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Abstract

We study the complexity of cutting planes and branching schemes from a theoretical point of view.
We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting
planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than
employing these tools on their own. In particular, we give general conditions under which a cutting plane
strategy and a branching scheme give a provably exponential advantage in efficiency when combined into
branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number
of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best
of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of
branch-and-cut over pure cutting planes and pure branch-and-bound.

1 Introduction
In this paper, we consider the following mixed-integer optimization problem:

sup (¢, )
st. x € Cn(Z"xRY (1.1)

where C is a closed, convex set in R*t4.

State-of-the-art algorithms for integer optimization are based on two ideas that are at the origin of mixed-
integer programming and have been constantly refined: cutting planes and branch-and-bound. Decades of
theoretical and experimental research into both these techniques is at the heart of the outstanding success
of integer programming solvers. Nevertheless, we feel that there is lot of scope for widening and deepening
our understanding of these tools. We have recently started building foundations for a rigorous, quantitative
theory for analyzing the strengths and weaknesses of cutting planes and branching [3]. We continue this
project in the current manuscript.

In particular, we provide a theoretical framework to explain an empirically observed phenomenon: al-
gorithms that make a combined use of both cutting planes and branching techniques are more efficient
(sometimes by orders of magnitude), compared to their stand alone use in algorithms. We hope that our
insights can contribute to a better and more precise understanding of the interaction of cutting planes and
branching: which cutting plane schemes and branching schemes complement each other with concrete, prov-
able gains obtained with their combined use, as opposed to not? Not only is a theoretical understanding
of this phenomenon lacking, a deeper understanding of the interaction of these methods is considered to be
important by both practitioners and theoreticians in the mixed-integer optimization community. To quote
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an influential computational survey [39] “... it seems that a tighter coordination of the two most fundamental
ingredients of the solvers, branching and cutting, can lead to strong improvements.”

The main computational burden in any cutting plane or branch-and-bound or branch-and-cut algorithm
is the solution of the intermediate convex relaxations. Thus, there are two important aspects to deciding
how efficient such an algorithm is: 1) How many linear programs (LPs) or convex optimization problems
are solved? 2) How computationally challenging are these convex problems? The first aspect has been
widely studied using the concepts of proof size and rank; see [6, 10-12, 17, 21-23, 27, 50] for a small
sample of previous work. Formalizing the second aspect is somewhat tricky and we will focus on a very
specific aspect: the sparsity of the constraints describing the linear program. The collective wisdom of the
optimization community says that sparsity of constraints is a highly important aspect in the efficiency of
linear programming [5, 28, 49, 53]. Additionally, most successful mixed-integer optimization solvers use
sparsity as a criterion for cutting plane selection; see [24-26] for an innovative line of research. Compared
to cutting planes, sparsity considerations have not been as prominent in the choice of branching schemes.
This is primarily because for variable disjunctions sparsity is not an issue, and there is relatively less work
on more general branching schemes; see [1, 4, 19, 20, 36, 40-42, 44, 45]. In our analysis, we are careful about
the sparsity of the disjunctions as well — see Definition 1.3 below.

1.1 Framework for mathematical analysis.

We now present the formal details of our approach. A cutting plane for the feasible region of (1.1) is a
halfspace H = {z € R"*? : (a,z) < §} such that C' N (Z" x R?) C H. The most useful cutting planes are
those that are not valid for C, i.e., C € H. There are several procedures used in practice for generating
cutting planes, all of which can be formalized by the general notion of a cutting plane paradigm. A cutting
plane paradigm is a function CP that takes as input any closed, convex set C' and outputs a (possibly
infinite) family CP(C) of cutting planes valid for C' N (Z™ x R%). Two well-studied examples of cutting plane
paradigms are the Chudtal-Gomory cutting plane paradigm [51, Chapter 23] and the split cut paradigm [14,
Chapter 5]. We will assume that all cutting planes are rational in this paper.

State-of-the-art solvers embed cutting planes into a systematic enumeration scheme called branch-and-
bound. The central notion is that of a disjunction, which is a union of polyhedra D = @1 U ... U Qg such
that Z" x R? C D, i.e., the polyhedra together cover all of Z™ x R%. One typically uses a (possibly infinite)
family of disjunctions for potential deployment in algorithms. A well-known example is the family of split
disjunctions that are of the form Dy ., := {z € R"*?: (7,2) < mo} U {x € R"*? : (7, 2) > 7y + 1}, where
7 € Z™ x {0}¢ and 7y € Z. When the first n coordinates of 7 correspond to a standard unit vector, we get
variable disjunctions, i.e., disjunctions of the form {z : z; < mo} U{x :z; > mp+ 1}, fori=1,...,n.

A family of disjunctions D can also form the basis of a cutting plane paradigm. Given any disjunction
D, any halfspace H such that C N D C H is a cutting plane, since C' N (Z" x RY) C C' N D by definition of
a disjunction. The corresponding cutting plane paradigm CP(C'), called disjunctive cuts based on D, is the
family of all such cutting planes derived from disjunctions in D. Two well-known examples are the family
of split cuts, based on the family of split disjunctions defined above, and the family of lift-and-project cuts
derived from variable disjunctions.

In the following we assume that all convex optimization problems that need to be solved have an optimal
solution or are infeasible.

Definition 1.1. A branch-and-cut algorithm based on a family D of disjunctions and a cutting plane
paradigm CP maintains a list £ of conver subsets of the initial set C' which are guaranteed to contain
the optimal point, and a lower bound LB that stores the objective value of the best feasible solution found
so far (with LB = —oo if no feasible solution has been found). At every iteration, the algorithm selects one
of these subsets N € £ and solves the convex optimization problem sup{(c,z) : z € N} to obtain zV. If
the objective value is less than or equal to LB, then this set N is discarded from the list £. Else, if 2
satisfies the integrality constraints, LB is updated with the value of 2V and N is discarded from the list.
Otherwise, the algorithm makes a decision whether to branch or to cut. In the former case, a disjunction
D = (Q1U...UQ}) € Dis chosen such that 2V ¢ D and the list is updated £ := L\{N}U{QiNN,...,QxNN}.



If the decision is to cut, then the algorithm selects a cutting plane H € CP(N) such that 2V ¢ H, and
updates the relaxation N by adding the cut H, i.e., updates £ := L\ {N}U{NNH}.

Motivated by the above, we will refer to a family D of disjunctions also as a branching scheme. In a
branch-and-cut algorithm, if one always chooses to add a cutting plane and never uses a disjunction to
branch, then it is said to be a (pure) cutting plane algorithm and if one does not use any cutting planes
ever, then it is called a (pure) branch-and-bound algorithm. We note here that in practice, when a decision
to cut is made, several cutting planes are usually added as opposed to just one single cutting plane like in
Definition 1.1. In our mathematical framework, allowing only a single cut makes for a seamless generalization
from pure cutting plane algorithms, and also makes quantitative analysis easier.

Definition 1.2. The execution of any branch-and-cut algorithm on a mixed-integer optimization instance
can be represented by a tree. Every convex relaxation N processed by the algorithm is denoted by a node
in the tree. If the optimal value for N is not better than the current lower bound, or is integral, IV is a leaf.
Otherwise, in the case of a branching, its children are @1 NN, ..., Qx NN, and in the case of a cutting plane,
there is a single child representing N N H (we use the same notation as in Definition 1.1). This tree is called
the branch-and-cut tree (branch-and-bound tree, if no cutting planes are used). If no branching is done, this
tree (which is really a path) is called a cutting plane proof. The size of the tree or proof is the total number
of nodes.

Proof versus algorithm. Although we use the word “algorithm” in Definition 1.1, it is technically a non-
deterministic algorithm, or equivalently, a proof schema or proof system for optimality [2] (leaving aside the
question of finite termination for now). This is because no indication is given on how the important decisions
are made: Which set N to process from £? Branch or cut? Which disjunction or cutting plane to use? If
these are made concrete, one would obtain a standard deterministic algorithm (assuming, for the moment,
finite termination on all instances). Nevertheless, the proof system is very useful for obtaining information
theoretic lower bounds on the efficiency of any deterministic branch-and-cut algorithm. Moreover, one can
prove the validity of any upper bound on the objective, i.e., the validity of (¢, ) < 7 by exhibiting a branch-
and-cut tree where this inequality is valid for all the leaves. If v is the optimal value, this is a proof of
optimality, but one may often be interested in the branch-and-cut/branch-and-bound/cutting plane proof
complexity of other valid inequalities as well. The connections between integer programming and proof
complexity has a long history; see [4, 7, 8, 13, 16, 20, 29-31, 34, 37, 38, 46-48], to cite a few. Our results
can be interpreted in the language of proof complexity as well.

Another subtlety to keep in mind is that one could add to the power of such a branch-and-cut proof
system by relaxing the requirement that the current optimal solution %V should be eliminated by the chosen
disjunction or cutting plane. This can make a difference — an instance may have a finite proof in the
strengthened system while no finite proof exists in the original system [43]. When required, we will use the
phrase restricted proof to refer to a proof that imposes the restriction of eliminating 2 at every node N of
the proof tree.

Recall that we quantify the complexity of any branch-and-bound/cutting plane/branch-and-cut algorithm
using two aspects: the number of LP relaxations processed and the sparsity of the constraints defining the
LPs. The number of LP relaxations processed is given precisely by the number of nodes in the corresponding
tree (Definition 1.2). Sparsity is formalized in the following definitions.

Definition 1.3. Let 1 < s < n +d be a natural number that we call the sparsity parameter. Then the pair
(CP,s) will denote the restriction of the paradigm CP that only reports the sub-family of cutting planes
that can be represented by inequalities with at most s non-zero coefficients; the notation (CP, s)(C') will be
used to denote this sub-family for any particular convex set C. Similarly, (D, s) will denote the sub-family
of the family of disjunctions D such that each polyhedron in the disjunction has an inequality description
where every inequality has at most s non-zero coefficients.

Cutting plane proof systems with restrictions on the “depth” of the cutting planes have been considered
in the proof complexity literature; see [30, 33].



1.2 Our Results
1.2.1 Sparsity versus size.

Our first set of results considers the trade-off between the sparsity parameter s and the number of LPs
processed, i.e., the size of the tree. There are several avenues to explore in this direction. For example,
one could compare pure branch-and-bound algorithms based on (D, s;) and (D, s2), i.e., fix a particular
disjunction family D and consider the effect of sparsity on the branch-and-bound tree sizes. One could
also look at two different families of disjunctions D; and D- and look at their relative tree sizes as one
turns the knob on the sparsity parameter. Similar questions could be asked about cutting plane paradigms
(CP1,s1) and (CP2,sq) for interesting paradigms CP1,CP2. Even more interestingly, one could compare
pure branch-and-bound and pure cutting plane algorithms against each other.

We first focus on pure branch-and-bound algorithms based on the family & of split disjunctions. A very
well-known example of pure integer instances (i.e., d = 0) due to Jeroslow [35] shows that if the sparsity
of the splits used is restricted to be 1, i.e., one uses only variable disjunctions, then the branch-and-bound
algorithm will generate an exponential (in the dimension n) sized tree. On the other hand, if one allows fully
dense splits, i.e., sparsity is n, then there is a tree with just 3 nodes (one root, and two leaves) that solves
the problem. We ask what happens in Jeroslow’s example if one uses split disjunctions with sparsity s > 1.
Our first result shows that unless the sparsity parameter s = (n), one cannot get constant size trees, and
if the sparsity parameter s = O(1), then the tree is of exponential size.

Theorem 1.4. Let H be the halfspace defined by inequality 22;;1 r; < n, where n is an odd number.
Consider the instances of (1.1) with d = 0, the objective Y. ; z; and C = H N [0,1]". The optimum is
n

L%J, and any branch-and-bound proof with sparsity s < Lﬂ that certifies Y " | @; < LgJ has size at least

Q(22).

The above instance is a modification of Jeroslow’s instance; Jeroslow’s instance uses an equality constraint
instead of an inequality. However, the same argument applies for Jeroslow’s instance.

Corollary 1.5. Let H be the hyperplane defined by equality 23" | z; = n, where n is an odd number.
Consider the instances of (1.1) with d = 0, the objective >." , x; and C = H N [0,1]". This problem is
infeasible, and any branch-and-bound proof of infeasibility with sparsity s < LgJ has size at least (23%).

The bounds in Theorem 1.4 give a constant lower bound when s = Q(n). We establish another lower
bound which does better in this regime.

Theorem 1.6. Let H be the halfspace defined by inequality 22;;1 x; < n, where n is an odd number.
Consider the instances of (1.1) with d = 0, the objective Y., x; and C = H N [0,1]". The optimum is

L%J, and any branch-and-bound proof with sparsity s < bJ that certifies Y " | @; < L%J has size at least

o (1)

Next we consider the relative strength of cutting planes and branch-and-bound. Our previous work has
studied conditions under which one method can dominate the other, depending on which cutting plane
paradigm and branching scheme one chooses [3]. For this paper, the following result from [3] is relevant:
for every convex 0/1 pure integer instance, any branch-and-bound proof based on variable disjunctions can
be “simulated” by a lift-and-project cutting plane proof without increasing the size of the proof (versions
of this result for linear 0/1 programming were known earlier; see [21, 22]). Moreover, in [3] we constructed
a family of stable set instances where lift-and-project cuts give exponentially shorter proofs than branch-
and-bound. This is interesting because lift-and-project cuts are disjunctive cuts based on the same family
of variable disjunctions, so it is not a priori clear that they have an advantage. These results were obtained
with no regard for sparsity. We now show that once we also track the sparsity parameter, this advantage
can disappear.



Theorem 1.7. Let H be the halfspace defined by inequality 23" ; z; < n, where n is an odd number.

Consider the intances of (1.1) with d = 0, the objective ZL%J x; and C = HNJ0,1]™. The optimum is [gJ,
and there is a branch-and-bound algorithm based on variable disjunctions, i.e., the family of split disjunctions

with sparsity 1, that certifies ZLEJ x; < L%J in O(n) steps. However, any cutting plane for C' with sparsity

s < LgJ is trivial, i.e., valid for [0, 1]™, no matter what cutting plane paradigm is used to derive it.

1.2.2 Swuperiority of branch-and-cut.

We next consider the question of when combining branching and cutting planes is provably advantageous.
For this question, we leave aside the complications arising due to sparsity considerations and focus only on
the size of proofs. The following discussion and results can be extended to handle the issue of sparsity as
well, but we leave it out of this extended abstract.

Given a cutting plane paradigm CP, and a branching scheme D, are there families of instances where
branch-and-cut based on CP and D does provably better than pure cutting planes based on CP alone and
pure branch-and-bound based on D alone? If a cutting plane paradigm CP and a branching scheme D
are such that either for every instance, CP gives cutting plane proofs of size at most a polynomial factor
larger than the shortest branch-and-bound proofs with D, or vice versa, for every instance D gives proofs
of size at most polynomially larger than the shortest cutting plane proofs based on CP, then combining
them into branch-and-cut is likely to give no substantial improvement since one method can always do the
job of the other, up to polynomial factors. As mentioned above, prior work [3] had shown that disjunctive
cuts based on variable disjunctions (with no restriction on sparsity) dominate branch-and-bound based on
variable disjunctions for pure 0/1 instances, and as a consequence branch-and-cut based on these paradigms
is dominated by pure cutting planes. In the next theorem, we show that the situation completely reverses if
one considers a broader family of disjunctions (still restricted to the pure integer case).

Theorem 1.8. Let C C R™ be a closed, convex set. Let k& € N be a fixed natural number and let D be
any family of disjunctions that contains all split disjunctions, such that all disjunctions in D have at most k
terms in the disjunction. If a valid inequality (¢, z) < ¢ for C' NZ"™ has a cutting plane proof of size L using
disjunctive cuts based on D, then there exists a branch-and-bound proof of size at most (k + 1)L based on
D. Moreover, there is a family of instances where branch-and-bound based on split disjunctions solves the
problem in O(1) time whereas there is a polynomial lower bound on split cut proofs.

A consequence of Theorem 1.8 is that any cutting plane proof based on Chvéatal-Gomory cuts can be
replaced by a branch-and-bound proof based on split disjunctions with a constant blow up in size (since
Chvétal-Gomory cuts are a subset of split cuts). This special case was also proved in earlier work by Beame
et al. [4, Theorem 12]. We also emphasize that the proof of Theorem 1.8 crucially uses the fact that we have
a class of disjunctions that is rich enough to include all split disjunctions.

With similar analysis as Theorem 1.8, we can get the following theorem that takes sparsity into account
as well.

Theorem 1.9. Let C' € R™ be a closed, convex set. Let (¢, z) < § be a valid inequality for C N Z™. If there
exists a cutting plane proof of size L and sparsity s certifying the validity of this inequality, which is derived
using general split disjunctions of sparsity s, then there exists a branch-and-bound proof of sparsity s which
proves the validity and takes at most O(L) iterations.

The above discussion and theorem motivate the following definition which formalizes the situation where
no method dominates the other. To make things precise, we assume that there is a well-defined way to assign
a concrete size to any instance of (1.1); see [32] for a discussion on how to make this formal. Additionally,
when we speak of an instance, we allow the possibility of proving the validity of any inequality valid for
CN(Z" xRY), not necessarily related to an upper bound on the objective value. Thus, an instance is a tuple
(C,¢,7) such that {(c,z) <~ for all z € C'N(Z" x RY).



Definition 1.10. A cutting plane paradigm CP and a branching scheme D are complementary if there is
a family of instances where CP gives polynomial (in the size of the instances) size proofs and the shortest
branch-and-bound proof based on D is exponential (in the size of the instances), and there is another family
of instances where D gives polynomial size proofs while CP gives exponential size proofs.

We wish to formalize the intuition that branch-and-cut is expected to be exponentially better than
branch-and-bound or cutting planes alone for complementary pairs of branching schemes and cutting plane
paradigms. But we need to make some mild assumptions about the branching schemes and cutting plane
paradigms. All known branching schemes and cutting plane methods from the literature satisfy these condi-
tions.

Definition 1.11. A branching scheme is said to be regular if no disjunction involves a continuous variable,
i.e., each polyhedron in the disjunction is described using inequalities that involve only the integer constrained
variables.

A branching scheme D is said to be embedding closed if disjunctions from higher dimensions can be
applied to lower dimensions. More formally, let n1, no, di, do € N. If D € D is a disjunction in R™ x R% x
R"2 x R9 with respect to Z" x R% x Z"2 x R% then the disjunction D N (R™ x R% x {0}"2 x {0}92),
interpreted as a set in R™ x R%_ is also in D for the space R™ x R% with respect to Z™ x R% (note that
DN (R™ x R% x {0}"2 x {0}92), interpreted as a set in R™* x R% is certainly a disjunction with respect
to Z™ x R%; we want D to be closed with respect to such restrictions).

A cutting plane paradigm CP is said to be regular if it has the following property, which says that
adding “dummy variables” to the formulation of the instance should not change the power of the paradigm.
Formally, let C C R™ x R? be any closed, convex set and let ¢/ = {(z,t) e R" xR xR:2 € C, t= (f,z)}
for some f € R™. Then if a cutting plane (a,x) < b is derived by CP applied to C, i.e., this inequality is in
CP(C), then it should also be in CP(C"), and conversely, if (a,z) + pt < b is in CP(C"), then the equivalent
inequality (a + pf, z) < b should be in CP(C).

A cutting plane paradigm CP is said to be embedding closed if cutting planes from higher dimensions
can be applied to lower dimensions. More formally, let ni,no,d;,ds € N. Let C C R™ x R% be any closed,
convex set. If the inequality (c1,21) + (a1, y1) + (ca, 2) + (a2, y2) < 7 is a cutting plane for C' x {0}"2 x {0}
with respect to Z" x R% x Z"2 x R that can be derived by applying CP to C x {0}"2 x {0}%, then the
cutting plane {c1, 1) + (a1, y1) < v that is valid for C' N (Z™ x R%) should also belong to CP(C).

A cutting plane paradigm CP is said to be inclusion closed, if for any two closed convex sets C C C”’, we
have CP(C") C CP(C). In other words, any cutting plane derived for C” can also be derived for a subset C.

Theorem 1.12. Let D be a regular, embedding closed branching scheme and let CP be a regular, embedding
closed, and inclusion closed cutting plane paradigm such that D includes all variable disjunctions and CP
and D form a complementary pair. Then there exists a family of instances of (1.1) which have polynomial
size branch-and-cut proofs, whereas any branch-and-bound proof based on D and any cutting plane proof
based on CP is of exponential size.

Example 1.13. As a concrete example of a complementary pair that satisfies the other conditions of Theo-
rem 1.12, consider CP to be the Chvatal-Gomory paradigm and D to be the family of variable disjunctions.
From their definitions, they are both regular and D is embedding closed. The Chvatal-Gomory paradigm
is also embedding closed and inclusion closed. For the Jeroslow instances from Theorem 1.4, the single
Chvétal-Gomory cut >.©" | @; < |2 proves optimality, whereas variable disjunctions produce a tree of size
2L3). On the other hand, consider the set T, where T' = conv{(0,0), (1,0), (%, h)} and the valid inequality
x9 < 0 for TNZ2. Any Chvéatal-Gomory paradigm based proof has size exponential in the size of the input,
i.e., every proof has length at least Q(h) [51]. On the other hand, a single disjunction on the variable x;
solves the problem.

In [3], we also studied examples of disjunction families D such that disjunctive cuts based on D are
complementary to branching schemes based on D.

Example 1.13 shows that the classical Chvatal-Gomory cuts and variable branching are complementary
and thus give rise to a superior branch-and-cut routine when combined by Theorem 1.12. As discussed



above, for 0/1 problems, lift-and-project cuts and variable branching do not form a complementary pair,
and neither do split cuts and split disjunctions by Theorem 1.8. It would be nice to establish the converse
of Theorem 1.12: if there is a family where branch-and-cut is exponentially superior, then the cutting plane
paradigm and branching scheme are complementary. In Theorem 1.14 below, we prove a partial converse
along these lines in the pure integer setting. This partial converse requires the disjunction family to include
all split disjunctions. It would be more satisfactory to establish similar results without this assumption.
More generally, it remains an open question if our definition of complementarity is an exact characterization
of when branch-and-cut is superior.

Theorem 1.14. Let D be a branching scheme that includes all split disjunctions and let CP be any cutting
plane paradigm. Suppose that for every pure integer instance and any cutting plane proof based on CP for
this instance, there is a branch-and-bound proof based on D of size at most a polynomial factor (in the size
of the instance) larger. Then for any branch-and-cut proof based on D and CP for a pure integer instance,
there exists a pure branch-and-bound proof based on D that has size at most polynomially larger than the
branch-and-cut proof.

The high level message that we extract from our results is the formalization of the following simple
intuition. For branch-and-cut to be superior to pure cutting planes or pure branch-and-bound, one needs
the cutting planes and branching scheme to do “sufficiently different” things. For example, if they are
both based on the same family of disjunctions (such as lift-and-project cuts and variable branching, or the
setting of Theorem 1.8), then we do not get any improvements with branch-and-cut. The definition of a
complementary pair attempts to make the notion of “sufficiently different” formal and Theorem 1.12 derives
the concrete superior performance of branch-and-cut from this formalization.

2 Proofs

2.1 Proof of Theorem 1.4
We first give necessary definitions and prove a lemma.

Definition 2.1. Consider the instances in Theorem 1.4, and the branch-and-bound tree T" produced by
split disjunctions to solve it. Assume node N of T contains at least one integer point in {0,1}", and
D1, Dy, ...,D, are the split disjunctions used to derive N from the root of 7. For 1 < j < r, D; is a true
split disjunction of N if both of the two halfspaces of D; have a nonempty intersection with the integer hull
of the corresponding parent node, i.e. the parent node’s integer hull is split into two nonempty parts by
D;. Otherwise, it is called a false split disjunction of N. We define the generation variable set of N as the
index set I C {1,2,...,n} such that it consists of all the indices of the variables involved in the true split
disjunctions of N. The generation set of the root node is empty.

Lemma 2.2. Consider the instances in Theorem 1.4, and the branch-and-bound tree T produced by split

disjunctions with sparsity parameter s < L%J to solve it. For any node N of T with at least one feasible integer

point v = (v, vs,...,v,) € {0,1}", let P, Pr and I denote the relaxation, the integer hull and the generation

variable set corresponding to N. Define V := {(21,22,...,2,) € {0,1}" 12y = v; fori € [,}77_ 2 = |23
If |I| < | 2] — s, then we have:

(i) V£0and V C Prn{0,1}™;
(ii) the objective LP value of N is %.

Proof. We first give a proof of (i). Since v is a feasible integer point, 0 < >, v; < S v < L%J Thus,

there exists v/ = (v{,v},...,v},), where v/ = v; for i € [ and >, v} = [2]. Sov' € V # 0.

’ren

For each v* € V, we wish to show that v* € P. This will show that v* € Py and V C P;. Consider
any inequality describing P; if it is not the original defining inequality " ; z; < % or a 0/1 bound on



a variable, then this inequality was introduced on the path from the root to N. A false split disjunction
cannot remove v* since v* is integral. Consider an inequality coming from a true split disjunction. Let
Zie g a;xr; < 0" for some S C I be such an inequality. Since v € Py and vj = v; for i € I, we observe that
Dies QiVi = D eg aiv] < 0%

We will prove (ii) by contradiction, so we assume the objective LP value of N is strictly less than . Let
Py denote the relaxation corresponding to the root node. Assume ¢ € {1,2,...,n}\I.

Since |I| < |2] — s, there exists v! = (v],v3,...,v}) € V, where v; = 0. Define v? = (v%,03,...,v2),
where v} = 1, and v} = v} for i € {1,2,...,n}\{¢}. It is clear that v? € Py, and v? ¢ P since the LP

value is assumed to be strictly less than . Since £ ¢ I, there must be a halfspace H coming from a false

split disjunction of N that excludes v?. The inequality describing this halfspace H must involve variable Ty,
otherwise v! also violates H , which leads to a contradiction since H comes from a false split disjunction and
therefore cannot cut off any integer point. Hence assume the inequality describing H is apwo+ Yicg@iti <0
for some S C {1,2,...,n}\{¢}, and |S| < s — 1 (since the sparsity of the disjunctions is restricted to be at
most s). Since 35,y vf < [§] — s, we have 35,070y v > s, and there exists r € {1,2,...,n}\(SUTU{¢})
such that v} = 1. Let v3 = (v§,v3,...,v3), where v; =1, v3 = 0, and v} = v} for i # ¢,r. By definition of

V, v3 € V. Since v!, v?® are integral, and H comes from a false split disjunction, H must be valid for v! and
v3. Thus, we have

ag'O—i—Zaiv}:apO—«—Zaw?g(Z (2.1)
i€S €S

ag~1+Zaivf:ag~1+Zaiv}:ag~1+2aivi2§5. (22)
€S €S €S

Summing up (2.1) and (2.2) and dividing by 2, we get

1
ag.iJrZaivf:al‘v%JrZaiv? <4, (2.3)
i€S €S
which implies that H is valid for v2. This is a contradiction. O

Proof of Theorem 1.4. For a node N of the branch-and-bound tree containing at least one integer point, if
it is derived by exactly m true split disjunctions, then we say it is a node of generation m. By Lemma 2.2,
if m < 1[%] —1, then a node N of generation m has LP objective value %, and in the subtree rooted at N
there must exist at least two descendants from generation m + 1, since the leaf nodes must have LP values
less than or equal to [ 5 |. Therefore, there are at least 2™ nodes of generation m when m < %{%J — 1. This
finishes the proof.

2.2 Proof of Theorem 1.6

Lemma 2.3. Let wy,...,w; € Z\ {0} and W € Z. Then the number of 0/1 solutions to Z?Zl wijz; =W
is at most (Lk%])'

Proof. Let P:={i e {l,...,k} rw; >0}and N := {i € {1,...,k} : w; < 0}. By making the variable change
z; =1—y; fori € N and z; = y; for i € P, it is seen that the number of 0/1 solutions to Zle wix; = W is

the same as the number of 0/1 solutions to >, p wiys + Y ;e y(—wi)ys = W — >,y w;. Writing this a bit

more cleanly, we want to upper bound the number of 0/1 solutions to Zle wiy; = W', where w} > 0 for all

1€ {1,...,k} and W’ € Z. The collection of subsets I C {1,...,k} that are solutions to Zle wiy; = W’
is an antichain in the lattice of subsets with set inclusion as the partial order because all the w} values are
strictly positive. By Sperner’s Theorem [52], the size of this collection is at most (LkI;Z j)' O

Proof of Theorem 1.6. We consider the instance from Theorem 1.6. For any split disjunction D := {z :
(a,z) < b}U{z: (a,x) > b+ 1}, we define V(D) to be the set of all the optimal LP vertices (of the original



polytope) that lie strictly in the corresponding split set {z : b < {a,x) < b+ 1}. Let the support of a be
given by T C {1,...,n} with ¢ :=|T| < s < Ln/2j Since a € Z™ and b € Z, V(D) is precisely the subset of
the optimal LP vertlceb Z such that (a,Z) = b —|— 5. Fix some ¢ E T and consider those optimal LP vertices
Z € V(D) where &, = ThlS means that deT\{e} a;ji; =b+1 . Let 7; be the number of 0/1 solutions

to ZjeT\{e} a;&; =b + 5 — % with exactly i coordinates set to 1. Then the number of vertices from V(D)

with the ¢-th coordinate equal to % is

:2_::”<Ln72]t—i> : <Z> (L /QT_thJ)

since (LnT/LQ_Jt ) < (Ln/;j tLt/2J) for all i € {0,...,t — 1}. Using Lemma 2.3, Zl oTi < (Ltt721J) and we obtain

the upper bound (Lt/2j) (Ln/QJ thj) on the number of vertices from V(D) with the ¢-th coordinate equal to

1. Therefore, [V (D)| < t(tt/%) (Ln/QTJL tLt/ZJ) p(t). Since n is odd, we have

tn =) if t is even
() = E/2)E/2-D((n—t—=1)/2)Y((n —t+1)/2)! ’
e tHn — ¢) if ¢ is odd
((t = 1)/2)N(E = 1)/2)H(n = 1)/2)X((n = 1)/2)! '
A direct calculation then shows that
p(t+1) (t+Dn=-t+1) if ¢ is even,
= t(n —1t)
p(t) 1 if ¢ is odd.
Let h be the largest even number not exceeding s. Since p(1) = (Ln/2j) we obtain, for every ¢t € {1,...,s},

p(t)gp(s)<”_1> 11 q+1.”—q+1(n—1),(h+1)u (n—1I (n—h-2)!

_ N m=2 (n—h—1
|n/2] 1Zess 4 n—gq [n/2] Rl (=2 (n—h—-1)N
qeven
where m!! denotes the product of all integers from 1 up to m of the same parity as m. Using the fact that,

for every even positive integer £,

1€< m(l+1)
2 5—1 2

(see, e.g., [9, 54]), we have (for h > 1, i.e., s > 2)

(h+ (=D (n—DN (n—h—2)l
- < [n/2]

> h” =21 (n—h—1)
< (fuya)) 04 0y 25 7m
)it

2
n—1 2n(h +
[n/2] wh(n —
n—1 ns
= of./——
(W (V7= s)
Thus, this is an upper bound on |V (D)|. Since the total number of optimal LP vertices of the instance

2(ny2) _

is n(f:JQlJ), we obtain the following lower bound of on the size of a branch-and-bound proof: VD))




2.3 Proof of Theorem 1.7

Proof of Theorem 1.7. We first show a branch-and-bound algorithm with size O(n). Let the root node be
No. The objective LP value of Ny is %. Let N{ and N{ be the children of Ny produced by branches z; < 0
and z; > 1 respectively. Then the LP values of NY and N{ are {%J and 4. Therefore NY is a leaf node.
Recursively, let N]QH and Nj1+1 be children of N} produced by ;41 < 0and zj4q > 1for1 <j < LgJ
Note that this is well defined since the LP values of NJQ and N} are L%J and % for1 <j< L%J It is clear

that node N]Q+1 isaleaf for 1 < j < L%J Node N1ﬂ is an infeasible leaf since there are fg] variables set
2

to be 1. Therefore, the whole branch-and-bound tree has n + 2 nodes.

Next, we show that any cutting plane for the problem with sparsity s < L%J is valid for [0, 1]™. We will
use the fact that H N {0,1}" = {(z1,22,...,2,) € {0, 1}" : 10" 2 < [ 2]}

Let S C {1,...,n} be the set of indices for the non-zero coefficients in an inequality defining the cutting
plane, i.e., the inequality is given by ;g a;x; < 0. Since this is a cutting plane it must be valid for all
points in H N{0,1}". Let Vs = {(z1,%2,...,3,) € {0,1}" : 7, = 0,4 ¢ S}. Since |S| < s < | %], we have
Vs € HN{0,1}". Therefore ), ¢ a;x; <6 is valid for all of V. Since the inequality only involves x;, i € S,
it must also be a valid inequality for all of {0, 1}™. O

2.4 Proof of Theorem 1.8

Proof of Theorem 1.8. Let the cutting plane proof be Hy, Hs, ..., Hy, and the sequence of the corresponding
disjunctions deriving it be D1, Do, ..., Dy, € D. Moreover, assume H; is (a;,x) < §; for 1 <i < L. Since we
assume all cutting planes are rational, we may assume a; € Z"t? and 6; € Z. Let H! be (a;,z) > 6; + 1.
Since H; is valid for C' N D;, we must have that (C'N H]) N D; = 0.

Let Ny = C be the root node of the branch-and-bound tree. Recursively, we define N; and N} be the
children of N;_; generated by applying the split disjunction H; U H] for 1 < i < L. Applying the disjunction
D, on N/ only generates infeasible nodes as noted above. Meanwhile, N; shows the validity of H;. Thus, we
have replaced the cut H; with k& 4+ 1 nodes of the branch-and-bound tree: k of these are infeasible and one
is feasible. Therefore, we get a branch-and-bound tree of size (k + 1)L.

A well-known family of instances in R3, given by conv{(0,0,0),(2,0,0),(0,2,0), (%, %,h)} for h € N,
from [18] can be solved by branch-and-bound in O(1) iterations with just variable disjunctions; however,
there is a poly(log(h)) lower bound on the split rank [15], and therefore, on the length of proofs based on
split cuts. O

2.5 Proofs of Theorems 1.12 and 1.14

We will need some preliminary facts for comparing growth rate of instance sizes.

Definition 2.4. A sequence of real numbers (a,)nen is said to (asymptotically) polynomially dominate
another sequence (b, )nen if there exists a polynomial p, and two natural numbers ny,ns € N such that
b
lim —2 " < 0.
n=00 p(@ny-4n)
If (an ) nen polynomially dominates (b, )nen and vice versa, we say that the two sequences are (asymptotically)
polynomially equivalent.

Note that if b, = O(p(a,)) for some polynomial p, then (a,)nen polynomially dominates (b, )nen (for
example, a,, = n is polynomially equivalent to the sequence b, = n3). However, our definition allows us to
neglect a finite number of terms from both sequences. To illustrate the difference, consider the following
two sequences. Define a; = 2, and recursively a,11 = 2% for n > 2. Define b, = a,,+1 for n > 1. There
is no polynomial p such that b, = O(p(a,)). Nevertheless, the sequence (b,,)nen is simply a “shift” of the
sequence (an)nen and we would like to say that both have the same growth rate. Our definition captures
this situation.

The following two lemmas are direct consequences of Definition 2.4.
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Lemma 2.5. Let (an)nen and (by)nen be two sequences such that a, > b, for all n € N. Then (an)nen
polynomially dominates (by,)nen-

Lemma 2.6. Let (a,)nen and (by)nen be two sequences such that a, < b, < ap4q for all n € N. Then
(an)nen and (b, )nen are polynomially equivalent.

Proposition 2.7. Let (a,)nen and (b, )nen be two sequences such that lim, o, a, = 00 = lim,_ by-
Then there exist subsequences (a),)nen and (b, )nen of (an)nen and (b, )nen respectively such that (al,)nen
and (b),)nen are polynomially equivalent.

Proof. Since lim,,—, o0 @y, = 00 = lim,,_, o, by, there exist subsequences (al,)nen and (b),)nen of (an)nen and
(bn)nen respectively such that a,, < b, < a,41 for all n € N. Indeed, one can build this sequence inductively:
Start with a} = ay, define b} to be the smallest number in the sequence (b,,),en larger than or equal to af.
Suppose we have built up the subsequence upto some i € N: af,...,aj and b}, ..., ] such that aj, < b}, < aj_,
for all K <i —1 and aj < b}. Define aj; to be the smallest number in the sequence (a,)nen larger than or
equal to b}, and define bj_ ; to be the smallest number in the sequence (by)nen larger than or equal to a;_ ;.
By Lemma 2.6, these two subsequences are polynomially equivalent. O

We next derive some straightforward consequences of Definition 1.11.

Lemma 2.8. Let C C C’ be two closed, convex sets. Let D be any branching scheme and let CP be an
inclusion closed cutting plane paradigm. If there is a branch-and-bound proof with respect to C’ based on D
for the validity of an inequality (c,z) <+, then there is a branch-and-bound proof with respect to C based
on D for the validity of (¢, z) <~ of the same size. The same holds for cutting plane proofs based on CP.

Proof. For the branch-and-bound proofs, apply the same set of disjunctions on C' instead of C’. Since
C C (', all the nodes in the branch-and-bound tree for C' are subsets of the corresponding nodes in the
branch-and-bound tree for C’. Thus, (¢, z) < d is valid for the leaves of the new branch-and-bound tree.
For the cutting plane proofs, apply the same sequence of cuts and the result follows from the inclusion
closed property of CP (Definition 1.11). O

Lemma 2.9. Let D and CP be both embedding closed and let C' C R™ X R be a closed, convex set. Let
{c,z) < 7 be a valid inequality for C'N (Z™ x R%). If there is a branch-and-bound proof with respect to
C x {0} x {0} based on D for the validity of {c,z) < 7 interpreted as a valid inequality in R x R% x
R"2 x R% for (C' x {0}"2 x {0}92) N (Z" x R x Z"2 x R%), then there is a branch-and-bound proof with
respect to C' based on D for the validity of {c,x) < = of the same size. The same holds for cutting plane
proofs based on CP.

Proof. Since D is embedding closed, for any disjunction D used in the space R™ x R™ x R% x R% we use
the restriction of D to the space R" x R% (Definition 1.11).
Similarly, the cutting plane claim from the fact that CP is embedding closed (Definition 1.11). O

Lemma 2.10. Let C C R"*? be a polytope and let {c,z) < be a valid inequality for C' N (Z" x R%). Let
X = {(z,t) eR"™ ¥ xR:2 € C, t={c,x)}. Then, for any regular branching scheme D or a regular cutting
plane paradigm CP, any proof of validity of (c,z) <~ with respect to C N (Z" x RY) can be changed into a
proof of validity of ¢ < v with respect to X N (Z" x R? x R) with no change in length, and vice versa.

Proof. A proof of (¢, z) < v with respect to CN(Z" xR?) never involves ¢, and so can be carried over verbatim
a proof for t = (c,z) < v with respect to X N (Z™ x R? x R). In the other direction, since we assume D
is regular (Definition 1.11), no disjunction uses the variable ¢t and so it can be applied with the same effect
on C'. Similarly, since CP is regular, by definition any cutting plane derived for X can be converted into an
equivalent cutting plane for C'. O

Proof of Theorem 1.12. Let {P, C R™ x R% : k € N} be a family of closed, convex sets, and {(cx, V) €
R x R% x R : k € N} be a family of tuples such that {cg,z) < v is valid for P, N (Z™ x R%%), and CP

11



has polynomial size proofs for this family of instances, whereas D has exponential size proofs. Similarly, let
{P, C R™ x R% : k € N} be a family of closed, convex sets, and {(¢},7;) € R" x R% x R : k € N} be
a family of tuples such that (¢, x) < v}, is valid for P/ N (Z”gv X Rd;), and D has polynomial size proofs
for this family of instances, whereas CP has exponential size proofs. By Proposition 2.7, we may assume
that the sequence of sizes of the instances (Pg,ck,vx) and (P, ¢}, ;) in the two families are polynomially
equivalent, by passing to an infinite subfamily if necessary. Since the polynomial or exponential behaviour of
the proof sizes are defined with respect to the sizes of the instances, passing to infinite subfamilies maintains
this behaviour.

We first embed P, and P} into a common ambient space for each k& € N. This is done by defining
ny = max{ng,n}, dy, = max{dy, d}.}, and embedding both Pj, and P}, into the space R™ x R by defining
Q= P x {0} x {0} =% and Q) := P} x {0} x {0}%~%. By Lemma 2.9, D has an exponential
lower bound on sizes of proofs for the inequality (cj,x) < v, interpreted as an inequality in R™* x Rk,
valid for Q; N (Z™ x R¥). By Lemma 2.9, CP has an exponential lower bound on sizes of proofs for the
inequality (c},z) < ~;, interpreted as an inequality in R™ x R valid for Q) N (Z™ x R).

We now make the objective vector common for both families of instances. Define X, := {(z,t) €
R xR xR : 2 € Qk, t= (cy,z)} and X}, := {(z,t) € R"™* x R%* xR:z € Q}, t=(c,x)}. By
Lemma 2.10, the inequality ¢t < 7y, has an exponential lower bound on sizes of proofs based on D for X} and
the inequality ¢ < 7}, has an exponential lower bound on sizes of proofs based on CP for Xj,.

We next embed these families as faces of the same closed convex set. Define Z;, C R™ x R%* x R x R,
for every k € N, as the convex hull of X, x {0} and X} x {1}.

The key point to note is that these constructions combine two families whose sizes are polynomially
equivalent and therefore the new family that is created has sizes that are polynomially equivalent to the
original two families. )

We let (z,t,9) denote points in the new space R™ x R% x R x R, i.e., y denotes the last coordinate.
Consider the family of inequalities ¢t — v,(1 — y) — v,y < 0 for every k € N. Note that this inequality
reduces to t < 7y, when y = 0 and it reduces to ¢ < 4, when y = 1. Thus, the inequality is valid for
Zp N (Z™ x R x R x Z), i.e., when we constrain y to be an integer variable. Since X; x {0} C Zj, by
Lemma 2.8, proofs of ¢ — vy,(1 — y) — 7.y < 0 based on D have an exponential lower bound on their size.
Similarly, since X, x {1} C Z, by Lemma 2.8, proofs of t — y4(1 — y) — 7,y < 0 based on CP have an
exponential lower bound on their size.

However, for branch-and-cut based on CP and D, we can first branch on the variable y (recall from the
hypothesis that D allows branching on any integer variable). Since CP has a polynomial proof for P and
(ck, k) and therefore for the valid inequality ¢ < 4; for Xj x {0}, we can process the y = 0 branch with
polynomial size cutting plane proofs. Similarly, D has a polynomial proof for P, and (c},,~;.) and therefore
for the valid inequality ¢ < =y, for X x {1}, we can process the y = 1 branch also in with polynomial size
proofs. Thus, branch-and-cut gives polynomial size proofs overall for this family of instances. O

Proof of Theorem 1.14. Recall that we restrict ourselves to the pure integer case, i.e., d = 0. Consider any
branch-and-cut proof for some instance. If no cutting planes are used in the proof, this is a pure branch-
and-bound proof and we are done. Otherwise, let N be a node of the proof tree where a cutting plane
(a,z) < v is used. Since we assume all cutting planes are rational, we may assume a € Z" and v € Z.
Thus, N' = NN {x: {a,z) > v+ 1} is integer infeasible. Since {a,z) < v is in CP(N), by our assumption,
there must be a branch-and-bound proof of polynomial size based on D for the validity of {(a,z) < ~ with
respect to N. Since N’ C N, by Lemma 2.8, there must be a branch-and-bound proof for the validity of
(a,z) < ~ with respect to N’, thus proving the infeasibility of N’. In the branch-and-cut proof, one can
replace the child of N by first applying the disjunction {z : (a,2) < y}U{z: (a,2) > v+ 1} on N, and then
on N’ applying the above branch-and-bound proof of infeasibility. We now have a branch-and-cut proof
for the original instance with one less cutting plane node. We can repeat this for all nodes where a cutting
plane is added and convert the entire branch-and-cut tree into a pure branch-and-bound tree with at most
a polynomial blow up in size. O
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