
Online Self-Evolving Anomaly Detection for
Reliable Cloud Computing

Tianyu Bai∗, Haili Wang∗, Jingda Guo∗, Xu Ma†, Mahendra Talasila∗, Sihai Tang∗, Song Fu∗ and Qing Yang∗
∗Department of Computer Science and Engineering, University of North Texas
† Department of Electrical and Computer Engineering, Northeastern University

∗{TianyuBai, HailiWang, JingdaGuo, MahendraTalasila, SihaiTang}@my.unt.edu,
†ma.xu1@northeastern.edu, ∗{Song.Fu, Qing.Yang}@unt.edu

Abstract—Production cloud computing systems consist of hun-
dreds to thousands of computing and storage nodes. Such a
scale, combined with ever-growing system complexity, is caus-
ing a key challenge to failure and resource management for
dependable cloud computing. Efficient system monitoring and
failure detection are crucial for understanding emergent, cloud-
wide phenomena and intelligently managing cloud resources
for system-level dependability assurance and application-level
performance assurance. To detect failures, we need to monitor
the cloud execution and collect runtime performance data. These
data are usually unlabeled at runtime in real-world systems, and
thus a prior failure history is not always available. In this paper,
we present a self-evolving anomaly detection framework for cloud
dependability assurance. Our framework does not require any
prior failure history, and it self-evolves by continuously exploring
newly verified anomaly records and continuously updating the
anomaly detector at runtime without expensive model retraining.
A distinct advantage of our framework is that cloud system
operators only need to check a small number of detected anoma-
lies (compared with thousands-millions of system/application
event records) and their decisions are leveraged to update the
detector. Thus, the detector evolves following the upgrade of
system hardware, update of software stack, and change of user
workloads. Moreover, we design two types of detectors, one
for general anomaly detection and the other for type-specific
anomaly detection. Leveraging self-evolution and online learning
techniques, our detectors can achieve 88.94% of sensitivity and
94.60% of specificity on average, which makes them suitable for
real-world deployment.

Index Terms—Cloud Computing, Reliability, Anomaly Detec-
tion, Online Learning.

I. INTRODUCTION

Cloud computing is widely used in almost all aspects of

our daily life [31], from social media, online shopping, movie

streaming, photo storage, document editing to scientific com-

puting, big data processing, and smart cities (e.g., autonomous

vehicles, smart transportation and more). Production cloud

systems, such as Amazon Web Services, Google Cloud Plat-

form, and Microsoft Azure, are both economically successful

and technically popular.

Despite the great efforts on the design of reliable compo-

nents, the increase of cloud systems’ scale and complexity has

outpaced the improvement of components’ reliability. Failure

occurrence as well as its impact on cloud performance and

operating costs becomes an increasingly important concern

to cloud system operators and cloud service providers [19].

Anomaly detection [24] is an important failure management

technology for computer systems. It detects anomalous sys-

tem/component behaviors and possible failures by analyzing

history behaviors and execution states. Anomaly detection in

cloud computing systems provides a cost-effective mechanism

for resource allocation, virtual machine/container scheduling,

and cloud maintenance.

During cloud operations, a large amount of monitoring data

is collected to track the cloud’s operational status. Software

log files, system audit events, and network traffic statistics are

examples of such measurements. These data provide valuable

information about the cloud’s states and health. A failure

occurrence scatters its trace in the measurement data and

we need to analyze the data to identify a system/component

failure. However, cloud measurements usually contain a huge

number of attributes and continuous monitoring leads to an

overwhelming data volume. It is very difficult, if not im-

possible, to manually infer the cloud operating status from

those measurements. Another challenge of anomaly detection

from measurement data originates from the dynamics of cloud

computing systems [28]. It is common in those systems

that user behaviors and servers’ loads are changing. The

cloud hardware and software components are also frequently

replaced, upgraded, or updated. This requires an anomaly de-

tection mechanism be able to identify new types of anomalies

and update its detection model at runtime as the executing

environment changes.

The traditional approaches to anomaly detection rely on

statistical analysis or learning algorithms to approximate the

dependency of failure occurrences on various performance

attributes; see [13] for a comprehensive review. The underlying

assumption of those methods is that the training datasets are

labeled, i.e., for each measurement used to train an anomaly

detector, the designer knows if it corresponds to a normal

execution state or a failure. However, the labeled data are

not always available in real-world cloud computing systems,

especially with hardware and/or software upgrades or updates,

or workload changes.

Moreover, the existing approaches usually adopt an offline-

training-and-online-detection scheme. Specifically, an anomaly

detector is trained offline using a vast amount of data. Then,

the detector is used for online anomaly detection. Once

deployed, the detector is rarely changed unless the detection

accuracy is lower than expectation (e.g., below a predefined

31

2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)

978-1-6654-6087-3/22/$31.00 ©2022 IEEE
DOI 10.1109/UCC56403.2022.00014

20
22

 IE
EE

/A
C

M
 1

5t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

til
ity

 a
nd

 C
lo

ud
 C

om
pu

tin
g

(U
C

C
) |

 9
78

-1
-6

65
4-

60
87

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
U

C
C

56
40

3.
20

22
.0

00
14

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

accuracy threshold). When the detector becomes inaccurate,

an offline retraining is performed and the anomaly detector is

replaced by a newly trained model. As a result, the perfor-

mance of anomaly detection fluctuates, that is the detection

accuracy drops as time goes by until a replacement by the

retrained detector occurs, which causes an abrupt change of

the detection accuracy. After that, the cycle repeats. As model

retraining is time-consuming, the obsolete detector remains in

service for a longer period of time, which causes more sys-

tem/component failures undetected and/or false alarms. This

fluctuation of the detection performance affects the efficacy of

system monitoring and resource management as well.

In this paper, we address these issues by presenting a self-
evolving anomaly detection framework. It adopts a novel,

adaptive anomaly detection approach. Specifically, it does not

require a prior failure history. It continuously monitors the

cloud execution and collects runtime performance data. To

tackle the high dimensionality of cloud performance metrics,

our framework extracts the most relevant metrics for anomaly

detection. It describes the cloud performance using the relevant

metrics and employs online learning models to detect anoma-

lies. As the detections later get verified (either confirmed or

rejected) by cloud operators, our framework adapts its anomaly

detector by continuously learning from these verified detec-

tions (i.e., online self-evolution). The anomaly detectors are

updated to refine future detections without service disruption

(due to retraining) or abrupt changes (due to model replace-

ment). In addition, the cloud operators can report observed

but undetected failure events to the anomaly detector which

exploits these events to improve its model and detect new types

of anomalies.

The main contributions of this paper are as follows.

• We design a self-evolving anomaly detection framework

for cloud computing systems. It does not require any

previously labeled failure data and can learn from newly

generated records incrementally online. No hardware or

software in the existing cloud computing systems needs

to be modified to support the proposed framework.

• In pursuit of online learning, we develop an efficient

anomaly detector, leveraging a stochastic gradient descent

method to build a detection model.

• While existing anomaly detection methods only classify

a record as either normal or not, ignoring the difference

between anomalies, our framework can detect abnormal

behaviors with their different anomaly types.

• By adding a sparsity regularization component to our

framework, the anomaly detector can select the most

relevant attributes for effective detection.

• Results from extensive experiments show that our self-

evolving framework achieves a better performance com-

pared with the existing approaches/models. Specifically,

our self-evolving anomaly detector achieves 88.94% of

detection sensitivity and 94.60% of detection specificity

without expensive retraining, making it practical for real-

world cloud computing systems.

The remaining paper is organized as follows. In Section

II, we review the related work on cloud computing anomaly

detection. Section III presents the pipeline of our self-evolving

framework and detail our novel detectors. Section IV presents

and discuss the experimental results. Section V concludes the

paper with remarks on future research.

II. RELATED WORK

Theories and practices that apply machine learning methods

to anomaly detection have been studied for many years. An

early practice of learning anomaly detection is to apply Naive

Bayes [25] for detecting cloud anomaly [27]. Combined with

feature transformation algorithms, the work in [27] achieved

a promising performance. Following a similar strategy, a dis-

tributed approach [22] used Independent Component Analysis

(ICA) [15] instead of Principal Component Analysis (PCA)

[16] for feature selection. In addition, a decision tree model

was employed to classify anomalies. The general pipeline

(composed of two modules: an unsupervised feature trans-

formation module that preprocesses the collected data and a

supervised classification module that detects anomalies) has

also been used for disk failure analysis, network security,

cloud computing detection, etc. Nevertheless, detecting cloud

anomalies by simply using a supervised learning algorithm has

limitations. The unlabeled data logs and entries make that type

of approach impractical for online anomaly detection in real-

world cloud computing systems with constant changes (e.g.,

hardware upgrades, software updates, and workload shifts).

Considering a lack of prior knowledge of failures, Pannu

et al. [24] used unsupervised methods (i.e., one class sup-

port vector machine [3]) for cloud anomaly detection. Their

strategy allows the adaptive system to surpass the previously

published works in real-world applications, such as [11], [30].

The success comes from 1) no introduction of prior knowledge

in the model learning stage, and 2) a high-capacity of one-class

support vector machine (SVM). Analogous to Pannu’s work

[24] that applied unsupervised learning algorithms, recent

studies [9], [14] employed support vector data description

[29] to detect ICA/Kernel-PCA transformed data. The results

demonstrated that they improved the detection sensitivity by

19.6% over Bayesian predictors and decision trees ensemble

[11].

With the advance of machine learning, a trend of using

learning algorithms to detect cloud computing anomaly is

emerging [20], [23]. The supervised detector learns in a man-

ner of feedback from detections. Hence, adaption is an elastic

alternative of unsupervised learning, especially in the field of

cloud computing anomaly detection. The anomaly detection

framework yields a better cloud computing anomaly detection

performance [5], [10], [12]. Aside from being capable of

replacing unsupervised detectors, adaptive frameworks are also

appropriate for online learning.

In parallel with our work, there are efforts, such as [4], [26],

using neural network, especially deep learning, for anomaly

detection. In addition to accuracy, online learning would not

be an issue as stochastic gradient descent (SGD) optimizer

32

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

[17] has been adopted in those methods. Although neural

networks achieve good results in computer vision and natural

language processing, it may not be suitable for cloud anomaly

detection. The key limitations are as follows. 1) Training a

neural network requires extensive resources and consumes

a considerable amount of time, which is not cost-effective

considering the scale and complexity of cloud computing

systems. 2) The cloud failure data is highly imbalanced and

traditional neural networks cannot handle well. 3) The log

data from real-world cloud computing systems usually do not

contain a large number of labeled instances for training a

complex neural network.

Different from aforementioned works, our proposed frame-

work pursuit a simple yet efficient realization of anomaly

detection for real-world cloud computing systems. We cus-

tomize models for class-agnostic and class-known anomaly

detections respectively. The models meet the requirements

of classification, online learning, and feature selection. The

customized models can be considered as performing both a

feature reduction task and an anomaly detection task (e.g.

[9], [27]). Unlike PCA and ICA which project the original

data to a new subspace and lose the original semantics of

features, we evaluate each feature by weights. By leveraging

the advantages of the model that can self-evolve incremen-

tally, we can dynamically and automatically select the most

important features for future detections. We design a self-

evolving framework that feeds verified predictions to the

training process to automatically adapt the model. This design

allows us to employ our framework and detectors to real-world

cloud computing systems without overfitting, performance

fluctuation, or service disruption.

III. SELF-EVOLVING ANOMALY DETECTION FRAMEWORK

To build a self-evolving architecture for cloud anomaly

detection, we propose a decoupled framework, leveraging the

self-evolving property to adjust our embedded customized de-

tection models over iterations, and improving the performance

over time. Different from the existing two-stage detection

methods (i.e., using PCA/ICA for dimension reduction, then

feeding the processed data to a classifier), we design a series

of single-stage detectors for cloud anomaly detection. These

detectors identify anomalies, select relevant attributes, and

improve models continuously at runtime.

A. Overall Architecture and Key Components

System states and application execution are monitored in a

cloud computing system. The collected runtime data is pro-

cessed by an anomaly detector for classification. The detected

anomalies are then examined by cloud operators. The verified

events are then used to update/refine the detector at runtime

without offline model retraining. The detector selects the most

relevant attributes for future detections. Algorithm 1 sketches

our self-evolving anomaly detection framework.

When the anomaly detection system is first deployed in

a cloud computing environment, we selectively initialize the

detector to identify most records as normal. The detector

Algorithm 1 Self-Evolving Anomaly Detection

Input: Newly collected cloud performance data X
Output: Updated anomaly detector D
Initialize D.

while X! = NULL do
Predict label Y = D
Find predicted negative labeled data Xneg

Send Xneg to Cloud Operators and get verified label

Yneg

Online updating detector D = update(D,Xneg,Yneg)

predicts records and sends predicted anomaly records to the

cloud operators for verification. These records are identified

as either failures or normal states once a single epoch of

cloud performance data records is available. Different from

other approaches that send all records to the cloud opera-

tors, our method significantly reduce the workload of the

cloud operators by only checking the predicted anomalies

and achieve comparable results (See Section IV). The verified

records are used to update the detector. In our experiments, a

model achieves satisfactory results after ten epochs with 300

examples in each epoch.

The pipeline of our architecture requires an embedded

detector. Most current advances in cloud computing anomaly

detection have been driven by combinations of dimension

reduction methods and powerful basic statistical classifiers,

such as [14], [27]. However, such a combination would not be

suitable for our self-evolving framework since it is unable to

adjust models in an incremental fashion. To address it, we de-

velop new detectors (detailed in the following sections) which

can detect anomalies with their abnormal reason. Moreover, by

introducing a sparsity regularization component, our detector

can also select the most distinguishing attribute from records.

B. Cloud Anomaly Detection

In this section, we present a novel incremental detector for

class-agnostic anomaly detection in cloud computing systems.

To ease our discussion, we use the following notations. The

monitoring system collects n execution/state records from the

cloud, and each record contains d attributes. The set of records

is denoted as X ∈ Rn×d in the real valued space. The label

y of a certain record is either 1 or -1, representing a normal

record or a failure record. Initially, we use a vector Y ∈ Rn

to store the labels of X.

For detection, we adopt a classification plane fashion to

build our models, which is similar to the Least Squares

Estimator (LSE) and Support Vector Machine (SVM). Let

w denote a classification plane which is a column vector

(that is w ∈ Rd), the predictions of X can be expressed

by Xw. Following statistical analysis methods, we design an

incremental binary classifier, called L1LS, for cloud anomaly

detection. The design of L1LS is described next.

The Least Squares Estimator [8] is a machine learning

method which minimizes the residual sum of squared errors

33

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

between the true labels and predictions. That is

n∑
i=1

(yi − xi ∗ w − w0)
2
, (1)

where w0 is the bias. We rewrite the objective function by

appending a column vector of 1s and increasing the length of

w by 1 as follows.

min ‖Y −Xw‖22 . (2)

The classification plane w can be considered as the co-

efficients of attributes. For instance, wj is the weight for

attribute Xj . The greater wj is, the more Xj contributes to

the detection. Hence, to select the most relevant attributes, we

should get the elements in w close to 0. Inspired by research

on sparsity such as [18], [21], we modify Equation (2) by

adding L1-norm regularization, which improves the sparsity

of w. That is

min ‖Y −Xw‖22 + λ ‖w‖1 , (3)

where λ is a parameter representing the trade-off between the

empirical loss and model sparsity. We name our design using

LSE with L1-regularization as L1LS.

We note that L1LS cannot be embedded in our self-evolving

framework due to the following two issues. 1) The objective

function of L1LS is not convex, which makes it difficult to

solve. 2) L1LS is not an incremental method which is required

by our framework. To address these issues, we leverage the

Stochastic gradient descent (SGD) method to build our model.

SGD only needs the first-order derivative of our original

model, and it can converge to a local optimal solution. Another

advantage of using SGD is that it meets the requirement of

incremental learning, as SGD learns one example from anther

(or one batch of examples from another batch).

The derivative on both sides of Equation (3) is as follows.

∂F

∂w
= −2X′ (Y −Xw) + λsign (w) , (4)

where sign (·) denotes an element-wise function that returns

1 if the element’s value is greater than zero or -1 otherwise.

Specially, if an element is zero, we add a small value 1e−7 to

make the function differentiable. Based on our experiments,

we set the learning rate of SGD to 1e−4 for training 1. After

several iterations, the objective function converges to a local

minimum and the sub-optimal w can be determined. Algorithm

2 describes how to solve L1LS.

Once we have the output w, we are able to detect a cloud

performance record x by comparing the distance of xw to 1

and to -1. If xw is closer to 1, we predict it as a normal record,

otherwise it is considered as an anomaly record.

1A dynamic selection approach is used to modulate the learning rate. For
a quick training process, the initial learning rate is set, e.g., 0.1. Each time
when the value of the objective function does not decrease, we divide the
learning rate by 10. The minimum learning rate is 1e−7.

C. Self-Evolving Anomaly Detection

In the previous section, we present the L1LS model for

anomaly detection. L1LS is effective to detect anomalies and is

capable of selecting the most relevant attributes for detection.

However, it is a binary classifier that can only detect whether

anomalies exist, but not their types.

To generalize from a binary classifier to a multi-class

classifier, we consider two possible ways: 1) “One vs Rest”

and 2) “One vs One”. The “One vs Rest” strategy trains a

single classifier for each class. For C-class detections, we

need to train C − 1 classifiers. In contrast, the “One vs One”

strategy trains
C(C−1)

2 binary classifiers for a C-way multi-

class problem. There are drawbacks in either of the strategies,

e.g., the training stage is expensive in both time and space.

In addition, these two strategies for multi-class classification

problems could lose the competition between classes. They ig-

nore the information that contributes to differentiating classes.

To address the preceding issues, we develop a multi-class

classifier based on L1LS by leveraging the one-hot encoder.

Let x be a performance record that belongs to the c-th class,

based on one-hot encoder, label y is denoted by a row of zero

valued vector y ∈ Rc where the c-th element’s value is one 2.

For example, if there are five classes and a record that belongs

to the 3-th class, the label can be presented by [0, 0, 1, 0, 0].
For a dataset X ∈ Rn∗d, the corresponding labels Y ∈ Rn×c

are presented by a n by c matrix.
1) MCL1LS: Different from L1LS in which the classifica-

tion plane is a one-dimensional vector, the classification plane

W ∈ Rd×c of the new multi-class L1-norm Least Squares

model (MCL1LS in short) is a c-dimensional matrix. A general

MCL1LS model can be expressed as follows.

min ‖Y −XW‖22 + λ ‖W‖1 (5)

and the related derivative are as follows.

∂F

∂W
= −2X′ (Y −XW) + λsign (W) (6)

Although Equation (5) is similar to Equation (3), it is noted

that W in MCL1LS is a matrix while w in L1LS is a column

vector. This change enables MCL1LS to detect multi-class

records.

Once we obtain the desired W, the prediction of a record

x can be performed by computing xW and the index of the

max value in vector xW indicates the predicted class of x.
2) MCL21LS: MCL1LS improves the detection of anoma-

lies from known classes. However, it is not able to select

the most relevant attributes. For attribute selection, it requires

that most of the rows in W should be close to zeros. A L1-

norm based regularization term is not enough as it cannot deal

with row sparsity. In order to handle the row sparsity in W,

we design an enhanced model by leveraging the L21-norm

regularization term.

2In experiments, we find that using +1 and -1 achieves better results than
using 0 and +1. This can be explained from two aspects. 1) The model is a
distance based model instead of a possibility based model, and the output is
not in the range of [0, 1]. 2) The distance between -1 and +1 is greater than
that between 0 and +1.

34

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

Different from the sparsity requirement of the L1-norm

regularization term, the L21-norm regularization term requires

row sparsity. For a matrix W ∈ Rd×c, the L21 norm is defined

as

‖W‖2,1 =

d∑
i=1

√√√√ c∑
j=1

w2
ij =

n∑
i=1

∥∥wi
∥∥
2
, (7)

where wij is the element in the i-th row and j-th column in

W, and wi denotes the vector in the i-th row in W.

By adapting the L21-norm regularization term, the target

problem becomes

min ‖Y −XW‖22 + λ ‖W‖2,1 . (8)

We call this model a Multi-Class L21-norm Least Squares

model (MCL21LS in short). MCL21LS is effective in selecting

the most relevant attributes. Algorithm 2 sketches how to solve

MCL21LS and it is compatible with online learning.

Algorithm 2 Solving MCL21LS Using SGD.

Input: Newly collected cloud performance data X
Output: w
Initialize weight w, learning rate lr, and parameter λ
Compute the objective function F

Set d = ∞
while d > 1e−6 do

Compute the derivative der using Equation (4)

Update the value of the objective function Fnew =
Fprevious − lr ∗ der

Update d = Fprevious − Fnew

From Equation (7), we obtain the derivative of the L21-norm

W as follows.

∂ ‖W‖2,1
∂W

=

⎡
⎣∂

(∑d
i=1 ‖wi‖2

)
∂wj

⎤
⎦
d×1

(9)

=

⎡
⎣∂

(∑d
i=1

(
wiw

T
i

) 1
2

)
∂wj

⎤
⎦
d×1

(10)

=

[
wj

‖wj‖2

]
d×1

(11)

=

⎡
⎢⎢⎢⎢⎣

1
‖w1‖2

1
‖w2‖2

. . .
1

‖wd‖2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
w1

w2

...

wd

⎤
⎥⎥⎥⎦ (12)

=

⎡
⎢⎢⎢⎢⎣

1
‖w1‖2

1
‖w2‖2

. . .
1

‖wd‖2

⎤
⎥⎥⎥⎥⎦W (13)

= ΣW (14)

where Σ is a diagonal matrix. Thus, the derivative of Equation

(8) w.r.t. W can be expressed as follows.

∂F

∂W
= −2XT (Y −XW) + λΣW. (15)

Applying Algorithm 2, we can solve Equation(8) efficiently.

IV. PERFORMANCE EVALUATION

We have implemented a prototype of the self-evolving

anomaly detection framework and models and have conducted

experiments using performance data collected from a real-

world cloud computing system. In this section, we present

the experimental results and evaluate the performance of our

anomaly detectors.

A. Experiment Settings

We collect performance data from a cloud computing en-

vironment that consists of 362 servers connected by gigabit

Ethernet in a local data center. The cloud servers are equipped

with two to four Intel Xeon or AMD Opteron cores and 2.5 to

8 GB of RAM. We have installed hypervisors (Xen 4.16.0) on

the cloud servers. The operating system on a virtual machine

is Linux. Each cloud server hosts up to eight VMs. A VM

is assigned up to two VCPUs, among which the number of

active ones depends on applications. The amount of memory

allocated to a VM is set to 2 GB. We run the RUBiS distributed

online service benchmark, MapReduce and machine learning

jobs from the Hadoop MapReduce benchmark suite as cloud

applications on VMs. The applications are submitted to the

cloud computing system through a web based interface.

We have developed a fault injection program, which is able

to randomly inject four major types with 17 sub-types of faults

to cloud servers. They mimic faults from CPU, memory, disk,

and network. One fault was injected at a time and the time

between faults was randomly distributed. We exploit third-

party monitoring tools, such as sysstat [2] to collect runtime

performance data in the hypervisor and VMs, and a Linux

profiler perf [1] to profile performance counters from the

hypervisor on each cloud server. In total, 518 metrics are

profiled, i.e., 182 from the hypervisor, 182 from VMs and

154 from performance counters every minute. They cover the

statistics of every component of a cloud server, including the

CPU usage, process creation, task switching activity, memory

and swap space utilization, page faults, interrupts, network

activity, I/O and data transfer, power management and so on.

We collected the performance data from the cloud testbed

for two months. In total, about 520 GB performance data

were collected and recorded from the cloud computing testbed

during the period. The rolling time window is set as 1,440

records for a day.

An important design advantage of our self-evolving

anomaly detection method is that it requires a small amount

of labeled data in the collected cloud performance data and

reduces the load of cloud operators in checking the cloud

execution logs and data. We initialize the weights that make

the predictions biased towards the normal records which are

dominant. Instead of randomly initializing the weights using a

35

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

Gaussian distribution, we use w = rand()+αX−1Xe, where

α is a parameter that regulates the anomaly rate and rand()
is a function that generates weights following a standard

Gaussian distribution.

B. Experimental Results

We evaluate the anomaly detectors in terms of sensitivity

and specificity. Other performance metrics, such as accuracy

and F1-score, are also measured. Our anomaly detectors use

the learning methods that can evolve the models. We set the

number of epochs to 300 in the experiments unless otherwise

specified.

Note that when detecting the type of anomalies, the number

of records in each type is small as the majority of records

are for normal states, which is common in production cloud

systems. The imbalance problem in training may introduce a

significant bias towards normal records, and the training may

ignore anomalies. As a solution, we adopt an up-sampling

method, i.e., SMOTE [7], to generate more anomaly records

and thus balance the data distribution.

0 5 10 15 20 25

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 v

al
ue

s

Accuracy
Sensitivity
Specificity

Fig. 1: Performance of a self-evolving anomaly detector using

the L1LS model.

1) Performance of the L1LS Anomaly Detector: Figure 1

shows the performance of a self-evolving anomaly detector

using the L1LS model. From the figure, we can see that the

specificity fluctuates in early epochs and then converges to

82%-92%. The accuracy follows a similar trend, indicating that

the detector is effective and converges quickly with about 10

epochs. In contrast, the sensitivity always achieves a high level

(around 95%). This may be due to the weight initialization

method and the fact that the normal records outnumber the

failure records in the dataset.
2) Performance of the MCL21LS Anomaly Detector: An

anomaly detector using the MCL21LS model is able to identify

the type of anomalies in addition to anomalies themselves.

Faults in the dataset consist of four major types from CPU,

memory, disk, and network. Figure 2 presents the detection

performance of an anomaly detector using the MCL21LS

model for each fault type.

TABLE I: Performance comparison with other detection meth-

ods.

Sensitivity Specificity

Ensemble [11] 72.5% -

Hybrid [9] 92.1% 83.8%

Ours(L1LS) 94.90% 85.99%

Ours(MCL21LS) 83.47% 95.72%

We plot the sensitivity, specificity and additional accuracy

in the figures. Overall, the anomaly detector performs better

on all anomaly types as the number of epochs increases. After

about 10 epochs, the detection performance becomes stable.

The average sensitivity over the last five epochs across all

anomaly types reaches 83.47%, and the average specificity

achieves 95.72%. Remarkably, our self-evolving anomaly de-

tector achieves a fairly high specificity for all anomaly types,

which indicates that almost all the detected anomalies are true

faults.

We also plot the receiver operating characteristic (ROC)

curve for each epoch as the ROC curve is independent of

the data distribution and can visualize the performance of the

anomaly detector. Figure 3 includes the ROC curves for the

first 10 epochs. The area under the curve (AUC) is shown in

Figure 4. We can see in Figures 3 and 4 that the performance

of our anomaly detector becomes better as the number of

epochs increases and then gets stable. The AUC stabilizes

around 0.94. The high AUC value indicates that the anomaly

detector would not be influenced by the imbalance in the data

distribution.

From the above results, we find that 1) The anomaly detector

using the MCL21LS model progressively achieves a better

performance as more data are available, and becomes stable

in a short period of time; 2) Our detector is able to detect

different types of anomalies accurately; 3) Across all the

metrics that are evaluated, our anomaly detector performs well.

As demonstrated in Figures 1 and 2, our detector could be

effective and practical for real-world applications.
3) Performance Comparison with Other Approaches: We

also compare our self-evolving anomaly detector with other

existing approaches using learning algorithms, such as an

ensemble of Bayesian sub-models and decision tree classifiers

[11] and a hybrid 1 and 2-class SVM [9]. We list the

performance comparison results with several other approaches

in Table I. As our approach employ online learning, we

measure the average performance over the last five epochs

in comparison.

In Table I, we can see our anomaly detector with the L1LS

model achieves the best sensitivity (94.90%), but not the best

specificity. The detector using the L21LS model achieves the

best specificity (95.72%), but not the best sensitivity. This

is because the L1LS model is designed for type-agnostic

anomaly detection, while the L21LS model is tailored for type-

aware anomaly detection. Beside the better performance, a

major advantage is that our self-evolving detectors are capable

of improving/updating the detection model continuously at

36

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

et
ric

 v
al

ue
s

CPU Anomaly

accuracy
Sensitivity
Specificity

(a)

0 5 10 15 20 25

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 v

al
ue

s

Memory Anomaly

accuracy
Sensitivity
Specificity

(b)

0 5 10 15 20 25

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 v

al
ue

s

Disk Anomaly

accuracy
Sensitivity
Specificity

(c)

0 5 10 15 20 25

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
et

ric
 v

al
ue

s

Network Anomaly

accuracy
Sensitivity
Specificity

(d)

Fig. 2: Performance of an anomaly detector using the MCL21LS model. From left to right and top to bottom are the detection

results on CPU, memory, disk, and network anomalies.

runtime, which is not provided by other approaches. Further-

more, our approach can adaptively select the most relevant

attributes for future detections. These advantages make the

self-evolving anomaly detector suitable for real-world cloud

computing systems.

4) Efficiency of Anomaly Detection: Different from ex-

isting works that require labels of all training data, in our

self-evolving framework, the cloud operators only check the

detected records, which dramatically reduces the operators’

workload in real-world deployments. As faults are rare in

a system, most of the collected cloud performance records

make little contribution to updating the anomaly detector. The

overhead of our self-evolving anomaly detector is comparable

to that of the conventional counterpart.

From Figure 5, we have the following interesting ob-

servations. 1) Our self-evolving anomaly detector achieves

a similar sensitivity as the all-evolving counterpart (which

retrains a new model for future detection), indicating that our

detector is sensitive to the normal records. 2) Although their

sensitivity is comparable, the specificity of our self-evolving

anomaly detector is a little lower, as the incremental online

learning leads to smaller changes/updates compared with the

all-evolving counterpart. This is acceptable when we take the

higher overhead due to retraining into consideration. As shown

in Figure 5, we only need to label 21.06% (average over the

last 10 epochs) of the original data to achieve satisfactory

results. These results demonstrate the efficacy of our self-

evolving anomaly detectors and justify our design of using

only part of the records to update the anomaly detectors at

runtime.

C. Ablation Study

To evaluate the effectiveness of our proposed approach,

we run the anomaly detectors with different settings on the

collected cloud performance dataset. The measurements are

compiled and listed in Table II.

37

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Effects of settings on the performance of self-evolving anomaly detectors.

Self-evolving anomaly detectors (epoch size:300)
L1LS MCL21LS

SMOTE � � � � � � � �
Biased Init � � � � � � � �
Self-evolving � � � � � � � �
Sensitivity 93.70 95.38 93.98 95.05 95.47 94.93 95.71 96.06 84.81 87.49 84.81 84.01 87.49 83.47 88.10 88.94
Specificity 94.79 94.05 94.86 76.38 94.07 84.49 72.99 76.11 96.16 96.89 96.16 96.07 96.89 95.72 96.01 96.40

By leveraging SMOTE to up-sample fault data, we can see

the sensitivity is improved both for L1LS and MCL21LS.

They also achieve a higher sensitivity compared with the other

approaches.

After applying the biased initialization module, the per-

formance shows little difference, indicating that the biased

initialization module does not influence the detection accuracy.

This complies with our expectation, since this module is

mainly to reduce the labeling workload.

As a key feature of our proposed anomaly detectors, we

analyze the impact of the self-evolving (online learning and

model updating) component on the detection performance.

For the L1LS-based anomaly detector, we can see that there

is a decrease in specificity after we add the self-evolving

component. In contrast, the MCL21LS-based anomaly detector

maintains a high specificity. An interesting observation is that

the sensitivity of L1LS is often higher than its specificity,

while an opposite trend is observed for MCL21LS. A possible

reason is that the L1LS model is designed for type-agnostic

anomaly detection, while the MCL21LS model is for type-

aware anomaly detection, which can detect both anomalies

and their types.

D. Attribute Selection

We also study the performance of attribute selection. For

this purpose, we investigate L1LS and MCL21LS models. As

shown in Equations (3), (5), and (8), the objective functions

consist of two modules. The first one is a loss function that

aims to fit the distribution of the input data, and the second one

is the regularization term that aims to avoid over-fitting and

improve the model’s generalization. As a trick, we use the

L1/L21-norm based regularization instead of the traditional

squared L2-norm based regularization. This provides sparsity

[6], [32] for the pursuant weights and makes our models

able to select the most relevant attributes. To evaluate the

effect from each attribute, we rank the attributes by the

L2-norm distance of the corresponding rows in the weight

matrix. Experimentally, we tune the parameter λ in the set of

[0.01, 0.1, 1, 10]. The top ten attributes are selected.

The detailed results are provided in Tables III and IV. We

observe that the selected attributes are relevant and critical,

indicating that our approach is effective. Further research will

be performed to analyze the selected features. For example, we

will analyze the relationship between the detected anomalies

and the selected attributes, aiming to predict and prevent sys-

tem failures and improve cloud reliability. We also observe that

MCL21LS selects almost the same attributes as L1LS, when

λ ∈ {0.01, 0.1, 1}. This indicates that the selected features

would not change much for different detection tasks and could

be consistent. As a future study, We will correlate the results

from selection with the value/range of λ. Experimental results

show that when λ = 10, the weights of the attributes are

rather close. However, when λ ∈ {0.01, 0.1, 1}, the weights

are different. Therefore, we select λ as 0.01 in the experiments.

V. CONCLUSION

In this paper, we present a new online self-evolving anomaly

detection framework for cloud computing systems. It features

a self-evolving capability of updating and improving the

anomaly detector at runtime without retraining or a prior fail-

ure history. From experiments, We show that with only 21.06%

of labeled records, our self-evolving detector can achieve

a comparable performance with the existing approaches. To

improve the detection accuracy, we design an L1LS model for

type-agnostic anomaly detection and MCL1LS and MCL21LS

models for type-aware anomaly detection. In the experimental

evaluation, our anomaly detectors achieve a consistent im-

provement in both sensitivity and specificity with the self-

evolving functionality. Moreover, in contrast to the existing

approaches, our detectors have the capability of selecting the

most relevant attributes for detection refinement. By carefully

tuning the hyper-parameters of the detectors, we will further

improve the detection performance.

By combining the self-evolving capability and the designed

L1LS and MCL21LS models, our anomaly detectors naturally

integrate the online learning, labeling effort reduction, and

feature selection with anomaly detection. We also note that

due to the application of SGD, our design does not follow the

linear space. As future research, we plan to explore non-linear

kernel projection methods to analyze and further enhance our

anomaly detectors. The frequency of data collection is one

minute in our experiments. We note this is not fast enough

for certain anomalies, such as those caused by attacks. Our

design works for higher data collection frequencies. We will

evaluate the efficiency of our detectors when processing data

coming at a higher speed.

ACKNOWLEDGEMENT

This work has been supported in part by the U.S.

National Science Foundation grants CNS-2113805, CNS-

1852134, OAC-2017564, ECCS-2010332, CNS-2037982,

CNS-1563750, DUE-2225229, and CNS-1828105.

38

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Attribute selection by an anomaly detector using the L1LS model.

rank
λ = 0.01 λ = 0.1 λ = 1 λ = 10

weights Attributes weights Attributes weights Attributes weights Attributes

#1 1.1563 runq-sz 1.1378 runq-sz 0.6223 runq-sz 0.0337 oseg/s

#2 0.8523 plist-sz 0.7171 ldavg-1 0.3141 plist-sz 0.0322 %vmeff

#3 0.7992 ldavg-1 0.7068 plist-sz 0.2975 cswch/s 0.0318 %soft 4

#4 0.6899 tcpsck 0.5946 tcpsck 0.2794 tcpsck 0.0267 idel/s

#5 0.5683 cswch/s 0.564 cswch/s 0.2744 ldavg-1 0.0261 txpck/s eth0

#6 0.5178 bufpg/s 0.4248 totsck 0.2306 udp6sck 0.026 orq/s

#7 0.4177 svctm dev8-0 0.3811 bufpg/s 0.1696 %util dev253-1 0.0238 pgsteal/s

#8 0.3991 totsck 0.3382 %soft 1 0.1357 totsck 0.0222 %usr 4

#9 0.3556 %soft 1 0.3321 svctm dev8-0 0.1194 pgscank/s 0.0221 tps

#10 0.3528 kbcached 0.2987 ldavg-15 0.1112 %usr 4 0.0215 %util dev253-0

TABLE IV: Attribute selection by an anomaly detector using the MCL21LS model.

rank
λ = 0.01 λ = 0.1 λ = 1 λ = 10

weights Attributes weights Attributes weights Attributes weights Attributes

#1 2.0591 runq-sz 1.907 runq-sz 1.5179 runq-sz 0.1649 %sys all

#2 1.3902 plist-sz 1.5266 plist-sz 1.3218 ldavg-1 0.1649 rd sec/s dev253-1

#3 1.2291 ldavg-1 1.3514 ldavg-1 1.2645 plist-sz 0.1648 rxpck/s eth0

#4 1.1666 tcpsck 1.2505 tcpsck 0.9829 tcpsck 0.1648 %sys 5

#5 0.9077 cswch/s 0.8944 cswch/s 0.94 cswch/s 0.1648 %sys 2

#6 0.8969 bufpg/s 0.8323 bufpg/s 0.88 bufpg/s 0.1647 totsck

#7 0.6911 rxdrop/s eth0 0.7129 totsck 0.6897 kbbuffers 0.1647 majflt/s

#8 0.5885 await dev8-0 0.6536 rxdrop/s eth0 0.6383 totsck 0.1647 intr/s

#9 0.5835 kbbuffers 0.6048 await dev8-0 0.5802 ldavg-15 0.1647 %iowait all

#10 0.5635 kbcached 0.5586 proc/s 0.5789 await dev8-0 0.1646 tps dev253-1

REFERENCES

[1] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/.

[2] sysstat utilities: a collection of performance monitoring tools for Linux.
http://sebastien.godard.pagesperso-orange.fr/.

[3] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in Pro-
ceedings of the ACM SIGKDD Workshop on Outlier Detection and
Description, 2013.

[4] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance computing
systems,” arXiv preprint arXiv:1811.05269, 2018.

[5] A. Borghesi, M. Molan et al., “Anomaly detection and anticipation in
high performance computing systems,” IEEE Transactions on Parallel
and Distributed Systems, 2021.

[6] G. Cai, R. Zhang, F. Nie, and X. Li, “Feature selection via incorporating
stiefel manifold in relaxed k-means,” in Proceedings of the 25th IEEE
International Conference on Image Processing (ICIP), 2018.

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[8] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics, 2001, vol. 1, no. 10.

[9] S. Fu, J. Liu, and H. Pannu, “A hybrid anomaly detection framework
in cloud computing using one-class and two-class support vector ma-
chines,” in Proceedings of the International Conference on Advanced
Data Mining and Applications, 2012, pp. 726–738.

[10] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric
subspace in cloud computing infrastructures,” in Proceedings of the 32nd
IEEE International Symposium on Reliable Distributed Systems (SRDS),
2013.

[11] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors and
decision trees for proactive failure management in cloud computing
systems,” Journal of Communications, vol. 7, no. 1, pp. 52–61, 2012.

[12] T. Hagemann and K. Katsarou, “A systematic review on anomaly
detection for cloud computing environments,” in AICCC, 2021.

[13] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic anomaly
detection in the cloud via statistical learning,” arXiv preprint
arXiv:1704.07706, 2017.

[14] J. Huang and X. Yan, “Related and independent variable fault detection
based on kpca and svdd,” Journal of Process Control, vol. 39, pp. 88–99,
2016.

[15] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis.
John Wiley & Sons, 2004, vol. 46.

[16] I. Jolliffe, Principal component analysis. Springer, 2011.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[18] P. Mianjy and R. Arora, “Stochastic pca with l2 and l1 regularization,”
in Proceedings of the International Conference on Machine Learning
(ICML), 2018.

[19] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architec-
tures, requirements, and research directions,” IEEE access, vol. 6, pp.
47 980–48 009, 2018.

[20] A. B. Nassif, M. A. Talib et al., “Machine learning for anomaly
detection: A systematic review,” IEEE Access, vol. 9, pp. 78 658–78 700,
2021.

[21] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the 21st International Conference on
Machine learning (ICML), 2004.

[22] F. Palmieri, U. Fiore, and A. Castiglione, “A distributed approach to
network anomaly detection based on independent component analysis,”
Concurrency and Computation: Practice and Experience, vol. 26, no. 5,
pp. 1113–1129, 2014.

[23] G. Pang, C. Shen et al., “Deep learning for anomaly detection: A
review,” ACM Computing Surveys, vol. 54, pp. 1–38, 2021.

39

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 3: The receiver operating characteristic (ROC) curves for

the first 15 epochs.

Fig. 4: The area under the curve (AUC) for epochs.

Fig. 5: Performance of self-evolving anomaly detectors com-

pared with other detection methods.

[24] H. S. Pannu, J. Liu, and S. Fu, “Aad: Adaptive anomaly detection system
for cloud computing infrastructures,” in Proceedings of the 31st IEEE
Symposium on Reliable Distributed Systems (SRDS), 2012.

[25] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
workshop on empirical methods in artificial intelligence, 2001.

[26] L. Ruff, N. Görnitz, L. Deecke, S. A. Siddiqui, R. Vandermeulen,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,” in
International Conference on Machine Learning, 2018, pp. 4390–4399.

[27] D. Smith, Q. Guan, and S. Fu, “An anomaly detection framework for
autonomic management of compute cloud systems,” in Proceedings of
the 34th IEEE Annual Computer Software and Applications Conference
(COMPSAC), 2010.

[28] N. Subramanian and A. Jeyaraj, “Recent security challenges in cloud
computing,” Computers & Electrical Engineering, vol. 71, pp. 28–42,
2018.

[29] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45–66, 2004.

[30] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan, “Statistical techniques for online anomaly detection in
data centers,” in Proceedings of IFIP/IEEE International Symposium
on Integrated Network Management (IM), 2011.

[31] L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao,
and C. Fu, “Cloud computing: a perspective study,” New generation
computing, vol. 28, no. 2, pp. 137–146, 2010.

[32] J. Wen, X. Fang, J. Cui, L. Fei, K. Yan, Y. Chen, and Y. Xu, “Robust
sparse linear discriminant analysis,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 2, pp. 390–403, 2019.

40

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 13,2024 at 00:42:58 UTC from IEEE Xplore. Restrictions apply.

