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Abstract
A significant challenge on an exascale computer is the speed at which we compute results exceeds by many orders
of magnitude the speed at which we save these results. Therefore the Exascale Computing Project (ECP) ALPINE
project focuses on providing exascale-ready visualization solutions including in situ processing. In situ visualization and
analysis runs as the simulation is run, on simulations results are they are generated avoiding the need to save entire
simulations to storage for later analysis. The ALPINE project made post hoc visualization tools, ParaView and VisIt,
exascale ready and developed in situ algorithms and infrastructures. The suite of ALPINE algorithms developed under
ECP includes novel approaches to enable automated data analysis and visualization to focus on the most important
aspects of the simulation. Many of the algorithms also provide data reduction benefits to meet the I/O challenges at
exascale. ALPINE developed a new lightweight in situ infrastructure, Ascent.

Introduction

Prior to the exascale era, typical visualization tasks and

analysis used post hoc visualization workflows leveraging

a visualization application such as ParaView Ahrens et al.

(2005) or VisIt Childs et al. (2012). Post hoc workflows

visualize simulation output data that was previously saved

during simulation execution. Having reached the exascale

regime, scientific simulations can now produce terabytes

of data in every time step. Recent advances in I/O and

storage capabilities have not kept up with the increases in

compute power. Given these challenges, in situ approaches

are a viable and necessary solution to meeting the needs of

high performance computing applications. In situ approaches

are run during a simulation, possibly at each time step,

processing simulation outputs as they are generated. In

situ analysis and visualization approaches can be used to

downselect and reduce data, identify features of interest,

produce visualizations, and generate smaller extracts that can

be used in post hoc workflows. In situ infrastructures provide

the necessary application and systems interfaces to support in

situ workflows.

The contributions of the Exascale Computing Project’s

(ECP) ALPINE project were:

1. Made post hoc visualization tools exascale ready

2. Developed Exascale visualization and analysis algo-

rithms that will be critical for ECP Applications.

3. Developed an Exascale-capable infrastructure for the

development of in situ algorithms and deployment into

existing applications, libraries, and tools.

4. Integrated other ECP Software Technology data and

visualization, and programming model products into

our infrastructure.

5. Integrated our algorithms and infrastructure into ECP

Applications.
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This paper is structured to describe these contributions

with sections on: in situ infrastructure, in situ algorithms,

software integrations and application integrations.

ALPINE Infrastructure
A key challenge of ECP was achieving high performance,

portable, thread-based parallelism on graphical processing

units (GPUs). The Visualization Toolkit (VTK) is a

open source visualization library that offers full-featured

collection of visualization and analysis filters. VTK

algorithms are used by ParaView and VisIt. A distributed

memory version of VTK was previously developed to

run scalably on supercomputers offering across-node

parallelism. The VTK-m Moreland et al. (2016) project, a

companion ECP project, developed portable multi-threaded

implementations of key VTK visualization and analysis

algorithms for on-node parallelism. ALPINE infrastructure

has developed a layer on top of the VTK-m library for cross-

platform portability and performance. This layer is where all

ALPINE algorithms are implemented, and it is deployed in

ParaView, Catalyst, VisIt, and Ascent. Thus all development

effort by ALPINE is available in all of the tools and, by

leveraging VTK-m, addresses issues with portability and

many-core architectures. (Note: post-ECP, VTK-m is now

available as Viskores Moreland et al. (2024).)

ParaView
ParaView 5.11.1, the open source platform for scientific

visualization, was deployed on the Frontier supercomputer

at the Oak Ridge Leadership Computing Facility (OLCF),

enabling analysis and rendering workflows which take

advantage of the exascale computing capabilities of the

facility.

To enable ParaView to utilize GPUs on the exascale

machines, a new set of “accelerated filters” were imple-

mented. These filters serve as wrappers over VTK-m’s filters.

These accelerated filters readily use exascale hardware and

have been demonstrated to be performant. The accelerated

filters are available in ParaView as plugins which can be

loaded on demand, and in case of failures, a fallback has

been provided to use the traditional (VTK) filters. Addition-

ally, these filters also handle all the necessary conversions

between the ParaView and VTK-m data models without

unnecessary data movement (zero-copy). Deployment was

enabled by new developments in Spack under the ECP DAV-

SDK (software develoment kit) project.

Analysis and visualization workflows were validated on

massive datasets, such as that shown in Figure 1, as well

as synthetic structured grid datasets composed of over 4.4

trillion elements, taking up over 16.4TB per timestep on disk.

ParaView was able to take advantage of the considerable

GPU resources on Frontier for accelerated analysis filters

employing VTK-m.

VisIt
VisIt is an interactive, scalable, distributed visualization and

analysis tool. VisIt uses the Visualization Toolkit (VTK) to

provide much of its visualization and analysis capabilities.

This functionality is encapsulated in a filter architecture.

Figure 1. A single timestep from a simulation of a pulsar
conducted in WarpX is rendered in ParaView running remotely
on Frontier at OLCF. This dataset is composed of a 5.75B
element AMR mesh totaling 1.16TB of data. This visualization
takes advantage of GPU accelerated VTK-m analysis filters
employing 128 nodes and a total of 512 GPUs. This data is
courtesy of Revathi Jambunathan at Lawrence Berkeley
National Lab.

VisIt uses distributed memory parallelism using MPI to scale

its functionality to the largest DOE leadership class systems.

The main thrust of the VisIt effort in ECP ALPINE was

to leverage on node parallelism using VTK-m, culminating

in the release of VisIt 3.3.3 on Frontier. The user can now

specify, either through the Python scripting interface or the

graphical user interface, whether to use the traditional VTK

filters or to use VTK-m filters when possible.

VisIt’s internal filters were enhanced to support using

either VTK or VTK-m. When VTK-m is enabled and a filter

supports VTK-m then it converts the dataset to VTK-m if

necessary and then uses the VTK-m filter. The conversion

is done using zero-copy constructs wherever possible to

minimize data duplication. Several of the most heavily used

filters were converted to use either VTK or VTK-m including

Contour, Slice, Clip, Isovolume and Threshold.

VisIt’s Spack package was enhanced to support building

VTK-m with the Kokkos backend using HIP. Additionally,

several other optional VisIt dependencies were added to

VisIt’s Spack package including Conduit Harrison et al.

(2022) and MFEM Anderson et al. (2021).

To demonstrate running at scale using the AMD APUs on

Frontier, VisIt was used to generate an image, Figure 3, from

a 2048 domain WarpX calculation with 70 billion zones.

VisIt was run on 512 nodes using 2048 APUs.

Ascent
Developed under the ALPINE project, Ascent is a flyweight

in situ visualization and analysis library for multi-physics

simulations targeting current and next-generation HPC

architectures. It was designed and built from the start to

leverage GPUs for on-node parallelism. Ascent productized

and expanded the flyweight software architecture prototype

of the Strawman Larsen et al. (2015) Larsen et al. (2017) in

situ visualization proxy.

Ascent aims to be easy to use, providing three main use

cases: making pictures, transforming data, and capturing
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Figure 2. Selecting the VTK-m backend in VisIt.

Figure 3. Visualization from the 70 billion cell WarpX Gordon
Bell-winning simulation Fedeli et al. (2022) visualized with 2048
GCDs on Frontier using VisIt.

data. To pass data to Ascent, Ascent leverages Conduit

Blueprint to intuitively describe simulation mesh data.

Ascent was the first production infrastructure to demonstrate

Conduit Blueprint as a viable strategy for sharing simulation

mesh data in situ. The Ascent team worked closely with ECP

Co-Design Centers to create easy paths to publish simulation

mesh data to Ascent from codes using AMReX Zhang et al.

(2019) or MFEM.

Ascent supports the most common visualization and

analysis operations, provides infrastructure to integrate

custom analysis, and creates several types of extracts

including HDF5 The HDF Group files and Cinema

databases Ahrens et al. (2015). Ascent uses Conduit to

provide C, C++, Python, YAML, and Fortran APIs to

describe which visualization actions to execute. Ascent

requires minimal dependencies resulting in lower memory

requirements than other current tools, resulting in a flyweight

design with a small memory footprint, while leveraging

libraries that provide parallel performance.

To achieve performance and portability, Ascent leverages

the VTK-m library and RAJA Beckingsale et al. (2019) for

on-node parallelism, and MPI (Message Passing Interface)

for distributed-memory coordination. VTK-m provides a

suite of visualization and analysis algorithms, as well as

zero-copy capabilities and the ability to pass device-pointers,

allowing for efficient exploitation of shared resources.

Ascent was also a platform for research into in situ triggers

Larsen et al. (2018) Larsen et al. (2021) Lawson et al.

(2021), which provide flexibility to adapt visualization

actions and help address a priori constraints that can limit

batch use of in situ tools.

Catalyst
Under ECP ALPINE, the Catalyst Ayachit et al. (2021)

in situ analysis and visualization platform was expanded

and matured to meet the requirements of advanced exascale

simulation workflows.

The standalone Catalyst 2.0 API leverages Conduit

Blueprint to describe simulation data and manage its

transmission to runtime selectable backends which execute

analysis and visualization workflows. By using the

same library as Ascent to manage data description and

transmission, simulation applications can use both in situ

libraries with little changes to their codebase, significantly

increasing the surface area for both Catalyst and Ascent

across the exascale simulation workflow ecosystem. This

benefit was showcased by the rapid integration of a

Catalyst in situ analysis adapter to MFiX-Exa, a massively

parallel computational fluid dynamics–discrete element

model (CFD-DEM) code, to study multiphase flows Musser

et al. (2022). Results of that integration are shown in the

ALPINE Integrations Highlights section later in this article.

Further increasing the usability and applicability of

Catalyst, language support for Python and Fortran were

added to the Catalyst 2.0 API under ECP ALPINE. This

effort provided bindings so that the Catalyst 2.0 API can

be called from Python and Fortran based simulation codes

directly. This development leveraged the existing Conduit

bindings for the two languages.

One of the key advantages of Catalyst is runtime selectable

backends. Here, a user can decide at simulation startup

whether to use, for instance, the ParaView Catalyst backend

for full featured leadership class analysis and visualization

workflows, or the ADIOS Catalyst backend, targeting in-

transit workflows for asynchronous analysis activities, or

the new Ascent backend developed under ECP ALPINE,

for direct access to GPU accelerated Ascent tools. Because

Catalyst 2.0 utilizes Conduit in similar ways to Ascent, it

was natural to expose Ascent as a backend for Catalyst,

allowing existing Catalyst users to easily employ Ascent in

situ workflows.

Task-based Composable Workflows
In the realm of in situ processing, where analysis routines

seamlessly integrate with simulation code stacks, a notable

distinction arises. Unlike simulation code, analysis and

visualization routines are generally applicable across a

broad spectrum of applications. However, complications

emerge when different simulation codes operate on varied
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architectures or runtimes, leading to the constant need

to tailor analysis code to specific hardware. A multi-

runtime abstraction layer called BabelFlow Petruzza et al.

(2018) was introduced to address these challenges, offering

developers a straightforward dataflow-based interface for

the implementation of parallel algorithms. By utilizing task

graphs, BabelFlow explicitly delineates parallel execution

sections of the algorithm and their interrelations.

This framework has been integrated into Ascent to allow

the implementation of task based analysis and visualization

algorithms and has been extended to support the composition

of dataflow graphs into more complex workflows. This

extension, called LegoFlow Shudler et al. (2021), currently

provides task based in situ workflows for: (i) a distributed

rendering and image compositing using Devil Ray DevilRay

and VTK-h VTK-h (described in Shudler et al. (2021)); and

(ii) a merge tree based segmentation and feature statistics

computation. The merge tree based analysis segments the

domain into features according to threshold values (i.e., level

sets). This kind of segmentation has been proven to be

useful in a number of scenarios, such as extracting extinction

regions in turbulent combustion simulations, or identifying

and tracking eddies in the oceans. We have extended the

merge tree computation workflow Petruzza et al. (2018) to

compute statistics of the features extracted using a streaming

statistics library Shudler and Bremer (2022).

ALPINE Algorithms

The development of innovative algorithms to support the

needs of exascale applications was an important facet of

ALPINE’s contributions to ECP. Algorithm development

generally began with a basic Python or C++ prototype.

ECP science application partners shared early datasets of

interest which were used for prototype testing and to

gauge the impact of algorithm for potential use. In order

for algorithms to be accessed in both post hoc and in

situ infrastructures, final algorithm productization required

converting the algorithm to a VTK-m filter with associated

unit testing.

• Topological analysis: These methods are used to detect

features in the data and adaptively steer visualizations.

For example, contour trees can identify the most

significant isosurfaces in complex simulations and

then the resulting visualizations can use these

isosurfaces.

• Adaptive sampling: These methods can be used to

guide visualizations and extracts to the most important

parts of the simulation, significantly reducing I/O.

• Statistical feature detection: These methods use

distribution-based approaches and statistical similarity

measures to identify and isolate features of interest.

Significant data reduction is possible by only saving

the statistical representations of the data.

• Lagrangian flow analysis: This method is used

to analyze fluid flow, allowing more efficient and

complete tracking of particles over time. It can save

time-varying vector field data with higher accuracy

and less storage than the traditional approaches

• Optimal viewpoint selection: These metrics can be

used to automate visualization decisions in situ,

minimizing visualizations written to disk.

• Rotational invariant pattern detection algorithm.

Topological analysis
Visualization increasingly requires analytic tools for data

beyond human comprehension: tools such as the contour
tree, Reeb graph and merge tree which summarize the

development of features in the data set as the isovalue varies

are therefore of prime interest. However, the application of

these tools has been limited by the scalability of often serial

algorithms, in particular the standard serial algorithm Carr

et al. (2003) for merge and contour trees.

Our goal in ECP ALPINE was to use the contour

tree for selection of isosurfaces on exascale machines, see

Figure 4. This required algorithms using both on-node

(shared memory) parallelism and multi-node (distributed)

parallelism. We achieved this through a hybrid algorithm,

using data parallel primitives, VTK-m and DIY Morozov and

Peterka (2016) for portability.

To do so, we introduced (data-) parallel peak pruning

(PPP) Carr et al. (2021), exploiting parallel-friendly proper-

ties of monotone paths instead of the serializing properties

of contours previously used Carr et al. (2003). However,

computing the contour tree alone is insufficient, as it captures

only critical points where topology changes, where analysis

requires further information about “regular“ points where

topology is invariant. We therefore extended this algorithm

to compute the fully-augmented contour tree Carr et al.

(2022a), based on data-parallel hyperstructures for acceler-

ation. With these, we were able to implement data-parallel

data analysis using the contour tree and tie it into the Cinema

database for single-node visualization Hristov et al. (2020).

Based on an efficient single-node contour tree algorithm,

we then developed a distributed, hierarchical representation

of the contour tree Carr et al. (2022b), based on the

hyperstructure used in shared-memory. This in turn allowed

us to extend analysis and visualization tools to hybrid

distributed parallelism, supporting geometric computations,

branch decomposition and selection of the most relevant

contours. Finally, we coupled our contour-tree based analysis

using Ascent to the WarpX simulation code and ran tests, see

Figure 5.

Both, the single node contour tree algorithm as well as the

distributed version are available to anyone through VTK-m.

Adaptive Sampling
Sampling is an in situ data reduction approach for scalar

datasets generated by large-scale scientific simulations.

Under ECP, ALPINE developed several data-driven sam-

pling methods. The most generic sampling method essen-

tially analyzes the scalar data distribution and local smooth-

ness property of data to automatically assign importance to

the scalar values. Points in the field are accepted (i.e, kept

for post hoc analysis) or rejected (i.e., removed during in situ

processing) based on their importance. Typically, important

features are the rarer events. Thus the automated sampling

approach assigns higher importance to the low probability

scalars and lower importance to the higher frequency scalars.
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Figure 4. Comparing contours for equally spaced isovalues to contours selected using topological analysis via the contour tree for
a Warp simulation. This early illustrative was example created via post hoc analysis of a Warp simulation.

Figure 5. Small scale run of contour selection using topological
data analysis via the contour tree. This image was created
using a WarpX simulation instrumented with Ascent. This is a
32 node run on Frontier using 256 MPI ranks.

The other aspect of importance is based on local

smoothness or local gradient information. High gradient

regions often are of high importance to the domain experts

as they can indicate feature boundaries or regions of high

turbulence or mixing. The high gradient sampling scheme

exploits local smoothness to assign higher importance to

high gradient regions alongside the previously mentioned

value-based importance. An example of this sampling

scheme is shown in Figure 6. Figure 6a shows the volume

rendering of density field from Nyx simulation and Figure 6b

shows the particles remaining after applying the data-driven

sampling scheme. As can be seen in those two figures, the

sampled particles follow the structures of the density field

quite closely.

The sampling algorithm is available through Ascent

as a VTK-m filter. Two versions of this algorithm are

available: a histogram-based sampling using importance

and a histogram+gradient-based sampling. The histogram-

based version emphasizes the scalar value distribution alone,

whereas the histogram+gradient-based version considers

Figure 6. Left: the density field from Nyx simulation; right: the
sampled particles data from the density field.

the joint distribution of both the scalar values as well

as the gradient magnitude values. Including the scalar

value distribution helps preserve the low-frequency regions

of the data, while gradient magnitudes emphasize the

smoothness of the data in those regions. Therefore,

the histogram+gradient-based version is generally better

at retaining important features of the data than just

the histogram-based version of sampling algorithm. The

interested reader is directed to Biswas et al., Biswas et al.

(2022, 2021) for further information.

Lagrangian Flow Analysis

Lagrangian analysis is an in situ data reduction operator

used for time-dependent vector field data generated by a

simulation code. With the objective of storing/representing

fluid dynamics data in its Lagrangian representation, the

Lagrangian analysis functionality is implemented as a

VTK-m filter. The filter operates by placing seeds and

calculating the corresponding particle trajectories in the flow

volume. These particle trajectories encode the underlying

behavior of the flow field. Calculating and extracting a

Lagrangian representation of a flow field offers significantly

improved accuracy-storage propositions for time-dependent

flow visualization compared to the traditional (Eulerian)

method. Thus, the Lagrangian analysis filter enables data

reduction of large vector fields while maintaining high

data integrity. Computing a Lagrangian representation

using in situ processing and storing a reduced flow map
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representation of the vector field can potentially address the

shortcomings of the traditional approach.

The VTK-m Lagrangian flow analysis filter produces flow

maps when provided with time-varying vector field data

and manages particles on a per rank basis. The flow maps

themselves consist of the start locations and displacement

of each particle over several simulation iterations, thus

capturing the behavior of the particle over an interval of

time. To maintain domain coverage, particles are reset

to their initial start position after each interval. The

flow maps can be interpolated directly to generate new

particle trajectories accurately. The efficacy of the approach

has been demonstrated on multiple computational fluid

dynamics applications including cosmology, seismology,

and hydrodynamics. The interested reader is invited to

peruse Sane et al. (2018), Sane et al. (2021a), Sane et al.

(2021b), Sane and Childs (2022), Sane et al. (2022) for

example use cases.

Optimal Viewpoint Selection
Optimal viewpoint selection is an in situ algorithm for

automating camera placement for in situ visualization of

multi-physics HPC simulations. The algorithm operates on

mesh data and uses Viewpoint Quality (VQ) metrics to

evaluate how much insight a camera position provides.

Typically, VQ metrics analyze some visible aspect of the

visible data, such as the geometry or field data. In order

to determine which VQ metrics best represent choices a

domain scientist would make, a user study (complying with

institutional requirements for human subject research) with

large data analysis and visualization experts was performed

and resulted in a new, entropy-based VQ metric that

best predicts user preference Marsaglia et al. (2021). The

entropy-based VQ metric is a combination of three entropy

calculations: entropy of the visible field data, entropy of the

visible depths (measured from the camera to the geometry),

and the entropy of the visible shading values.

Optimal viewpoint selection was implemented as a filter

in the Ascent in situ visualization and analysis framework.

The VQ metrics were written using VTK-m to guarantee

shared-memory performance and portability, as well as MPI

for efficient distributed-memory parallelism Marsaglia et al.

(2022b). Optimal viewpoint selection can be useful for

exploratory purposes when there is no a priori knowledge

of the simulation, it can also be used as a trigger when the

simulation has changed Marsaglia et al. (2022a). However,

more importantly, the optimal viewpoint selection minimizes

the amount of data written to disk, reducing a large-scale

simulation time step to a single, insightful image.

Statistical Feature Detection
The Statistical feature detection algorithm processes three-

dimensional (3D) particle fields in situ and transforms the

data into a feature similarity field, which is stored to disk

for further post hoc analysis. The current version of the

algorithm works on a particle field; however, the algorithm

can be easily applied to any regular-grid scalar data with

minor modifications. Starting with analyzing data in situ

and detecting features of interest to the user, the algorithm

then outputs a statistically summarized data set that is

significantly smaller in size compared to the raw particle

data. The summarized data can be analyzed interactively in

post hoc analysis for further feature analysis. This algorithm

follows the feature-driven data reduction paradigm to

achieve significant data reduction while preserving important

information so that post hoc analysis can be done on the

reduced data.

The algorithm works on an unstructured particle field

and a feature is represented as a statistical probability

distribution. Representing the feature in the form of a

distribution allows the application scientists to specify a

descriptor of the features of interest without needing to

precisely define it. In many application domains, a precise

description of a feature is not readily available due to the

complexity of the scientific data. A statistical technique is

a flexible solution for feature detection. An interactive user

interface can be used where the users can move a cube object

freely inside the data and put it in a region where they

are interested. Next, a distribution representation (currently

Gaussian distribution is used, but any other distribution

model can be used) is created from the data points within

that selected cube region and is used as the target feature

descriptor.

The ECP use case was the MFIX-Exa CFD-DEM code.

The feature of interest is an area of low density or a bubble.

For this particle-based code, the algorithm takes a particle

field as input and first transforms it into a regular grid particle

density field. The density field is passed through a 3D super

voxel generating algorithm, called Simple Linear Iterative

Clustering (SLIC) that produces super voxels from the

particle density field. A Gaussian distribution is modeled for

each super voxel. Finally, a distribution similarity measure

is used to compute a statistical similarity field between

each super voxel distribution and the user-provided target

feature distribution. These steps can be seen in Figure 7. The

interested reader is directed to Dutta et al. Dutta et al. (2022a)

and Dutta et al., Dutta et al. (2022b) for details.

Rotational Invariant Pattern Detection
Pattern detection can be used to identify features in a

simulation in situ to reduce the amount of data that needs

to be written to disk. For simulations where physically

meaningful patterns are already known, the orientation of the

pattern may not be known a priori. Pattern detection can be

unnecessarily slowed if the pattern detection algorithm must

search for all possible rotated copies of a pattern template.

Therefore, rotation invariance is a critical requirement.

Moment invariants can achieve rotation invariance without

the need for point to point correlations, which are difficult to

generate in smooth fields Bujack and Hagen (2017); Bujack

et al. (2022).

The rotational invariance feature detection algorithm can

take either scalar or vector fields and requires a pattern

template as input. An example using the same MFIX-Exa

dataset defined the search pattern to be a density boundary

between a high density and low density field. The first

step of the VTK-based filter computes the moments while

the second step performs a normalization based on the

given pattern that makes them invariants. Then, the third

step computes the similarity between each part of the

simulation and the template. Figure 8 shows the original
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Figure 7. The steps of the in situ statistical feature detection algorithm from the raw data to the similarity field.

pattern template and data along with the bubbles identified

with this algorithm. The interested reader can find more

details in Tsai et al., Bujack et al. (2018); Tsai et al. (2020).

Figure 8. Left: the density boundary as the search pattern;
middle: the original particle dataset; right: the identified bubbles
in the data.

ALPINE Software Technology Integration
Highlights
ECP’s data and visualization (DAV) portfolio is a software

stack of products designed to support data management,

data analysis, and visualization needs at exascale. With the

emphasis on interoperability, ALPINE infrastructures can

be used to link client applications to capabilities across the

DAV portfolio and other ECP capabilities. In particular,

ALPINE relies on VTK-m for cross-platform portability

and visualization filters. By integrating ECP co-design

codes such as AMReX Zhang et al. (2019) into ALPINE

infrastructures, AMReX-based applications can easily access

ALPINE capabilities. All ALPINE infrastructures support

HDF5 for I/O and, through HDF5 The HDF Group, access

to the zfp Lindstrom (2014) and SZ Di and Cappello (2016)

compressors. Cinema databases Ahrens et al. (2015) can

be exported in situ from ALPINE infrastructures to support

post hoc visualization and analysis workflows. Ascent, in

addition to VTK-m Moreland et al. (2016) for portability,

includes a RAJA Beckingsale et al. (2019) backend. The

MFEM Anderson et al. (2021) high-order finite element

library has also been integrated into Ascent. Through the

DAV Software Development Kit DAV SDK, all ALPINE

capabilities are available in the Extreme-scale Scientific

Software Stack (E4S) Heroux et al. (2023) for post-ECP

sustainability.

ALPINE Application Integration Highlights
The success of our project is demonstrated by the integration

of our in situ algorithms and infrastructure into ECP

applications. In this section, we highlight our integration

with the Combustion-Pele, WarpX, and MFIX-Exa projects.

Integration of Combustion-Pele with Ascent and
ExaLearn
An anomaly can be loosely defined as an occurrence of

something that is “abnormal”, “atypical” or “unexpected”.

Here, we have implemented a methodology that is centered

on analyzing high-order joint moments in multi-variate

combustion datasets, and then applied it to the problem

of identifying the onset of autoignition in a combustible

mixture in situ. The methodology is based on the co-

kurtosis algorithm by Aditya et al. (Aditya et al. 2019)

for calculation and analysis of fourth-order joint moments.

Kurtosis is a measure of either existing outliers (for the

sample kurtosis) or of the propensity to produce outliers

(for the kurtosis of a probability distribution; Westfall

(2014)). The integration between the co-kurtosis calculation,

implemented via ExaLearn Alexander et al. (2021) into

the exascale code for reacting flows Pele Henry de

Frahan et al. (2024) was powered by ALPINE Ascent,

the flyweight visualization and analysis infrastructure for

multi-physics HPC simulations. Thanks to the combination

of the adaptive mesh refinement granularity in Pele with

the statistical outlier detection capability of co-kurtosis, the

method demonstrated a considerable speed-up compared to

traditional post-processing techniques when tested for the

identification of ignition kernels from the injection of a

Diesel-like fuel in air (Borghesi et al. 2018). Using all

AMR levels and all chemical species, the entire process of

identification was shown to take only 2% per solver time

step in its target run (2.4 Trillion degrees of freedom) on

56,800 GPUs, thus demonstrating its in situ effectiveness.

The metrics generated at runtime for AMR levels 3 to 6 are

shown in Figure 9, where each AMR block (each small cube

shown) is comprised of between 163 and 643 cells.

WarpX Visualization Pipeline
WarpX is an award winning particle-in-cell simulation code

that studies advanced particle acceleration in laser-driven

plasma wakefields Fedeli et al. (2022) in order to advance
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Figure 9. Simulation of direct injection of four jets of
prevaporized n-dodecane fuel-air mixture into a methane-air
mixture in an internal combustion engine cylinder. The domain
is discretized using 60.2 Billion cells, with a total of 2.4 Trillion
degrees of freedom. (a) Co-kurtosis metric M for AMR blocks in
sixth level of refinement, colored by value (from blue to red); (b)
Detailed view of AMR blocks in the highest level of refinement
(level 6) colored by anomaly metric M (from blue to red).
Zoomed-in view (green circle) shows the AMR blocks in more
detail; (c) Same detailed view as in panel b, but only for blocks
with anomaly metric M > 0.65. Note: Figures were produced a
posteriori using Python and Paraview.

the future of high-energy physics colliders Albert et al.

(2021). WarpX is built on top of the AMReX library and

is an example of the value of integrating the co-design

AMReX suite into ALPINE infrastructures. In this case,

the integration of Ascent and AMReX created an easy

path to publish WarpX simulation mesh data to Ascent.

WarpX was integrated with Ascent and tested on OLCF’s

supercomputer, Frontier, at varying scales. Figures 10 and 11

are in situ renderings from Ascent of a staged laser-wakefield

accelerator in a boosted reference frame. In these images

an electron beam (orange-green) is accelerated to the right

through multiple stages to high energies. And in the plasma

stages (gray), the strong traversal focusing fields are shown

in red-blue. To create these images, Ascent utilized VTK-

m Moreland et al. (2016) to first transform the data via

scaling, isosurfacing, and clipping, before rendering the final

images. Ascent also utilized RAJA Beckingsale et al. (2019)

to combine multiple electron fields into one to allow for

volume rendering.

Figure 10. Visualization of a staged laser-plasma accelerator
simulation. Shown is the strong traversal focusing fields
(red-blue) in the first plasma stage (gray) and injected into this
structure is an electron beam (orange-green) that is accelerated
to the right to high energies. This in situ rendering of a later time
step of the WarpX simulation executed on 552 GPUs across 69
nodes of Frontier.

Figure 11. This in situ rendering of an early time step of the
WarpX simulation was executed on 4,416 GPUs across 552
nodes of Frontier.

MFIX-Exa In situ Visualization with Catalyst
MFIX-Exa is a multiphase flow code developed to utilize

the massive scale parallelism offered by the modern

supercomputers while being performant and portable Musser

et al. (2022). It relies on the AMReX Zhang et al. (2019)

library, which provides a collection of efficient iterators,

linear solvers, and communication routines on structured

data and particles. To address the data management

challenges posed by massive parallelism, MFIX-Exa added

support for in situ visualization and analysis using Catalyst.

This integration benefited both the products mutually as

Catalyst and its ParaView backend unlocked access to an

almost exhaustive suite of visual analytics for MFIX, and

to support the needs of MFIX-Exa, Catalyst had to develop

new protocols to handle AMReX data. This integration was

tested on varying scales, and Catalyst was able to run on

up to 649 nodes while using 5187 GPUs on Frontier. Figure
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12 showcases the type of output images generated using this

integration.

Figure 12. The MFIX-Exa team ran several intermediate-sized
simulations using the Catalyst integration to generate in situ
graphics. The above visualizations were demonstrated utilizing
30 nodes and 239 GPUs. This figure shows (left) rendering of
the mesh outline of the reactor and (right) rendering of particles
of the fluid phase volume fraction within the chemical looping
reactor during the initial condition. Darker colors represent
areas higher in solids concentration, whereas brighter colors
are areas with few particles.

Conclusions
Exascale supercomputing architectures challenged the

traditional post hoc visualization and analysis approaches

because it is difficult to save simulation outputs at the

rate they are generated. In addition, GPU accelerators

required new algorithm and infrastructure implementations.

The ALPINE project met these challenges by offering in situ

algorithms and infrastructures. ALPINE infrastructures and

algorithms are available to the community and can be found

at the following sites:

• ParaView: https://www.paraview.org/
• ParaView GitLab: https://gitlab.kitware.
com/paraview/paraview

• Catalyst Documentation: https://
catalyst-in-situ.readthedocs.io/
en/latest/

• VisIt: https://visit-dav.github.io/
visit-website/

• Ascent GitHub: https://github.com/
Alpine-DAV/ascent

• Ascent Documentation: https://ascent.
readthedocs.io/en/latest/

• Algorithms: https://github.com/
Alpine-DAV/algorithms/tree/master
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Rübel O, Durant M, Favre JM and Navrátil P (2012) Visit:

An end-user tool for visualizing and analyzing very large data.

In: High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Chapman and Hall/CRC, pp. 357–372. DOI:

10.1201/b12985.

DAV SDK (2023) Ecp data and visualization sdk. https://

ecp-data-vis-sdk.github.io/. Accessed 1/15/24.

DevilRay (2019) Devil Ray – A Portably Performant Ray Tracer

for High-Order Element Visualization. URL https://

github.com/LLNL/devil_ray.

Di S and Cappello F (2016) Fast error-bounded lossy hpc data

compression with sz. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). pp. 730–739.

DOI:10.1109/IPDPS.2016.11.

Dutta S, Lipsa D, Turton TL, Geveci B and Ahrens J (2022a)

In situ analysis and visualization of extreme-scale particle

simulations. In: Anzt H, Bienz A, Luszczek P and Baboulin

a (eds.) High Performance Computing. ISC High Performance
2022 International Workshops. Cham: Springer International

Publishing, pp. 283–294.

Dutta S, Turton T, Rogers D, Musser JM, Ahrens J and

Almgren AS (2022b) In situ feature analysis for large-scale

multiphase flow simulations. Journal of Computational
Science 63: 101773. DOI:https://doi.org/10.1016/j.jocs.2022.

101773. URL https://www.sciencedirect.com/

science/article/pii/S1877750322001533.

Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet

C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C,

Sato M, Zaim N, Zhang W, Vay JL and Vincenti H (2022)

Pushing the Frontier in the Design of Laser-Based Electron

Accelerators with Groundbreaking Mesh-Refined Particle-In-

Cell Simulations on Exascale-Class Supercomputers. In: SC22:
International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–12. DOI:10.1109/

SC41404.2022.00008. Winning Paper, 2022 ACM Gordon Bell
Prize.

Harrison C, Larsen M, Ryujin BS, Kunen A, Capps A and Privitera

J (2022) Conduit: A successful strategy for describing and shar-

ing data in situ. In: 2022 IEEE/ACM International Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV). Los Alamitos, CA, USA: IEEE

Computer Society, pp. 1–6. DOI:10.1109/ISAV56555.2022.

00006. URL https://doi.ieeecomputersociety.

org/10.1109/ISAV56555.2022.00006.

Henry de Frahan MT, Esclapez L, Rood J, Wimer NT, Mullowney

P, Perry BA, Owen L, Sitaraman H, Yellapantula S, Hassanaly

M, Rahimi MJ, Martin MJ, Doronina OA, A SN, Rieth M, Ge

W, Sankaran R, Almgren AS, Zhang W, Bell JB, Grout R, Day

MS and Chen JH (2024) The pele simulation suite for reacting

flows at exascale. Proceedings of the 2024 SIAM Conference on
Parallel Processing for Scientific Computing : 13–25DOI:10.

1137/1.9781611977967.2. URL https://epubs.siam.

org/doi/abs/10.1137/1.9781611977967.2.

Prepared using sagej.cls



14 Journal Title XX(X)

Heroux M, Shende S and Willenbring J (2023) The

extreme-scale scientific software stack. https:

//ecp-data-vis-sdk.github.io/. Accessed

1/15/24.

Hristov P, Weber GH, Carr HA, Rübel O and Ahrens JP (2020)
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