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Application domains such as environmental health science, climate science, and geosciences—where the relationship between humans
and the environment is studied—are constantly evolving and require innovative approaches in geospatial data analysis. Recent
technological advancements have led to the proliferation of high-granularity geospatial data, enabling such domains but posing major
challenges in managing vast datasets that have high spatiotemporal similarities. We introduce the Hierarchical Grid Partitioning
(HierGP) framework to address this issue. Unlike conventional discrete global grid systems, HierGP dynamically adapts to the data’s
inherent characteristics. At the core of our framework is the Map Point Reduction (MPR) algorithm, designed to aggregate and
then collapse data points based on user-de�ned similarity criteria. This e�ectively reduces data volume while preserving essential
information. The reduction process is particularly e�ective in handling environmental data from extensive geographical regions.
We structure the data into a multilevel hierarchy from which a reduced representative dataset can be extracted. We compare the
performance of HierGP against several state-of-the-art geospatial indexing algorithms and demonstrate that HierGP outperforms the
existing approaches in terms of runtime, memory footprint, and scalability. We illustrate the bene�ts of the HierGP approach using
two representative applications: analysis of over 289 million location samples from a registry of participants and e�cient extraction of
environmental data from large polygons. While the application demonstration in this work has focused on environmental health, the
methodology of the HierGP framework can be extended to explore diverse geospatial analytics domains.
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1 INTRODUCTION

Advances in computational technology, the availability of low-cost sensors, the growth of the Internet of Things,
and remotely sensed geospatial data provide exciting new opportunities to understand complex human-environment
interactions. For example, with the heightened occurrence of extreme weather events and a rapidly changing climate [5],
there is an acute need to understand the impact of these events on human behavior and health. This is particularly true
given that extreme weather events tend to cover large geographic areas and can last several days or weeks [4]. At the
same time, the increased availability of spatial-temporal data on human movement provides scientists with the ability
to more accurately and e�ciently assess environmental exposure over larger geographic areas, assess relationships
with behaviors and health outcomes, and potentially intervene in near-real time [10].

For example, our research team uses Google location history data to assess locational smartphone data collected daily
over eight years from over 350 study participants in the Washington State Twin Registry. The study aims to understand
human behavior and built-environment measures associated with health. Some environmental exposure variables [10],
such as temperature, are extracted from satellite data and are calculated for a speci�c location and time. For over 350
participants, we have collected over 289 million spatiotemporal data points. Future research will expand data collection
by upwards of 10,000 participants (>8 billion spatiotemporal records), which presents a technical challenge on multiple
levels. In developing data mining and analytics methods for such a dataset, one should exploit the fact that many
observations are highly spatially related and contain essentially redundant information. Speci�cally, the dataset likely
contains many observations that are highly similar in both the measurement of interest and Coordinate Reference
System (CRS) values, which should be addressed. A solution to eliminating redundancy of this kind is to represent
such a dataset by drastically fewer unique CRS points, a process we refer to asMap Point Reduction (MPR).

In this work, we developed an MPR algorithm to create a hierarchical data reduction framework called H���GP. We
use this framework to develop heuristics designed to satisfy arbitrary user-speci�ed accuracy criteria. We empirically
demonstrate the ability of H���GP to drastically reduce the computational time of extracting environmental data
without forfeiting signi�cant sample accuracy.

The MPR idea in H���GP can be contrasted with traditional Discrete Global Grid Systems (DGGS) that are often
limited by their �xed, predetermined grid structures. While globally consistent, DGGS can lead to ine�ciencies in
handling data with varying spatial densities and complexities. In contrast, our dynamic approach in H���GP allows
users to specify grid sizes and local o�sets, enabling adaptation to the unique spatial characteristics of the data. This
�exibility is critical in managing the inherent complexities of geospatial datasets, which can vary widely in distribution
and density. In a conventional global grid system, the rigid grid structure can result in suboptimal partitioning for
data with uneven distribution, leading to either data sparsity or overload in speci�c grids. By enabling dynamic grid
sizing, H���GP mitigates these issues, ensuring more e�cient data distribution and retrieval. Furthermore, the linear
time complexity (O(=), where = is the number of unique samples) of our MPR approach contrasts sharply with the
potentially high complexities of other methods. Our method’s emphasis on local attention and adaptability enhances
data processing e�ciency, improves the semantic interpretability of the results, and facilitates more accurate and
insightful geospatial mapping analysis.
Summary of Contributions.We summarize our contributions in this work under three categories as follows.

• Algorithms. We propose an MPR algorithm to partition large numbers of geospatial points into a signi�cantly
smaller set of representative points (Sec 3). We introduce a novel multilevel dynamic hierarchical representation
of grid indexing as a basis for the algorithm (Sec 4). The dynamic grid indexing a�ords a mechanism for
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H���GP: Hierarchical Grid Partitioning for Scalable Geospatial Data Analytics 3

designing heuristics to optimize grid hierarchy levels in large-scale environmental analysis, thereby enabling
e�cient data processing in compliance with user-de�ned accuracy threshold (Sec 4.3).

• Comparison. We conduct a comparative analysis between H���GP and three existing geospatial algorithms—
Uber H3, S2 Geometry Library, and GeoHash—focusing on execution time, memory usage, and scalability.
The comparison demonstrates H���GP’s superior performance in all three aspects, a�rming its suitability for
large-scale geospatial tasks (Sec 5).

• Demonstration. We showcase HierGP’s capability using two illustrative real-world applications. The �rst
application involves analysis of a large-scale dataset containing over 289 million location samples of individuals
(Sec 6.1). The second application involves extracting environmental data for large polygons, illustrating dramatic
computational e�ciency gains in handling traditionally resource-intensive tasks (Sec 6.2).

2 RELATEDWORK

We discuss related work in methods for spatial data processing, discrete global grid systems, and quadtree structures,
focusing primarily on how the methods compare with our proposed approach.

2.1 Traditional Methods in Spatial Data Processing

Clustering in machine learning and graph partitioning are two broad categories of work that are particularly related to
our work. Clustering methods aim to group points using metrics such as distance and density [20]. Extensively studied,
clustering methods are the foundation for data analysis e�orts across scienti�c �elds [35]. With many variations in
approaches, most of the methods rely on centers of points for clustering (e.g., k-Means [19, 20, 30] and K-medoids [23]).
The centers of clusters are iteratively updated until a stop criterion is satis�ed. Such clustering algorithms include PAM
[12], CLARA [13], CLARANS [22]. While these approaches have relatively low time complexities, they are sensitive to
outliers and require a hyper-parameter specifying the number of desired clusters beforehand. Various hierarchical-based
methods that arrange clusters relative to each other have also been developed (e.g., BIRCH [36], CURE [9], Chameleon
[11], etc.). Typically built o� existing clustering algorithms (e.g., [16, 26]), these approaches are best suited for datasets
with a speci�c, arbitrary structure. Density-grid-based clustering algorithms have also been proposed as alternatives
with varying success [3, 18].

An area of study with many developments relevant to algorithmic reduction is graph partitioning [2]. The bene�ts of
heuristics over multilevel graph partitioning have been researched extensively [21]. The multilevel approach e�ciently
partitions large graphs representing complex data. Following a general reduction process called "coarsening" or
"contraction," an approximation of a graph with successively fewer degrees of freedom is made by constructing a
hierarchy of successively reduced results. This reduction process terminates when a small enough graph size is reached
for use in other partitioning algorithms (geometric partitioning [27], etc.). Following some initial partitioning process,
an "uncoarsening" takes each level up the hierarchy in two parts: 1) results are sequentially mapped from coarser to
�ner levels, and 2) after each mapping, some method is typically used to improve the partition results.

In addition to this generalized form of the multi-step approach, iterative variations (e.g., V-cycle chains) have been
proposed to improve the reduction quality and to distribute more of the computational burden to the most reduced levels
[25] [33]. Considering modern geographically embedded networks, many recent graph partitioning contributions have
made data mining across spatial data increasingly more e�cient. Although e�ective for irregular structures modeled
as networks, the graph partitioning approach is too general and thus ill-suited for the regular structure of geospatial
datasets.
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2.2 Advances in Discrete Global Grid Systems

Another approach is to use Discrete Global Grid Systems (DGGS), where recent advances have opened new avenues
for managing and analyzing Earth observation data. Recent advances in DGGS have been comprehensively reviewed
[14, 34]. These reviews present DGGS as a unifying framework that tackles the challenges of data storage, processing,
and visualization, particularly in the realm of cloud computing [34]. The integration of DGGS with cloud technology is
posited as an important stride, o�ering substantial opportunities yet posing signi�cant challenges, especially in data
management, fusion, and grid encoding [14].

Parallel to these developments, explorations into spherical triangular grids [17] and degenerate quadtrees [28] reveal
alternative approaches to geospatial data structuring. Additionally, the establishment of a DGGS standard by the Open
Geospatial Consortium marks a signi�cant milestone [24]. The standardization is useful for e�ectively managing and
integrating the burgeoning volumes of heterogeneous geospatial data.

The Uber H3 geospatial indexing system, a hexagonal hierarchical spatial index, has made signi�cant strides in the
�eld of discrete global grid systems. Initially developed to enhance Uber’s ride-hailing services, such as dynamic pricing,
H3 employs a hexagonal grid on an icosahedron’s face, projected onto the Earth [31]. This structure simpli�es analytical
processes by utilizing hexagons for consistent neighbor distances. The system supports multiple resolutions, starting
with 122 base cells and recursively subdividing for �ner precision [32]. H3’s �exibility and open-source nature have
facilitated its application in diverse �elds such as urban analysis, gaming, and augmented reality applications, including
Pokemon Go [1]. Despite its advantages in operational �exibility and data integration, challenges with spatial accuracy
and precision remain due to its hierarchical hexagonal structure and the gnomonic projection employed [1, 31, 32].

Modern geospatial data processing tools like the S2 Geometry Library and GeoHash are substitutes for more
conventional approaches like Uber H3 and quadtrees [15]. These methods o�er high pruning power, adaptable index
data size, and support for e�ective updates of geographical data [15]. For instance, the S2 Geometry Library represents
the Earth’s surface using a hierarchy of cell covers, and GeoHash quickly retrieves position information by encoding
geographic coordinates into a short string of characters and numbers [15]. Other research has also investigated the use
of GeoHash indexes for spatial data models in corporate GIS [29] and suggested innovative methods for indexing and
retrieving spatial polygons, such as the distributed KD-Tree [37].

S2, Uber H3, quadtrees, and other more modern spatial indexing algorithms are examples of advanced methods that
theH���GP approach improves upon. In contrast to conventional techniques, which often use a non-adaptive grid system
or a �xed resolution, H���GP uses an adaptive grid scaling strategy that dynamically adapts to the distribution and
density of data. Because of its �exibility,H���GP can e�ectively handle large-scale geospatial datasets’ volume variability
and geographic complexity. Moreover, neither the S2 Geometry Library nor GeoHash fully addresses multi-dimensional
support or multi-resolution analysis; these are features that H���GP incorporates. Through these innovations, H���GP
addresses the nuanced demands of modern geospatial data analytics, o�ering scalability, precision, and operational
�exibility improvements.

2.3 Di�erences of H���GP from Traditional quadtree Structures

Although H���GP shares some similarities with traditional quadtree indexing, several signi�cant di�erences set it apart,
particularly in adaptability, data processing, and support for large and complicated datasets.

Adaptive Grid Sizing. H���GP uses adaptive grid sizing instead of the uniform subdivision technique found in typical
quadtrees, which divide each node into four equal-sized quadrants. By using a recursive partitioning technique similar
Manuscript submitted to ACM
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H���GP: Hierarchical Grid Partitioning for Scalable Geospatial Data Analytics 5

to that of quadtrees, the grid can dynamically change according to the distribution and density of data in each location.
This �exibility ensures �ner partitions for areas with higher data density, thereby enhancing the accuracy and e�ciency
of the spatial index.

Data-Driven Partitioning. H���GP incorporates data features like variance and clustering to improve partitioning
decisions. In contrast to quadtrees, which use only geographical criteria, H���GP uses data-driven criteria to identify
better underlying data patterns. This feature bene�ts applications where data are naturally heterogeneous, including
urban planning and environmental monitoring.

Handling of Large Datasets. Large datasets can make traditional quadtrees ine�cient, leading to deep tree topologies
that complicate traversal and querying.H���GP incorporates methods for managing massive volumes of data, enhancing
scalability.

Multi-Resolution and Multi-Dimensional Support. Another critical improvement over conventional quadtrees is that
H���GP can handle multi-dimensional data and support multi-resolution queries. Due to its adaptability, H���GP can
be used for various tasks, such as analyzing time-series data in environmental studies and 3D geographic information
systems (GIS), where multiple resolutions and dimensions are vital for analysis.

3 MAP POINT REDUCTION

The objective of our proposed MPR algorithm is to quickly and accurately downsize the number of unique CRS values
within an extensive dataset so that groupings of similar observations within a user-de�ned grid size distance of one
another can be represented by a single CRS point.

Developing and implementing an e�ective MPR algorithm presents several technical challenges. The primary
challenges focused on in this paper include:

(1) E�cient mapping of CRS values to a model of orthodromic distance (the shortest surface distance between
two points themselves on the surface of a sphere) for Earth.

(2) Computational time complexity of the MPR process execution, including parallelizable mapping capacity.
(3) Ability to mini-batch samples from an exceedingly large and continuously expanding dataset into a single

consistent MPR result.
(4) Determining the appropriate grid sizing for the dataset to maintain the desired accuracy criteria across CRS

point aggregations.

3.1 Simplified Model of Earth

To address the problem of accurate mapping of CRS values to Earth’s orthodromic distance, we start with the creation
of a simpli�ed model of Earth. This model considers two orthogonal axes made of circumference (circ.) values, one for
latitude and the other for longitude:

(1) Equatorial circ. of Earth as ⇠4 = 40, 075.017 km.
(2) Polar circ. of Earth as ⇠? = 40, 007.863 km.

The two circumference values are both considered as uniform perfect circles. This assumption maintains simplicity in
the model while allowing a better approximation of Earth’s spherical shape.

Using this representation of Earth, the relationships between degree changes from the Earth’s center to distance
changes along each ⇠4 and ⇠? can be easily computed. Trivially, each ⇠ is the surface distance a 360-degree shift yields
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along each model’s axes. From this, the distance that a single degree shift (�) along each axe would yield can be found
using the following formulation: � = ⇠ km

360 degrees . Using this formulation �4 for Equatorial and �? for Polar can be found
as:

�4 =
40, 075.017 km
360 degrees

= 111.3194917 km / degree (1)

�? =
40, 007.863 km
360 degrees

= 111.1329528 km / degree (2)

To calculate the required degree shift along each axis to achieve a speci�c grid size (denoted as B), we de�ne a term
called delta (X). This X represents the orthodromic distance in degrees needed per grid unit. It is determined using the
following formula:

X =
B km

� km/degree
(3)

This formula calculates the degree shift (X) required along each axis to match the grid size B based on the degree distance
� per kilometer.

3.2 The MPR Algorithm

The computed X values are designed to be computed only once by the algorithm and then stored in a con�guration
instance for repeated use, allowing the algorithm to bene�t from parallelization. It is also important to note that the
calculated deltas may result in minimal values where the signi�cant digits are farther from the decimal point. Because
of this, users can adopt a simple approach to better maintain accuracy in mappings for theMPR process. Such a measure
allows users to specify a parameter 022 , indicating how many decimal places of accuracy they want for the computed X
values. The MPR process then can truncate or round (depending on implementation details) the computed X values to
022 decimal places. Using the above formulations of B to X relation, a new resulting B as B0 can be solved using these
new X values. Then B0 can be recommended to the user to use directly or revise. By managing the algorithm’s delta
values and implementation details in such ways, users can better mitigate computational errors, including truncation
and round-o�.

While the resulting grid size will likely not be square (B04 < B0? ), users could account for the resulting rectangular grid
size to reduce the cumulative arithmetic error, which is most impactful on relatively small grid size mapping requests.
Either way, the capacity for rectangular grid sizing is a built-in o�ering of the algorithm that provides much �exibility.

Starting from a CRS point valued (;0C8CD34 = 0.0, ;>=68CD34 = 0.0), the stored X’ values can function as step sizes
along each axis in all four directions. Consequently, an implicit grid system is formed that spans the entire CRS value
bounds (e.g., longitude 2 [�180, 180], latitude 2 [�90, 90]). This way, the entire space for all possible CRS points is
partitioned into a two-dimensional grid of cells. Each cell in the grid is implicitly assigned a unique indexing (- ,. )

following a zero-based indexing scheme, where the �rst positive cell in - and . is (0, 0). The left pane in Figure 1 shows
the cell indexing scheme of the resulting implicit grid system.

With a grid indexing system now in place, the set of CRS points in a dataset, when considered as two vectors ( Æ;0C for
latitude and Æ;>= for longitude), can be assigned grid cell indices in a vectorized fashion via the following formulation:

Æ- =
�
Æ;>=

X4

⌫
, Æ. =

�
Æ;0C

X?

⌫
(4)

Here, ( Æ- [8], Æ. [8]) is the assigned grid cell index for the CRS observation at index 8 with coordinates ( Æ;>=[8], Æ;0C [8]).
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Fig. 1. Le�: Cell indexing scheme of the implicit grid system. Right: Example result as a Cartesian graph for a dataset with 5,000
initial unique CRS values (dots) reduced to 26 unique CRS values (stars) using a grid size s=25 km and cell centers for midpoints.

Grid cell indices can then be easily converted into CRS points relative to their assignments in a vectorized manner.
While a user could use any point relative to grid indexing, one obvious choice for representation is simply the midpoint
CRS values of each cell. The midpoint assignments, denoted as ( Æ<83;0C , Æ<83;>=) can be found via:

Æ<83;0C = X;0C · ( Æ. + 0.5), Æ<83;>= = X;>= · ( Æ- + 0.5) (5)

Given that points could be clustered together on one side of a cell, a better representative choice for a midpoint selection
can be the computed centroid of the lat and long values of all points within the cell.

Now ( Æ<83;0C [8], Æ<83;>= [8]) for the CRS point at index 8 are the new CRS values assigned by the MPR algorithm to
represent that point. The right pane in Figure 1 shows an example MPR result as a Cartesian graph for a dataset with
5, 000 initial unique CRS input values (dots) reduced to 26 unique CRS output values (stars) using a grid size of 25
km. This example dataset had a range of [4.3835007, 8.4808539] for latitude and [3.0718008, 8.0892264] for longitude.
Algorithm 1 summarizes the computational steps of the approach. Note that it does not include any adjustments for the
potential computational errors incurred in delta calculations as previously outlined.

Algorithm 1Map Point Reduction Algorithm (w/o delta adjustment)

Input: ⇡ (n x 2 matrix of CRS points, = = number of samples), B (grid size in km where 0.0 < B 2 Q)
Output: ⇡0 (n x 4 matrix of initial and new CRS points)
1: Establish �4 = 111.3194917, �? = 111.1329528
2: Compute X4 = B

�4
, X? = B

�?

3: Extract latitude values from ⇡ into Æ;0C
4: Extract longitude values from ⇡ into Æ;>=
5: Compute ÆG =

j
Æ;>=
X4

k
, Æ~ =

j
Æ;0C
X?

k
6: Compute Æ<83;0C = X? · (Æ~ + 0.5), Æ<83;>= = X4 · (ÆG + 0.5)
7: ⇡0  Concatenate ⇡, Æ<83;0C , Æ<83;>=
8: return ⇡0
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4 HIERARCHICAL REPRESENTATION

The proposed approach is e�cient; however, processing the entire geospatial dataset at once may not be feasible
due to its size. To address this, we suggest a hierarchical representation of spatial and temporal partitioning using a
mini-batching approach. This means the large dataset can be divided into smaller non-overlapping subsets, allowing for
iterative processing until the entire set is covered. To ensure the validity of any reduction, the samples must represent
the entire dataset across all its features. By assigning the dataset to a single hierarchical representation, reduction tests
can be conducted locally within partitioned groups. Our H���GP approach allows for the development of semantically
interpretable heuristics, which can be applied to future collected samples. Additionally, researchers can periodically
repeat this process to keep the learned heuristics current and relevant to new samples.

4.1 Spatial Partitioning

The initial CRS points are considered layer zero (;0), serving as a baseline for later analysis. By passing all of ;0’s CRS
points into the MPR method with an initial grid size B8 (e.g., 100m), a new set of CRS points, layer one (;1), is generated.
Next, by following a quadtree-based approach, additional tree layers can be built iteratively, layer by layer. Each higher
layer ;8 can be built by using the CRS points of the previous layer ;8�1 and passing them into the MPR method using a
value for B; that is an integer factor U > 1 larger than B;�1 (the previous layer’s value for B).

More formally, layer ;8 is added atop a layer ;8�1 with grid size B8�1 by performing the following steps:

(1) B; = UB;�1 (e.g. if U = 2 and B8 = 100<, then B1 = 200<, B2 = 400<, B3 = 800<, ...)
(2) Pass the grid assignment CRS values (e.g. Æ<83_;0C and Æ<83_;>=) of ;8�1 into the MPR algorithm.
(3) Assign the CRS values output from MPR to layer ;8 .

It is recommended to keep adding layers until the desired tree depth is reached or all CRS points are assigned to a single
grid cell. It is suggested to use a static value for grid size throughout the tree analysis; for example, doubling the grid size
with each layer added. Figure 2 illustrates a simple example of the hierarchical tree structure of grid cell partitions using
a static parent-child grid size relationship of doubling the size in each step, following the classic quadtree approach.

4.2 Temporal Partitioning

Environmental datasets are typically collected at certain rates, which can be regular (hourly, daily, yearly) or irregular. It’s
important to examine the data collection rate to determine how to partition the data over time. Temporal partitioning
reduces data along a dimension orthogonal to spatial grid partitioning (e.g., latitude and longitude). It allows for
simplifying data points in a grid that exist at di�erent times using a user-selected temporal resolution (g) that matches
the dataset’s temporal resolution. The number of temporal partitions, which we denoted by : , depends on the range
of datetime values in the dataset and the chosen g . To �nd : , we calculate : = dg<0G�g<8=

g e, where g<8= is the earliest
datetime value and g<0G is the latest. Figure 3 shows an example of a spatial grid cell partition with �ve temporal
partitions (: = 5 for some g). Algorithm 2 summarizes the vectorized operations for computing the temporal partition
assignments.

4.3 Hierarchy Level Heuristics

A hierarchical representation is used to store the spatially and temporally partitioned dataset in a series of layers across
di�erent features. This allows for quick consideration of di�erent groups of points for holistic similarity across the
entire feature space, rather than focusing solely on spatial or temporal aspects.
Manuscript submitted to ACM
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Fig. 2. Illustrated Example of the Hierarchical Tree Structure of Grid Cell Partitions.

Algorithm 2 Temporal Partitioning

Input: Temporal dataset ⇡ (n x 1 matrix of datetime values, = = number of samples), Temporal resolution g
Output: Temporal partition assignments ) (n x 1 matrix)
1: ) =

j
⇡�g<8=

g

k
2: return )

Fig. 3. Illustration showing the relationship between temporal and spatial partitioning.

Starting from the highest layer in the hierarchy, many or all points in the dataset fall into a single partition. As we
move down the hierarchy levels, each partition of points is recursively subdivided into �ner spaces in a nested fashion
until each point in the dataset is alone in its own partition.

When each partition in the hierarchy is visited, a representative point can be created from the subset of points within
the partition space. This reduced point can be evaluated against a user-de�ned measurement accuracy condition (n). If
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Algorithm 3 Hierarchical Grid Partitioning Algorithm

Input: Original dataset⇡> (n x 3 matrix of spatial-temporal samples, = = number of samples), n (measurement accuracy
condition), B8 (initial grid size), B< (maximum grid size), U (integer for grid size level scaling), g (temporal resolution)

Output: Reduced dataset ⇡A
1: Compute list of grid sizes Æ6 = [B8 ,UB8 ,U2B8 , . . . , B<]

2: Perform temporal partitioning (Algorithm 2) on ⇡> using g into a list of matrices 3 = [⇡C=0
> ,⇡C=1

> , . . . ,⇡C=:
> ]

3: Initialize empty matrix ⇡A for all reduced points
4: for each ⇡8

> in 3 do
5: Set unreduced dataset matrix ⇡D  ⇡8

>
6: Set empty reduced dataset matrix ⇡8

A
7: for each grid size level B; in reverse order of Æ6 (B< to B8 ) do
8: Perform MPR (Algorithm 1) of all data points in ⇡D using B;
9: for each partition ? in level ; do
10: Reduce all points  in ? into a single point A ;?
11: if A ;? satis�es n then
12: Add A ;? to ⇡8

A
13: Remove  from ⇡D
14: end if
15: end for
16: if all points are successfully reduced (⇡D is empty) then
17: Add ⇡8

A to ⇡A
18: end if
19: end for
20: if unreduced points remain (⇡D is not empty) then
21: Add ⇡D to ⇡8

A
22: end if
23: Add ⇡8

A to ⇡A
24: end for
25: return ⇡A

the condition is satis�ed, then that spatial-temporal space can be reduced; otherwise, the points cannot be reduced at
that level.

Using this framework, speci�c loss relative to n can be tracked for each partition, and an analysis of the results
can be used to develop heuristics from the underlying dataset. Heuristics based on past data patterns and prede�ned
accuracy levels guide the grid size adjustments to provide a dynamic partitioning architecture that enables customized
algorithmic responses to varying data features.

This procedure improves customization and adaptation to speci�c user requirements and data situations. A formal
and detailed description of the procedure is provided in pseudo-code format in Algorithm 3.

Figure 4 illustrates how theMPR hierarchy can be used to develop a variable (or uniform) grid size heuristic based on
a set of customized accuracy threshold conditions. Figure 5 shows visualizations of two synthetically created datasets
of varying sizes (kept small for plotting purposes) and how the method can be applied to recommend reductions up to
the speci�ed level using two di�erent criteria.

Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

H���GP: Hierarchical Grid Partitioning for Scalable Geospatial Data Analytics 11

Fig. 4. Illustration showing the use ofMPR hierarchy for developing variable grid size heuristics based on the use of a customized
measurement accuracy threshold n for analysis of one feature of the data - .

5 COMPARISON OF HIERGPWITH OTHER GEOSPATIAL ALGORITHMS

We compared H���GP with several leading geospatial data processing algorithms, including Uber H3, S2 Geometry
Library, and GeoHash. The aim was to evaluate their performance across three critical aspects: execution time, memory
usage, and scalability across grid levels. This section details the methodology of the comparison, discusses the results
obtained, and provides insight into the e�ciency of each algorithm under various computational scenarios.

5.1 Methodology

Satellite image data interpretation. When interpreting data from images where pixels represent regions of land, the
geometric con�guration of the processing grid can a�ect the e�cacy of data interpretation. Since pixels are an atomic
unit, their dimensions are easily interpreted as a grid of squares. Depending on the level of magni�cation, the pixels
can each represent an - by - region of land. When employing a hexagonal mesh overlaid on a matrix of pixel values,
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Fig. 5. Le�: Heat maps of 1k (top) or 10k (bo�om) synthetically created geospatial data samples over an area approximately 7.6 by 11
km and a single variable ’var1’ [45-50]. Center: The same points are reduced to grids using a HeirGP instance with the smallest grid
size of 0.1km (level 1) and the largest grid size of 12.8km (level 7), where each level doubles the previous. Each point’s square exterior
color reflects its grid cell assignment, while its interior dot is its ’var1’ value. The stars represent the reduced points with the exterior
color reflecting grid cell association and the interior the average ’var1’ value when all points of the same exterior color are reduced
and become it. The metric for reduction eligibility is if the standard deviation (std) of the samples in a grid cell is  0.25, then reduce.
Right: The same as the center but with more relaxed reduction criteria of std  0.5.

the translation is anything but trivial. There are generally three considerations when overlaying the hexagonal grid
over the square one:

(1) Size. The side length relation can be found via the following steps. Let 0 be the length of a side in the hexagon.
The area of a hexagon is then given by 3

p
3

2 02. Let 1 be the length of a side in the square. The area of a square is
then trivially 12. If both areas are set equal to each other for the best possible coverage and we solve for 1, we
get 1 =

4p33 ·0
p
2

since side length would be positive. For example, if 0 were 1km, 1 would be approximately 1.6km.
(2) Position. Using a chosen midpoint, o�set the hexagonal grid so that each cell’s area aligns with the rows and

columns of the square grid.
(3) Rotation. Rotating the hexagonal grid overlay by 45 degrees could marginally improve the �t.

Whatever the approach, moving from pixels to square grids is met easily via scaling to match the dataset’s metadata
(e.g., each pixel is 30x30km). However, matching hexagonal mesh to such an image is more di�cult, and no matter
the approach taken, it results in a mismatched representation. Figure 6 illustrates how the two grid systems could be
applied to an image �le and the resulting di�erences in outcome.

Comparison. We assessed execution times using datasets ranging from 1,000 to 10,000,000 records to gauge the
performance of each algorithm as the data volume scaled up. This comparison was pivotal to understanding each
system’s responsiveness to increasing data sizes. Scalability was tested by adjusting the grid level parameter from 1 to
Manuscript submitted to ACM
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Fig. 6. Illustrates showing square and hexagonal mesh grid interpretations of a discrete pixel-value matrix. Le� is square grid
interpretation. Center is a possible overlay placement approach. Right is a possible resulting interpretation that adopts a color value
of the average of colors underneath each hex grid.

15 while keeping the dataset size constant (1 million records). This metric showed how each algorithm’s performance
scales with increased complexity. Finally, we monitored the memory usage for each algorithm across di�erent dataset
sizes using memory pro�ler and psutil libraries in Python. This measure was crucial for assessing each algorithm’s
resource utilization e�ciency. Memory usage was measured by calculating the di�erence in peak memory before and
after the algorithm’s execution, focusing on the memory allocated for storing the data structures.

5.2 Results and Analysis

Execution Time. The execution time results are presented in Figure 7a. H���GP consistently outperformed H3, S2
Geometry Library, and GeoHash in execution time across all dataset sizes, with its advantage growing as the number of
records increased. This suggests that H���GP’s performance bene�ts signi�cantly from its data structure alignment
with typical image pixel layouts.

Memory Usage. The memory usage results, depicted in Figure 7b, indicate that H���GP is more memory-e�cient
than the other algorithms. This e�ciency is particularly pronounced at higher record counts, where H���GP’s memory
footprint remains modest compared to H3’s signi�cantly larger usage. The memory measurement re�ects the size of
the data structures generated by each algorithm and their overall storage e�ciency.

Grid Level Scalability. As shown in Figure 7c, all algorithms demonstrated stable execution times across varying grid
levels while maintaining a constant dataset size of 1 million records. H���GP consistently maintained a lower execution
time throughout these tests. These results highlight the importance of data structure compatibility with the data being
processed, where H���GP’s square grid design aligns more naturally with satellite data pixels.

We note that the hexagonal shape of H3 cells introduces complexity in data alignment and can increase computational
overhead, particularly when converting from square grids used in typical satellite images. We did not explicitly consider
any initial conversions from square to hexagonal grids in our execution time results. Such modi�cations may be a
contributing factor to the observed variations in memory consumption and execution times if they take place within the
algorithms. This suggests that the underlying processing techniques of the algorithms may directly impact performance
measures.
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(a) Scalability: Execution Time (b) Scalability: Memory Usage (c) Scalability: Grid Level

Fig. 7. Scalability comparisons between H���GP and other algorithms across various performance metrics. (a) execution time, (b)
memory usage, and (c) grid level scalability

5.3 Discussion

The comparative analysis demonstrates that H���GP has clear advantages over the other algorithms in terms of
execution time, memory footprint, and scalability for large-scale geospatial data processing tasks. The di�erences
in grid shape—H���GP’s square grid versus H3’s hexagonal grid—play a crucial role, particularly in environmental
satellite data. Additionally, the parallel nature of the H���GP algorithm makes it amenable for parallel and distributed
computing scenarios.

Moreover, H���GP’s square-based design is inherently compatible with the pixel structure of satellite data, providing
a more natural �t for this type of data. The square grid aligns closely with the pixel layout, potentially leading to more
intuitive data integration and analysis.

The implementation languages of these algorithms also di�er. The H3 algorithm was initially developed in C++
and then converted to a Python module. Python was used to directly generate H���GP and implement GeoHash and
the S2 Geometry Library. These linguistic variances signi�cantly impact the ease with which the algorithms can be
incorporated into work�ows for data processing. In Python-centric setups, Python algorithms such as H���GP, S2, and
GeoHash might make development more accessible. Conversely, algorithms like H3 with parts initially written in C++
can gain from the superior performance of C/C++ via libraries like numpy. The varied underlying languages used by
the algorithms indicate varying degrees of integration ease and possible performance.

6 DEMONSTRATIONS ON APPLICATIONS

This section demonstrates the bene�ts of theH���GP framework using two real-world applications. The �rst application
involves environmental health analysis, while the second deals with environmental data extraction for large polygons.

6.1 Environmental Health Analysis

We begin by brie�y describing the dataset and then present the result of the partitioning process. We �rst consider the
partition in terms of the number of grids generated at each level and explain why the counts di�er. Then, we consider
the computational time and space complexity of our approach and �nally combine the spatial and temporal partitioning.

6.1.1 Brief Summary of the Dataset. The dataset is an extensive collection of location data from participants in a twin
registry. A recent study explored the possibility of using the Google Location History (GLH ) of participants to obtain
location data [10]. Participants can provide their GLH by exporting information from their Google account. This data
contains their raw location data and semantic location data, which Google has augmented with the most probable
Manuscript submitted to ACM
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Table 1. Grid counts across tree levels for the total
289,446,156 points.

Tree Level Grid Size Count

1 50m 7,380,968
2 100m 4,383,522
3 200m 2,541,608
4 400m 1,417,877
5 800m 742,318
6 1.6km 377,356
7 3.2km 192,162
8 6.4km 95,755
9 12.8km 45,709
10 25.6km 20,616
11 51.2km 8,693
12 102.4km 3,687
13 204.8km 1,622
14 409.6km 745 Fig. 8. Bubble chart visualizing the point counts across tree

levels shown in Table 1

activities and places they visit. In this paper, we focus on the raw location data. The dataset comprises 372 participants
and 289,446,156 location points from May 2010 to December 2022.

6.1.2 Spatial and Temporal Partitioning Results. Using the MPR algorithm, all 289 million CRS points were partitioned
into a grid hierarchy of 14 levels, starting with a grid size of 50m. Each level increment doubles the grid size from the
previous level. The highest level in the hierarchy (level 14) has a size of 409.6km. At the �rst level of partitioning, we
obtain a 97.45% reduction. Table1 shows the number of grids at each level and Figure 8 visualizes the same data using a
bubble chart. In addition to the spatial partitioning, we also did temporal partitioning using yearly and hourly temporal
resolutions. Table 1 and Figure 8 only show spatial partitioning results.

6.1.3 Resolution Combination Results. We examined two target datasets from Google Earth Engine: the ERA5-Land
Hourly - ECMWF Climate Reanalysis (ERA5-Land) [7] and the MOD13Q1.061 Terra Vegetation Indices 16-Day Global
250m (MOD13Q1) [8].

The ERA5-Land dataset contains several land variables, including temperature, wind speed, precipitation and surface
atmospheric pressure. This dataset has a spatial resolution of 11,132m and an hourly temporal resolution. A general
rule of thumb for selecting the best grid without using hierarchy level heuristics is to choose a grid size that is less than
half the spatial resolution of the target dataset. An appropriate grid level for this dataset would be 3.2km.

The MOD13Q1 dataset contains vegetation indices on a per-pixel basis. The dataset variables include the Normalized
Di�erence Vegetation Index (NDVI), a popular metric for quantifying the health and density of vegetation. This metric
uses sensor data for quantifying the di�erence between near-infrared (re�ected by vegetation) and red light (absorbed
by vegetation), normalized from -1 (likely water) to 1 (likely dense green vegetation) [6]. The dataset has a spatial
resolution of 250m and an annual temporal resolution. Without the use of any heuristics, an appropriate grid level
would be 100m. Next, we determine the best grid level using the hierarchy heuristics process outlined in Section 4.3.
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Table 2. Spatial and Temporal Resolution Combinations

Identi�er Spatial Temporal Count % of Data
(289 million)

l2-y 100m yearly 13,849,364 4.78%
l7-h 3.2km hourly 22,461,118 7.76%

Table 3. Means and standard deviations of the percentage di�erences for all the sample points for NDVI and temperature variables.

NDVI temperature
Level km -̄ (%) fG (%) -̄ (%) fG (%)

1 0.05 -0.17 4.53 0.00 0.01
2 0.1 -0.27 6.26 -0.02 1.41
3 0.2 -0.86 10.34 -0.02 1.41
4 0.4 -0.73 12.5 -0.01 1.00
5 0.8 0.00 18.24 -0.14 3.74
6 1.6 2.86 27.59 -0.90 9.45
7 3.2 3.14 38.26 -0.79 8.85
8 6.4 -0.48 68.16 -1.52 12.24
9 12.8 6.19 136.96 -1.78 13.22
10 25.6 8.32 140.10 -4.81 21.38
11 51.2 29.73 151.24 -13.84 30.75
12 102.4 33.78 160.59 -3.58 18.01
13 204.8 26.16 131.64 -3.24 17.00
14 409.6 -40.99 173.90 -1.23 9.61

Table 2 shows the spatial and temporal combinations for the selected levels for ERA5-Land and MOD13Q1. After
combining the spatial and temporal combination, the count column shows the resulting number of records, while the
percentage column shows the percentage of the original 289 million records. Essentially, this means that instead of
having to run 289 million matches against the target dataset, this method can reduce it to less than 5% of the data for
the MOD13Q1 and less than 8% for the ERA5-Land.

6.1.4 Hierarchy Heuristics Results. To determine the best hierarchy level using the heuristics approach de�ned in
Section 4.3, we sampled 10,000 records from the CRS points. While this might be considered relatively small compared
to the total number of records in the dataset, it was su�cient to determine which hierarchy level is best for the data. We
set the cut-o� accuracy condition n to the following: the mean of the value shift should not exceed a range of ±2%, the
value shift standard deviation should not exceed 10%, and all previous levels must also satisfy this condition. With the
accuracy condition de�ned, we extracted NDVI values from the MOD13Q1 and temperature values from the ERA5-Land
for the 10,000 points.

Next, we reduced the points using theMPR process into the �rst 50m grid and extracted values for the grid centers of
those points. We continued this process for all the 14 levels of the grid. Once all the values were extracted successfully,
we calculated the mean and standard deviation of the value shift, comparing them with those extracted when directly
using the CRS points. Table 3 shows the means and standard deviations of the value shift for the NVDI and temperature
values extracted.
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Table 3 also highlights the levels that match the speci�ed accuracy condition in bold. For example, the mean and
value shift for levels 1 through 5 and 8 satisfy the accuracy condition, while levels 1 and 2 only meet the standard
deviation and value shift. All levels except level 11 satisfy the mean accuracy condition for the temperature extract,
while levels 1 through 7 and 14 satisfy the standard deviation accuracy condition.

We check the highest level that satis�es the accuracy condition to determine the best level. For the NDVI extraction,
the highest level that satis�es the condition is level 2, i.e., the 100m grid size (this is marked in blue in Table 3). Similarly,
for the temperature extraction, the highest level that satis�es the condition is level 7, i.e., the 3.2km grid size (marked in
green in table 3). The resulting heuristic recommends using grid size B = 0.1 km for NDVI analysis and B = 3.2 km for
temperature analysis on the larger dataset.

6.2 Environmental Data Extraction for Large Polygons

The extraction of NDVI values from Landsat imagery, particularly over large areas like counties in the United States,
presents signi�cant computational challenges. NDVI, a critical indicator of vegetation health, is crucial in agriculture
and forestry. The traditionally resource-intensive process encounters di�culties in large-scale computation due to
cloud cover, topographical variations, and data sparsity. Therefore, we have adopted a grid-based subdivision approach
using the H���GP algorithm. This method optimizes processing by breaking down large areas into smaller, manageable
sections, enhancing data accuracy at the borders and contributing a novel solution to the computational di�culties in
extensive NDVI analysis.

6.2.1 Data Extraction Process. The NDVI extraction process from Landsat imagery entails a detailed sequence of steps.
Initially, it involves selecting and extracting relevant Landsat images for the speci�ed region and period. The critical
aspect of computing NDVI is analyzing of the Landsat image bands, speci�cally, calculating the normalized di�erence
between the near-infrared (B4) and red light (B3) bands. This calculation is essential as it transforms raw satellite data
into meaningful metrics that e�ectively indicate the health and vitality of vegetation in the targeted area.

6.2.2 H���GP Application. The process of NDVI extraction from Landsat images is signi�cantly enhanced when dealing
with large areas using the H���GP algorithm. This method begins by segmenting the expansive polygon into smaller,
manageable grids. The initial step involves classifying the polygon points into respective grids, focusing primarily on
the boundary areas. This classi�cation forms the basis for �lling the internal grids, using the border grids as a reference.
Particular attention is given to these border grids, which require clipping to align precisely with the polygon’s shape, as
depicted in Figure 9. Each grid, once de�ned, is processed individually, allowing for the extraction of NDVI values in a
manner that is both e�cient and tailored to the speci�c shape and size of the polygon. The �nal step in this optimized
approach involves aggregating the results from each grid to obtain a comprehensive NDVI analysis for the entire
polygon. This approach e�ectively addresses the computational challenges and potential time-outs associated with
processing large geographical areas, such as those encountered on platforms like Google Earth Engine.

6.2.3 Other Optimization Strategies. In addition to employing H���GP, several optimization strategies were imple-
mented. A combined reducer approach minimized the number of Earth Engine invocations. Conditional masking was
applied only when necessary, and clipping was performed at the image collection level to leverage Earth Engine’s
capabilities, reducing processing times.

6.2.4 Extraction Results. Implementing the H���GP framework markedly improved the NDVI extraction process. This
improvement generated a comprehensive NDVI summary at the polygon level, o�ering in-depth insight into vegetation
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Fig. 9. Illustration of general extraction process of points using H���GP over basic geographical polygon of Ki�itas County is WA.

Fig. 10. Distribution of County Average NDVI Values by Year for Counties with Least, Highest, and Medium Variations. This bar plot
groups 12 counties into three categories: Least Variation (first four counties), Highest Variation (middle four counties), and Medium
Variation (last four counties). Each bar represents the average NDVI value for a specific county and year.

health across extensive regions. The e�ectiveness of H���GP is further highlighted by its ability to process large
datasets e�ciently, signi�cantly reducing execution time and memory usage. Figure 10 provides a comparative analysis
illustrating the average NDVI values in twelve carefully selected U.S. counties. These counties were chosen to cover a
broad range of data variability, from small variations to high variations in values. It would not have been possible to
generate summary statistics and perform exploratory data analysis for such a large dataset without employing the
H���GP approach.
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7 CONCLUSION

We introduce a novel dynamic global grid system called Hierarchical Grid Partitioning, H���GP, that o�ers a �exible
and fast approach for creating a customized global grid system. Unlike traditional discrete global grid systems, H���GP
enables users to customize grid sizes and structures to suit speci�c analytic needs. In our extensive case study, H���GP
enabled e�cient processing of over 289 million spatiotemporal data points from phone location data for more than 350
individuals. We also demonstrated HierGP’s use in extracting environmental data for large polygons, speci�cally the
extraction of NDVI values for United States counties. This reinforces the framework’s versatility and role in advancing
geospatial analytics. Furthermore, HierGP was shown to have superior performance compared to state-of-the-art
systems. HierGP stands out not only for its high speed and low memory footprint, but also for its ability to handle vast
spatial-temporal data streams in near-real time. This capability is particularly bene�cial for emerging environmental
analyses, such as those needed for smart cities, climate resilience, and ecosystem health services that span large
geographic and temporal domains.

The GitHub repository containing the H���GP algorithm developed in this study and the associated code for
generating the visualizations is publicly available at https://github.com/funsooje/HierarchicalGridPartitioning.
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