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Abstract—Federated learning (FL) is a collaborative machine
learning (ML) paradigm based on persistent communication
between a central server and multiple edge devices. However,
frequent communication of large ML models can incur consid-
erable communication resources, especially costly for wireless
network nodes. In this paper, we develop a communication-
efficient protocol to reduce the number of communication in-
stances in each round while maintaining convergence rate and
asymptotic distribution properties. First, we propose a novel
communication-efficient FL algorithm that utilizes an event-
triggered communication mechanism, where each edge device
updates the model by using stochastic gradient descent with local
sampling data and the central server aggregates all local models
from the devices by using model averaging. Communication
can be reduced since each edge device and the central server
transmits its updated model only when the difference between
the current model and the last communicated model is larger
than a threshold. Thresholds of the devices and server are not
necessarily coordinated, and the thresholds and step sizes are not
constrained to be of specific forms. Under mild conditions on loss
functions, step sizes and thresholds, for the proposed algorithm,
we establish asymptotic analysis results in three ways, respec-
tively: convergence in expectation, almost-sure convergence, and
asymptotic distribution of the estimation error. In addition, we
show that by fine-tunning the parameters, the proposed event-
triggered FL algorithm can reach the same convergence rate as
state-of-the-art results from existing time-driven FL. We also
establish asymptotic efficiency in the sense of Central Limit
Theorem of the estimation error. Numerical simulations for linear
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regression and image classification problems in the literature are
provided to show the effectiveness of the developed results.

Index Terms—Federated learning, asymptotic convergence,
event-triggered, stochastic gradient descent, distributed
optimization.

I. INTRODUCTION

ACHINE learning (ML) algorithms have now been

widely employed in applications as wide as image
recognition, natural language processing, automatic speech
recognition, and so on. Since data used for training ML models
are often generated at edge devices (e.g., cameras, smart phones
and wearable devices), centralized machine learning algorithms
relying on data collection from all devices at a central server
may face some problems: 1) The algorithms are not efficient
when the device number is very large, because the computation
and storage burden of central servers are heavy; 2) A centralized
implementation of the algorithms may not be feasible for pri-
vacy and similar concerns. For example, in medical diagnosis,
some patients may not like to share their data due to privacy
concerns even if such sharing were allowed by regulations;
3) Collecting an enormous amount of raw data (e.g., videos
and images) at a central server can substantially increase the
communication burden. Distributed learning algorithms have
been developed to tackle the above problems.

Federated learning (FL) is a popular distributed learning
architecture that enables multiple edge devices holding local
data to jointly train a common machine learning model without
explicitly exchanging or sharing the data [1], [2], [3], [4], [5].
The delay minimization for FL. over wireless communication
networks is investigated in [6], [7], [8]. The joint optimization of
energy consumption and completion time in federated learning
is study in [9]. A typical mathematical model for these works
is introduced as follows. Consider a central server and n edge
devices, where device j has its local data {¢; (t)}ZL and a
corresponding loss function fj(w) € R is defined as follows

) = = 3 . 0).

J =1

where w € R™ is the model parameter! to train and
fj(w,&;(t)) € R yields the loss from inaccurate predictions in
using the data &;(¢). Common choices of f;(w,§;(t)) are the

'In this paper, the ‘model parameter’ to train is called ‘model’ for brevity.
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mean-square error loss in linear regression problems and the
cross-entropy loss (also called logarithmic loss) in multi-class
classification problems. The server is deployed to aggregate
all the models trained at the devices with their individual data
and communicate this aggregated model to all devices for the
minimization of a global loss function. Specifically, the goal
is to design an algorithm through the collaboration between
the server and the devices to solve the following optimization
problem:

w™ = arg minimize
weR™

)2 S fw).
j=1

The optimum w* thus corresponds to the globally trained
model.

A major advantage of FL is that the data distributions of
different devices could be different, i.e., £;(t) may follow dif-
ferent distributions for different j, j = 1,2, ..., n. For instance,
some devices may collect medical diagnosis data while some
others may be wearable devices collecting exercising data. A
typical FL algorithm involves multiple communication rounds.
In each round, all edge devices upload their models trained
with individual data to the central server. The central server
aggregates the models from the devices and broadcast this
aggregated model to the edge devices. Especially for large-
scale training models (e.g., deep neural networks), frequently
transmitting heavy models between the server and the devices as
in traditional FL can impose considerable communication cost.
In this paper, we aim to study communication-efficient FL to
solve problem (1).

A. Related Work

There are a number of methods in the literature of FL
for alleviating communication issues. One category of such
methods is to reduce communication bits via data quantization
or sparsification [1], [2] in each communication round.
Another is to reduce the number of communication instances
in each round. For example, in [10], a communication-efficient
asynchronous distributed inference method has been proposed
for solving convex and nonconvex optimization problems,
where a subset of devices are active in each communication
round. However, it is required that each edge device should be
active once in a few rounds. Under the setting that a subset of
devices are randomly chosen to be active, a number of methods
have been proposed for FL in [11]. In [12], a distributed
stochastic gradient descent (SGD) algorithm has been proposed
under the setting that devices upload local gradients to the
server in an event-triggered manner and the server broadcasts
the fused model to all devices at each iteration. A probabilistic
device selection scheme and data quantization method are
jointly designed in [13] to achieve communication-efficient
FL. Joint data compression and device selection have also
been studied in [3], [4], [5]. However, most device selection
methods are based on uniform distribution, not taking data
heterogeneity into account. In [14], communication-efficient
algorithms considering data heterogeneity have been studied.

After receiving an aggregated model from the server, each
edge device updates the model based on its own local data
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by using a specified optimization method. For problems with
enormous training data, instead of gradient-based optimiza-
tion methods like gradient descent, it is usually more efficient
to utilize stochastic optimization methods, such as stochastic
gradient descent as well as its extensions and variants (e.g.,
momentum based SGD, AdaGrad and Adam). For FL, a num-
ber of collaborative stochastic optimization methods have been
proposed. For example, [15] has studied a distributed stochas-
tic optimization problem over random networks with imper-
fect communication under convex constraints and established
asymptotic convergence properties. We refer to [16] and the
references therein for more works in this direction. In addi-
tion, there have been some investigations on communication-
efficient distributed optimization. A distributed SGD-based
algorithm has been designed in [17] for decentralized training of
large-scale machine learning models under event-triggered and
compressed communication. Based on event-triggered commu-
nication, a fully distributed optimization algorithm for second-
order continuous-time multi-agent systems has been proposed
in [18]. A distributed event-triggered SGD algorithm with
decaying step size has been designed in [19] for solving
non-convex optimization problems. Moreover, decentralized
optimization under event-triggered communication have been
studied in [20], [21].

B. Contributions

Despite the above results from the literature, algorithm
design and asymptotic convergence analysis on the event-
triggered SGD-based FL have not been well studied under
the following setting: 1) the step size and triggering thresh-
olds are not parameterized; and 2) the triggering thresholds
are not coordinated among all edge devices. Advantages of 1)
include: a) It is possible to use non-continuous decay forms.
For example, one can use piece-wise-decay step size, which
means the step size decays once for every certain steps; b)
In certain applications involving bit constraint, such as signal
processing units (e.g., CPU and GPU) or communication chan-
nel constraint, fixed-point step size can work, but the floating-
point step size with a parameterized form may not work; c)
For different applications, one can employ specific forms of
step size with several parameters and tune the parameters for
achieving desirable performance. However, in the literature,
it is usually assumed that the step size has concrete forms,
such as 7(t) = s With a >0 and §€(3,1] in [19] and
n(t) = m with Ky >0 and x> 0 in [13]. An advantage
of 2) is that it can allow each edge device adjusts the frequency
of uploading models to the central server by considering its
own data quality and computing power, which can improve the
data utility for better training performance. For example, if a
device with higher data quality and computing power, a smaller
threshold can be employed, such that this device can upload
its model to the central server more frequently than other edge
devices.

The contributions of this paper are summarized as follows.

« We propose a novel event-triggered SGD-based FL algo-

rithm under the desired setting of 1) and 2) introduced
above.
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o Under mild conditions, for the proposed algorithm, we es-
tablish asymptotic convergence in expectation and provide
an estimate of the convergence rate. By tunning the param-
eters, the convergence rate of the proposed event-triggered
algorithm matches the optimal one from the literature on
SGD-based FL with persistent communication.

o By utilizing techniques from stochastic approximation,
under mild conditions, we prove the almost-sure (i.e., with
probability one) asymptotic convergence for the proposed
algorithm and provide an estimate of the convergence rate.

o We prove that despite event-triggered communication and
random sampling, the estimation error of the proposed al-
gorithm can achieve asymptotic normality and asymptotic
efficiency. To our knowledge, this is the first result for
communication-efficient FL.

C. Notations and Paper Outline

Notations: NT denotes the set of positive integers and N =
Nt U {0}. E(z) and E¢ (| F) denote the expectation and condi-
tional expectation of random vector x, respectively, where F is
a sigma algebra. V f(z) stands for the gradient of f(-) at x. ||z|
represents the 2-norm of vector x. Given two scalar sequences
{at}2, and {b:}52,, we let ap = O(by) if tlglolo |3 <C<oo
and a; = O(bt)tlir& =0

Paper outline: The remainder of the paper is organized as
follows: Section II is on the main results of the paper, compris-
ing of a novel even-triggered FL algorithm and its asymptotic
convergence analysis. In Section III, two numerical simulations
are conducted to show the effectiveness of the developed results.
The paper is concluded in Section IV. The proofs are given in
the Appendix.

II. MAIN RESULTS

In this section, we propose a novel event-triggered FL algo-
rithm and make asymptotic analysis on the convergence of the
algorithm in three ways: convergence in expectation, almost-
sure convergence, and asymptotic distribution of the estimation
error. To our best knowledge, in the literature of event-triggered
FL, there have been few results on almost-sure convergence and
there has no result on asymptotic distribution.

A. Event-Triggered FL Algorithm

Consider the setting in Fig. 1 with n edge devices and a
central server. Each individual edge device can train its model
(via neural networks for example) using its own local dataset
and the model received from the central server. The central
server can aggregate the models of edge devices by model
averaging. The communication between the edge devices and
the central server follows an event-triggered manner in the sense
that each edge device (or the central server) communicates its
model only when a certain event is triggered, e.g., the difference
between the current model and the last communicated model is
larger than a threshold.

Such a setting has several advantages: 1) The edge devices
are allowed to be heterogeneous and their local data can follow

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Global model
Server averaging
/ \ [<—Event-triggered model
)‘/Nmmunicaﬂon
Device 1 Device2 | Device n
=) .
g% 5o g%
D& 0 & e

i =

Dataset 1 Dataset 2 Dataset n

Local model update Local model update Local model update

Fig. 1.  Event-triggered FL with n devices.

different distributions; 2) The data of each edge device is uti-
lized locally without sharing with the central server, which is
important to the problems with privacy concerns; 3) The event-
triggered communication mechanism exists both in upstream
(i.e., from the devices to the server) and downstream (i.e., from
the server to the devices), which is more general than the one
with only event-triggered communication on the upstream [12].

Let ¢t € NT be the iteration index in the model training.
Denote V f;(w;(t),&;(t)) the stochastic gradient of device j
at time ¢, where w; () represents the estimate of w* and §;(¢)
is the stochastically sampled data (via a mini-batch method
for example), 7 =1,2,...,n. Then we propose a new event-
triggered FL algorithm as shown in Algorithm 1. The main
idea of Algorithm 1 is as follows: At time ¢ € NT, the server
aggregates the latest received models from all edge devices, and
then broadcasts the aggregated model to edge devices if the
difference between the model and the last communicated one is
larger than a threshold p,(¢) > 0; Each device j € {1,2,...,n}
runs a local SGD iteration with its own data for model update,
and then uploads the model if the difference between the model
and the last-sent-out one is larger than a threshold 1 (¢) > 0.

Remark II.1: The differences between Algorithm 1 and ex-
isting algorithms include: 1) Different from [12], [19], the trig-
gering thresholds are not coordinated among edge devices, so
that each edge device can design its own triggering threshold
considering its data quality and computing power, which can
improve the data utility for better training performance. For
example, if a device with higher data quality and computing
power, a smaller threshold can be employed, so that this device
can upload its model to the central server more frequently
than other edge devices; 2) Unlike [4], [17], [19], the step size
n(t) and triggering thresholds 11,(t), j € {1,2,...,n,a} are not
parameterized, so that one can achieve most general fine-tuning
on hyper-parameters by considering different parameterizations
in different problems.

Remark I1.2: The results in the paper can be extended to
the setting where the step sizes {n;(t)}?_, are not coordinated,
ie., mi(t) #mn;(t) for i # j, as long as there is a sequence

n(t) subject to tlggo 77’;((;)) =1 forany i=1,2,...,n and the

assumptions made in the paper.
In this paper, we make the following assumptions.
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Algorithm 1 Event-Triggered Federated Learning (ETFL)

1: Inputs: w,(0) is the initial aggregated model, 7(t) the step size
of edge devices at time ¢, f;(¢) > 0 and pq(¢) > 0 are the event-
triggered thresholds of device j and the server, respectively. Let
76 =13 = ka(0) = k;(0) = 0.

2: Output: Aggregated models {wq(t)}:>1 or local models
{'LUj(t)}tZl, ] = 1, 2, ey N

3: fort=1,... do

4:  for each edge device j in paralell do

5

6

if ¢ > 2 then
if it receives an updated model w, (¢ — 1) from the server
then
7: let ko(t —1)=ko(t —2)+1 and 73,1y =t—1

/ T,?a(t)Z last triggering time instant of server till ¢
3: else

9: ko(t — 1) = ko(t — 2) /I kq(t): accumulated trig-
gering times of server till ¢
10: end if
11: end if
12: wj (t) = wa Ty, (1—1y) — Nt = )V fi(wa(Ti, 1-1)>
&(t—1)) /1 Local stochastic gradient update;
13: it ||w;(t) — U}j(TIzj(t_l))H > pi(t) or t =1 then
14: device j sends its model w;(t) to the server, and let
kj(t) =kj(t—1) + Land 7, =t
15: else
16: k; (t) =k;j (t— 1)
17: end if
18:  end for

19:  for server do

20: if it receives updated model w; (t) from edge device j then

21: let ch.(t) = k:](t - 1) +1 and T,zj<t) :t I T,zj@:
last triggering time instant of device 5 till ¢

22: else

23: ki(t)=k;(t—1) /I k;(t): accumulated triggering
times of server till ¢

24: end if v

25: wa(t) =1 o wj (T]ij ) /I model aggregation

26: if |lwa(t) — wa(Ts, (1—1)) || > pa(t) then

27: the server broadcasts its model w, () to the devices, and
let ko(t) =ka(t — 1)+ 1Land 7 () =t

28: else

29: ka(t) =ka(t — 1)

30: end if

31:  end for

32: end for

Assumption II.1: The loss function in (1) is radially un-
bounded, i.e., f(w) Y2 50, and has a unique solution w*,
such that f(w*) > —oc. The gradients of objective functions
Vfi() :R™— R™ exist over the whole space and are Lips-
chitz continuous with Lipschitz constant L; > 0, i.e., it holds
that |V fi(we) — V fi(wp)|| < L; |wg — ws]| for any wg, wy, €
R™,i=1,2...,n.

To introduce the next assumption, we let F(t) = o(&;(ts),
1<j5<n,0<ts; <t), where o(-) denotes the operator of min-
imal sigma algebra. In addition, we denote

E¢, 1) {Vfj(w,& (1)} =Ee, 0y {Vf(w, & ()| F(E - 1)},

which means the expected value taken with respect to the dis-
tribution of random variable £;(¢) given filtration F (¢t — 1).

Assumption I1.2: Given any w € R™ and ¢ € N, the stochastic
gradients V f;(w, &;(t))
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1) are conditionally unbiased almost surely, i.e.,

Ee; ) {Vfi(w, &)} =V fi(w),

2) has conditionally bounded second moment, i.e., there is a
finite scalar ¢; > 0, such that

Ee, () {||ij(w,§j(t) - ij(w)||2} <q, as.

Remark 11.3: The Lipschitz condition on gradients in As-
sumption II.1 is common in the literature. Comparing with [19],
we remove the requirement of the Lipschitz condition on each
loss function f;(w). Assumption IL.1 is mild and satisfied with
f(w) = |Jw — w*||* for instance. Assumption I1.2 is common
in existing works [4], [21], which allows the data of different
devices to satisfy different distributions, reflecting the feature
of FL working for non-i.i.d. data.

In the following sections, we will make asymptotic conver-
gence analysis on Algorithm 1 with respect to iterates w, (t).

a.s..

B. Convergence in Expectation

In this section, we establish the convergence of Algorithm 1
in the sense of expectation. Recall from Algorithm 1 that
p;(t) >0 and f,(t) >0 stand for the triggering thresholds
of device j and the server, respectively. Then denote pio(t) =
1 > =1 115 (t) + p1a(t). We make the following assumption on
the step size 7(¢) and triggering parameter zio(t).

Assumption I1.3: The following conditions hold:

Lon(t) >0, YZ,n(t) =00, >72,n(t) < oo,
: 1 1 _
Jim m*m) =m0 20VteN,
2. po(t) >0, Y72, po(t) <oo, VEeEN,

3. the global loss function f(w) is s-strongly convex, i.e.,
there is a positive scalar s > 0, such that f(y) > f(z) +
V(@) (y —2) + 5 |y — x| for any 2,y € R™.

Remark 11.4: Comparing with [13], [19], Assumption II.3

does not confine the specific forms of step size and triggering
thresholds. It can be fulfilled with n(t) = _~7_- and p;(t) =

by . ..
m, where a;,b; j,7=1,2,3, are positive scalars and

> % andr; >1,j€{1,2,...,n,a}.
Proposition 1I.1: Under Assumptions IL.1, I1.2, and II.3
1)-2), it holds that

S0 E{IV f (wa(£) 7} < 0.
t=0

Proof:  Proof sketch: First, we introduce w(t)= 1

Z;’:l w; (t) the average model of all n devices, and then inves-
tigate the upper bound of E¢() {f(w(t))} — f(wa(7g ;_1)))
by analyzing event-triggered errors. Then we establish an upper
bound of E{f(w(t))} — E{f(w(t — 1))} under Assumptions
II.1, 1I.2, and II.3 1)-2). Finally, the conclusion is attained
with the help of Lemma A.2.

See Appendix A for the full proof. |

From Assumption I.3 1)-2) and Proposition II.1, there
are 0% n(t) = 0o and Yo% n(t) E{[V 1 (wq (1))[*} < oc.
This result reflects the sub-sequence convergence of
E{||V f(wq(t))||*} for any non-convex loss functions f(-). A
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stronger convergence result is attained if Assumption II.3 3) is
also satisfied.

In case of g = 0, we let § = oo in the following theorem for
notational convenience.

Theorem II.1: Under Assumptions IL1-IL3, let puo(t) =
O(n”(t)) with p > 1, then for any § € [0, min{pg, s/(210)})
with po = min{1, p — 1}, it holds that

E{[|wa(t) — w*|*} = o(n’ (1)),
E{f(wa(t)} = f(w*) = o1 (1)),

where s > 0 and 79 > 0 are introduced in Assumption II.3.

Proof: Proof sketch: First, we obtain an estimate on the con-
vergence rate of E{ f (w(t))} — f(w™) from the proof of Propo-
sition II.1 and Assumption II.3 -3). Then we prove that the error
E{f(w.(t))} — f(w*) decays to zero as fast as E{ f (w(t))} —
f(w*), which leads to the second conclusion. The first conclu-
sion directly follows from the s-strong convexity in Assumption
I1.3 and the second conclusion.

See Appendix B for the full proof. |

Remark I1.5: Due to n(t) — 0, Theorem II.I shows the
asymptotic convergence with an estimated convergence rate
o(n°(t)), where § depends on the decaying speed of step
size and triggering thresholds. Thus, one can design the step
size and triggering thresholds to achieve the desired con-
vergence rate. For example, if the desired minimal conver-
gence rate is o(t%;), under Assumptions II.1-1I.3, the rate can
be achieved by letting n(t) =+ and po(t) = ;5. as long as
min{1,p —1,5/2} > § > 0.

Remark I1.6: By tunning the hyper parameters 7)(t) and
{1;(t)}}—1, the convergence rate in Theorem II.1 can match
the optimal SGD convergence rate O(%) from the literature
[13] on FL under persistent communications. For example, let
n(t) =2 with @ > 2, pio(t) = O(n?(t)), then the convergence
rate in Theorem IL1 is o(75) for any & € [0,1). Since § can
be arbitrarily close to 1, the convergence rate is essentially the
same as O(%) Alternatively, we can directly prove that under
the above parameter setting, the convergence rate of the Algo-
rithm 1 is O(%) by referring to the proofs of Theorem II.1 and
Lemma A.3. In this paper, we use o(+) to state the main results
under a general setting of step size and triggering thresholds. In
Theorem I1.3, we will show that the time-averaged estimate can
achieve the rate O(-5;), i.e., E{f(@.(t))} — f(w*) = O ().

nt

C. Almost-Sure Convergence

In this section, we establish the almost-sure convergence of
Algorithm 1. To proceed, we make the following assumption.
Assumption I1.4: The following conditions hold:

Lop(t)>0, S 2n(t)=o00, 2qn*1=9(t) < oo,
. 1 1) _
tlg{.lo 7D W) =n9>0,VteN,
2. puo(t) >0, po(t+1)<po(t), po(t)=0(n"T()),
Vt €N,

3. the global loss function is s-strongly convex and twice
continuously differentiable,
: 1 s
where § € (0, min{3, *}).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Remark I1.7: Assumption 1.4 is mild. For example, it is
fulfilled if 7(t) = 7 and pio(t) = grgsys | € (= 52,1], and
fw) =4 (w—w*)T(w—w*) with § € (0, min{3, aot)-
The assumption on the threshold provides a quantitative design
principle that the threshold should not decay more slowly than
the provided bound. Otherwise, the events in the local devices
may not be triggered in time. If so, despite communication
saving, the optimization algorithm would be divergent due to
too large coordination errors among local devices.

Theorem I1.2: The following conclusions hold:

1. Under Assumptions II.1, I1.2 and II.3

o (t + 1) < pp(t), then it holds that

1)-2), let

wq () 20 w*, as.
Flwa(t)) =57 f(w*), as.
2. Under Assumptions II.1, II.2 and IL.4, it holds that

lwa () = w*[| = o(1°(t)), as.,
Fwa(t)) = f(w") = o (1)), as.,

where ¢ is introduced in Assumption I1.4.

Proof: Proof sketch: We focus on the convergence of iterates
wq (t), which lead to the almost-sure convergence on f(w,(t))
according to Lemma A.1. First, we obtain the iteration of w, (t)
from the iteration of w(¢). Then we use Lemma A.5 on stochas-
tic approximation by verifying the conditions on noise, loss
function, and step size.

See Appendix C for the full proof. |

Theorem II.2 establishes almost-sure asymptotic conver-
gence and convergence rate of iterates w,(¢), which has not
been well investigated in the related works. According to As-
sumption 1.4 and Theorem II.2, one can tune &, 7(t) and fo(¢)
to reduce the communication while maintaining a desired con-
vergence rate. For example, if the desired minimal convergence
rate is [|wq (t) — w*|| = o( ), under Assumptions I.1, I1.2 and
114, the rate can be achieved by letting 7(t) = 1 and p0(t) =
7y as long as 6 € (0, min{3, s}).

D. Asymptotic Distribution

In this section, we establish the asymptotic distribution of the
estimation error w,(t) — w*, which has not been investigated
in the study of communication-efficient FL to the best of our
knowledge. To proceed, we introduce some extra conditions as
follows.

Assumption I1.5: The following two conditions hold:

1. For any j € {1,2,...,n}, the stochastic gradient error

€i(t) =V fj(wa (T/?a(t))a &) — ij(wa(T;‘Ja(t))) satis-
fies the following conditions

Jim E{e; (0] (1) F(t — 1)} = 5,
E{& ()] (0| F(t — 1)} =0, i#)
E{lle(0)” |7t~ 1)} <, @

where S; is a finite positive semi-definite matrix, p > 2
and ¢; > 0.
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2. The global loss function f(w) is s-strongly convex,
s> 0, and is three times continuously differentiable and
the three-order derivative of f(w) is locally bounded
around w*.

Theorem I1.3: Let n(t) =7 with v e (3,1) and po(t) =

o(n(t)?). Under Assumptions II.1-11.2 and I1.5, the following
conclusions hold:

LA (wa(t)

— w*) is asymptotically normal, i.e.,

o d
—w ) tjo N(07 S)a
where S = fooo thSoeHTtdt;

2. We(t) =1 Zle wq (1) is asymptotically efficient:
V(e (t) — w*) -5 N(0, S),
t— o0

where S = H~1Sy(H~!)T. In addition, it holds that

Bl 0) - fw) =0 ().

where So = ;5 Y27, Sj and H = V2 f(w*).

Proof: Proof sketch: Similar to the proof of Theorem I1.2, we
obtain the conclusions by applying Lemma A.5 and verifying
the required conditions on noise, loss function, and step size.

See Appendix D for the full proof. 0

Remark I11.8: As we know that the Central Limit Theorem
(CLT) from statistics is important, because it allows us to safely
assume that the sampling distribution of the mean is normal
in most cases. Theorem IL.3 is a generalized CLT, showing
that the proposed algorithm can achieve asymptotic normality
despite event-triggered communication and noisy data. To the
best of our knowledge, this is the first result in the study of
communication-efficient FL.

Remark 11.9: The convergence result in (3) is the optimal
convergence rate from the literature [17]. Comparing with The-
orem II.1, this rate reflects the connection with n the number
of devices.

Remark 11.10: As seen from Theorems II.1-11.3, the thresh-
old p;(t) with a faster decaying speed can lead to a higher
convergence rate of Algorithm 1. Thus, if one aims to obtain
a higher convergence rate with sufficient budget in communi-
cation resource, the threshold p;(t) can be designed to decay
very fast or just be zero. In addition, for the scenarios where
a subset of devices have higher data quality and computing
power, their thresholds can decay faster than others, so that they
can upload their models to the central server more frequently
than other edge devices. For different applications, one can
employ specific forms of the threshold with several parameters
as in Remarks I1.4 and IL.5, and then tune the parameters for
achieving desirable performance.

III. NUMERICAL SIMULATIONS

In this section, we conduct two numerical simulations to
show the effectiveness of the developed results. The first sim-
ulation is on a linear regression problem and the second one is
to solve a digit recognition problem with an open dataset.

2659

A. Linear Regression

In this simulation, we consider a linear regression prob-
lem with ten devices (e.g., sensors) and a server. Suppose
the data of device j € {1,2,...,10} at time t € {1,2,--- ,T}
is generated as follows: y;(t) = Hw* + v;(t), where w* =
[10,—2]T is the unknown parameter or signal to be esti-
mated, H; =[1,2] and v;(t) ~ N(0,1) for j =2,4,6,8,10,
and H; =[-2,1] and v;(t) ~U(-1,1) for j=1,3,5,7,9.
In addition, the noise samples {v;(¢)} are drawn indepen-
dently both in time and in space. The collective loss func-
tion to be minimized is f(w) = 2}021 fj(w), where f;(w)=
%Zthl(yj(t) — Hjw)?. The stochastic gradient of f;(w)
at w is Vfj(w,&(t)) = —2H] (y;(t) — Hjw). To employ
Algorithm 1, we let the step size 7(t) = 157. In order to
illustrate the influence of the triggering thresholds to the es-
timation performance and communication frequency, we con-
sider three different settings on the triggering thresholds: 1)
fta = p1j(t) =0 for j € {1,2,...,10}; 2) pq = p;(t) = 15ors
for j € {1,3,5,7,9} and p;(t) = 535 for j € {2,4,6,8,10};
3) pta = p;(t) = oo for j € {1,3,5,7,9} and p;(t) = 2 for
j€4{2,4,6,8,10}. Under the first setting, the devices and the
server communicate all the time since the triggering conditions
are always satisfied. While, under the other two settings, the
devices and the server are expected to communicate intermit-
tently. Note that the triggering thresholds in the third setting
decay more slowly than the one in the second setting. We
conduct Monte Carlo experiments with M runs by using the
following metrics on estimation performance and communica-
tion frequency over the network:

M
1 s *
MSE() = < > s (1) — w' |,
s=1

M n
nks (6) + S0 kS (1)
communication rate(t) = E - I= 7
pt 2nMt

€ [0, 1],

where n is the device number, w?(t) denotes the parameter
estimate of the server at time ¢ in the s-th run, and k3 (¢) and
E: (t) represent the cumulative triggering times of device j and
the server till time ¢ in the s-th run, respectively. Let M = 100,
t=1,2,...,200, and the initial estimates be [0,0]", then we
run the simulation with Algorithm 1. The simulation results on
MSE and communication rate are respectively given in Fig. 2(a)
and 2(b). Fig. 2(a) shows that all the three settings can lead
to the convergence of MSE, and the performance under the
second setting with fast decaying thresholds is very close to that
under the first one (which can be treated the optimal one due to
persistent communication). In addition, a derived convergence
rate from Theorem II.1, that is 1/(1 + n°2(t)), is also added
for reference. The figure shows that the derived convergence
rate is close to the true convergence rate of the proposed al-
gorithm. Fig. 2(b) shows that the event-triggered setting can
lead to substantial reduction of communication in the whole
process, while maintaining high estimation precision as in Fig.
2(a). In addition, reducing the decaying speed of the thresholds
can further reduce the communication. To illustrate the asymp-
totic distribution of the estimation error w?(t) — w*, we let
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Fig. 2. Performance of the proposed algorithm under three different settings
of triggering thresholds. (a) MSEs versus time index. (b) Communication rates
versus time index.
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Fig. 3. at time ¢t = 1000. (a) Distribution of the

n
first element. (b) Distribution of the second element.

Distribution of

M =500,n(t) = wt%t =1,2,...,1000 and the thresholds be
the same as the second setting above. The simulation results on

the distributions of the first and second elements of “a=%"

n(t)
at time ¢t = 1000 are given in Fig. 3(a) and 3(b) which shows
the asymptotic normality conforming with Theorem II.3.

B. Softmax Regression Over MNIST Dataset

In this experiment, we consider an image classification prob-
lem based on digit recognition dataset MNIST,? which consists
of 60K training samples and 10K testing samples of digits rang-
ing from O to 9. To handle this 10-class classification problem,
we consider softmax regression with cross-entropy loss. We
employ ten devices for model training in the FL, where device 7
can only have access to samples of digit i fori € {0,1,...,9},
to show the effectiveness of the proposed algorithm in dealing
with non-i.i.d. data. Consider four algorithms: Algorithm 1 with
step size 1(t) = 15505, triggering threshold 4(t) = t5ios,
for any j € {1,2,...,10,a}, denoted by ETFL; Algorithm 1
with step size 7)(t) = W, triggering threshold p;(¢) = 0 for
any j € {1,2,...,10,a}, denoted by TTFL, which means the
communication between the devices and the server are persis-
tent; The distributed SGD algorithm in [19], denoted by DSGD;
The SPARQ-SGD algorithm in [17] but without considering
the communication compression step. In addition, the above
four algorithms share the following setting: Monte Carlo ex-
periments are conducted with M = 10 runs and 200 iterations
for each run; A mini-batch method with batch size 600 is used
to obtain a stochastic gradient; The initial parameter for model
training is 028%28,

After running the experiments under the above setting, we
provide the results in Fig. 4. Fig. 4(a) and 4(b) respectively

2http://yann.lecun.com/exdb/mnist/
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Fig. 4. Performance comparison on the softmax regression problem. (a)
Testing errors. (b) Communication rates.

shows testing error and communication rate (defined in the last
case) versus iteration index ¢ for the considered three algo-
rithms. It is seen that our proposed ETFL is very close to TTFL
in learning performance, while saving more than 20% com-
munication. In addition, comparing with DSGD and SPARQ-
SGD, ETFL can lead to better learning performance with less
communication.

C. Neural Network Training Over CIFAR-10 Dataset

In this experiment, we consider an image classification prob-
lem based on CIFAR-10,? which is a collection of images that
are commonly used to train machine learning and computer
vision algorithms. The CIFAR-10 dataset contains 60,000 32 x
32 color images in 10 different classes.

To handle this 10-class classification problem, we consider a
relatively small size neural network via some tools in pytorch.
The network is designed as follows: There are two convolution
layers whose shapes are 3 x 32 and 32 x 64, respectively, with
common Kkernel size 3, stride 1, and padding 1. After each
convolution layer, there is an Relu layer and a 2 X 2 max-
pooling layer. The last two layers are two fully connected layers.
The model training is based on the proposed algorithm in this
paper. Suppose there are two devices, where the first device has
the training data on the first five classes and the other device has
data on the other five classes. There are 50,000 training images
in total. In addition, there is a server which can communicate
the aggregated model with the two devices and evaluate the
prediction performance of the model with 10,000 test images
during the whole training process. The batch size is set to be 256
in both training and test. The epoch number for training is 50.
Furthermore, the cross entropy loss is considered as the crite-
rion. The step size is 0.5 at the first epoch and will be multiplied
by 0.95 every epoch. The triggering threshold for the devices
and the server is 100/ (epoch + 8)!-3, epoch = 1,2, ..., 50.

After running the experiment under the above setting, we
obtain the results in Fig. 5. In Fig. 5(a), the (local) training ac-
curacy for the two devices are depicted as well as the prediction
accuracy in the central server. It shows that as epoch increases,
the training and prediction accuracies are becoming better and
better. It is due to the non-i.i.d. data distribution in the devices
that prediction accuracy is not as good as training accuracy.
In 5(b), the communication rate, defined as in Subsection III-A,
is depicted. From the figure, we see that the communication

3https://www.cs.toronto.edu/ kriz/cifar.html
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Fig. 5. The training and test performance of Algorithm 1 over CIFAR-

10 dataset. (a) The accuracy in local training and centeral test. (b) The
communication rate in the training process.

between the devices and the server has been reduced. Therefore,
the proposed algorithm can save communication for more than
20% percentage while ensuring performance in model training
for this experiment.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the even-triggered federated learn-
ing to reduce the communication overhead among a group of
devices and a server. Based on stochastic gradient descent at the
devices and model averaging at the server, an event-triggered
federated learning algorithm was proposed. Under mild condi-
tions, we established asymptotic convergence of the algorithm
in expectation and almost surely. Moreover, the asymptotic
normality and asymptotic efficiency of the estimation error
were investigated. Regarding the future work, it is interesting
to quantify the communication rate theoretically. In addition,
we would like to extend the developed results to decentral-
ized architectures under general graph conditions. Some prac-
tical communication problems, such as bandwidth constraint,
channel gain and transmission delay, are also interesting for
investigation. The co-employment of event-triggered communi-
cation and model sparsification/compression is also interesting
to study.

APPENDIX
A. Proof of Proposition II.1

Let w(t) =1 Z?zl w;(t) be the average model of all n

devices. It follows from Algorithm 1 that

w(t) =wa(Ty, (1—1))

=t =13 (Vhiwalrt o) & - 1)
- 4)

It follows from Lemma A.1 that

B¢ {f (@)} = f(wa(7g, (1-1)))

<Eeg {Vf (a7 o 1)) (@(8) — walf 1))
L 2
+ 7f Hw(t) - wa(TIga(t—l))H }
@A—f—B,
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where (a) holds due to (4) and

A==t = DV T (wa(rf, o)) (8
() =B { - S (Vi(warf, o), &~ 1)

j=1
B = M}LQ(U
n 2

halt) =Feo { |3 2 2 (Vs watrt ) &0 -1) H

Next, we consider the two terms A an B, respectively. Re-
garding A, it follows from Assumption I1.2 1) that

n

D (ot 1)) (Vs ot 1))

==t 1) [Vt )

Regarding B,

A=—nt-

2
2(t — 1)L
B§n<t21)fE§t){ vaj Wq Tk (t— 1)))
] 1
n ijlz (ij<wa<Tga(t_1)>,5j<t - 1))
=1
! 2
—ij<wa<Tsa(t1)>>) }
2

<pur(t = 1)+ Lf(t = 1) ||V wa (7, o))

)

where p; = “L obtained from Assumption I1.2 2).
Thus, it holds that

B (00} — Sl -1))
< —(t = 1) [V Hwa(et )| +proPle = 1)
Lt = 1) ||Vt )| 0

Let ea(t) = wa(t) — wa(7g, (1)) e;(t) =w;(t) —
wj(T,Z,( t)) denote the event-triggered errors at the server
and device j, respectively, j=1,2,...,n. It can be seen
that e, (t) =0 (resp. e;(t) =0) if the event of the server
(resp. device j) is triggered. According to the event-triggered
mechanisms in Algorithm 1, it follows that |leq(t)| < ua (%)
and |[e;(t)]| < p;(t), for j =1,2,...,n. Note that

and

a(t—1)

J(t—1), (©)
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and
Wa(Th, (1—1)) = Wa(t — 1) + wa(Ty, 4_1)) — wa(t — 1)
=we(t—1) —ey(t—1)
=w(t—1)—eo(t—1), @)
where

Ze] (t—1)+ea(t—1).
It holds that

leo®)]| < = Zﬂa

It follows from (7) and Lemma A.1 that

f(wa(Tg, (1-1))) = f(w(t — 1) —eo(t — 1))
< flw(t—1)) = VT (w(t —1))eo(t — 1)

+ 2 leoft — D). ©
Taking expectation on both sides of the above inequality yields
E{f(wa(7s, ¢y} <E{f(@(t — 1))}

BV (@(t ~ D)eolt 1)} + 2 Eflleo(t ~ DI}
(10)

+ a(t) = po(t). ®)

From the above inequality, (5) and 1%(t) = o(n(t)), there is a
time T, such that for any ¢ > Tj, it follows that

E{f(w ())} IE{f( (t=1)}

<MD g9 pwatri )|} + o - 1)

L
- E{vﬂ(w ~)eot = 1)} + 5 Efleo(t — 1)[*}.
an
It follows from (8) that

BT (@~ D)eolt ~ D} + L E{leo(t ~ DI

SB[V (@0~ )| leolt ~ DI} + L3~ 1)

<E{IV (0~ ))lbolt 1) + (e~ 1)
LRV Sl - )PP 2ot - 1)+ H - 1)

L
< (EQIV @t = )P+ 1) olt = 1)+ ZLpid(t = 1),
12)
where (a) follows from the Lyapunov 1neq2ua11ty and the last
inequality holds since E{||V f(w(t —1))|“} is either larger

than 1 or in [0,1].
Note that

= E{|IV £ (wa (i, a1y}
= —E{IVf(wa(7z, 1)) —
+Vf(@(t —1)*}

Vf(w(t—1))
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<b1]E{|| eo(t = D[ [IVf(@(t = 1)l

— IV f (- 1))}
(®)
< bupo(t = DL +E |V f(@(t — 1))
~E[IVf(@(t - 1)) (13)
where by = max{2 P 1 2} and (a) follows from Assump-

-1 L
tion II.1 and wa(Tk (t—1)) — W(t — 1) = —ep(t —1)in(7), and
(b) holds since E{||Vf(u7(t —1))||?} is either larger than 1 or
in [0,1].

Then it follows from (11)—(13) that

E{f(w(t))} — E{f(w(t - 1))}
< (77(]521) + b1pio(t — 1)n(t; D) + po(t — 1))

< E{IVf(@(t ~ 1)) + busoft — )Y

L
+pun*(t = 1) + puo(t — 1) + =gt~ 1).

(14)

Under Assumption I1.3, (¢t — 1) = 0 and n(t — 1) — 0 as
t — oo and po(t) =o(n(t)), there exist a scalar by and an
integer 71 > Ty > 0, such that when ¢ > 77, it holds that

E{(6(1))} - B{f(a(t - 1))}
<MD e v s - 0)?)
+b2(,uo(t—1)+77 (t— 1))

Since f(w*) is the minimum loss function, f(w(t)) — f(w*) >
0. It follows from (15) that for t > T}

5)

E(F(o(t + 1)) ~ f(w")} — (B{F(@() ~ f(w")})
<MD B {19 00 I + balrolt) + 721,

Due to Y .27 (uo(t )+77 (t)) < oo and Lemma A.2, Zt T1
n(t) E{||Vf(w ( ))|| } < 0o, which together with Zt 0 17( )
E{[IV f(@(1)[*} < o0 leads to 352 n(t) E{|IV f((1))]*}

< oo. To attain the conclusion, we derive

oo

() E{||V f(wa (£))]1*}

t=0

= S O BV (wa (1)) — VF((1)) + VF ()]
t=0
@ 20y 3 O B Jwa(t) — 2(0)2)
t=0
+23 () BV £ (@)%}

t=0
< o, > 00 () + 23 ) BIVS @)} <
= t=0

where b3 = (+ Z] 1 L})*>0, (a) is due to Assumption
111 and the inequality ||a + b]|* < 2(||a||* + ||b]|*). and (b) is
from (6).
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B. Proof of Theorem II.1

According to (15), there is a constant b > 0 and an integer
Ty > 0, such that for any ¢ > 77, it holds that

E{/(0(1)} ~ B/ ((: 1))
<MD g9 (e - )l?)
+baluolt — 1) (1~ 1)
<MD @ g 1) - fw)
Fbalio(t 1)+ 7t - 1), (16)

where the last inequality holds due to the following fact which
is obtained according to Theorem 2.1.10 of [22] under the
s-strong convexity condition in Assumption IL.3:

E{|IV f((t — 1))[1*} > 25 (B{f (w(t — 1))} — f(w")).
From (16), it holds that

E{f(@())} — f(w") < b2(po(t — 1) +n*(t — 1))

# (1= 5 @ttt - 1)) - ),

According to Lemma A.3, let oy =sn(t)/2 and G, =
ba(to(t) +n%(t)). Then under Assumption IL.3, by noting
that o = pg = min{1l, p — 1} € (0, 1] and ag = 21)9/5s > 0, we
obtain that for any ¢ € [0, min{po, s/(210)}),

E{f(@(t)} = f(w*) = o(n’(t)). (17)
Recall from (6) that wq (1) = w(t) — ;- Y27, e;(t), then it
follows from Lemma A.1 that
Pl (0) < F@0) + 97T @) |13 et
j=1
+% %Zej(t) (18)

Jj=1

By taking the expectation and noting H 7 Lei(t) H < po(t),

we derive
E{/(wa(0))} — f(w°) < E{@(0)) - f(')
+ o) BV S @)} + L300,

It follows from Proposition IL1 that () E{||V f (w (£))||*} =
o(1). Then

19)

o) E(IV o)) = 408 £ v sy
Mo(t)

< B VOBV S @O)I)

_1
=o(n""2 (1)),
where the inequality is due to Holder inequality.
By noting (17) and (19), from s (t ]E{HVfT w(t
L 1
Fug(t)=o(n*~3(t)) and d<p—1<p-—g,

N+

the error
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E{f(w.(t))} — f(w*) decays to zero as fast as E{ f (w(¢))}—
f(w*), which leads to the second conclusion. The first
conclusion directly follows from the s-strong connectivity in
Assumption II.3 and the second conclusion.

C. Proof of Theorem I1.2

In the following, we prove the convergence on the iterates
wq (t), which lead to the almost-sure convergence on f(w,(t))
according to Lemma A.1.

From (4) and (7), it follows that

w(t)=w(t—1) —ep(t —1)

n

n(t = 1) 3 (Vs o) &5 = 1))

Jj=1

(20)

Recall from (6) that w, () = w(t) — = 3" e;(t). Substitut-

ing this equality into (20) yields e
wa (t) =wa (t — 1) —n(t — 1)(Vf(wa(t — 1))
te(t—1) +e(t—1)),

(21
(22)
where

32 (Vw7 ), £5(0) = V5 (w7 ),

3

éo(t
ex(t) = ;{t; R V)~ SV
(23)
in which éo(t —1)=eo(t — 1)+ 5 Y0 e;(t) — £ 30,
ej(t—1) subject to ||e (t— I)H <2u0(t71) due to the
inequality S H 1o(t) and the monotonicity

po(t) < Mt)(t - 1)

Given the dynamics equation (21), in order to use the stochas-
tic approximation results in Lemma A.5, besides the verification
of almost-sure boundedness of w, (t), we need to verify CO-C3
to attain the first conclusion; and verify CO, C1’—C3’ for the
second conclusion.

The proof of the first conclusion: First, we verify CO.
Let 2 =w*, v(z)= f(z) — f(w*), and g(z)=—-Vf(z).
Since the optimal solution for the optimization problem (1)
is unique, it holds that g"(z)Vu(z)= -V fT(2)Vf(z)=
—|Vf(2)||* < 0 for any x # w*. Thus, CO holds.

Second, we verify C1-C3 for the first conclusion. Let 7(t) =
ay, then C1 holds. Regarding €5 (t — 1), it follows from (7) and
Assumption II.1 that

2p0(t — 1)
et —1 §7+LmeaT“ _ fwat—IH
lle2(t = )] (= 1) (T (-1)) (t—-1)
ot —1
LM7 (24)
n(t—1)
where L, = max{L;}" ; and L > 0 is a constant. Regarding

€1(t), it follows from Assumption I1.2 2) that there is a constant
qo > 0, such that

smgpﬂ*l{llel(t)ll2 [F(t—=1)} <qo, as. (25)
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In addition, due to Assumption IL.2 1) it holds that
E{ei(¢t)|F(t—1)} =0, as.. Using E{E{X|F(t—-1)}=
E{X} and Holder’s inequality on (25) leads to E{||¢1(t)]|} <
oo. Thus, {e1(t), F(t)} is a martingale difference sequence
(MDS). Due to >.,2,n*(t) <oco in Assumption I3 and
[23], Theorem B.2.1], it holds that > .=, n(t)e (t) < oo, as..
Moreover, > .o, n(t) |le2(t)|| < L>°:2, po(t) <oo. Then
it follows from that ;2 n(t)(e1(t) + €2(t)) < oo, as.,
meaning C2 holds. Since g(x)=—V f(z) is a continuous
function, it is measurable. It follows from Assumption II.1 that
g(x) is locally bounded. Then C3 holds.

For the first conclusion, it remains to prove the boundedness
of w,(t) by employing Lemma A.4. Let n(t) = a;, the first
condition in Lemma A.4 holds under Assumption II.3. The
second and third conditions hold from the above analysis and
from Assumption II.1, respectively.

The proof of the second conclusion: We verify C1’—C3’ for
the second conclusion. Under Assumption 1.4, C1’ holds. Let
€, = €1(t) and €/ = e (¢). Similar to the verification for C2, it
follows from Assumption 114 that 372 71~ (t)e; (t) < oo,
a.s., where 6 € (0, %) is the one in Assumption I1.4. In ad-
dition, it follows from Assumption I[.4 and (24) that e5(t) =
O(n°(t)), a.s.. Thus, C2” holds. Let g(w) = —V f(w) and F =
—V2f(w*). Then we obtain a first-order vector-valued Taylor
approximation of g(w) according to [24, Theorem 5]. Un-
der Assumption IL.4 3), it follows from [22, Theorem 2.1.11]
that V2 f(w*) > sI. Then C3’ holds due to V2 f(w*) > sI >
1pdI. The assumptions for the second conclusion also en-
sure the boundedness of the iteration, since all the conditions
in Lemma A.4 are fulfilled. Thus, the second conclusion is
attained.

D. Proof of Theorems I1.3

In order to use the stochastic results in Lemma A.5, we
aim to verify CO, C1, C2, and C3 which ensure the asymp-
totic convergence of iteration, as well as verify C2” and C3”.
Under the conditions of this theorem, CO is fulfilled like the
analysis in the proof of Theorem II.2. Due to a; =7n(t) = 7
with v € (2,1), Cl is fulfilled. Let g(w) = =V f(w) and F =
—V2f(w*). Similar to the proof in Theorem I1.2, it follows
from Assumption II.5 2) and the second-order vector-valued
Taylor approximation of g(w) [24, Theorem 5] that C3” holds.
Since C3” is a sufficient condition of C3, C3 holds. It remains to
verify C2 and C2”. The verification of C2 is similar to the one in
the proof of Theorem I1.2 by notlng that such a setting n)(t) = lv
with v € (3, 1) and po(t) = o(n(t ) ) ensures thon (t) < o0
and Y72, p10(t) < oo. Thus, C2 is satisfied. Similar to the
analysis in the proof of Theorem I1.2, €5 (t) = o(/7(t)) ensures
(36). From the proof of Theorem IL.2, {e1(t), F(¢)} is an MDS
satisfying the first two conditions in (37). Recall from (23) that

Q10) = = 37 (Vf5 (i ) &5t + 1)

n

Vel ) = - D& (),

Jj=1
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Then it follows from (2) that

Jim E{er (t)e] (0)|F(t 1)} QZS = Sp.
According to the Dominated Convergence Theorem [23],
P331], it holds that

Jim E{e (0] (1)} = lim B{E{e ()] (1) F(t — 1))}
= E{ lim E{e(t)e] ()] F(t — 1)}) = S0

Note that () = + Y7, &(t), then it follows from (2) that
sup, E{||e1(¢)||"} < . Due to p> 2, it follows from [25,
Corollary 6.6] that ||e;(¢)||” is uniformly differentiable, i.c.,
lim sup, E{||e; (¢)||” Lje, (1) >a } — 0, meaning C2” holds. In
g(?doi?ion, similar to the analysis for Theorem II.2, the bounded-
ness of iterates w, (t) is guaranteed under the conditions. Thus,
all the conditions are fulfilled. The conclusions on convergence
in distribution follow from (c) of Lemma A.5.

To prove (3), we use Lemma A.1 to obtain E{ f (1w, (t))} —
fw*) < B E{|liba(t) — w*[*}. Due to VE(i(t) — w*)

N(0,S) and S=H (5> S;)(H )T < 1S, where
So=H~ maxj S;(H™HT. it holds  that  E{|jw,(t)—

w*[|*} = O(%).

E. Useful Lemmas

Lemma A.1: ([122], Theorem 2.1.5]) Under Assumption IIL.1,
for any w,, w, € R™, it holds that

Fl) < faw) + 9T (wa) () + Ly -

where Ly =max;—i > .
Lemma A.2: [[26]] Let {v(t)} be a non-negative sequence,
such that for any ¢ > 0, it holds that

v(t+1) < (1+at)v(t) —u(t) + w(t),

where a(t) > 0,u(t) >0 and w(t) >0 with Y ;7 a(t) < oo
and )_,°,w(t) < oco. Then the sequence {v(t)} converges to
v>0and Y ;2 u(t) < oco.

Lemma A.3: Assume that oy > 0,0, — 0, >.,2; oy = 00,

and
1 1
lim ( — ) =g > 0. (26)
t=oo \ Qg1 Qg
Consider the iteration xy11 = (1 — ay)xy + B¢, Wwhere
Br=0(a}™) with 0<dy <1, then for any Je
[0, min{dg, 1/ }), it holds that
z, =o(al).
Proof: Let z; = %, then it holds that
s
@
zep1 = (1 — o) < ! ) ZH’%- (27)
At Ay

t
We seek to prove z; 0.
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It follows from (26) that

Qi Qi

Q41

=1+ apas + o(ay). (28)

Due to a; > 0 and «a; — 0, there exists a time ty > 0, such
that o, € (0, 1) and apay + o(cy) > —1fort > to. Then fort >
tg, we derive

<1_at)(04(t1+t1>(S

(2 (1 —ay)(1 4 d(apay + o(an)))
= (1= (1 - apd)a; + o(ay))

()
< exp (—(1 — apd)ar + o(a))

(29)

where () follows from (28) and (1 + z)” <14 rzfor0 <r <
land 2z > —1, and (b) isdue to 1 + o < exp (z) for any = € R.
It follows from (27)—(29) that for ¢ > tg,

P
t-‘rl t
)=

s Bt
ol

zi1 <exp (—(1 — apd) ot + o«
<exp (—(1 — agd)as + o«

+ (1 + apas + o(at)) 30)

Due to § < & and o — 0, it follows from 3, = O 7%) that
ﬁ = o(a), then for any € > 0, there is a time ¢; > t such that

for t > tq, it holds that
(3D

Let ¢; = m, which is positive due to § < min{do, a%)}

Then for large enough ¢, and ¢ > to, we have that
ar <oy + (g — claf)

2<Oéf, Cl;%)

2
gi
C1

(1 —exp(—cian)), (32)
where the last inequality is due to e=® <1 — x + 22 /2, for
Vo > 0.

There is a time ¢35 > max{t1, t2}, such that for ¢ > ¢3, it holds
that o(ay) < % and 1 + apay + o(a) < 2. For ease of
notations, let Zf: o= 0if j > t. It follows from (30) that for
t3 Z max{tl, tg}

t
—C1 E Qj | 2ty

Bt

zi41 < exp(—cron)z: + 26—5 <exp
o

Jj=ts

t

t t 3;
+2ézexp —C Z o, a—g.
J

j=t3 L=]+1

2665

It follows from ) ° ay=o0 that exp(—c; Z;:ts
a;)zy, — 0 as t — oco. Next, we prove that the second term
goes to zero as well.

For ¢ > t3, it holds that

Bi
e _ N s
e (a3 a2
j=ts i=j+1 J
© t
§eZexp —C1 Z a; |
Jj=ts i=j+1
() 26
S exp | —c1 Z a; | (1 —exp(—c1a;5))
Jj=ts i=j+1
2 o
:E, exp | —a1 Z o; | —exp —012041
Jj=t3 i=j+1
2e
Si
¢
where (¢) and (d) are due to (31) and (32),
respectively. Since € >0 is arbitrarily small, the term

t t B
Dty exp(—e1d iy O‘i)?é tends to zero as ¢ goes to

infinity. U
To study the convergence of the following iteration

i1 =Ty + ag(g(ae) + €), (33)

we introduce some conditions:
CO A continuously differentiable function v(:):R! — R
exists such that

g (x)Vo(x) <0, Va#z°
Cl a;>0,a;,— 0,2, a = o.
C1’ In addition to C1, a, satisfies
s 2 SN >0. (34)
ara41

C2 The noise sequence .-, ap€; < 00, a.S..
C2' The noise sequence ¢; in (33) can be decomposed into
two parts €; = et + et such that
Zal Ie, < 00, e;/ =0(ad), as., (35)
for some § € (0, 1].
The n01se € in (33) can be decomposed into two parts
€ = et + et such that

6t = 0(@)’

and {e,, F;} with F; = o {x, €; }!_, being an MDS sat-
isfying the following conditions:

C2//

a.s., (36)

’ 112
E{e,|Fi—1} =0, sng{ &l |Fior} <o

tlgrolo E{E;(Gt)T|ft—1} = tlggo ]E{Gt(f;)T} = So,

2
4l

+=0, as., (37)

’
€t

lim sup E{

’
a—00 ¢ 6t||>a
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where o > 0 is a constant.
C3 g¢(-) is measurable and locally bounded.

C3’ g(-) is measurable and locally bounded, and is differen-
tiable at z° such that as z — 2°
g(x) = F(z —a%) + 7(z), 7(2")=0,
7(z) = o(||z — 2)). (38)
Both matrices F and F' + a1 are stable, where «v and ¢
are given in (34) and (35), respectively.
C3” g¢(-) is measurable and locally bounded, and is differen-

tiable at 20 such that as x — z°
lg@) = F(a = )| < cfle —2°|,

where ¢ > 0 and F is stable.

Lemma A.4: The iterate x; is bounded a.s. if all the following

conditions hold:

1. a;>0,> 2 ag=ocand Y o, a? < o0.

2. The noise €, in (33) can be decomposed into two parts
€, =€, + ¢ ,such that e, =o(1), a.s., and {¢,, F;} with
Fi =o{xg,€;}i_o is an MDS satisfying the following
conditions:

2
|Fio1} <o, (39)

’
€4

E{e|Fi1} =0, supE{

where o > 0 is a constant.

3. There exists a continuously differentiable function
f(z) > —o0, such that g(-)=—Vf(-). In addition,
f(z) is radially unbounded (i.e., f(z) "= 0o) and its
gradient V f(+) is Lipschitz continuous.

Proof: The proof follows from [27, Theorem 4.7.1] by
verifying assumptions A4.1.2, A4.1.3 and A4.7.1-A4.7.3. To
verify A4.7.2, it follows from [27, Example 6] by considering
the first two conditions here. The rest of the assumptions can
be directly verified under the provided conditions. |

Lemma A.5: [[15], [23]] Consider the iteration (33). Assume
x, is bounded almost surely. Then the following conclusions
hold:

1. Let CO, C1, C2, and C3 hold. Then

lim z; =z, as..
t—o0

2. Let CO, C1’, C2/, and C3’ hold. Then
|z — 2| = o(ad), as.,
where 0 is the one given in C2'.
3. Leta, = & withv € (3,1). Iftlim z; =2 as.. and CO,
—r 00
C2”, and C3” hold, then the following conclusions hold:
o (1) \/%T,(zt — 2%) is asymptotically normal:

1 o d

ﬁ(xt — T ) tjo N(O, S),
where S = [ eFtSpef " tdt and F is the one given
in C3".

o )y = % Zle x; — 2V is asymptotically efficient:

Viz, -5 N(0,S),
t—o00
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where S = F~1Sy(F~1)T and F is the one given
in C3”.

Remark A.1: In Lemma A.5, from [23, Theorem 2.4.1] and
the almost-sure boundedness of x;, C2 satisfies [23, A2.2.3],
then assertion 1) holds according to [23, Theorem 2.2.1]. As-
sertion 2) holds following [23, Theorem 3.1.1]. Assertions 3)
is from [15, Lemma A.4].
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