize the
Flexible I/O Tester (FIO) [17] and HiBench [18] to generate
I/O accesses on the flash storage. The first set of experiments
employ FIO to generate data store and access loads to SSDs.
In the second set, we use HiBench to subject the flash devices
to big data and machine learning loads. These experiments are
conducted on HPE ProLiant servers equipped with 128 GB of
memory, running Ubuntu v22.04.

B. Environmental Factors

Table II outlines the recommended operating temperatures
for various hardware devices, including flash SSDs. The upper
bound temperature refers to the point at which flash SSDs
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begin to experience thermal throttling. When the temperature
exceeds this threshold, protective measures are triggered. In
severe situations, the SSD may disconnect, leading to the
termination of running processes. Considering that the default
thermal throttling threshold for NVMe drivers is 66°C, we
have chosen 50°C as the upper bound temperature in our
tests. In alignment with guidelines from the American Society
of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE), we choose 25°C as the low temperature in our
experiments.

C. Flash Performance Under Different Temperatures for Data
Read/Write Workloads

We assess QLC SSDs at 25°C, 35°C, and 50°C to mimic
normal, high, and very high temperature conditions, respec-
tively. We evaluate a number of critical metrics, including stor-
age throughput, Input/Output Operations Per Second (IOPS),
and latency. Within each metric, we examine both sequential
and random read/write performance. The comparative results
from Model A and Model B flash devices are shown in Tables
IIT and IV. We perform each test on three separate flash SSDs
of the identical model.

D. Experimental Results

Tables III and IV show that both Model A and Model
B SSDs exhibit similar patterns of performance degradation
when the environmental temperature increases from 25°C
to 50°C. However, noticeable differences between them are
observed.

Specifically, at 25°C, both Model A and Model B QLC
SSDs achieve their peak throughput. For both models, the
read throughput significantly exceeds the write throughput in
both sequential and random contexts. Model A shows higher
efficiency in sequential writing compared to random writing,
while it exhibits the opposite trend in reading capabilities.
Conversely, Model B maintains consistent write and read
throughput, whether the operations are sequential or random.
In terms of IOPS, Model B outperforms Model A, particularly
in read operations. Model A registers higher IOPS in writing
than in reading for sequential tasks, but this trend is reversed
for random tasks. Model B, however, shows more consistent
IOPS values across all operations, with reading operations
consistently achieving higher figures. As for latency, reading
operations are markedly quicker than writing for both models,
with the exception of Model A’s random read/write perfor-
mance.

As the temperature rises from 25°C to 35°C, both models
exhibit a decline in throughput, with Model A experiencing
a more noticeable reduction. The most significant decrease
in throughput for Model A is observed in random reads. In
contrast, Model B shows a similar level of degradation in all
reading tasks, both sequential and random. For both models,
reading operations tend to degrade slightly more than writing
operations with the temperature increase. Notably, Model A’s
IOPS values decrease significantly, while Model B’s IOPS
demonstrate a slight improvement, especially in random read
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TABLE II
RECOMMENDED OPERATING TEMPERATURES FOR STORAGE AND NETWORK DEVICES.

Component NVMeSSD[19] HDD[20] Network Card[21] NetworkSwitch[22]
Lower-bound Temperature -40°C 0°C 0°C -40°C
Upper-bound Temperature 85°C 60°C 90°C 85°C

TABLE III

PERFORMANCE RESULTS OF THROUGHPUT, IOPS, AND LATENCY USING MODEL A SSD.

Benchmarks Throughput (MB/s) 10PS Latency (us)
Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C 35°C 50°C
write zero 489.20 462.68 41934  111154.06 61741.12  81527.78 39.19 44.20 47.46
Sequential read zero 1339.71  1142.67 686.95 8425343  64027.69  76975.22 18.04 20.60 19.35
a write random  518.89 455.17 44280 119787.16  67122.74 90618.69  25.19 41.22 43.79
read random 1288.10  1144.08  698.58 82676.31 63223.44  80812.20 18.11 20.99 19.20
Random random read 1652.14  1316.74 387.29  84779.91 71160.59  42219.64 10048 101.42  130.45
random write ~ 273.28 265.02 174.75 35946.24  28676.39  18579.51 34.61 40.43 95.95
TABLE IV
PERFORMANCE RESULTS OF THROUGHPUT, IOPS, AND LATENCY USING MODEL B SSD.
Benchmarks Throughput (MB/s) 10PS Latency (us)
Temperature 25°C 35°C 50°C 25°C 35°C 50°C 25°C  35°C  50°C
write zero 594.57 580.60 425.38 13535545  138732.57 10812724 1795 1657 1798
Sequential read zero 1368.11  1302.76 1112.41 323729.82  332679.82  284557.43 12.04 1095 12.12
a write random  594.38 580.40 434.41 135254.17  138623.00 109172.18 1794 1646 17.70
read random 1368.32  1303.44 1078.78 32295572 332516.35 27531690 12.15 11.08 12.19
Random random read 1368.12  1302.08  11083.03  324254.89  442449.81  275220.02 12.19 1098 12.32
random write ~ 587.19 577.45 419.91 134667.87  138015.14 10569633  17.69 1652 17.72

operations. In terms of latency, Model A shows an increase
in latency values as the temperature rises from 25°C to 35°C,
whereas Model B displays a minor decrease in latency during
the same temperature change.

That is, as the temperature rises from 25°C to 35°C, Model
A SSD exhibits a decline in performance across throughput,
IOPS, and latency. Conversely, Model B SSD experiences a
decrease in I/O throughput but demonstrates slight improve-
ments in both IOPS and latency.

As the temperature increases from 25°C to 50°C, we ob-
serve a degradation in all performance metrics - throughput,
IOPS, and latency - for both models. Both Model A and Model
B show a noticeable decline in throughput and IOPS, with
Model A experiencing more severe degradation, particularly
in reading operations, a point that will be elaborated upon
in later sections. The reduction in IOPS is similar for both
models. Regarding latency, Model A exhibits a significant
worsening, whereas Model B also undergoes degradation,
albeit less markedly than Model A.

E. Performance Analysis

To provide a thorough understanding of these performance
shifts, we calculate the degradation percentage for both mod-
els, as shown in Tables V and VI. These tables depict how
performance metrics change with an increase in temperature
starting from 25°C.
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Furthermore, the calculation of the degradation percentage
is based on the premise that higher values signify improved
performance for throughput and IOPS. Thus, we anticipate
higher values at lower temperatures compared to those at
elevated temperatures. In contrast, for latency, where lower
values are desired, we expect that latency will be lower at
reduced temperatures than at increased temperatures. In the
following equation, ! represents the throughput/IOPS value
at the lower temperature, and h denotes the throughput/IOPS
value at the higher temperature.

Throughput/IOPS_Degradation = * 100%.

(6]

For latency, [ denotes latency at a lower temperature, and h
represents latency at a higher temperature.

Latency_Degradation = * 100%.

@)

Both Table V and Table VI illustrate that the /O band-
width performance, i.e., the rate of data transfer, deteriorates
noticeably as the temperature increases from 25°C to 50°C.
The decline in performance is relatively minor when the
temperature rises from 25°C to 35°C. However, it becomes
significantly more pronounced as the temperature continues to
increase.
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TABLE V
PERFORMANCE DEGRADATION W.R.T. THROUGHPUT, IOPS AND LATENCY UNDER INCREASED TEMPERATURE USING MODEL A SSD.

Benchmarks Throughput(MB/S) 1I0PS Latency(us)
Temperature 25°C ->35°C  25°C ->50°C  25°C ->35°C  25°C ->50°C  25°C ->35°C  25°C ->50°C
write zero 5.42% 14.28% 44.45% 26.65% 12.78% 21.10%
Sequential read zero 14.71% 48.72% 24.01% 8.64% 14.21% 7.28%
a write random 12.28% 14.66% 43.97% 24.35% 63.64% 73.84%
read random 11.18% 45.77% 23.61% 2.36% 15.88% 5.95%
Random random read 20.40% 76.56% 16.06% 50.20% 0.93% 29.82%
random write 3.02% 36.05% 20.22% 48.31% 16.80% 177.20%
TABLE VI

PERFORMANCE DEGRADATION W.R.T. THROUGHPUT, IOPS AND LATENCY UNDER INCREASED TEMPERATURE USING MODEL B SSD.

Benchmarks Throughput(MB/S) 10PS Latency(us)

Temperature 25°C ->35°C  25°C ->50°C  25°C ->35°C  25°C ->50°C  25°C ->35°C  25°C ->50°C

write zero 2.35% 28.46% -2.50% 20.12% -7.69% 0.17%

Sequential read zero 4.78% 18.69% -2.76% 12.10% -9.05% 0.66%

q write random 2.35% 26.91% -2.49% 19.28% -8.25% -1.34%

read random 4.74% 21.16% -2.96% 14.75% -8.81% 0.33%

Random random read 4.83% 20.84% -36.45% 15.12% -9.93% 1.07%

random write 1.66% 28.49% -2.49% 21.51% -6.61% 0.17%

Model B exhibits a more consistent performance decrease
across read and write tasks compared to Model A. For exam-
ple, with a temperature increase from 25°C to 50°C, all of the
performance degradation for Model B are between 18% and
30%. In contrast, the performance declines for Model A vary
widely from 14% to 76% under the same temperature condi-
tions. Specifically, Model A demonstrates a greater decrease
in performance for read tasks than for write tasks, particularly
under random read operations. Model B, on the other hand,
shows a different pattern. When the temperature increases from
25°C to 35°C, Model B’s performance in read tasks declines
more than in write tasks. However, as the temperature rises
from 25°C to 50°C, its write tasks are more adversely affected
by the temperature change than the read tasks.

Examining IOPS (a metric indicating the number of read or
write operations completed per second), Model A exhibits a
greater decrease in performance for write tasks than for read
tasks. The most significant decline occurs as the temperature
increases from 25°C to 35°C, particularly with sequential I/O
operations. In contrast, Model B’s IOPS performance slightly
improves at 35°C compared to 25°C, especially with random
read operations. However, these improvements are small,
around 2.5%, making it challenging to determine whether they
are meaningful or merely the result of random fluctuations. As
the temperature further rises to 50°C, performance diminishes
again.

F. P-value Analysis

Based on the performance results at 25°C, there is a signif-
icant performance degradation in both values and percentages
when the temperature reaches 50°C. To more confidently val-
idate this finding, we have also employed the T-test to assess
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the significance of the results. By analyzing the p-values, we
aim to reliably demonstrate the extent of degradation for each
benchmark.

The T-test is a type of inferential statistic used to determine
if there is a significant difference between the means of two
groups. To analyze the significance levels, a two-tailed equal
variance T-test is utilized in this experiment. The p-values are
calculated using the following equation.

meanl — mean2

/1 1
* n1+n2

In Equation (3), meanl and mean?2 represent the average
values of sample sets. Varl and var2 are the variances, while
nl and n2 are the number of records in sample sets.

P-values are used to assess the likelihood that data can have
occurred by chance [23]. They range from O to 1, with a
smaller p-value indicating stronger evidence against the null
hypothesis, which is our initial assumption. In this study,
the null hypothesis posits that there is no difference in the
QLC SSD’s performance between 25°C and 50°C. Typically,
a p-value less than 0.05 is considered statistically significant,
implying there is less than a 5% chance that the initial
assumption is correct. A p-value less than 0.01 is deemed even
more significant, suggesting there is less than a 1% chance that
our initial assumption is correct. Table VII and Table VIII
present the p-values for Model A SSD and Model B SSD,
respectively.

Most p-values for both SSD models point to significant per-
formance degradation, with some indicating more significant
results. For Model A, the majority of throughput benchmarks
yield p-values less than 0.01, marking them as highly signifi-
cant, except for the *write zero’ benchmark, which exhibits no

3

P_value =
(n1—1)xvarl?+(n2—1)xvar2?
nl4+n2—2
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significant change. Within the IOPS category, the ’read zero’
benchmark shows no significant change, while the rest are
significant. In terms of latency, only the random read and write
benchmarks in Model A demonstrate significant degradation.
Compared to sequential I/O operations, random I/O opera-
tions are more susceptible to degradation with temperature
increases. For Model B, all benchmarks within the throughput
and IOPS categories display extremely significant degradation,
whereas the latency category reveals no significant changes.

After examining the average values, percentages, and p-
values from the data read/write benchmark tests, we have the
following major findings.

1) As the temperature exceeds their normal operating
range, QLC SSDs tend to exhibit lower throughput and
TIOPS (indicating how quickly they can read/write data).
However, we observed that the latency (the delay before
a transfer of data begins following an instruction) of
the SSDs does not significantly change with higher
temperatures.

When comparing two different models of QLC SSDs,
their reactions to temperature changes vary. Model A
is more adversely affected by temperature increases
for read tasks, whereas Model B is more sensitive
to temperature changes for write tasks. At 50°C, the
performance decrease for write by Model B is slightly
greater than for read.

2)

Additionally, when evaluating the overall performance of
the two models, Model B appears to manage performance
drops more effectively and maintains greater consistency in
throughput, IOPS, and latency, even as it degrades. For in-
stance, as temperatures increase from 25°C to 50°C, Model
A’s throughput can decrease by anywhere from 14% to 76%,
whereas Model B’s decreases range from 15% to 28%. A
similar pattern is observed in IOPS. We suspect that the
distinct firmware used by each model might be a contributing
factor.

G. Experiments Using Machine Learning and Big Data Ap-
plications

The FIO benchmark test provides an understanding of how
different QLC SSD models respond to rising temperatures.
However, real-life scenarios are more complex. With the
increasing prevalence of machine learning and big data and
the use of QLC SSDs for high-end storage, examining more
realistic applications is crucial. The experiments enhance our
comprehension of the performance and reliability of flash-
based storage under elevated temperatures for vehicle applica-
tions. In this part of the study, we test QLC SSDs Model A and
Model B in environments of 25°C, 35°C, 45°C, and 50°C. We
subject them to various machine learning and big data tasks to
observe how their data handling performance varies at these
temperatures.

The experiment is conducted in two steps. First, we establish
the big data environment and conduct various benchmarks at
a temperature of 25°C. We utilize Blktrace to monitor the I/O
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activity, enabling us to individually record the I/O traces for
Model A and Model B SSDs.

In the subsequent step, we employ FIO to replay these
recorded traces 100 times, albeit under different tempera-
ture conditions. Throughout these replays, we collect data
on throughput and other performance metrics using various
monitoring tools. The rationale behind replaying the traces
100 times stems from preliminary tests, which suggested that
QLC SSDs do not show immediate or consistent degradation
across all benchmarks. It is observed that different benchmarks
exhibit degradation at varying intervals. Repeating the process
100 times ensures that all benchmarks not only show a
reduction in throughput but also maintain this decline steadily
over time, preventing secondary phase of degradation.

H. Machine Learning and Big Data Benchmarks and 1/O
Trace Ananlysis

In this set of experiments, the workloads include micro
benchmarks, machine learning applications, and search ap-
plications. For the micro benchmarks, we test DFSIOE-read,
DFSIOE-write, and sort. Additionally, we test the Bayes and
KMeans from the machine learning applications. For the
search benchmarks, we test Nutch indexing and PageRank.
All settings are presented in Table IX.

Byes: Bayes is a machine learning algorithm used for
classification. In the HiBench benchmark suite, it is
utilized to generate documents with words following a
Zipfian distribution [25].

Kmeans: Kmeans is a machine learning algorithm des-
ignated for clustering data into groups. In HiBench, the
testing data follow Uniform Distribution and Gaussian
Distribution [25]. In the experiment, it is configured to
produce five clusters. The Kmeans workload operates in
phases, processing one cluster at a time until completion.
Sort: This benchmark involves sorting a collection of
randomly generated records. It uses simple functions
for map and reduce, like those used in the MapReduce
framework, which actually carries out the sorting task
[24].

Dfsioe: As part of the HiBench suite, the Dfsioe bench-
mark represents an enhanced version of the DFSIO
benchmark. It aims to evaluate the data management
capability of HDFS in a cluster. This is achieved by
initiating numerous tasks that involve both writing to and
reading from the system. The benchmark assesses three
critical metrics: the average I/O rate per task, the average
data throughput per task, and the total throughput of the
cluster [25].

Nutchindexing: This workload examines the indexing
component of Nutch, a web crawler software. It simulates
web data, with both links and words adhering to the
Zipfian distribution, to test the effectiveness of data
patterning [25].

Pagerank: Pagerank is an algorithm employed by search
engines to rank web pages in search results. The Pagerank
benchmark within HiBench evaluates the performance of
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TABLE VII
P-VALUES AND PERFORMANCE OF MODEL A SSD

Benchmarks Throughput(MB/s) I0PS Latency(us)
Temperature 25°C vs. 50°C 25°C vs. 50°C  25°C vs. 50°C
write zero 1.91F — 01 1.78E-01* 4.49FE — 01N
Sequential read zero 9.95E-05%* 8.80F — 02V 9.59F — 02V
write random 8.51E-04** 1.16E-03** 1.32E — 01V
read random 7.26E-04 4.76E-02%* 1.68E — 01V
Random random read 1.70E-08** 5.94E-07%* 1.09E-04%**
random write 3.70E-03%** 1.13E-02* 3.81E-02*
N indicates p-value > 0.05, i.e., the performance is NOT significant;]
* indicates p- value < 0.05, i.e., the performance is significant;]
** indicates p-value < 0.01, i.e., the difference is highly significant.]
TABLE VIII
P-VALUES AND PERFORMANCE OF MODEL B SSD
Benchmarks Throughput(MB/s) 10PS Latency(us)
Temperature 25°C vs. 50°C 25°C vs. 50°C  25°C vs. 50°C
write zero 8.85E-05** 1.17E-04** 8.39F — 01N
Sequential read zero 7.41E-04%* 4.52E-03%* 4.01E — 01N
write random 3.51E-05%* 2.81E-04%* 5.56E — 01N
read random 9.12E-04%* 2.80E-03%* 1.68E — 01V
Random random read 9.50E-04** 1.94E-03%** 8.49F — 01N
random write 1.01E-04%* 2.04E-04%* 2.10E — 01N

N indicates p-value > 0.05, i.e., the performance is NOT significant;]
* indicates p- value < 0.05, i.e., the performance is significant;]
** indicates p-value < 0.01, i.e., the difference is highly significant.]

TABLE IX
MACHINE LEARNING AND BIG DATA BENCHMARKS TESTED IN EXPERIMENTS.
Benchmarks Dataset  Size
Wordcount Huge 32000MB
Micro Sort Huge 3200MB
Dfsioe-read Huge 256*100MB
Dfsioe-read Huge 256*100MB
pages: 100000
Bayes Large classes: 100
ngrams:2
number of clusters: 5
Machine Learning dimensions: 20
Kmeans Large number of samples: 20000000
samples per input file: 4000000
maximum iteration: 5
k: 10
Nutchindexing ~ Small pages: 1000000
pages: 5000
Search number of iterations: 3
Pagerank Small blocks: 0

block width: 16

Pagerank algorithm using web data structured in a Zipfian
distribution [25].

Table X presents the read/write ratios for each benchmark
across both SSD models. In the following equation, n, rep-
resents the number of read operations and n,, signifies the
number of write operations.

“

n
Ratio(read, write) = —-.
Lz

Model A and Model B SSDs undergo similar workloads as
evaluated through the following benchmarks.
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Bayes and Kmeans: In these benchmarks, read requests
are sporadic throughout the processes. Note Kmeans
exhibits a surge in write requests towards its conclusion.
Dfsioe: Dfsioe-read and Dfsioe-write function according
to their designations. Dfsioe-read focuses on read re-
quests, whereas Dfsioe-write emphasizes write requests.
Both of them encompass a mix of read and write activi-
ties, not solely one or the other.

Wordcount: Initially, read and write requests are almost
equally distributed. Over time, however, read requests sig-
nificantly outnumber write requests, rendering Wordcount
predominantly read-intensive.

Sort: This benchmark experiences a notable surge in write



TABLE X
READ/WRITE RATIOS OF TESTED BENCHMARK APPLICATIONS.

Benchmarks Model A Model B
Wordcount 2.05 2.37
Micro i Sort 0.38 0.57
Dfsioe-read 0.54 0.81
Dfsioe-write 0.48 0.55
. . Bayes 0.17 0.13
Machine Learning Kmeans 0.62 0.69
Nutchindexin, 1.12 1.17
Web Search Pagerank(raw% 0/90 0/98
TABLE XI
THROUGHPUT OF MODEL A SSD UNDER VARYING TEMPERATURES.
Temperature 25°C 35°C 45°C 50°C
Throughput(MB/s) Read Write Read Write Read Write Read Write
Wordcount 1411.26 5.21 1426.44 5.26 1443.36 5.33 1258.60 4.64
Micro Sort_ 82.32 777.51 84.57 798.68 82.96 783.61 75.118  710.82
Dfsioe-read 1325.00  39.89 133322 40.15 1346.66  40.57 1211.80  36.48
Dfsioe-write 0.09 878.88 0.09 879.34 0.09 842.89 0.08 766.32
Machine Learning Bayes 73.68 710.12 79.15 763.13 78.19 754.11 65.74 633.71
Kmeans 118.85  758.67 12049  768.89 117.44  749.81 101.64  649.03
Web Search Nutchindexing ~ 223.07  534.30  221.57  530.71 218.84 52431 181.62  435.12
Pagerank NA 167.45 NA 167.52 NA 165.48 NA 155.26
TABLE XII
THROUGHPUT OF MODEL B SSD UNDER VARYING TEMPERATURES.
Temperature 25°C 35°C 45°C 50°C
Throughput(MB/s) Read Write Read Write Read Write Read Write
‘Wordcount 1251.92 4.64 1248.90 4.63 1242.98 4.60 931.92 3.45
Micro SorF 127.99  530.67 127.83 529.74 127.40  527.88 85.49 354.63
Dfsioe-read 1179.52  38.97 1174.62  38.78 1173.83 38.78 898.39  29.67
Dfsioe-write 0.06 586.81 0.06 588.60 0.06 576.44 0.04 357.49
Machine Learning Bayes 50.61 562.66 50.55 564.17 51.09 565.51 32.85 364.28
Kmeans 95.80 537.14 96.17 539.01 96.03 538.17 65.69 368.47
Web Search Nutchindexing 198.95  490.39 199.70  491.57 199.51 491.51  127.20 313.28
Pagerank NA 437.59 NA 441.89 NA 444.79 NA 444.46

requests midway through the process, peaking at 7,000
requests for Model A SSD and 5,000 for Model B SSD,
while read requests remain comparatively low. Thus, Sort
is characterized as write-intensive.

1. Experimental Results and Performance Degradation Anal-
ysis

Table XI and Table XII display the average I/O throughput
of Model A and Model B SSDs under different temperature.

When the temperature is at or below 45°C, both Model
A and Model B SSDs achieve their highest read throughput
running Wordcount. This benchmark, together with the read-
intensive Dfsioe-read, displays throughput close to their peak
performance. When running Dfsioe-write, both models of
SSDs reach their highest write throughput. Other write-focused
benchmarks, such as Sort, Bayes, and Kmeans, also exhibit a
relatively high write throughput. However, Pagerank, which is
also write-intensive, shows a lower I/O throughput compared
to the other benchmarks that prioritize write.

Figures 2, 3, and 4 compare the performance of Models
A and B SSDs across varying temperatures (25°C, 35°C, and
50°C) for both sequential and random read/write operations.
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o Throughput of read/write operations: Model A SSD gen-
erally exhibits a higher throughput at lower temperatures
but experiences a significant drop as the temperature
increases. In contrast, Model B SSD, while starting with a
lower throughput, maintains more consistent performance
across different temperatures.

IOPS of read/write operations: At lower temperatures,
Model A SSD shows superior IOPS performance but
suffers a notable decrease as the temperature rises. Model
B SSD demonstrates more stable IOPS figures across
increasing temperatures.

Latency of read/write operations: Model A SSD expe-
riences increased latency with rising temperatures, par-
ticularly for random read and write operations. Model
B SSD, starting with slightly higher latency at lower
temperatures, shows a smaller increase in latency at
higher temperatures, indicating better resilience under
thermal stress.

In summary, Model A SSD performs better at lower
temperatures, whereas Model B SSD offers more consistent
performance across a broader temperature range.
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V. CONCLUSIONS

This paper explores the intricate relationship between ex-
treme weather conditions and the efficiency of automotive
flash memory, with a focus on the distinctive characteristics of
different SSDs. Through extensive environments, performance
evaluations, and data analysis, we gain insights into how
temperature extremes affect the read and write operations of
these essential automotive components.

Our work highlights the significant impact of temperature
on automotive flash memory. Different models of SSDs,
each embodying different aspects of automotive technology,
show varied sensitivities to extreme temperatures. Under lower
temperatures, we observe a slowdown in the responsiveness
of certain flash memory components, affecting both read and
write speeds. On the other hand, intense heat is associated
with decreased reliability and higher error rates.

The side-by-side comparison of different models of SSDs
has yielded a thorough understanding of the vulnerabilities
and strengths present in different automotive memory systems.
This information is crucial for designers and manufacturers to
improve the resilience and adaptability of automotive flash
memory in various climates, ensuring consistent performance
regardless of external temperature fluctuations.

As the automotive industry moves toward connected and
autonomous vehicles, the findings from this study are in-
valuable in guiding the design and development of future
automotive memory technologies. The approach taken in this
investigation has offered a detailed perspective, enriching our
overall understanding of the challenges and opportunities that
extreme weather conditions present.

The effect of temperature on automotive flash memory is
clear, and our study lays the groundwork for further research
and innovation in this vital area of automotive technology.
By recognizing and mitigating the impacts of temperature
extremes, we are setting the stage for the development
of more durable, reliable, and adaptable automotive flash
memory systems capable of withstanding the varied climates
encountered on roads.
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