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Abstract. We contribute to a better understanding of the class of functions that is repre-5
sented by a neural network with ReLU activations and a given architecture. Using techniques from6
mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical7
counterbalance to the universal approximation theorems which suggest that a single hidden layer is8
sufficient for learning tasks. In particular, we investigate whether the class of exactly representable9
functions strictly increases by adding more layers (with no restrictions on size). We also present up-10
per bounds on the sizes of neural networks required to represent functions in these neural hypothesis11
classes.12
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1. Introduction. A core problem in machine learning and statistics is the esti-16

mation of an unknown data distribution with access to independent and identically17

distributed samples from the distribution. It is well-known that there is a tension18

between how much prior information one has about the data distribution and how19

many samples one needs to solve the problem with high confidence (or equivalently,20

how much variance one has in one’s estimate). This is referred to as the bias-variance21

trade-off or the bias-complexity trade-off. Neural networks provide a way to turn this22

bias-complexity knob in a controlled manner that has been studied for decades going23

back to the idea of a perceptron by Rosenblatt [52]. This is done by modifying the24

architecture of a neural network class of functions, in particular their size in terms25

of depth and width. As one increases these parameters, the class of functions be-26

comes more expressive. In terms of the bias-variance trade-off, the “bias” decreases27

as the class of functions becomes more expressive, but the “variance” or “complexity”28

increases.29

So-called universal approximation theorems [4,13,32] show that even with a single30

hidden layer, that is, when the depth of the architecture is the smallest possible31

value, one can essentially reduce the “bias” as much as one desires, by increasing32

the width. Nevertheless, it can be advantageous both theoretically and empirically33

to increase the depth because a substantial reduction in the size can be achieved by34

this [5, 16, 37, 53, 59, 60, 65]. To get a better quantitative handle on these trade-offs,35

it is important to understand what classes of functions are exactly representable by36
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2 C. HERTRICH, A. BASU, M. DI SUMMA, M. SKUTELLA

neural networks with a certain architecture. The precise mathematical statements of37

universal approximation theorems show that single layer networks can arbitrarily well38

approximate any continuous function (under some additional mild hypotheses). While39

this suggests that single layer networks are good enough from a learning perspective,40

from a mathematical perspective, one can ask the question if the class of functions41

represented by a single layer is a strict subset of the class of functions represented by42

two or more hidden layers. On the question of size, one can ask for precise bounds43

on the width of the network of a given depth to represent a certain class of functions.44

We believe that a better understanding of the function classes exactly represented by45

different architectures will have implications not just for mathematical foundations,46

but also algorithmic and statistical learning aspects of neural networks. The task47

of searching for the “best” function in that class can only benefit from a better un-48

derstanding of the nature of functions in that class. A motivating question behind49

the results in this chapter is to understand the hierarchy of function classes exactly50

represented by neural networks of increasing depth.51

We now introduce more precise notation and terminology to set the stage for our52

investigations.53

1.1. Notation and Definitions. We write [n] := {1, 2, . . . , n} for the set of54

natural numbers up to n (without zero) and [n]0 := [n]∪{0} for the same set including55

zero. For any n ∈ N, let σ : Rn → Rn be the component-wise rectifier function56

σ(x) = (max{0, x1},max{0, x2}, . . . ,max{0, xn}).57

For any number of hidden layers k ∈ N, a (k+1)-layer feedforward neural network58

with rectified linear units (ReLU NN or simply NN) is given by k affine transforma-59

tions T (`) : Rn`−1 → Rn` , x 7→ A(`)x + b(`), for ` ∈ [k], and a linear transformation60

T (k+1) : Rnk → Rnk+1 , x 7→ A(k+1)x. It is said to compute or represent the function61

f : Rn0 → Rnk+1 given by62

f = T (k+1) ◦ σ ◦ T (k) ◦ σ ◦ · · · ◦ T (2) ◦ σ ◦ T (1).63

The matrices A(`) ∈ Rn`×n`−1 are called the weights and the vectors b(`) ∈ Rn` are64

the biases of the `-th layer. The number n` ∈ N is called the width of the `-th layer.65

The maximum width of all hidden layers max`∈[k] n` is called the width of the NN.66

Further, we say that the NN has depth k + 1 and size
∑k
`=1 n`.67

Often, NNs are represented as layered, directed, acyclic graphs where each di-68

mension of each layer (including input layer ` = 0 and output layer ` = k + 1) is one69

vertex, weights are arc labels, and biases are node labels. Then, the vertices are called70

neurons.71

For a given input x = x(0) ∈ Rn0 , let y(`) := T (`)(x(`−1)) ∈ Rn` be the activation72

vector and x(`) := σ(y`) ∈ Rn` the output vector of the `-th layer. Further, let73

y := y(k+1) = f(x) be the output of the NN. We also say that the i-th component74

of each of these vectors is the activation or the output of the i-th neuron in the `-th75

layer.76

To illustrate the definition of NNs and how they compute functions, Figure 177

shows an NN with one hidden layer computing the maximum of two numbers.78

For k ∈ N, we define79

ReLUn(k) := {f : Rn → R | f can be represented by a (k + 1)-layer NN},80

CPWLn := {f : Rn → R | f is continuous and piecewise linear}.8182
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Fig. 1. An NN with two input neurons, labeled x1 and x2, three hidden neurons, labeled with
the shape of the rectifier function, and one output neuron, labeled y. The arcs are labeled with their
weights and all biases are zero. The NN has depth 2, width 3, and size 3. It computes the function
x 7→ y = max{0, x1 − x2}+ max{0, x2} −max{0,−x2} = max{0, x1 − x2}+ x2 = max{x1, x2}.

By definition, a continuous function f : Rn → R is piecewise linear in case there is83

a finite set of polyhedra whose union is Rn, and f is affine linear over each such84

polyhedron.85

In order to analyze ReLUn(k), we use another function class defined as follows.86

We call a function g a p-term max function if it can be expressed as maximum of p87

affine terms, that is, g(x) = max{`1(x), . . . , `p(x)} where `i : Rn → R is affinely linear88

for i ∈ [p]. Note that this also includes max functions with less than p terms, as some89

functions `i may coincide. Based on that, we define90

MAXn(p) := {f : Rn → R | f is a linear combination of p-term max functions}.9192

If the input dimension n is not important for the context, we sometimes drop the93

index and use ReLU(k) :=
⋃
n∈N ReLUn(k) and MAX(p) :=

⋃
n∈N MAXn(p) instead.94

Since we deal with polyhedra a lot in this paper, we will use the standard notations95

convA and coneA for the convex and conic hulls of a set A ⊆ Rn. For an in-depth96

treatment of polyhedra and (mixed-integer) optimization, we refer to the book by97

Schrijver [54].98

1.2. Representing Piecewise Linear Functions with ReLU Networks. It99

is not hard to see that every function expressed by a ReLU network is continuous and100

piecewise linear (CPWL) because it is composed of affine transformations and ReLU101

functions, which are both CPWL. Based on a result by Wang and Sun [64], Arora et102

al. [5] proved that the converse is true as well by showing that any CPWL function103

can be represented with logarithmic depth.104

Theorem 1.1 ( [5]). If n ∈ N, k∗ := dlog2(n+ 1)e, then CPWLn = ReLUn(k∗).105

Since this result is the starting point for our paper, let us briefly sketch its proof.106

For this purpose, we start with a simple special case of a CPWL function: the maxi-107

mum of n numbers. Recall that one hidden layer suffices to compute the maximum of108

two numbers, see Figure 1. Now one can easily stack this operation: in order to com-109

pute the maximum of four numbers, we divide them into two pairs with two numbers110

each, compute the maximum of each pair and then the maximum of the two results.111

This idea results in the NN depicted in Figure 2, which has two hidden layers.112

Repeating this procedure, one can compute the maximum of eight numbers with113

three hidden layers, and, in general, the maximum of 2k numbers with k hidden layers.114

Phrasing this the other way around, we obtain that the maximum of n numbers115

can be computed with dlog2(n)e hidden layers. Since NNs can easily form affine116

combinations, this implies the following lemma.117

Lemma 1.2 ( [5]). If n, k ∈ N, then MAXn(2k) ⊆ ReLUn(k).118
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Fig. 2. An NN to compute the maximum of four numbers that consists of three copies of the
NN in Figure 1. Note that no activiation function is applied at the two unlabeled middle vertices
(representing max{x1, x2} and max{x3, x4}). Therefore, the linear transformations directly before
and after these vertices can be combined into a single one. Thus, the network has total depth three
(two hidden layers).

The question whether the depth of this construction is best possible is one of the119

central open questions we attack in this paper.120

In fact, the maximum function is not just a nice toy example, it is, in some sense,121

the most difficult one of all CPWL function to represent for a ReLU NN. This is due122

to a result by Wang and Sun [64] stating that every CPWL function defined on Rn123

can be written as linear combination of (n+ 1)-term max functions.124

Theorem 1.3 ( [64]). If n ∈ N, then CPWLn = MAXn(n+ 1).125

The proof given by Wang and Sun [64] is technically involved and we do not go126

into details here. However, in Section 4 we provide an alternative proof yielding a127

slightly stronger result. This will be useful to bound the width of NNs representing128

arbitrary CPWL functions.129

Theorem 1.1 by Arora et al. [5] can now be deduced from combining Lemma 1.2130

and Theorem 1.3: In fact, for k∗ = dlog2(n+ 1)e, one obtains131

CPWLn = MAXn(n+ 1) ⊆ ReLUn(k∗) ⊆ CPWLn132

and thus equality in the whole chain of subset relations.133

1.3. Our Main Conjecture. We wish to understand whether the logarithmic134

depth bound in Theorem 1.1 by Arora et al. [5] is best possible or whether one can135

do better. We believe it is indeed best possible and pose the following conjecture to136

better understand the importance of depth in neural networks.137

Conjecture 1.4. For any n ∈ N, let k∗ := dlog2(n+ 1)e. Then it holds that138

(1.1) ReLUn(0) ( ReLUn(1) ( · · · ( ReLUn(k∗ − 1) ( ReLUn(k∗) = CPWLn .139

Conjecture 1.4 claims that any additional layer up to k∗ hidden layers strictly140

increases the set of representable functions. This would imply that the construction141

by Arora et al. [5] is actually depth-minimal.142

Observe that, in order to prove Conjecture 1.4, it is sufficient to find a single143

function f ∈ ReLUn(k∗) \ ReLUn(k∗ − 1) with n = 2k
∗−1 for all k∗ ∈ N. This144

also implies all other strict inclusions ReLUn(i − 1) ( ReLUn(i) for i < k∗ since145
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Fig. 3. Set of breakpoints of the function max{0, x1, x2} (left). This function cannot be com-
puted by a 2-layer NN (middle), since the set of breakpoints of any function computed by such an
NN is always a union of lines (right).

ReLUn(i− 1) = ReLUn(i) immediately implies that ReLUn(i − 1) = ReLUn(i′) for146

all i′ ≥ i− 1.147

In fact, thanks to 1.3 by Wang and Sun [64], there is a canonical candidate for148

such a function, allowing us to reformulate the conjecture as follows.149

Conjecture 1.5. For k ∈ N, n = 2k, the function fn(x) = max{0, x1, . . . , xn}150

cannot be represented with k hidden layers, that is, fn /∈ ReLUn(k).151

Proposition 1.6. Conjecture 1.4 and Conjecture 1.5 are equivalent.152

Proof. We argued above that Conjecture 1.5 implies Conjecture 1.4. For the153

other direction, we prove the contraposition, that is, assuming that Conjecture 1.5 is154

violated, we show that Conjecture 1.4 is violated as well. To this end, suppose there155

is a k ∈ N, n = 2k, such that fn is representable with k hidden layers. We argue156

that under this hypothesis, any (n+ 1)-term max function can be represented with k157

hidden layers. To see this, observe that158

max{`1(x), . . . , `n+1(x)} = max{0, `1(x)− `n+1(x), . . . , `n(x)− `n+1(x)}+ `n+1(x).159

Modifying the first-layer weights of the NN computing fn such that input xi is re-160

placed by the affine expression `i(x)− `n+1(x), one obtains a k-hidden-layer NN com-161

puting the function max{0, `1(x)− `n+1(x), . . . , `n(x)− `n+1(x)}. Moreover, since162

affine functions, in particular also `n+1(x), can easily be represented by k-hidden-layer163

NNs, we obtain that any (n+ 1)-term maximum is in ReLUn(k). Using Theorem 1.3164

by Wang and Sun [64], it follows that ReLUn(k) = CPWLn. In particular, since165

k∗ := dlog2(n+ 1)e = k+ 1, we obtain that Conjecture 1.4 must be violated as well.166

It is known that Conjecture 1.5 holds for k = 1 [46], that is, the CPWL func-167

tion max{0, x1, x2} cannot be computed by a 2-layer NN. The reason for this is that168

the set of breakpoints of a CPWL function computed by a 2-layer NN is always a169

union of lines, while the set of breakpoints of max{0, x1, x2} is a union of three half-170

lines; compare Figure 3 and the detailed proof by Mukherjee and Basu [46]. The171

conjecture remains open for all k ≥ 2.172

1.4. Contribution and Outline. In this paper, we present the following results173

as partial progress towards resolving this conjecture.174

In Section 2, we resolve Conjecture 1.5 for k = 2, under a natural assumption on175

the breakpoints of the function represented by any intermediate neuron. We achieve176

this result by leveraging techniques from mixed-integer programming to analyze the177

set of functions computable by certain NNs.178

In the light of Lemma 1.2, stating that MAX(2k) ⊆ ReLU(k) for all k ∈ N one179

might ask whether the converse is true as well, that is, whether the classes MAX(2k)180

and ReLU(k) are actually equal. This would not only provide a neat characterization181

This manuscript is for review purposes only.

amitabhbasu
Highlight

amitabhbasu
Sticky Note
Theorem 1.3



6 C. HERTRICH, A. BASU, M. DI SUMMA, M. SKUTELLA

of ReLU(k), but also prove Conjecture 1.5 without any additional assumption since182

one can show that max{0, x1, . . . , x2k} is not contained in MAX(2k).183

In fact, for k = 1, it is true that ReLU(1) = MAX(2), that is, a function is184

computable with one hidden layer if and only if it is a linear combination of 2-term185

max functions. However, in Section 3, we show that for k ≥ 2, the class ReLU(k) is186

a strict superset of MAX(2k). To achieve this result, the key technical ingredient is187

the theory of polyhedral complexes associated with CPWL functions. This way, we188

provide important insights concerning the richness of the class ReLU(k).189

So far, we have focused on understanding the smallest depth needed to express190

CPWL functions using neural networks with ReLU activations. In Section 4, we191

complement these results by upper bounds on the sizes of the networks needed for192

expressing arbitrary CPWL functions. In particular, Theorem 4.4 shows that any193

continuous piecewise linear function with p linear/affine pieces on Rn can be expressed194

by a network with depth at most O(log n) and width at most pO(n2). We arrive at this195

result by introducing a novel application of recently established interactions between196

neural networks and tropical geometry.197

Finally, in Section 5, we provide an outlook how these interactions between trop-198

ical geometry and NNs could possibly also be useful to provide a full, unconditional199

proof of Conjecture 1.4 by means of polytope theory.200

In Section 6, we discuss further open research questions.201

1.5. Further Related Work.202

Depth versus size. Soon after the original universal approximation theorems [13,203

32], concrete bounds were obtained on the number of neurons needed in the hidden204

layer to achieve a certain level of accuracy. The literature on this is vast and we refer205

to a small representative sample here [7,8,41–43,50]. More recently, work has focused206

on how deeper networks can have exponentially or super exponentially smaller size207

compared to shallower networks [5, 16, 26, 27, 37, 47, 51, 53, 59, 60, 62, 65]. See also [24]208

for another perspective on the relationship between expressivity and architecture, and209

the references therein.210

Mixed-integer optimization and machine learning. Over the past decade, a grow-211

ing body of work has emerged that explores the interplay between mixed-integer212

optimization and machine learning. On the one hand, researchers have attempted to213

improve mixed-integer optimization algorithms by exploiting novel techniques from214

machine learning [2, 10, 19, 28, 34–36, 38]; see also [9] for a recent survey. On the flip215

side, mixed-integer optimization techniques have been used to analyze function classes216

represented by neural networks [3,17,55–57]. In Section 2 below, we show another new217

use of mixed-integer optimization tools for understanding function classes represented218

by neural networks.219

Design of training algorithms. We believe that a better understanding of the220

function classes represented exactly by a neural architecture also has benefits in terms221

of understanding the complexity of the training problem. For instance, in a paper by222

Arora et al. [5], an understanding of single layer ReLU networks enables the design223

of a globally optimal algorithm for solving the empirical risk minimization (ERM)224

problem, that runs in polynomial time in the number of data points in fixed dimension.225

See also [11,14,18,20–23] for a similar lines of work.226

Neural Networks and Tropical Geometry. A recent stream of research involves227

the interplay between neural networks and tropical geometry. The piecewise linear228

functions computed by neural networks can be seen as (tropical quotients of) tropical229

polynomials. Linear regions of these functions correspond to vertices of so-called230

This manuscript is for review purposes only.

amitabhbasu
Sticky Note
Include Bienstock, Munoz, Pokutta paper?



TOWARDS DEPTH LOWER BOUNDS OF RELU NETWORKS 7

Newton polytopes associated with these tropical polynomials. Applications of this231

correspondence include bounding the number of linear regions of a neural network232

[12,44,66] and understanding decision boundaries [1]. In Section 4 we present a novel233

application of tropical concepts to understand neural networks. We refer to [40] for234

a recent survey of connections between machine learning and tropical geometry, as235

well as to the textbooks by Maclagan and Sturmfels [39] and Joswig [33] for in-depth236

introductions to tropical geometry and tropical combinatorics.237

2. Conditional Lower Depth Boundsvia Mixed-Integer Programming.238

In this section, we provide a computer-aided proof that, under a natural, yet unproven239

assumption, the function f(x) := max{0, x1, x2, x3, x4} cannot be represented by a240

3-layer NN. It is worth to note that, to the best of our knowledge, no CPWL function241

is known for which the non-existence of a 3-layer NN can be proven without additional242

assumption. For easier notation, we write x0 := 0.243

We first prove that we may restrict ourselves to NNs without biases. This holds244

true independent of our assumption, which we introduce afterwards.245

Definition 2.1. A function g : Rn → Rm is called positively homogeneous if it246

satisfies g(λx) = λg(x) for all λ ≥ 0.247

Definition 2.2. For an NN given by transformations T (`)(x) = A(`)x+ b(`), we248

define the corresponding homogenized NN to be the NN given by T̃ (`)(x) = A(`)x with249

all biases set to zero.250

Proposition 2.3. If an NN computes a positively homogeneous function, then251

the corresponding homogenized NN computes the same function.252

Proof. Let g : Rn0 → Rnk+1 be the function computed by the original NN and g̃253

the one computed by the homogenized NN. Further, for any 0 ≤ ` ≤ k, let254

g(`) = T (`+1) ◦ σ ◦ T (`) ◦ · · · ◦ T (2) ◦ σ ◦ T (1)
255

be the function computed by the sub-NN consisting of the first (` + 1)-layers and256

let g̃(`) be the function computed by the corresponding homogenized sub-NN. We257

first show by induction on ` that the norm of ‖g(`)(x) − g̃(`)(x)‖ is bounded by a258

global constant that only depends on the parameters of the NN but not on x.259

For ` = 0, we have ‖g(0)(x) − g̃(0)(x)‖ = ‖b(1)‖ =: C0, settling the induction260

base. For the induction step, let ` ≥ 1 and assume that ‖g(`−1)(x) − g̃(`−1)(x)‖ ≤261

C`−1, where C`−1 only depends on the parameters of the NN. Since a component-262

wise application of the ReLU activation function has Lipschitz constant 1, this im-263

plies ‖(σ ◦ g(`−1))(x)− (σ ◦ g̃(`−1))(x)‖ ≤ C`−1. Using any matrix norm that is com-264

patible with the Euclidean vector norm, we obtain:265

‖g(`)(x)− g̃(`)(x)‖ = ‖b(`+1) +A(`+1)((σ ◦ g(`−1))(x)− (σ ◦ g̃(`−1))(x))‖266

≤ ‖b(`+1)‖+ ‖A(`+1)‖ · C`−1 =: C`267268

Since the right-hand side only depends on NN parameters, the induction is completed.269

Finally, we show that g = g̃. For the sake of contradiction, suppose that there270

is an x ∈ Rn0 with ‖g(x) − g̃(x)‖ = δ > 0. Let x′ := Ck+1
δ x; then, by positive271

homogeneity, it follows that ‖g(x′)− g̃(x′)‖ = Ck+1 > Ck, contradicting the property272

shown above. Thus, we have g = g̃.273

Since f = max{0, x1, x2, x3, x4} is positively homogeneous, Proposition 2.3 im-274

plies that, if there is a 3-layer NN computing f , then there also is one that has no275
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x1 ≥
x2 ≥ 0

0 ≥ x2

≥ x1
x1 ≥ 0
≥ x2

x2 ≥
0 ≥ x1

x2 ≥ x1

≥ 0

0 ≥
x1 ≥ x2

Fig. 4. A function is H-conforming if the set of breakpoints is a subset of the hyperplane ar-
rangement H. The arrangement H consists of all hyperplanes where two of the coordinates (possibly
including x0 = 0) are equal. Here, H is illustrated for the (simpler) two-dimensional case, where it
consists of three hyperplanes that divide the space into six cells.

biases. Therefore, in the remainder of this section, we only consider NNs without276

biases and assume implicitly that all considered CPWL functions are positively ho-277

mogeneous. In particular, any piece of such a CPWL function is linear and not only278

affine linear.279

Observe that, for the function f , the only points of non-differentiability (a.k.a.280

breakpoints) are at places where at least two of the five numbers x0 = 0, x1, x2, x3,281

and x4 are equal. Hence, if some neuron of an NN computing f introduces breakpoints282

at other places, these breakpoints must be canceled out by other neurons. Therefore,283

it is a natural assumption that such breakpoints are not introduced at all in the first284

place.285

To make this assumption formal, let Hij = {x ∈ R4 | xi = xj}, for 0 ≤ i < j ≤ 4,286

be ten hyperplanes in R4 and H =
⋃

0≤i<j≤4Hij be the corresponding hyperplane287

arrangement. This is the intersection of the so-called braid arrangement in five di-288

mensions with the hyperplane x0 = 0 [58]. The regions or cells of H are defined to289

be the closures of the connected components of R4 \ H. It is easy to see that these290

regions are in one-to-one correspondence to the 5! = 120 possible orderings of the five291

numbers x0 = 0, x1, x2, x3, and x4. More precisely, for a permutation π of the five292

indices [4]0 = {0, 1, 2, 3, 4}, the corresponding region is the polyhedron293

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}.294

We say that a (positively homogeneous) CPWL function g is H-conforming, if it295

is linear within any of these regions of H, that is, if it only has breakpoints where296

the relative ordering of the five values x0 = 0, x1, x2, x3, x4 changes; see Fig-297

ure 4 for an illustration of the (simpler) two-dimensional case. Moreover, an NN298

is said to be H-conforming if the output of each neuron contained in the NN is299

H-conforming. Equivalently, this is the case if and only if all intermediate func-300

tions σ ◦ T (`) ◦ σ ◦ T (`−1) ◦ · · · ◦ σ ◦ T (1), ` ∈ [k], are H-conforming. Now our as-301

sumption can be formally phrased as follows.302

Assumption 2.4. If there exists a 3-layer NN computing the function f(x) =303

max{0, x1, x2, x3, x4}, then there also exists one that is H-conforming.304

We use mixed-integer programming to prove the following theorem.305
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Theorem 2.5. Under Assumption 2.4, there does not exist a 3-layer NN that306

computes the function f(x) = max{0, x1, x2, x3, x4}.307

The remainder of this section is devoted to proving this theorem. The rough308

outline of the proof is as follows. We first study some geometric properties of the309

hyperplane arrangement H. This will show that each of the 120 cells of H is a310

simplicial polyhedral cone spanned by 4 extreme rays. In total, there are 30 such311

rays (because rays are used multiple times to span different cones). This implies that312

each H-conforming function is uniquely determined by its values on the 30 rays and,313

therefore, the set of H-conforming functions of type R4 → R is a 30-dimensional vector314

space. We then use linear algebra to show that the space of functions generated by315

H-conforming two-layer NNs is a 14-dimensional subspace. Moreover, with two hidden316

layers, at least 29 of the 30 dimensions can be generated and f is not contained in this317

29-dimensional subspace. So the remaining question is whether the 14 dimensions318

producible with the first hidden layer can be combined in such a way that after319

applying a ReLU activation in the second hidden layer, we do not end up within the320

29-dimensional subspace. We model this question as a mixed-integer program (MIP).321

Solving the MIP yields that we always end up within the 29-dimensional subspace,322

implying that f cannot be represented by a 3-layer NN. This provides a computational323

proof of Theorem 2.5.324

Let us start with investigating the structure of the hyperplane arrangement H.325

For readers familiar with the interplay between hyperplane arrangements and poly-326

topes, it is worth noting that H is dual to a combinatorial equivalent of the 4-di-327

mensional permutahedron. Hence, what we are studying in the following are some328

combinatorial properties of the permutahedron.329

Recall that the regions of H are given by the 120 polyhedra330

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}331

for each permutation π of [4]0. With this representation, one can see that Cπ is332

a pointed polyhedral cone (with the origin as its only vertex) spanned by the four333

half-lines (a.k.a. rays)334

R{π(0)} := {x ∈ R4 | xπ(0) ≤ xπ(1) = xπ(2) = xπ(3) = xπ(4)},335

R{π(0),π(1)} := {x ∈ R4 | xπ(0) = xπ(1) ≤ xπ(2) = xπ(3) = xπ(4)},336

R{π(0),π(1),π(2)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) ≤ xπ(3) = xπ(4)},337

R{π(0),π(1),π(2),π(3)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) = xπ(3) ≤ xπ(4)}.338339

With that notation, we see that each of the 120 cells of H is a simplicial cone340

spanned by four out of the 30 rays RS with ∅ ( S ( [4]0. For each such set S, denote341

its complement by S̄ := [4]0 \ S. Let us use a generating vector rS ∈ R4 for each of342

these rays such that RS = cone rS as follows: If 0 ∈ S, then rS := 1S̄ ∈ R4, otherwise343

rS := −1S ∈ R4, where for each S ⊆ [4], the vector 1S ∈ R4 contains entries 1344

at precisely those index positions that are contained in S and entries 0 elsewhere.345

For example, r{0,2,3} = (1, 0, 0, 1) ∈ R4 and r{1,4} = (−1, 0, 0,−1) ∈ R4. Then, the346

set R containing conic generators of all the 30 rays of H consists of the 30 vectors347

R = ({0, 1}4 ∪ {0,−1}4) \ {0}4.348

Let S30 be the space of all H-conforming CPWL functions of type R4 → R. We349

show that S30 is a 30-dimensional vector space.350
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Lemma 2.6. The map g 7→ (g(r))r∈R that evaluates a function g ∈ S30 at the 30351

rays in R is an isomorphism between S30 and R30. In particular, S30 is a 30-dimen-352

sional vector space.353

Proof. First note that S30 is closed under addition and scalar multiplication.354

Therefore, it is a subspace of the vector space of continuous functions of type R4 → R,355

and thus, in particular, a vector space. We show that the map g 7→ (g(r))r∈R is in356

fact a vector space isomorphism. The map is obviously linear, so we only need to357

show that it is a bijection. In order to do so, remember that R4 is the union of the358

5! = 120 simplicial cones Cπ. In particular, given the function values on the extreme359

rays of these cones, there is a unique positively homogeneous, continuous continuation360

that is linear within each of the 120 cones. This implies that the considered map is a361

bijection between S30 and R30.362

The previous lemma also provides a canonical basis of the vector space S30:363

the one consisting of all CPWL functions attaining value 1 at one ray r ∈ R and364

value 0 at all other rays. However, it turns out that for our purposes it is more365

convenient to work with a different basis. For this purpose, let gM (x) = maxi∈M xi366

for each {∅, {0}} 63M ⊆ [4]0. These 30 functions contain, among other functions, the367

four (linear) coordinate projections g{i}(x) = xi, i ∈ [4], and the function f(x) =368

g[4]0(x) = max{0, x1, x2, x3, x4}.369

Lemma 2.7. The 30 functions gM (x) = maxi∈M xi with {∅, {0}} 63 M ⊆ [4]0370

form a basis of S30.371

Proof. Evaluating the 30 functions gM at all 30 rays r ∈ R yields 30 vectors372

in R30. It can be easily verified (e.g., using a computer) that these vectors form a373

basis of R30. Thus, due to the isomorphism of Lemma 2.6, the functions gM form a374

basis of S30.375

Next, we focus on particular subspaces of S30 generated by only some of the 30376

functions gM . We prove that they correspond to the spaces of functions computable377

by H-conforming 2- and 3-layer NNs, respectively.378

To do so, let B14 be the set of the 14 basis functions gM with {∅, {0}} 63M ⊆ [4]0379

and |M | ≤ 2. Let S14 be the 14-dimensional subspace spanned by B14. Similarly,380

let B29 be the set of the 29 basis functions gM with {∅, {0}} 63M ( [4]0 (all but [4]0).381

Let S29 be the 29-dimensional subspace spanned by B29.382

Lemma 2.8. The space S14 consists of all functions computable by H-conforming383

2-layer NNs.384

Proof. Each function in S14 is a linear combination of 2-term max functions by385

definition. Hence, by Lemma 1.2, it can be represented by a 2-layer NN.386

Conversely, we show that any function representable by a 2-layer NN is indeed387

contained in S14. It suffices to show that the output of every neuron in the first (and388

only) hidden layer of an H-conforming ReLU NN is in S14 because the output of a389

2-layer NN is a linear combination of such outputs. Let a ∈ R4 be the first-layer390

weights of such a neuron, computing the function ga(x) := max{aTx, 0}, which has391

the hyperplane {x ∈ R4 | aTx = 0} as breakpoints (or is constantly zero). Since392

the NN must be H-conforming, this must be one of the ten hyperplanes xi = xj ,393

0 ≤ i < j ≤ 4. Thus, ga(x) = max{λ(xi − xj), 0} for some λ ∈ R. If λ ≥ 0, it follows394

that ga = λg{i,j} − λg{j} ∈ S14, and if λ ≤ 0, we obtain ga = −λg{i,j} + λg{i} ∈ S14.395

This concludes the proof.396

For 3-layer NNs, an analogous statement can be made. However, only one direc-397
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tion can be easily seen.398

Lemma 2.9. Any function in S29 can be represented by an H-conforming 3-layer399

NN.400

Proof. As in the previous lemma, each function in S29 is a linear combination of401

4-term max functions by definition. Hence, by Lemma 1.2, it can be represented by402

a 3-layer NN.403

Our goal is to prove the converse as well: any H-conforming function represented404

by a 3-layer NN is in S29. Since f(x) = max{0, x1, x2, x3, x4} is the 30th basis405

function, which is linearly independent from B29 and thus not contained in S29, this406

implies Theorem 2.5. To achieve this goal, we first provide another characterization407

of S29, which can be seen as an orthogonal direction to S29 in S30. For a function408

g ∈ S30, let409

φ(g) :=
∑

∅(S([4]0

(−1)|S|g(rS)410

be a linear map from S30 to R.411

Lemma 2.10. A function g ∈ S30 is contained in S29 if and only if φ(g) = 0.412

Proof. Any g ∈ S30 can be represented as a unique linear combination of the 30413

basis functions gM and is contained in S29 if and only if the coefficient of f = g[4]0 is414

zero. One can easily check (with a computer) that φ maps all functions in B29 to 0,415

but not the 30th basis function f . Thus, g is contained in S29 if and only if it satisfies416

φ(g) = 0.417

In order to make use of our Assumption 2.4, we need the following insight about418

when the property of being H-conforming is preserved after applying a ReLU activa-419

tion.420

Lemma 2.11. Let g ∈ S30. The function h = σ ◦ g is H-conforming (and thus421

in S30 as well) if and only if there is no pair of sets ∅ ( S ( S′ ( [4]0 with g(rS)422

and g(rS′) being nonzero and having different signs.423

Proof. The key observation to prove this lemma is the following: for two rays rS424

and rS′ , there exists a cell C of the hyperplane arrangement H for which both rS425

and rS′ are extreme rays if and only if S ( S′ or S′ ( S.426

Hence, if there exists a pair of sets ∅ ( S ( S′ ( [4]0 with g(rS) and g(rS′) being427

nonzero and having different signs, then the function g restricted to C is a linear428

function with both strictly positive and strictly negative values. Therefore, after429

applying the ReLU activation, the resulting function h has breakpoints within C and430

is not H-conforming.431

Conversely, if for each pair of sets ∅ ( S ( S′ ( [4]0, both g(rS) and g(rS′)432

are either nonpositive or nonnegative, then g restricted to any cell C of H is either433

nonpositive or nonnegative everywhere. In the first case, h restricted to that cell C is434

the zero function, while in the second case, h coincides with g in C. In both cases, h435

is linear within all cells and, thus, H-conforming.436

Having collected all these lemmas, we are finally able to construct a MIP whose437

solution proves that any function computed by an H-conforming 3-layer NN is in S29.438

As in the proof of Lemma 2.8, it suffices to focus on the output of a single neuron in439

the second hidden layer. Let h = σ ◦ g be the output of such a neuron with g being440

its input. Observe that, by construction, g is a function computed by a 2-layer NN,441

and thus, by Lemma 2.8, a linear combination of the 14 functions in B14. The MIP442
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contains three types of variables, which we denote in bold to distinguish them from443

constants:444

• 14 continuous variables aM ∈ [−1, 1], being the coefficients of the linear445

combination of the basis of S14 forming g, that is, g =
∑
gM∈B14 aMgM (since446

multiplying g and h with a nonzero scalar does not alter the containment of h447

in S29, we may assume unit interval bounds),448

• 30 binary variables zS ∈ {0, 1} for ∅ ( S ( [4]0, determining whether the449

considered neuron is strictly active at ray rS , that is, whether g(rS) > 0,450

• 30 continuous variables yS ∈ R for ∅ ( S ( [4]0, representing the output of451

the considered neuron at all rays, that is, yS = h(rS).452

To ensure that these variables interact as expected, we need two types of con-453

straints:454

• For each of the 30 rays rS , ∅ ( S ( [4]0, the following constraints en-455

sure that zS and output yS are correctly calculated from the variables aM ,456

that is, zS = 1 if and only if g(rS) =
∑
gM∈B14 aMgM (rS) is positive, and457

yS = max{0, g(rS)}. Also compare the references given in Subsection 1.5458

concerning MIP models for ReLU units. Note that the restriction of the459

coefficients aM to [−1, 1] ensures that the absolute value of g(rS) is always460

bounded by 14, allowing us to use 15 as a replacement for +∞:461

yS ≥ 0

yS ≥
∑

gM∈B14

aMgM (rS)

yS ≤ 15zS

yS ≤
∑

gM∈B14

aMgM (rS) + 15(1− zS)

(2.1)462

463

Observe that these constraints ensure that one of the following two cases464

occurs: If zS = 0, then the first and third line imply yS = 0 and the second465

line implies that the incoming activation is in fact nonpositive. The fourth466

line is always satisfied in that case. Otherwise, if zS = 1, then the second and467

fourth line imply that yS equals the incoming activation, and, in combination468

with the first line, this has to be nonnegative. The third line is always satisfied469

in that case. Hence, the set of constraints (2.1) correctly models the ReLU470

activation function.471

• For each of the 150 pairs of sets ∅ ( S ( S′ ( [4]0, the following constraints472

ensure that the property in Lemma 2.11 is satisfied. More precisely, if one of473

the variables zS or zS′ equals 1, then the ray of the other set has nonnegative474

activation, that is, g(rS′) ≥ 0 or g(rS) ≥ 0, respectively:475 ∑
gM∈B14

aMgM (rS) ≥ 15(zS′ − 1)

∑
gM∈B14

aMgM (rS′) ≥ 15(zS − 1)
(2.2)476

477

Observe that these constraints successfully prevent that the two rays rS478

and rS′ have nonzero activations with different signs. Conversely, if this479

is not the case, then we can always satisfy constraints (2.2) by setting only480

those variables zS to value 1 where the activation of ray rS is strictly positive.481
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(Note that, if the incoming activation is precisely zero, constraints (2.1) make482

it possible to choose both values 0 or 1 for zS .) Hence, these constraints are483

in fact appropriate to model H-conformity.484

In the light of Lemma 2.10, the objective function of our MIP is to maximize φ(h),485

that is, the expression486 ∑
∅(S([4]0

(−1)|S|yS .487

The MIP has a total of 30 binary and 44 continuous variables, as well as 420488

inequality constraints. The next proposition formalizes how this MIP can be used to489

check whether a 3-layer NN function can exist outside S29.490

Proposition 2.12. There exists an H-conforming 3-layer NN computing a func-491

tion not contained in S29 if and only if the objective value of the MIP defined above492

is strictly positive.493

Proof. For the first direction, assume that such an NN exists. Since its final494

output is a linear combination of the outputs of the neurons in the second hidden495

layer, one of these neurons must compute a function h̃ = σ ◦ g̃ /∈ S29, with g̃ being496

the input to that neuron. By Lemma 2.10, it follows that φ(h̃) 6= 0. Moreover, we497

can even assume without loss of generality that φ(h̃) > 0, as we argue now. If this498

is not the case, multiply all first-layer weights of the NN by −1 to obtain a new NN499

computing function ĥ instead of h̃. Observing that rS = −r[4]0\S for all rS ∈ R, we500

obtain ĥ(rS) = h̃(−rS) = h̃(r[4]0\S) for all rS ∈ R. Plugging this into the definition501

of φ and using that the cardinalities of S and [4]0 \S have different parity, we further502

obtain φ(ĥ) = −φ(h̃). Therefore, we can assume that φ(h̃) was already positive in the503

first place.504

Using Lemma 2.8, the function g̃ can be represented as a linear combination505

g̃ =
∑
gM∈B14 ãMgM of the functions in B14. Let α := maxM |ãM | > 0. Let us define506

modified functions g and h from g̃ and h̃ as follows. Let aM := ãM/α ∈ [−1, 1],507

g :=
∑
gM∈B14 aMgM , and h := σ ◦ g. Moreover, for all rays rS ∈ R, let yS := h(rS),508

as well as zS := 1 if yS > 0, and zS := 0 otherwise.509

It is easy to verify that the variables aM , yS , and zS defined that way satisfy510

(2.1). Moreover, since the NN is H-conforming, they also satisfy (2.2). Finally, they511

also yield a strictly positive objective function value since φ(h) = φ(h̃)/α > 0.512

For the reverse direction, assume that there exists a MIP solution consisting513

of aM , yS , and zS , satisfying (2.1) and (2.2), and having a strictly positive objec-514

tive function value. Define the functions g :=
∑
gM∈B14 aMgM and h := σ ◦ g. One515

concludes from (2.1) that h(rS) = yS for all rays rS ∈ R. Lemma 2.8 implies that g516

can be represented by a 2-layer NN. Thus, h can be represented by a 3-layer NN.517

Moreover, constraints (2.2) guarantee that this NN is H-conforming. Finally, since518

the MIP solution has strictly positive objective function value, we obtain φ(h) > 0,519

implying that h /∈ S29.520

In order to use the MIP as part of a mathematical proof, we employed a MIP521

solver that uses exact rational arithmetics without numerical errors, namely the solver522

by the Parma Polyhedral Library (PPL) [6]. We called the solver from a SageMath523

(Version 9.0) [61] script on a machine with an Intel Core i7-8700 6-Core 64-bit CPU524

and 15.5 GB RAM, using the openSUSE Leap 15.2 Linux distribution. SageMath,525

which natively includes the PPL solver, is published under the GPLv3 license. After526

a total running time of almost 7 days (153 hours), we obtained optimal objective527

function value zero. This makes it possible to prove Theorem 2.5.528
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Proof of Theorem 2.5. Since the MIP has optimal objective function value zero,529

Proposition 2.12 implies that any function computed by an H-conforming 3-layer NN530

is contained in S29. In particular, under Assumption 2.4, it is not possible to compute531

the function f(x) = max{0, x1, x2, x3, x4} with a 3-layer NN.532

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [25], which is533

commercial but offers free academic licenses, is able to solve the same MIP within534

less than a second, providing the same result. However, Gurobi does not employ535

exact arithmetics, making it impossible to exclude numerical errors and use it as a536

mathematical proof.537

The SageMath code can be found on GitHub at538

https://github.com/ChristophHertrich/relu-mip-depth-bound.539

Additionally, the MIP can be found there as .mps file, a standard format to represent540

MIPs. This allows one to use any solver of choice to reproduce our result.541

3. Going Beyond Linear Combinations of Max Functions. In this section542

we prove the following result, showing that NNs with k hidden layers can compute543

more functions than only linear combinations of 2k-term max functions.544

Theorem 3.1. For any k ≥ 2, the class ReLU(k) is a strict superset of MAX(2k).545

In order to prove this theorem, we provide a specific function that is contained546

in ReLU(k) \MAX(2k) for any number of hidden layers k ≥ 2. The challenging part547

is to show that the function is in fact not contained in MAX(2k).548

Proposition 3.2. For any n ≥ 3, the function f : Rn → R defined by549

(3.1) f(x) = max{0, x1, x2, . . . , xn−3, max{xn−2, xn−1}+ max{0, xn}}550

is not contained in MAX(n).551

This means that f cannot be written as a linear combination of n-term max552

functions. Before we prove Proposition 3.2, we show that it implies Theorem 3.1.553

Proof of Theorem 3.1. For k ≥ 2, let n := 2k. By Proposition 3.2, function f554

defined in (3.1) is not contained in MAX(2k). It remains to show that it can be555

represented using a ReLU NN with k hidden layers. To see this, first observe that556

any of the n/2 = 2k−1 terms max{0, x1}, max{x2i, x2i+1} for i ∈ [n/2 − 2], and557

max{xn−2, xn−1} + max{0, xn} can be expressed by a one-hidden-layer NN since all558

these are (linear combinations of) 2-term max functions. Since f is the maximum of559

these 2k−1 terms, and since the maximum of 2k−1 numbers can be computed with560

k − 1 hidden layers (Lemma 1.2), this implies that f is in ReLU(k).561

In order to prove Proposition 3.2, we need the concept of polyhedral complexes.562

A polyhedral complex P is a finite set of polyhedra such that each face of a polyhedron563

in P is also in P, and for two polyhedra P,Q ∈ P, their intersection P∩Q is a common564

face of P and Q (possibly the empty face). Given a polyhedral complex P in Rn and565

an integer m ∈ [n], we let Pm denote the collection of all m-dimensional polyhedra566

in P.567

For a convex CPWL function f , we define its underlying polyhedral complex as568

follows: it is the unique polyhedral complex covering Rn (i.e., each point in Rn belongs569

to some polyhedron in P) whose n-dimensional polyhedra coincide with the domains570

of the (maximal) affine pieces of f . In particular, f is affinely linear within each571

P ∈ P, but not within any strict superset of a polyhedron in Pn.572

Exploiting properties of polyhedral complexes associated with CPWL functions,573

we prove the following proposition below.574
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Proposition 3.3. Let f0 : Rn → R be a convex CPWL function and let P0 be the575

underlying polyhedral complex. If there exists a hyperplane H ⊆ Rn such that the set576

T :=
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H}577

is nonempty and contains no line, then f0 cannot be expressed as a linear combination578

of n-term maxima of affine linear functions.579

Again, before we proceed to the proof of Proposition 3.3, we show that it implies580

Proposition 3.2.581

Proof of Proposition 3.2. Observe that f (defined in (3.1)) has the alternate rep-582

resentation583

f(x) = max{0, x1, x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}584

as a maximum of n+ 2 terms. Let P be its underlying polyhedral complex. Let the585

hyperplane H be defined by x1 = 0.586

Observe that any facet in Pn−1 is a polyhedron defined by two of the n+ 2 terms587

that are equal and at least as large as each of the remaining n terms. Hence, the only588

facet that could possibly be contained in H is589

F := {x ∈ Rn | x1 = 0 ≥ x2, . . . , xn−3, xn−2, xn−1, xn−2 + xn, xn−1 + xn}.590

Note that F is indeed an (n−1)-dimensional facet in Pn−1, because, for example,591

the full neighborhood of (0,−1, . . . ,−1) ∈ Rn intersected with H is contained in F .592

Finally, we need to show that F is pointed, that is, it contains no line. A593

well-known fact from polyhedral theory says if there is any line in F with direc-594

tion d ∈ Rn \ {0}, then d must satisfy the defining inequalities with equality. However,595

only the zero vector does this. Hence, F cannot contain a line.596

Therefore, when applying Proposition 3.3 to f with underlying polyhedral com-597

plex P and hyperplane H, we have T = F , which is nonempty and contains no line.598

Hence, f cannot be written as linear combination of n-term maxima.599

The remainder of this section is devoted to proving Proposition 3.3. In order600

to exploit properties of the underlying polyhedral complex of the considered CPWL601

functions, we will first introduce some terminology, notation, and results related to602

polyhedral complexes in Rn for any n ≥ 1.603

Definition 3.4. Given an abelian group (G,+), we define Fn(G) as the family604

of all functions φ of type φ : Pn → G, where P is a polyhedral complex that covers Rn.605

We say that P is the underlying polyhedral complex, or the polyhedral complex asso-606

ciated with φ.607

Just to give an intuition of the reason for this definition, let us mention that later608

we will choose (G,+) to be the set of affine linear maps Rn → R with respect to the609

standard operation of sum of functions. Moreover, given a convex CPWL function610

f : Rn → R with underlying polyhedral complex P, we will consider the following611

function φ ∈ Fn(G): for every P ∈ Pn, φ(P ) will be the affine linear map that612

coincides with f over P . It can be helpful, though not necessary, to keep this in mind613

when reading the next definitions and observations.614

It is useful to observe that the functions in Fn(G) can also be described in a615

different way. Before explaining this, we need to define an ordering between the two616

elements of each pair of opposite halfspaces. More precisely, let H be a hyperplane617
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in Rn and let H ′, H ′′ be the two closed halfspaces delimited by H. We choose an ar-618

bitrary rule to say that H ′ “precedes” H ′′, which we write as H ′ ≺ H ′′.1 We can then619

extend this ordering rule to those pairs of n-dimensional polyhedra of a polyhedral620

complex in Rn that share a facet. Specifically, given a polyhedral complex P in Rn,621

let P ′, P ′′ ∈ Pn be such that F := P ′ ∩ P ′′ ∈ Pn−1. Further, let H be the unique622

hyperplane containing F . We say that P ′ ≺ P ′′ if the halfspace delimited by H and623

containing P ′ precedes the halfspace delimited by H and containing P ′′.624

We can now explain the alternate description of the functions in Fn(G), which is625

based on the following notion.626

Definition 3.5. Let φ ∈ Fn(G), with associated polyhedral complex P. The627

facet-function associated with φ is the function ψ : Pn−1 → G defined as follows:628

given F ∈ Pn−1, let P ′, P ′′ be the two polyhedra in Pn such that F = P ′ ∩ P ′′, where629

P ′ ≺ P ′′; then we set ψ(F ) := φ(P ′)− φ(P ′′).630

Although it will not be used, we observe that knowing ψ is sufficient to recon-631

struct φ up to an additive constant. This means that a function φ′ ∈ Fn(G) associated632

with the same polyhedral complex P has the same facet-function ψ if and only if there633

exists g ∈ G such that φ(P ) − φ′(P ) = g for every P ∈ Pn. (However, it is not true634

that every function ψ : Pn−1 → G is the facet-function of some function in Fn(G).)635

We now introduce a sum operation over Fn(G).636

Definition 3.6. Given p functions φ1, . . . , φp ∈ Fn(G), with associated polyhe-637

dral complexes P1, . . . ,Pp, the sum φ := φ1 + · · ·+φp is the function in Fn(G) defined638

as follows:639

• the polyhedral complex associated with φ is640

P := {P1 ∩ · · · ∩ Pp | Pi ∈ Pi for every i};641

• given P ∈ Pn, P can be uniquely obtained as P1 ∩ · · · ∩ Pp, where Pi ∈ Pni642

for every i; we then define643

φ(P ) =

p∑
i=1

φi(Pi).644

The term “sum” is justified by the fact that when P1 = · · · = Pp (and thus645

φ1, . . . , φp have the same domain) we obtain the standard notion of the sum of func-646

tions.647

The next results shows how to compute the facet-function of a sum of functions648

in Fn(G).649

Observation 3.7. With the notation of Definition 3.6, let ψ1, . . . , ψp be the facet-650

functions associated with φ1, . . . , φp, and let ψ be the facet-function associated with φ.651

Given F ∈ Pn−1, let I be the set of indices i ∈ {1, . . . , p} such that Pn−1
i contains a652

(unique) element Fi with F ⊆ Fi. Then653

(3.2) ψ(F ) =
∑
i∈I

ψi(Fi).654

1In case one wants to see such a rule explicitly, this is a possible way: Fix an arbitrary x̄ ∈ H.
We can say that H′ ≺ H′′ if and only if x̄+ ei ∈ H′, where ei is the first vector in the standard basis
of Rd that does not lie on H (i.e., e1, . . . , ei−1 ∈ H and ei /∈ H). Note that this definition does not
depend on the choice of x̄.
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Proof. Let P ′, P ′′ be the two polyhedra in Pn such that F = P ′ ∩ P ′′, with655

P ′ ≺ P ′′. We have P ′ = P ′1 ∩ · · · ∩ P ′p and P ′′ = P ′′1 ∩ · · · ∩ P ′′p for a unique choice of656

P ′i , P
′′
i ∈ Pni for every i. Then657

(3.3) ψ(F ) = φ(P ′)− φ(P ′′) =

p∑
i=1

(φi(P
′
i )− φi(P ′′i )).658

Now fix i ∈ [p]. Since F ⊆ P ′i ∩ P ′′i , dim(P ′i ∩ P ′′i ) ≥ n− 1. If dim(P ′i ∩ P ′′i ) = n− 1,659

then Fi := P ′i ∩ P ′′i ∈ P
n−1
i and φi(P

′
i ) − φi(P

′′
i ) = ψi(Fi). Furthermore, i ∈ I660

because F ⊆ Fi. If, on the contrary, dim(P ′i ∩P ′′i ) = n, the fact that Pi is a polyhedral661

complex implies that P ′i = P ′′i , and thus φi(P
′
i )− φi(P ′′i ) = 0. Moreover, in this case662

i /∈ I: this is because P ′ ∪ P ′′ ⊆ P ′i , which implies that the relative interior of F is663

contained in the relative interior of P ′i . With these observations, from (3.3) we obtain664

(3.2).665

Definition 3.8. Fix φ ∈ Fn(G), with associated polyhedral complex P. Let H666

be a hyperplane in Rn, and let H ′, H ′′ be the closed halfspaces delimited by H. Define667

the polyhedral complex668

P̂ = {P ∩H | P ∈ P} ∪ {P ∩H ′ | P ∈ P} ∪ {P ∩H ′′ | P ∈ P}.669

The refinement of φ with respect to H is the function φ̂ ∈ Fn(G) with associated670

polyhedral complex P̂ defined as follows: given P̂ ∈ P̂n, φ̂(P̂ ) := φ(P ), where P is the671

unique polyhedron in P that contains P̂ .672

The next results shows how to compute the facet-function of a refinement.673

Observation 3.9. With the notation of Definition 3.8, let ψ be the facet-function674

associated with φ. Then, the facet-function ψ̂ associated with φ̂ is given by675

ψ̂(F̂ ) =

{
ψ(F ) if there exists a (unique) F ∈ Pn−1 containing F̂

0 otherwise,
676

for every F̂ ∈ P̂n−1.677

Proof. Let P̂ ′, P̂ ′′ be the polyhedra in P̂n such that F̂ = P̂ ′ ∩ P̂ ′′, with P̂ ′ ≺ P̂ ′′.678

Further, let P ′, P ′′ be the unique polyhedra in Pn that contain P̂ ′, P̂ ′′ (respectively);679

note that P ′ ≺ P ′′.680

If there is F ∈ Pn−1 containing F̂ , then the fact that P is a polyhedral complex681

implies that F = P ′ ∩ P ′′. Thus ψ̂(F̂ ) = φ̂(P̂ ′)− φ̂(P̂ ′′) = φ(P ′)− φ(P ′′) = ψ(F ).682

Assume now that no element of Pn−1 contains F̂ . Then there exists P ∈ Pn such683

that F̂ = P∩H and H intersects the interior of P . Then P̂ ′ = P∩H ′ and P̂ ′′ = P∩H ′′684

(or vice versa). It follows that ψ̂(F̂ ) = φ̂(P̂ ′)− φ̂(P̂ ′′) = φ(P )− φ(P ) = 0.685

We now prove that the operations of sum and refinement commute: the refinement686

of a sum is the sum of the refinements.687

Observation 3.10. Let p functions φ1, . . . , φp ∈ Fn(G), with associated polyhe-688

dral complexes P1, . . . ,Pp, be given. Define φ := φ1 + · · ·+φp. Let H be a hyperplane689

in Rn, and let H ′, H ′′ be the closed halfspaces delimited by H. Then φ̂ = φ̂1 + · · ·+ φ̂p.690

Proof. Define φ̃ := φ̂1 + · · · + φ̂p. It can be verified that φ̂ and φ̃ are defined on691

the same poyhedral complex, which we denote by P̂ . We now fix P̂ ∈ P̂n and show692

that φ̂(P̂ ) = φ̃(P̂ ).693
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Since P̂ ∈ P̂n, we have P̂ = P1 ∩ · · · ∩ Pp ∩H ′, where Pi ∈ Pni for every i. (We694

ignore the case P̂ = P1 ∩ · · · ∩ Pp ∩H ′′, which is identical.) Then695

φ̂(P̂ ) = φ(P1∩· · ·∩Pp) =

p∑
i=1

φi(Pi) =

p∑
i=1

φ̂i(Pi∩H ′) = φ̃(P1∩· · ·∩Pp∩H ′) = φ̃(P ),696

where the first and third equations follow from the definition of refinement, while the697

second and fourth equations follow from the definition of the sum.698

The lineality space of a (nonempty) polyhedron P = {x ∈ Rn | Ax ≤ b} is the null699

space of the constraint matrix A. In other words, it is the set of vectors y ∈ Rn such700

that for every x ∈ P the whole line {x + λy | λ ∈ R} is a subset of P . We say that701

the lineality space of P is trivial, if it contains only the zero vector, and nontrivial702

otherwise.703

Since, given a polyhedral complex P that covers Rn, all the nonempty polyhedra704

in P share the same lineality space L, we will call L the lineality space of P.705

Lemma 3.11. Given an abelian group (G,+), pick φ1, . . . , φp ∈ Fn(G), with as-706

sociated polyhedral complexes P1, . . . ,Pp. Assume that for every i ∈ [p] the lineality707

space of Pi is nontrivial. Define φ := φ1 + · · · + φp, P as the underlying polyhedral708

complex, and ψ as the facet-function of φ. Then for every hyperplane H ⊆ Rn, the709

set710

S :=
⋃{

F ∈ Pn−1 | F ⊆ H, ψ(F ) 6= 0
}

711

is either empty or contains a line.712

Proof. The proof is by induction on n. For n = 1, the assumptions imply that713

all Pi are equal to P, and each of these polyhedral complexes has R as its only714

nonempty face. Since Pn−1 is empty, no hyperplane H such that S 6= ∅ can exist.715

Now fix n ≥ 2. Assume by contradiction that there exists a hyperplane H such716

that S is nonempty and contains no line. Let φ̂ be the refinement of φ with respect717

to H, P̂ be the underlying polyhedral complex, and ψ̂ be the associated facet-function.718

Further, we defineQ := {P∩H | P ∈ P̂}, which is a polyhedral complex that coversH.719

Note that if H is identified with Rn−1 then we can think of Q as a polyhedral complex720

that covers Rn−1, and the restriction of ψ̂ to Qn−1, which we denote by φ′, can be721

seen as a function in Fn−1(G). We will prove that φ′ does not satisfy the lemma,722

contradicting the inductive hypothesis.723

Since φ = φ1 + · · ·+φp, by Observation 3.10 we have φ̂ = φ̂1 + · · ·+ φ̂p. Note that724

for every i ∈ [p] the hyperplane H is covered by the elements of P̂n−1. This implies725

that for every F̂ ∈ P̂n−1 and i ∈ [p] there exists F̂i ∈ P̂n−1
i such that F̂ ⊆ F̂i. Then,726

by Observation 3.7, ψ̂(F̂ ) = ψ̂1(F̂1) + · · ·+ ψ̂p(F̂p).727

Now, additionally suppose that F̂ is contained in H, that is, F̂ ∈ Qn−1. Let i ∈ [p]728

be such that the lineality space of Pi is not parallel to H. Then no element of Pn−1
i729

contains F̂i. By Observation 3.9, ψ̂i(F̂i) = 0. We then conclude that730

ψ̂(F̂ ) =
∑
i∈J

ψ̂i(F̂i) for every F̂ ∈ Qn−1,731

where J is the set of indices i such that the lineality space of Pi is parallel to H. This732

means that733

φ′ =
∑
i∈J

φ′i,734
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where φ′i is the restriction of ψ̂i to Qn−1
i , with Qi := {P ∩ H | P ∈ P̂i}. Note that735

for every i ∈ J the lineality space of Qi is clearly nontrivial, as it coincides with the736

lineality space of Pi.737

Now pick any F̂ ∈ Qn−1. Note that if there exists F ∈ Pn−1 such that F̂ ⊆ F ,738

then F̂ = F . It then follows from Observation 3.9 that739 ⋃{
F̂ ∈ Qn−1

∣∣∣ ψ̂(F̂ ) 6= 0
}

= S.740

In other words,741

(3.4)
⋃{

F ∈ Qn−1
∣∣ φ′(F ) 6= 0

}
= S.742

Since S 6= H (as S contains no line), there exists a polyhedron F ∈ Qn−1743

such that F ⊆ S and F has a facet F0 which does not belong to any other poly-744

hedron in Qn−1 contained in S. Then the facet-function ψ′ associated with φ′ satis-745

fies ψ′(F0) 6= 0. Let H ′ be the (n− 2)-dimensional affine space containing F0. Then746

the set747

S′ :=
⋃{

F ∈ Qn−2
∣∣ F ⊆ H ′, ψ′(F ) 6= 0

}
748

is nonempty, as F0 ⊆ S′. Furthermore, we claim that S′ contains no line. To see why749

this is true, take any F ∈ Qn−2 such that F ⊆ H ′ and ψ′(F ) 6= 0, and let F ′, F ′′ be750

the two polyhedra in Qn−1 having F as facet. Then φ′(F ′) 6= φ′(F ′′), and thus at751

least one of these values (say φ′(F ′)) is nonzero. Then, by (3.4), F ′ ⊆ S, and thus752

also F ⊆ S. This shows that S′ ⊆ S and therefore S′ contains no line.753

We have shown that φ′ does not satisfy the lemma. This contradicts the inductive754

assumption that the lemma holds in dimension n− 1.755

Finally, we can use this lemma to prove Proposition 3.3.756

Proof of Proposition 3.3. Assume for the sake of a contradiction that757

f0(x) =

p∑
i=1

λi max{`i1(x), . . . , `in(x)} for every x ∈ Rn,758

where p ∈ N, λ1, . . . , λp ∈ R and `ij : Rn → R is an affine linear function for ev-759

ery i ∈ [p] and j ∈ [n]. Define fi(x) := λi max{`i1(x), . . . , `in(x)} for every i ∈ [p],760

which is a CPWL function.761

Fix any i ∈ [p] such that λi ≥ 0. Then fi is convex. Note that its epigraph762

Ei := {(x, z) ∈ Rn × R | z ≥ `ij(x) for j ∈ [n]}763

is a polyhedron in Rn+1 defined by n inequalities, and thus has nontrivial lineality764

space. Furthermore, the line orthogonal to the x-space is not contained in Ei. Since765

the underlying polyhedral complex Pi of fi consists of the orthogonal projections of766

the faces of Ei (excluding Ei itself) onto the x-space, this implies that Pi has also767

nontrivial lineality space. (More precisely, the lineality space of Pi is the projection768

of the lineality space of Ei.)769

If λi < 0, then fi is concave. By arguing as above on the convex function −fi,770

one obtains that the underlying polyhedral complex Pi has again nontrivial lineality771

space. Thus this property holds for every i ∈ [p].772

The set of affine linear functions Rn → R forms an abelian group (with respect773

to the standard operation of sum of functions), which we denote by (G,+). For774
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every i ∈ [p]0, let φi be the function in Fn(G) with underlying polyhedral complex Pi775

defined as follows: for every P ∈ Pni , φi(P ) is the affine linear function that coincides776

with fi over P . Define φ := φ1 + · · · + φp and let P be the underlying polyhedral777

complex.778

Note that for every P ∈ Pn, φ(P ) is precisely the affine linear function that779

coincides with f0 within P . However, P may not coincide with P0, as there might780

exist P ′, P ′′ ∈ Pd sharing a facet such that φ(P ′) = φ(P ′′); when this happens, f0781

is affine linear over P ′ ∪ P ′′ and therefore P ′ and P ′′ are merged together in P0.782

Nonetheless, P is a refinement of P0, i.e., for every P ∈ Pn0 there exist P1, . . . , Pk ∈ Pn783

(for some k ≥ 1) such that P = P1∪· · ·∪Pk. Moreover, φ0(P ) = φ(P1) = · · · = φ(Pk).784

Denoting by ψ the facet-function associated with φ, this implies for a facet F ∈ Pn−1785

that ψ(F ) = 0 if and only if F is not subset of any facet F ′ ∈ Pn−1
0 .786

Let H be a hyperplane as in the statement of the proposition. The above discus-787

sion shows that788

T =
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H} =
⋃{

F ∈ Pn−1
∣∣ F ⊆ H, ψ(F ) 6= 0

}
.789

Using S := T , we obtain a contradiction to Lemma 3.11.790

4. A Width Bound for Neural Networks with Small Depth. While the791

proof of Theorem 1.1 by Arora et al. [5] shows that792

CPWLn = ReLUn(dlog2(n+ 1)e),793

it does not provide any bound on the width of the NN required to represent any794

particular CPWL function. The purpose of this section is to prove that for fixed795

dimension n, the required width for exact, depth-minimal representation of a CPWL796

function can be polynomially bounded in the number p of affine pieces; specifically797

by pO(n2). This is closely related to works that bound the number of linear pieces of798

an NN as a function of the size [44, 45, 49, 51]. It can also be seen as a counterpart,799

in the context of exact representations, to quantitative universal approximation theo-800

rems that bound the number of neurons required to achieve a certain approximation801

guarantee; see, e.g., [7, 8, 42,43,50].802

4.1. The Convex Case. We first derive our result for the case of convex CPWL803

functions and then use this to also prove the general nonconvex case. Our width bound804

is a consequence of the following theorem about convex CPWL functions, for which805

we are going to provide a geometric proof later.806

Theorem 4.1. Let f(x) = max{aTi x + bi | i ∈ [p]} be a convex CPWL function807

defined on Rn. Then f can be written as808

f(x) =
∑
S⊆[p],
|S|≤n+1

cS max{aTi x+ bi | i ∈ S}809

with coefficients cS ∈ Z, for S ⊆ [p], |S| ≤ n+ 1.810

For the convex case, this yields a stronger version of Theorem 1.3, stating that811

any (not necessarily convex) CPWL function can be written as a linear combination812

of (n+ 1)-term maxima. Theorem 4.1 is stronger in the sense that it guarantees that813

all pieces of the (n+ 1)-term maxima must be pieces of the original function, making814

it possible to bound the total number of these (n + 1)-term maxima and, therefore,815

the size of an NN representing f .816

This manuscript is for review purposes only.



TOWARDS DEPTH LOWER BOUNDS OF RELU NETWORKS 21

Theorem 4.2. Let f : Rn → R be a convex CPWL function with p affine pieces.817

Then f can be represented by a ReLU NN with depth dlog2(n + 1)e + 1 and width818

O(pn+1).819

Proof. Using the representation of Theorem 4.1, we can construct an NN comput-820

ing f by computing all the (n+1)-term max functions in parallel with the construction821

of Lemma 1.2 (similar to the proof by Arora et al. [5] to show Theorem 1.1). This822

results in an NN with the claimed depth. Moreover, the width is in the order of the823

number of these (n+ 1)-term max functions. This number can be bounded in terms824

of the number of possible subsets S ⊆ [p] with |S| ≤ n+ 1, which is at most pn+1.825

Before we present the proof of Theorem 4.1, we show how we can generalize its826

consequences to the nonconvex case.827

4.2. The General (Nonconvex) Case. It is a well-known fact that every828

CPWL function can be expressed as a difference of two convex CPWL functions, see,829

e.g., [63, Theorem 1]. This allows us to derive the general case from the convex case.830

What we need, however, is to bound the number of affine pieces of the two convex831

CPWL functions in terms of the number of pieces of the original function. Therefore,832

we consider a specific decomposition for which such bounds can easily be achieved.833

Proposition 4.3. Let f : Rn → R be a CPWL function with p affine pieces.834

Then, one can write f as f = g − h where both g and h are convex CPWL functions835

with at most p2n+1 pieces.836

Proof. Suppose the p affine pieces of f are given by x 7→ aTi x+ bi, i ∈ [p]. Define837

the function h(x) :=
∑

1≤i<j≤p max{aTi x + bi, a
T
j x + bj} and let g := f + h. Then,838

obviously, f = g − h. It remains to show that both g and h are convex CPWL839

functions with at most p2n+1 pieces.840

The convexity of h is clear by definition. Consider the
(
p
2

)
= p(p−1)

2 < p2 hy-841

perplanes given by aTi x + bi = aTj x + bj , 1 ≤ i < j ≤ p. They divide Rn into at842

most
(
p2

n

)
+
(
p2

n−1

)
+ · · ·+

(
p2

0

)
≤ p2n regions (compare [15, Theorem 1.3]) in each of843

which h is affine. In particular, h has at most p2n ≤ p2n+1 pieces.844

Next, we show that g = f + h is convex. Intuitively, this holds because each845

possible breaking hyperplane of f is made convex by adding h. To make this formal,846

note that by the definition of convexity, it suffices to show that g is convex along each847

affine line. For this purpose, consider an arbitrary line x(t) = ta+ b, t ∈ R, given by848

a ∈ Rn and b ∈ R. Let f̃(t) := f(x(t)), g̃(t) := g(x(t)), and h̃(t) := h(x(t)). We need849

to show that g̃ : R → R is a convex function. Observe that f̃ , g̃, and h̃ are clearly850

one-dimensional CPWL functions with the property g̃ = f̃ + h̃. Hence, it suffices851

to show that g̃ is locally convex around each of its breakpoints. Let t ∈ R be an852

arbitrary breakpoint of g̃. If f̃ is already locally convex around t, then the same holds853

for g̃ as well since h̃ inherits convexity from h. Now suppose that t is a nonconvex854

breakpoint of f̃ . Then there exist two distinct pieces of f , indexed by i, j ∈ [p] with855

i 6= j, such that f̃(t′) = min{aTi x(t′) + bi, a
T
j x(t′) + bj} for all t′ sufficiently close to t.856

By construction, h̃(t′) contains the summand max{aTi x(t′) + bi, a
T
j x(t′) + bj}. Thus,857

adding this summand to f̃ linearizes the nonconvex breakpoint of f̃ , while adding all858

the other summands preserves convexity. In total, g̃ is locally convex around t, which859

finishes the proof that g is a convex function.860

Finally, observe that pieces of g = f + h are always intersections of pieces of f861

and h, for which we have only p · p2n = p2n+1 possibilities.862

Having this, we may conclude the following.863
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Theorem 4.4. Let f : Rn → R be a CPWL function with p affine pieces. Then f864

can be represented by a ReLU NN with depth dlog2(n+1)e+1 and width O(p2n2+3n+1).865

Proof. Consider the decomposition f = g − h from Proposition 4.3. Using The-866

orem 4.2, we obtain that both g and h can be represented with the required depth867

dlog2(n + 1)e + 1 and with width O((p2n+1)n+1) = O(p2n2+3n+1). Thus, the same868

holds true for f .869

4.3. Extended Newton Polyhedra of Convex CPWL Functions. For our870

proof of Theorem 4.1, we use a correspondence of convex CPWL functions with cer-871

tain polyhedra, which are known as (extended) Newton polyhedra in tropical ge-872

ometry [39]. These relations between tropical geometry and neural networks have873

previously been applied to investigate expressivity of NNs; compare our references in874

Subsection 1.5.875

In order to formalize this correspondence, let CCPWLn ⊆ CPWLn be the set of876

convex CPWL functions of type Rn → R. For f(x) = max{aTi x + bi | i ∈ [p]} in877

CCPWLn, we define its so-called extended Newton polyhedron to be878

N (f) := conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}) ⊆ Rn+1.879

We denote the set of all possible extended Newton polyhedra in Rn+1 as Newtn. That880

is, Newtn is the set of (unbounded) polyhedra in Rn+1 that emerge from a polytope881

by adding the negative of the (n+ 1)-st unit vector −en+1 as an extreme ray. Hence,882

a set P ⊆ Rn+1 is an element of Newtn if and only if P can be written as883

P = conv({(ai, bi) ∈ Rn × R | i ∈ [p]}) + cone({−en+1}).884

Conversely, for a polyhedron P ∈ Newtn of this form, let F(P ) ∈ CCPWLn be the885

function defined by F(P )(x) = max{aTi x+ bi | i ∈ [p]}.886

There is an intuitive way of thinking about the extended Newton polyhedron P887

of a convex CPWL function f : it consists of all hyperplane coefficients (a, b) ∈ Rn×R888

such that aTx+ b ≤ f(x) for all x ∈ Rn. This also explains why we add the extreme889

ray −en+1: decreasing b obviously maintains the property of aTx + b being a lower890

bound on the function f .891

In fact, there is a one-to-one correspondence between elements of CCPWLn and892

Newtn, which is nicely compatible with some (functional and polyhedral) operations.893

This correspondence has been studied before in tropical geometry [33, 39], convex894

geometry2 [31], as well as neural network literature [1, 12, 44, 66]. We summarize895

the key findings about this correspondence relevant to our work in the following896

proposition:897

Proposition 4.5. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that898

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-899

defined, that is, their output is independent from the representation of the input900

by pieces or vertices, respectively,901

(ii) N and F are bijections and inverse to each other,902

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),903

(iv) N (f1 + f2) = N (f1) +N (f2), where the + on the right-hand side is Minkowski904

addition.905

An algebraic way of phrasing this proposition is as follows: N and F are isomorphisms906

between the semirings (CCPWLn,max,+) and (Newtn, conv,+).907

2N (f) is the negative of the epigraph of the convex conjugate of f .
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4.4. Proof of Theorem 4.1. The rough idea to prove Theorem 4.1 is as follows.908

Suppose we have a p-term max function f with p ≥ n + 2. By Proposition 4.5, f909

corresponds to a polyhedron P ∈ Newtn with at least n + 2 vertices. Applying a910

classical result from discrete geometry known as Radon’s theorem allows us to carefully911

decompose P into a “signed”3 Minkowski sum of polyhedra in Newtn whose vertices912

are subsets of at most p− 1 out of the p vertices of P . Translating this back into the913

world of CPWL functions by Proposition 4.5 yields that f can be written as linear914

combination of p′-term maxima with p′ < p, where each of them involves a subset915

of the p affine terms of f . We can then obtain Theorem 4.1 by iterating until every916

occurring maximum expression involves at most n+ 1 terms.917

We start with a proposition that will be useful for our proof of Theorem 4.1.918

Although its statement is well-known in the discrete geometry community, we include919

a proof for the sake of completeness. To show the proposition, we make use of Radon’s920

theorem (compare [15, Theorem 4.1]), stating that any set of at least n+2 points in Rn921

can be partitioned into two nonempty subsets such that their convex hulls intersect.922

Proposition 4.6. Given p > n+ 1 vectors (ai, bi) ∈ Rn ×R, i ∈ [p], there exists923

a nonempty subset U ( [p] featuring the following property: there is no c ∈ Rn+1924

with cn+1 ≥ 0 and γ ∈ R such that925

cT (ai, bi) > γ for all i ∈ U , and

cT (ai, bi) ≤ γ for all i ∈ [p] \ U .
(4.1)926

927

Proof. Radon’s theorem applied to the at least n + 2 vectors ai, i ∈ [p], yields a928

nonempty subset U ( [p] and coefficients λi ∈ [0, 1] with
∑
i∈U λi =

∑
i∈[p]\U λi = 1929

such that
∑
i∈U λiai =

∑
i∈[p]\U λiai. Suppose that

∑
i∈U λibi ≤

∑
i∈[p]\U λibi with-930

out loss of generality (otherwise exchange the roles of U and [p] \ U).931

For any c and γ that satisfy (4.1) and cn+1 ≥ 0 it follows that932

γ < cT
∑
i∈U

λi(ai, bi) ≤ cT
∑

i∈[p]\U

λi(ai, bi) ≤ γ,933

proving that no such c and γ can exist.934

The following proposition is a crucial step in order to show that any convex CPWL935

function with p > n + 1 pieces can be expressed as an integer linear combination of936

convex CPWL functions with at most p− 1 pieces.937

Proposition 4.7. Let f(x) = max{aTi x+bi | i ∈ [p]} be a convex CPWL function938

defined on Rn with p > n+ 1. Then there exist a subset U ⊆ [p] such that939

(4.2)
∑
W⊆U,
|W | even

max{aTi x+ bi | i ∈ [p] \W} =
∑
W⊆U,
|W | odd

max{aTi x+ bi | i ∈ [p] \W}940

Proof. Consider the p > n+1 vectors (ai, bi) ∈ Rn+1, i ∈ [p]. Choose U according941

to Proposition 4.6. We show that this choice of U guarantees equation (4.2).942

For W ⊆ U , let fW (x) = max{aTi x + bi | i ∈ [p] \W} and consider its extended943

Newton polyhedron PW = N (fW ) = conv({(ai, bi) | i ∈ [p] \W}) + cone({−en+1}).944

3Some polyhedra may occur with “negative” coefficents in that sum, meaning that they are
actually added to P instead of the other polyhedra. The corresponding CPWL functions will then
have negative coefficients in the linear combination representing f .
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By Proposition 4.5, equation (4.2) is equivalent to945

Peven :=
∑
W⊆U,
|W | even

PW =
∑
W⊆U,
|W | odd

PW =: Podd,946

where the sums are Minkowski sums.947

We show this equation by showing that for all cost vectors c ∈ Rn+1 it holds that948

(4.3) max{cTx | x ∈ Peven} = max{cTx | x ∈ Podd}.949

Let c ∈ Rn+1 be an arbitrary cost vector. If cn+1 < 0, both sides of (4.3) are950

infinite. Hence, from now on, assume that cn+1 ≥ 0. Then, both sides of (4.3) are951

finite since −en+1 is the only extreme ray of all involved polyhedra.952

Due to our choice of U according to Proposition 4.6, there exists an index u ∈ U953

such that954

(4.4) cT (au, bu) ≤ max
i∈[p]\U

cT (ai, bi).955

We define a bijection ϕu between the even and the odd subsets of U as follows:956

ϕu(W ) :=

{
W ∪ {u}, if u /∈W,
W \ {u}, if u ∈W.957

That is, ϕu changes the parity of W by adding or removing u. Considering the958

corresponding polyhedra PW and Pϕu(W ), this means that ϕu adds or removes the959

extreme point (au, bu) to or from PW . Due to (4.4) this does not change the optimal960

value of maximizing in c-direction over the polyhedra, that is,961

max{cTx | x ∈ PW } = max{cTx | x ∈ Pϕu(W )}.962

Hence, we may conclude963

max{cTx | x ∈ Peven} =
∑
W⊆U,
|W | even

max{cTx | x ∈ PW }964

=
∑
W⊆U,
|W | even

max{cTx | x ∈ Pϕu(W )}965

=
∑
W⊆U,
|W | odd

max{cTx | x ∈ PW }966

= max{cTx | x ∈ Podd},967968

which proves (4.3). Thus, the claim follows.969

With the help of this result, we can now prove Theorem 4.1.970

Proof of Theorem 4.1. Let f(x) = max{aTi x + bi | i ∈ [p]} be a convex CPWL971

function defined on Rn. Having a closer look at the statement of Proposition 4.7,972

observe that only one term at the left-hand side of (4.2) contains all p affine combina-973

tions aTi x+ bi. Putting all other maximum terms on the other side, we may write f974

as an integer linear combination of maxima of at most p − 1 summands. Repeating975

this procedure until we have eliminated all maximum terms with more than n + 1976

summands yields the desired representation.977
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4.5. Potential Approaches to Show Lower Bounds on the Width. In978

light of the upper width bounds shown in this section, a natural question to ask is979

whether also meaningful lower bounds can be achieved. This would mean constructing980

a family of CPWL functions with p pieces defined on Rn (with different values of p981

and n), for which we can prove that a large width is required to represent these982

functions with NNs of depth dlog2(n+ 1)e+ 1.983

A trivial and not very satisfying answer follows, e.g., from [51] or [57]: for fixed984

input dimension n, they show that a function computed by an NN with k hidden985

layers and width w has at most O(wkn) pieces. For our setting, this means that an986

NN with logarithmic depth needs a width of at least O(p1/(n logn)) to represent a987

function with p pieces. This is, of course, very far away from our upper bounds.988

Similar upper bounds on the number of pieces have been proven by many other989

authors and are often used to show depth-width trade-offs [5,44,45,49,60]. However,990

there is a good reason why all these results only give rise to very trivial lower bounds991

for our setting: the focus is always on functions with considerably many pieces, which992

then, consequently, need many neurons to be represented (with small depth). How-993

ever, since the lower bounds we strive for depend on the number of pieces, we would994

need to construct a family of functions with comparably few pieces that still need a995

lot of neurons to be represented. In general, it seems to be a tough task to argue why996

such functions should exist.997

A different approach could leverage methods from complexity theory, in particular998

from circuit complexity. Neural networks are basically arithmetic circuits with very999

special operations allowed. In fact, they can be seen as a tropical variant of arithmetic1000

circuits. Showing circuit lower bounds is a notoriously difficult task in complexity1001

theory, but maybe some conditional result (based on common conjectures similar to1002

P 6= NP) could be established.1003

We think that the question whether our bounds are tight, or whether at least1004

some non-trivial lower bounds on the width for NNs with logarithmic depth can be1005

shown, is an exciting question for further research.1006

5. Understanding Expressivity via Newton Polytopes. In Section 2, we1007

presented a mixed-integer programming approach towards proving that deep NNs can1008

strictly represent more functions than shallow ones. However, even if we could prove1009

Assumption 2.4, this approach would not generalize to deeper networks due to com-1010

putational limitations. Therefore, different ideas are needed to prove Conjecture 1.41011

in its full generality. In this section, we point out that Newton polytopes of convex1012

CPWL functions (similar to what we used in the previous section) could also be a1013

way of proving Conjecture 1.4. Using a homogenized version of Proposition 4.5, we1014

provide an equivalent formulation of Conjecture 1.4 that is completely phrased in the1015

language of discrete geometry.1016

Recall that, by Proposition 2.3, we may restrict ourselves to NNs without bi-1017

ases. In particular, all CPWL functions represented by such NNs, or parts of it, are1018

positively homogeneous. For the associated extended Newton polyhedra (compare1019

Proposition 4.5), this has the following consequence: all vertices (a, b) ∈ Rn × R lie1020

in the hyperplane b = 0, that is, their (n + 1)-st coordinate is 0. Therefore, the1021

extended Newton polyhedron of a positively homogeneous, convex CPWL function1022

f(x) = max{aTi x | i ∈ [p]} is completely characterized by the so-called Newton poly-1023

tope, that is, the bounded polytope conv({ai | i ∈ [p]}) ⊆ Rn.1024

To make this formal, let CCPWLn be the set of all positively homogeneous, convex1025

CPWL functions of type Rn → R and let Newtn be the set of all bounded, convex1026
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polytopes in Rn. Moreover, for f(x) = max{aTi x | i ∈ [p]} in CCPWLn, let1027

N (f) := conv({ai | i ∈ [p]}) ∈ Newtn1028

be the associated Newton polytope of f and for P = conv({ai | i ∈ [p]}) ∈ Newtn let1029

F(P )(x) = max{aTi x | i ∈ [p]}1030

be the so-called associated support function [30] of P in CCPWLn. With this notation,1031

we obtain the following variant of Proposition 4.5.1032

Proposition 5.1. Let n ∈ N and f1, f2 ∈ CCPWLn. Then it holds that1033

(i) the functions N : CCPWLn → Newtn and F : Newtn → CCPWLn are well-1034

defined, that is, their output is independent from the representation of the input1035

by pieces or vertices, respectively,1036

(ii) N and F are bijections and inverse to each other,1037

(iii) N (max{f1, f2}) = conv(N (f1),N (f2)) := conv(N (f1) ∪N (f2)),1038

(iv) N (f1 + f2) = N (f1) +N (f2), where the + on the right-hand side is Minkowski1039

addition.1040

In other words, N and F are isomorphisms between the semirings (CCPWLn,max,+)1041

and (Newtn, conv,+).1042

Next, we study which polytopes can appear as Newton polytopes of convex CPWL1043

functions computed by NNs with a certain depth; compare Zhang et al. [66].1044

Before we apply the first ReLU activation, any function computed by an NN is1045

linear. Thus, the corresponding Newton polytope is a single point. Starting from1046

that, let us investigate a neuron in the first hidden layer. Here, the ReLU activation1047

function computes a maximum of a linear function and 0. Therefore, the Newton1048

polytope of the resulting function is the convex hull of two points, that is, a line1049

segment. After the first hidden layer, arbitrary many functions of this type can be1050

added up. For the corresponding Newton polytopes, this means that we take the1051

Minkowski sum of line segments, resulting in a so-called zonotope.1052

Now, this construction can be repeated layerwise, making use of Proposition 5.1:1053

in each hidden layer, we can compute the maximum of two functions computed by1054

the previous layers, which translates to obtaining the new Newton polytope as a1055

convex hull of the union of the two original Newton polytopes. In addition, the1056

linear combinations between layers translate to scaling and taking Minkowski sums1057

of Newton polytopes.1058

This intuition motivates the following definition. Let Newt
(0)
n be the set of all1059

polytopes in Rn that consist only of a single point. Then, for each k ≥ 1, we recursively1060

define1061

Newt(k)
n :=

{
p∑
i=1

conv(Pi, Qi)

∣∣∣∣∣ Pi, Qi ∈ Newt(k−1)
n , p ∈ N

}
,1062

1063

where the sum is a Minkowski sum of polytopes. A first, but not precisely accurate1064

interpretation is as follows: the set Newt
(k)
n contains the Newton polytopes of posi-1065

tively homogeneous, convex CPWL functions representable with a k-hidden-layer NN.1066

See Figure 5 for an illustration of the case k = 2.1067

Unfortunately, this interpretation is not accurate for the following reason: our1068

NNs are allowed to have negative weights, which cannot be fully captured by Min-1069

kowski sums as introduced above. Therefore, it might be possible that a k-hidden-layer1070
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Newt
(0)
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(1)
n

zonotopes

conv(two zonotopes)

Newt
(2)
n

Fig. 5. Set of polytopes that can arise as Newton polytopes of convex CPWL functions computed
by (parts of) a 2-hidden-layer NN.

NN can compute a convex function with Newton polytope not in Newt
(k)
n . Luckily, one1071

can remedy this shortcoming, and even extend the interpretation to the non-convex1072

case, by representing the computed function as difference of two convex functions.1073

Theorem 5.2. Any positively homogeneous (not necessarily convex) CPWL func-1074

tion can be computed by a k-hidden-layer NN if and only if it can be written as the1075

difference of two positively homogeneous, convex CPWL functions with Newton poly-1076

topes in Newt
(k)
n .1077

Proof. We use induction on k. For k = 0, the statement is clear since it holds1078

precisely for linear functions. For the induction step, suppose that, for some k ≥ 1,1079

the equivalence is valid up to k− 1 hidden layers. We prove that it is also valid for k1080

hidden layers.1081

We need to show two directions. For the first direction, assume that f is an1082

arbitrary, positively homogeneous CPWL function that can be written as f = g − h1083

with N (g),N (h) ∈ Newt
(k)
n . We need to show that a k-hidden-layer NN can com-1084

pute f . We show that this is even true for g and h, and hence, also for f . By1085

definition of Newt
(k)
n , there exist a finite number p ∈ N and polytopes Pi, Qi ∈1086

Newt
(k−1)
n , i ∈ [p], such that N (g) =

∑p
i=1 conv(Pi, Qi). By Proposition 5.1, we1087

have g =
∑p
i=1 max{F(Pi),F(Qi)}. By induction, F(Pi) and F(Qi) can be com-1088

puted by NNs with k − 1 hidden layers. Since the maximum terms can be computed1089

with a single hidden layer, in total a k-th hidden layer is sufficient to compute g.1090

An analogous argument applies to h. Thus, f is computable with k hidden layers,1091

completing the first direction.1092

For the other direction, suppose that f is an arbitrary, positively homogeneous1093

CPWL function that can be computed by a k-hidden-layer NN. Let us separately1094

consider the nk neurons in the k-th hidden layer of the NN. Let ai, i ∈ [nk], be the1095

weight of the connection from the i-th neuron in that layer to the output. Without1096

loss of generality, we have ai ∈ {±1}, because otherwise we can normalize it and1097

multiply the weights of the incoming connections to the i-th neuron with |ai| instead.1098

Moreover, let us assume that, by potential reordering, there is some m ≤ nk such that1099

ai = 1 for i ≤ m and ai = −1 for i > m. With these assumptions, we can write1100

(5.1) f =

m∑
i=1

max{0, fi} −
nk∑

i=m+1

max{0, fi},1101
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where each fi is computable by a (k − 1)-hidden-layer NN, namely the sub-NN com-1102

puting the input to the i-th neuron in the k-th hidden layer.1103

By induction, we obtain fi = gi − hi for some positively homogeneous, convex1104

functions gi, hi with N (gi),N (hi) ∈ Newt
(k−1)
n . We then have1105

(5.2) max{0, fi} = max{gi, hi} − hi1106

We define1107

g :=

m∑
i=1

max{gi, hi}+

nk∑
i=m+1

hi1108

and1109

h :=

m∑
i=1

hi +

nk∑
i=m+1

max{gi, hi}.1110

Note that g and h are convex by construction as a sum of convex functions and1111

that (5.1) and (5.2) imply f = g − h. Moreover, by Proposition 5.1,1112

N (g) =

m∑
i=1

conv(N (gi),N (hi)) +

nk∑
i=m+1

conv(N (hi),N (hi)) ∈ Newt(k)
n1113

and1114

N (h) =

m∑
i=1

conv(N (hi),N (hi)) +

nk∑
i=m+1

conv(N (gi),N (hi)) ∈ Newt(k)
n .1115

Hence, f can be represented as desired, completing also the other direction.1116

The power of Theorem 5.2 lies in the fact that it provides a purely geometric1117

characterization of the class ReLU(k). The classes of polytopes Newt
(k)
n are solely1118

defined by the two simple geometric operations Minkowski sum and convex hull of1119

the union. Therefore, understanding the class ReLU(k) is equivalent to understanding1120

what polytopes one can generate by iterative application of these geometric opera-1121

tions.1122

In particular, we can give yet another equivalent reformulation of our main conjec-1123

ture. To this end, let the simplex ∆n := conv{0, e1, . . . , en} ⊆ Rn denote the Newton1124

polytope of the function fn = max{0, x1, . . . , xn} for each n ∈ N.1125

Conjecture 5.3. For every k ∈ N, n = 2k, there does not exist a pair polytopes1126

P,Q ∈ Newt
(k)
n with ∆n +Q = P (Minkowski sum).1127

Theorem 5.4. Conjecture 5.3 is equivalent to Conjecture 1.4 and Conjecture 1.5.1128

Proof. By Proposition 1.6, it suffices to show equivalence between Conjecture 5.31129

and Conjecture 1.5. By Theorem 5.2, fn can be represented with k hidden layers if1130

and only if there are functions g and h with Newton polytopes in Newt
(k)
n satisfying1131

fn + h = g. By Proposition 5.1, this happens if and only if there are polytopes1132

P,Q ∈ Newt
(k)
n with ∆n +Q = P .1133

It is particularly interesting to look at special cases with small k. For k = 1,1134

the set Newt
(1)
n is the set of all zonotopes. Hence, the (known) statement that1135

max{0, x1, x2} cannot be computed with one hidden layer [46] is equivalent to the1136

fact that the Minkowski sum of a zonotope and a triangle can never be a zonotope.1137
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The first open case is the case k = 2. An unconditional proof that two hidden1138

layers do not suffice to compute the maximum of five numbers is highly desired. In the1139

regime of Newton polytopes, this means to understand the class Newt
(2)
n . It consists1140

of finite Minkowski sums of polytopes that arise as the convex hull of the union of two1141

zonotopes. Hence, the major open question here is to classify this set of polytopes.1142

Finally, let us remark that there exists a generalization of the concept of polytopes,1143

known as virtual polytopes [48], that makes it possible to assign a Newton polytope1144

also to non-convex CPWL functions. This makes use of the fact that every (non-1145

convex) CPWL function is a difference of two convex ones. Consequently, a virtual1146

polytope is a formal Minkowski difference of two ordinary polytopes. Using this1147

concept, Theorem 5.2 and Conjecture 5.3 can be phrased in a simpler way, replacing1148

the pair of polytopes with a single virtual polytope.1149

6. Future Research. The most obvious and, at the same time, most exciting1150

open research question is to prove or disprove Conjecture 1.4, or equivalently Con-1151

jecture 1.5 or Conjecture 5.3. The first step could be to prove Assumption 2.4. The1152

assumption is intuitive because every breakpoint introduced at any place outside the1153

hyperplanes Hij needs to be canceled out later. Therefore, it is natural to assume1154

that these breakpoints do not have to be introduced in the first place. However, this1155

intuition does not seem to be enough for a formal proof because it could occur that1156

additional breakpoints in intermediate steps, which are canceled out later, also influ-1157

ence the behavior of the function at other places where we allow breakpoints in the1158

end.1159

Another step towards resolving our conjecture may be to find an alternative proof1160

of Theorem 2.5, not using Assumption 2.4. This might also be beneficial for general-1161

izing our techniques to more hidden layers, since, while theoretically possible, a direct1162

generalization of the MIP approach is infeasible due to computational limitations. For1163

example, it might be particularly promising to use a tropical approach as described1164

in Section 5 and apply methods from polytope theory to prove Conjecture 5.3.1165

In light of our results from Section 3, it would be desirable to provide a complete1166

characterization of the functions contained in ReLU(k). Another potential research1167

goal is improving our upper bounds on the width from Section 4 and/or proving1168

matching lower bounds as discussed in Subsection 4.5.1169

Some more interesting research directions are the following:1170

• establishing or strengthening our results for special classes of NNs like recur-1171

rent neural networks (RNNs) or convolutional neural networks (CNNs),1172

• using exact representation results to show more drastic depth-width trade-offs1173

compared to existing results in the literature,1174

• understanding how the class ReLU(k) changes when a polynomial upper1175

bound is imposed on the width of the NN; see related work by Vardi et1176

al. [62].1177

REFERENCES1178

[1] M. Alfarra, A. Bibi, H. Hammoud, M. Gaafar, and B. Ghanem, On the decision boundaries1179
of deep neural networks: A tropical geometry perspective, arXiv preprint arXiv:2002.08838,1180
(2020).1181

[2] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, A machine learning-based approximation1182
of strong branching, INFORMS Journal on Computing, 29 (2017), pp. 185–195.1183

[3] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P. Vielma, Strong mixed-1184
integer programming formulations for trained neural networks, Mathematical Program-1185

This manuscript is for review purposes only.



30 C. HERTRICH, A. BASU, M. DI SUMMA, M. SKUTELLA

ming, (2020), pp. 1–37.1186
[4] M. Anthony and P. L. Bartlett, Neural network learning: Theoretical foundations, Cam-1187

bridge University Press, 1999.1188
[5] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Understanding deep neural networks1189

with rectified linear units, in International Conference on Learning Representations, 2018.1190
[6] R. Bagnara, P. M. Hill, and E. Zaffanella, The Parma Polyhedra Library: Toward a1191

complete set of numerical abstractions for the analysis and verification of hardware and1192
software systems, Science of Computer Programming, 72 (2008), pp. 3–21.1193

[7] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function,1194
IEEE Transactions on Information theory, 39 (1993), pp. 930–945.1195

[8] A. R. Barron, Approximation and estimation bounds for artificial neural networks, Machine1196
learning, 14 (1994), pp. 115–133.1197

[9] Y. Bengio, A. Lodi, and A. Prouvost, Machine learning for combinatorial optimization: a1198
methodological tour d’horizon, European Journal of Operational Research, (2020).1199

[10] P. Bonami, A. Lodi, and G. Zarpellon, Learning a classification of mixed-integer quadratic1200
programming problems, in International Conference on the Integration of Constraint Pro-1201
gramming, Artificial Intelligence, and Operations Research, Springer, 2018, pp. 595–604.1202

[11] D. Boob, S. S. Dey, and G. Lan, Complexity of training relu neural network, Discrete Opti-1203
mization, (2020), p. 100620.1204

[12] V. Charisopoulos and P. Maragos, A tropical approach to neural networks with piecewise1205
linear activations, arXiv preprint arXiv:1805.08749, (2018).1206

[13] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of control,1207
signals and systems, 2 (1989), pp. 303–314.1208

[14] S. S. Dey, G. Wang, and Y. Xie, Approximation algorithms for training one-node relu neural1209
networks, IEEE Transactions on Signal Processing, 68 (2020), pp. 6696–6706.1210

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Science & Business Me-1211
dia, 1987.1212

[16] R. Eldan and O. Shamir, The power of depth for feedforward neural networks, in Conference1213
on Learning Theory, 2016, pp. 907–940.1214

[17] M. Fischetti and J. Jo, Deep neural networks as 0-1 mixed integer linear programs: A1215
feasibility study, arXiv preprint arXiv:1712.06174, (2017).1216

[18] V. Froese, C. Hertrich, and R. Niedermeier, The computational complexity of ReLU1217
network training parameterized by data dimensionality, arXiv preprint arXiv:2105.08675,1218
(2021).1219

[19] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, Exact combinatorial op-1220
timization with graph convolutional neural networks, arXiv preprint arXiv:1906.01629,1221
(2019).1222

[20] S. Goel, V. Kanade, A. Klivans, and J. Thaler, Reliably learning the relu in polynomial1223
time, in Conference on Learning Theory, PMLR, 2017, pp. 1004–1042.1224

[21] S. Goel, A. Klivans, and R. Meka, Learning one convolutional layer with overlapping1225
patches, in International Conference on Machine Learning, PMLR, 2018, pp. 1783–1791.1226

[22] S. Goel and A. R. Klivans, Learning neural networks with two nonlinear layers in polynomial1227
time, in Conference on Learning Theory, PMLR, 2019, pp. 1470–1499.1228

[23] S. Goel, A. R. Klivans, P. Manurangsi, and D. Reichman, Tight hardness results for train-1229
ing depth-2 ReLU networks, in 12th Innovations in Theoretical Computer Science Confer-1230
ence (ITCS ’21), vol. 185 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,1231
2021, pp. 22:1–22:14.1232

[24] R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender, Approximation spaces of1233
deep neural networks, Constructive Approximation, (2021), pp. 1–109.1234

[25] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2021, http://www.gurobi.1235
com.1236

[26] B. Hanin, Universal function approximation by deep neural nets with bounded width and ReLU1237
activations, Mathematics, 7 (2019), p. 992.1238

[27] B. Hanin and M. Sellke, Approximating continuous functions by ReLU nets of minimal1239
width, arXiv:1710.11278, (2017).1240

[28] H. He, H. Daume III, and J. M. Eisner, Learning to search in branch and bound algorithms,1241
Advances in neural information processing systems, 27 (2014), pp. 3293–3301.1242

[29] C. Hertrich, A. Basu, M. Di Summa, and M. Skutella, Towards lower bounds on the1243
depth of ReLU neural networks, in Advances in Neural Information Processing Systems1244
(NeurIPS), 2021.1245
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