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TOWARDS LOWER BOUNDS ON THE DEPTH
OF RELU NEURAL NETWORKS*

CHRISTOPH HERTRICH', AMITABH BASUf, MARCO DI SUMMAS$, AND MARTIN
SKUTELLAY

Abstract. We contribute to a better understanding of the class of functions that is repre-
sented by a neural network with ReLU activations and a given architecture. Using techniques from
mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical
counterbalance to the universal approximation theorems which suggest that a single hidden layer is
sufficient for learning tasks. In particular, we investigate whether the class of ezactly representable
functions strictly increases by adding more layers (with no restrictions on size). We also present up-
per bounds on the sizes of neural networks required to represent functions in these neural hypothesis
classes.

Key words. ReLU Neural Networks, Expressivity, Depth Bounds, Polyhedral Methods, Mixed-
Integer Optimization
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1. Introduction. A core problem in machine learning and statistics is the esti-
mation of an unknown data distribution with access to independent and identically
distributed samples from the distribution. It is well-known that there is a tension
between how much prior information one has about the data distribution and how
many samples one needs to solve the problem with high confidence (or equivalently,
how much variance one has in one’s estimate). This is referred to as the bias-variance
trade-off or the bias-complezity trade-off. Neural networks provide a way to turn this
bias-complexity knob in a controlled manner that has been studied for decades going
back to the idea of a perceptron by Rosenblatt [52]. This is done by — Hdifying the
architecture of a neural network class of functions, in particular théwr size in terms
of depth and width. As one increases these parameters, the class of functions be-
comes more expressive. In terms of the bias-variance trade-off, the “bias” decreases
as the class of functions becomes more expressive, but the “variance” or “complexity”
increases.

So-called universal approzimation theorems [4,13,32] show that even with a single
hidden layer, that is, when the depth of the architecture is the smallest possible
value, one can essentially reduce the “bias” as much as one desires, by increasing
the width. Nevertheless, it can be advantageous both theoretically and empirically
to increase the depth because a substantial reduction in the size can be achieved by
this [5,16,37,53,59,60,65]. To get a better quantitative handle on these trade-offs,
it is important to understand what classes of functions are exactly representable by
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2 C. HERTRICH, A. BASU, M. DI SUMMA, M. SKUTELLA

neural networks with a certain architecture. The precise mathematical statements of
universal approximation theorems show that single layer networks can arbitrarily well
approximate any continuous function (under some additional mild hypotheses). While
this suggests that single layer networks are good enough from a learning perspective,
from a mathematical perspective, one can ask the question if the class of functions
represented by a single layer is a strict subset of the class of functions represented by
two or more hidden layers. On the question of size, one can ask for precise bounds
on the width of the network of a given depth to represent a certain class of functions.
We believe that a better understanding of the function classes exactly represented by
different architectures will have implications not just for mathematical foundations,
but also algorithmic and statistical learning aspects of neural networks. The task
of searching for the “best” function in that class can only benefit from a better un-
derstanding of the nat of functions in that class. A motivating question behind
the results in this €h&@j . 'is to understand the hierarchy of function classes exactly
represented by neural networks of increasing depth.

We now introduce more precise notation and terminology to set the stage for our
investigations.

1.1. Notation and Definitions. We write [n] := {1,2,...,n} for the set of
natural numbers up to n (without zero) and [n]o := [n]U{0} for the same set including
zero. For any n € N, let 0: R® — R™ be the component-wise rectifier function

o(z) = (max{0, z1 }, max{0, z2}, ..., max{0, z,}).

For any number of hidden layers k € N, a (k+1)-layer feedforward neural network
with rectified linear units (ReLU NN or simply NN) is given by k affine transforma-
tions T : R~ — R™ 2 +— AWz +b® for ¢ € [k], and a linear transformation
TEED Rk 5 R+1 g ARTD g Tt is said to compute or represent the function
f:R™ — R™+1 given by

f=T*VogoT®ogo-..0T®ogoT™,

The matrices A € R™ X1 are called the weights and the vectors b) € R™ are
the biases of the ¢-th layer. The number ny, € N is called the width of the ¢-th layer.
The maximum width of all hidden layers max ¢y n¢ is called the width of the NN.

Further, we say that the NN has depth k + 1 and size 25:1 ng.

Often, NNs are represented as layered, directed, acyclic graphs where each di-
mension of each layer (including input layer ¢ = 0 and output layer £ = k + 1) is one
vertex, weights are arc labels, and biases are node labels. Then, the vertices are called
neurons.

For a given input z = (%) € R let y(*) := T (2(=1) € R™ be the activation
vector and ¥ = o(y*) € R™ the output vector of the (-th layer. Further, let
y =yt = f(x) be the output of the NN. We also say that the i-th component
of each of these vectors is the activation or the output of the i-th neuron in the /-th
layer.

To illustrate the definition of NNs and how they compute functions, Figure 1
shows an NN with one hidden layer computing the maximum of two numbers.

For k € N, we define

ReLU, (k) :={f: R® = R | f can be represented by a (k + 1)-layer NN},
CPWL,, .= {f: R" - R | f is continuous and piecewise linear}.

This manuscript is for review purposes only.
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Fic. 1. An NN with two input neurons, labeled x1 and x2, three hidden neurons, labeled with
the shape of the rectifier function, and one output neuron, labeled y. The arcs are labeled with their
weights and all biases are zero. The NN has depth 2, width 3, and size 3. It computes the function
z +— y = max{0,z1 — z2} + max{0, z2} — max{0, —z2} = max{0,z1 — z2} + 2 = max{x1,z2}.

By definition, a continuous function f: R™ — R is piecewise linear in case there is
a finite set of polyhedra whose union is R™, and f is affine linear over each such
polyhedron.

In order to analyze ReLU, (k), we use another function class defined as follows.
We call a function g a p-term mazx function if it can be expressed as maximum of p
affine terms, that is, g(z) = max{¢(z),...,¢p(x)} where ¢;: R™ — R is affinely linear
for i € [p]. Note that this also includes max functions with less than p terms, as some
functions ¢; may coincide. Based on that, we define

MAX,,(p) = {f: R" = R | f is a linear combination of p-term max functions}.

If the input dimension n is not important for the context, we sometimes drop the
index and use ReLU(k) = |J,,cy ReLl %) and MAX(p) = |,y MAX,,(p) instead.

Since we deal with polyhedra alot ... Jhis paper; we will use the standard notations
conv A and cone A for the convex and conic hulls of a set A C R™. For an in-depth
treatment of polyhedra and (mixed-integer) optimization, we refer to the book by
Schrijver [54].

1.2. Representing Piecewise Linear Functions with ReLU Networks. It
is not hard to see that every function expressed by a ReLLU network is continuous and
piecewise linear (CPWL) because it is composed of affine transformations and ReL.U
functions, which are both CPWL. Based on a result by Wang and Sun [64], Arora et
al. [5] proved that the converse is true as well by showing that any CPWL function
can be represented with logarithmic depth.

THEOREM 1.1 ( [5]). Ifn €N, k* := [logy(n+1)], then CPWL,, = ReLU,, (k*).

Since this result is the starting point for our paper, let us briefly sketch its proof.
For this purpose, we start with a simple special case of a CPWL function: the maxi-
mum of n numbers. Recall that one hidden layer suffices to compute the maximum of
two numbers, see Figure 1. Now one can easily stack this operation: in order to com-
pute the maximum of four numbers, we divide them into two pairs with two numbers
each, compute the maximum of each pair and then the maximum of the two results.
This idea results in the NN depicted in Figure 2, which has two hidden layers.

Repeating this procedure, one can compute the maximum of eight numbers with
three hidden layers, and, in general, the maximum of 2¥ numbers with & hidden layers.
Phrasing this the other way around, we obtain that the maximum of n numbers
can be computed with [log,(n)] hidden layers. Since NNs can easily form affine
combinations, this implies the following lemma.

LEMMA 1.2 ( [5]). Ifn,k € N, then MAX,,(2¥) C ReLU,, (k).
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4 C. HERTRICH, A. BASU, M. DI SUMMA, M. SKUTELLA

F1c. 2. An NN to compute the mazimum of four numbers that consists of three copies of the
NN in Figure 1. Note that no activiation function is applied at the two unlabeled middle vertices
(representing max{z1,x2} and max{xs,z4}). Therefore, the linear transformations directly before
and after these vertices can be combined into a single one. Thus, the network has total depth three
(two hidden layers).

The question whether the depth of this construction is best possible is one of the
central open questions we attack in this paper.

In fact, the maximum function is not just a nice toy example, it is, in some sense,
the most difficult one of all CPWL function to represent for a ReLU NN. This is due
to a result by Wang and Sun [64] stating that every CPWL function defined on R™
can be written as linear combination of (n + 1)-term max functions.

THEOREM 1.3 ([64]). Ifn €N, then CPWL,, = MAX,,(n + 1).

The proof given by Wang and Sun [64] is technically involved and we do not go
into details here. However, in Section 4 we provide an alternative proof yielding a
slightly stronger result. This will be useful to bound the width of NNs representing
arbitrary CPWL functions.

Theorem 1.1 by Arora et al. [5] can now be deduced from combining Lemma 1.2
and Theorem 1.3: In fact, for k* = [logy(n + 1)], one obtains

CPWL,, = MAX,,(n+ 1) C ReLU, (k*) C CPWL,

and thus equality in the whole chain of subset relations.

1.3. Our Main Conjecture. We wish to understand whether the logarithmic
depth bound in Theorem 1.1 by Arora et al. [5] is best possible or whether one can
do better. We believe it is indeed best possible and pose the following conjecture to
better understand the importance of depth in neural networks.

CONJECTURE 1.4. For any n € N, let k* = [logy(n + 1)]. Then it holds that
(1.1)  ReLU,(0) € ReLU,(1) C --- C ReLU,(k* — 1) C ReLU, (k") = CPWL,,.

Conjecture 1.4 claims that any additional layer up to £* hidden layers strictly
increases the set of representable functions. This would imply that the construction
by Arora et al. [5] is actually depth-minimal.

Observe that, in order to prove Conjecture 1.4, it is sufficient to find a single
function f € ReLU, (k*) \ ReLU, (k* —1) with n = 2 ~! for all k* € N. This
also implies all other strict inclusions ReLU, (i — 1) C ReLU, (i) for ¢ < k* since
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Fia. 3. Set of breakpoints of the function max{0,z1,z2} (left). This function cannot be com-
puted by a 2-layer NN (middle), since the set of breakpoints of any function computed by such an
NN is always a union of lines (right).

ReLU, (i — 1) = ReLU, (4) immediately implies that ReLU, (i — 1) = ReLU, (i) for
all ¢/ >4 — 1.

In fact, thanks to 1:8 by Wang and Sun [64], there is a canonical candidate for
such a function, allowing us to reformulate the conjecture as follows.

CONJECTURE 1.5. For k € N, n = 2%, the function f,(z) = max{0,z1,...,2,}
cannot be represented with k hidden layers, that is, f, ¢ ReLU,(k).

ProposiTION 1.6. Conjecture 1.4 and Conjecture 1.5 are equivalent.

Proof. We argued above that Conjecture 1.5 implies Conjecture 1.4. For the
other direction, we prove the contraposition, that is, assuming that Conjecture 1.5 is
violated, we show that Conjecture 1.4 is violated as well. To this end, suppose there
isa k € N, n = 2%, such that f, is representable with k hidden layers. We argue
that under this hypothesis, any (n + 1)-term max function can be represented with &
hidden layers. To see this, observe that

ma‘x{gl (1‘), s 7€n+1(x)} = max{O, 4 ($) - €n+1(x)ﬂ s 7€n(x) - £n+1(m>} + €n+1(.’b).

Modifying the first-layer weights of the NN computing f,, such that input x; is re-
placed by the affine expression ¢;(x) — ¢,,+1(z), one obtains a k-hidden-layer NN com-
puting the function max{0,¢1(z) — lny1(x),. .., lu(x) — lpt1(x)}. Moreover, since
affine functions, in particular also #,,+1(x), can easily be represented by k-hidden-layer
NNs, we obtain that any (n + 1)-term maximum is in ReLU,, (k). Using Theorem 1.3
by Wang and Sun [64], it follows that ReLU, (k) = CPWL,. In particular, since
k* == [logo(n+1)] = k + 1, we obtain that Conjecture 1.4 must be violated as well.0

It is known that Conjecture 1.5 holds for k = 1 [46], that is, the CPWL func-
tion max{0, z1,z2} cannot be computed by a 2-layer NN. The reason for this is that
the set of breakpoints of a CPWL function computed by a 2-layer NN is always a
union of lines, while the set of breakpoints of max{0, z1,z2} is a union of three half-
lines; compare Figure 3 and the detailed proof by Mukherjee and Basu [46]. The
conjecture remains open for all £ > 2.

1.4. Contribution and Outline. In this paper, we present the following results
as partial progress towards resolving this conjecture.

In Section 2, we resolve Conjecture 1.5 for k£ = 2, under a natural assumption on
the breakpoints of the function represented by any intermediate neuron. We achieve
this result by leveraging techniques from mixed-integer programming to analyze the
set of functions computable by certain NNs.

In the light of Lemma 1.2, stating that MAX(2¥) C ReLU(k) for all k € N one
might ask whether the converse is true as well, that is, whether the classes MAX(2)
and ReLU(k) are actually equal. This would not only provide a neat characterization
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of ReLU(k), but also prove Conjecture 1.5 without any additional assumption since
one can show that max{0,x,..., 7o} is not contained in MAX(2*).

In fact, for £ = 1, it is true that ReLU(1) = MAX(2), that is, a function is
computable with one hidden layer if and only if it is a linear combination of 2-term
max functions. However, in Section 3, we show that for k& > 2, the class ReLU(k) is
a strict superset of MAX(2*). To achieve this result, the key technical ingredient is
the theory of polyhedral complexes associated with CPWL functions. This way, we
provide important insights concerning the richness of the class ReLU(k).

So far, we have focused on understanding the smallest depth needed to express
CPWL functions using neural networks with ReLU activations. In Section 4, we
complement these results by upper bounds on the sizes of the networks needed for
expressing arbitrary CPWL functions. In particular, Theorem 4.4 shows that any
continuous piecewise linear function with p linear/affine pieces on R™ can be expressed
by a network with depth at most O(logn) and width at most po("2). We arrive at this
result by introducing a novel application of recently established interactions between
neural networks and tropical geometry.

Finally, in Section 5, we provide an outlook how these interactions between trop-
ical geometry and NNs could possibly also be useful to provide a full, unconditional
proof of Conjecture 1.4 by means of polytope theory.

In Section 6, we discuss further open research questions.

1.5. Further Related Work.

Depth versus size. Soon after the original universal approximation theorems [13,
32], concrete bounds were obtained on the number of neurons needed in the hidden
layer to achieve a certain level of accuracy. The literature on this is vast and we refer
to a small representative sample here [7,8,41-43,50]. More recently, work has focused
on how deeper networks can have exponentially or super exponentially smaller size
compared to shallower networks [5,16,26,27,37,47,51,53,59,60, 62,65]. See also [24]
for another perspective on the relationship between expressivity and architecture, and
the references therein.

Mixed-integer optimization and machine learning. Over the past decade, a grow-
ing body of work has emerged that explores the interplay between mixed-integer
optimization and machine learning. On the one hand, researchers have attempted to
improve mixed-integer optimization algorithms by exploiting novel techniques from
machine learning [2,10, 19, 28, 34-36, 38]; see also [9] for a recent survey. On the flip
side, mixed-integer optimization techniques have been used to analyze function classes
represented by neural networks [3,17,55-57]. In Section 2 below, we show another new
use of mixed-integer optimization tools for understanding function classes represented
by neural networks.

Design of training algorithms. We believe that a better understanding of the
function classes represented exactly by a neural architecture also has benefits in terms
of understanding the complexity of the training problem. For instance, in a paper by
Arora et al. [5], an understanding of single layer ReLU networks enables the design
of a globally optimal algorithm for solving the empirical risk minimization (ERM)
problem, that rur — ' polynomial time in the number of data points in fixed dimension.
See also [11,14,18,20-23] for a similar lines of work.

Neural Networks and Tropical Geometry. A recent stream of research involves
the interplay between neural networks and tropical geometry. The piecewise linear
functions computed by neural networks can be seen as (tropical quotients of) tropical
polynomials. Linear regions of these functions correspond to vertices of so-called
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Newton polytopes associated with these tropical polynomials. Applications of this
correspondence include bounding the number of linear regions of a neural network
[12,44,66] and understanding decision boundaries [1]. In Section 4 we present a novel
application of tropical concepts to understand neural networks. We refer to [40] for
a recent survey of connections between machine learning and tropical geometry, as
well as to the textbooks by Maclagan and Sturmfels [39] and Joswig [33] for in-depth
introductions to tropical geometry and tropical ~ abinatorics.

2. Conditional Lower Depth Boundsvia Mixed-Integer Programming.
In this section, we provide a computer-aided proof that, under a natural, yet unproven
assumption, the function f(x) := max{0,x1, 22,3, 24} cannot be represented by a
3-layer NN. It is worth to note that, to the best of our knowledge, no CPWL function
is knov — or which the non-existence of a 3-layer NN can be proven without additional
assumpuon. For easier notation, we write xg = 0.

We first prove that we may restrict ourselves to NNs without biases. This holds
true independent of our assumption, which we introduce afterwards.

DEFINITION 2.1. A function g: R™ — R™ is called positively homogeneous if it
satisfies g(Ax) = Ag(x) for all X > 0.

DEFINITION 2.2. For an NN given by transformations T (r) = Az + b0 we
define the corresponding homogenized NN to be the NN given by T (z) = AO gz with
all biases set to zero.

ProproSITION 2.3. If an NN computes a positively homogeneous function, then
the corresponding homogenized NN computes the same function.

Proof. Let g: R™ — R™+1 be the function computed by the original NN and g
the one computed by the homogenized NN. Further, for any 0 < ¢ < k, let

g0 =T 6 50T 6. o T® 6 5 o TM

be the function computed by the sub-NN consisting of the first (£ + 1)-layers and
let §© be the function computed by the corresponding homogenized sub-NN. We
first show by induction on ¢ that the norm of |g(¥)(z) — §¥)(x)| is bounded by a
global constant that only depends on the parameters of the NN but not on x.

For ¢ = 0, we have [|g)(z) — 3 (z)|| = [|b™)| = Cy, settling the induction
base. For the induction step, let £ > 1 and assume that ||~ (z) — g~V (z)|| <
Cy_1, where Cy_; only depends on the parameters of the NN. Since a component-
wise application of the ReLU activation function has Lipschitz constant 1, this im-
plies ||(c 0 g~ V) () = (0 0 g~ V)(x)|| < Cr—1. Using any matrix norm that is com-
patible with the Euclidean vector norm, we obtain:

lg'(2) = 39 @)| = [P + AV (00 gD (@) — (005 V)(@))]
D)+ JACD) - Comy = G

IN

Since the right-hand side only depends on NN parameters, the induction is completed.

Finally, we show that g = g. For the sake of contradiction, suppose that there
is an € R™ with ||g(z) — g(z)|]] = 6 > 0. Let 2/ = %x; then, by (positive
homogeneity, it follows that ||g(2") —g(a’)|| = Cx+1 > C}, contradicting the property
shown above. Thus, we have g = g. O

Since f = max{0,x,x2,x3, x4} is positively homogeneous, Proposition 2.3 im-
plies that, if there is a 3-layer NN computing f, then there also is one that has no
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T2 > T1
>0
T2 > >
0> a1 1 =2
x2 >0
0> x2 N
> x1 o1 20
> z2
0>
T1 > T2

F1a. 4. A function is H-conforming if the set of breakpoints is a subset of the hyperplane ar-
rangement H. The arrangement H consists of all hyperplanes where two of the coordinates (possibly
including o = 0) are equal. Here, H is illustrated for the (simpler) two-dimensional case, where it
consists of three hyperplanes that divide the space into six cells.

biases. Therefore, in the remainder of this section, we only consider NNs without
biases and assume implicitly that all considered CPWL functions are positively ho-
mogeneous. In particular, any piece of such a CPWL function is linear and not only
affine linear.

Observe that, for the function f, the only points of non-differentiability (a.k.a.
breakpoints) are at places where at least two of the five numbers zg = 0, z1, =2, 23,
and x4 are equal. Hence, if some neuron of an NN computing f introduces breakpoints
at other places, these breakpoints must be canceled out by other neurons. Therefore,
it is a natural assumption that such breakpoints are not introduced at all in the first
place.

To make this assumption formal, let H;; = {z € R* | z; = x;}, for 0 <i < j < 4,
be ten hyperplanes in R* and H = UOSi <j<a Hij be the corresponding hyperplane
arrangement. This is the intersection of the so-called braid arrangement in five di-
mensions with the hyperplane zp = 0 [58]. The regions or cells of H are defined to
be the closures of the connected components of R* \ H. It is easy to see that these
regions are in one-to-one correspondence to the 5! = 120 possible orderings of the five
numbers zog = 0, z1, T2, x3, and x4. More precisely, for a permutation 7w of the five
indices [4]p = {0,1,2,3,4}, the corresponding region is the polyhedron

Cr = {2 € R | 2r(0) < Tr(1) < Tn(2) < Tr(3) < Tm(a)}-

We say that a (positively homogeneous) CPWL function g is H-conforming, if it
is linear within any of these regions of H, that is, if it only has breakpoints where
the relative ordering of the five values g = 0, z1, 2, x3, x4 changes; see Fig-
ure 4 for an illustration of the (simpler) two-dimensional case. Moreover, an NN
is said to be H-conforming if the output of each neuron contained in the NN is
H-conforming. Equivalently, this is the case if and only if all intermediate func-
tions coTWogoT¢Vo...o00TW ¢ € [k], are H-conforming. Now our as-
sumption can be formally phrased as follows.

ASSUMPTION 2.4. If there exists a S-layer NN computing the function f(x) =
max{0,x1,Ts, 23,24}, then there also exists one that is H-conforming.

We use mixed-integer programming to prove the following theorem.

This manuscript is for review purposes only.
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THEOREM 2.5. Under Assumption 2.4, there does not exist a 3-layer NN that
computes the function f(x) = max{0,x, 22,23, 24}.

The remainder of this section is devoted to proving this theorem. The rough
outline of the proof is as follows. We first study some geometric properties of the
hyperplane arrangement H. This will show that each of the 120 cells of H is a
simplicial polyhedral cone spanned by 4 extreme rays. In total, there are 30 such
rays (because rays are used multiple times to span different cones). This implies that
each H-conforming function is uniquely determined by its values on the 30 rays and,
therefore, the set of H-conforming functions of type R* — R is a 30-dimensional vector
space. We then use linear algebra to show that the space of functions generated by
H-conforming two-layer NNs is a 14-dimensional subspace. Moreover, with two hidden
layers, at least 29 of the 30 dimensions can be generated and f is not contained in this
29-dimensional subspace. So the remaining question is whether the 14 dimensions
producible with the first hidden layer can be combined in such a way that after
applying a ReLU activation in the second hidden layer, we do not end up within the
29-dimensional subspace. We model this question as a mixed-integer program (MIP).
Solving the MIP yields that we always end up within the 29-dimensional subspace,
implying that f cannot be represented by a 3-layer NN. This provides a computational
proof of Theorem 2.5.

Let us start with investigating the structure of the hyperplane arrangement H.
For readers familiar with the interplay between hyperplane arrangements and poly-
topes, it is worth noting that H is dual to a combinatorial equivalent of the 4-di-
mensional permutahedron. Hence, what we are studying in the following are some
combinatorial properties of the permutahedron.

Recall that the regions of H are given by the 120 polyhedra

Cr = {zeR*| Tr0) < Ta(1) < Tr2) < Tr(3) < Tray)

for each permutation 7 of [4]g. With this representation, one can see that Cj is
a pointed polyhedral cone (with the origin as its only vertex) spanned by the four
half-lines (a.k.a. rays)

Rin)y = {o € R | @r(0) < Tr(1) = Tr(2) = Tn(3) = Tr(a) ),

Rz () = {2 €RY | Zr(0) = Tr(1) < Tr(2) = Tu(3) = T },

Rz am@y = {2 €RY [ r(0) = Tr1) = Tn(2) < Tn(3) = Tra)
Rz a(m@,m@)y = {2 € RY [ @n(0) = Tr(1) = Tn(2) = Tr(3) < Tr(a)}-

With that notation, we see that each of the 120 cells of H is a simplicial cone
spanned by four out of the 30 rays Rgs with ) C .S C [4]y. For each such set S, denote

its complement by S = [4]o \ S. Let us use a generating vector 75 € R* for each of
these rays such that Rg = conerg as follows: If 0 € S, then rg := 1g € R?*, otherwise
rg = —1g € R* where for each S C [4], the vector 15 € R* contains entries 1

at precisely those index positions that are contained in S and entries 0 elsewhere.
For example, r{p 23, = (1,0,0,1) € R* and r{1,4y = (=1,0,0,-1) € R*. Then, the
set R containing conic generators of all the 30 rays of H consists of the 30 vectors
R=({0,13*u{0,—1}")\ {0}".

Let 830 be the space of all H-conforming CPWL functions of type R* — R. We
show that S30 is a 30-dimensional vector space.

This manuscript is for review purposes only.
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LEMMA 2.6. The map g+~ (9(r))rcr that evaluates a function g € S0 at the 30
rays in R is an isomorphism between S° and R3°. In particular, S®° is a 30-dimen-
stonal vector space.

Proof. First note that S3° is closed under addition and scalar multiplication.
Therefore, it is a subspace of the vector space of continuous functions of type R* — R,
and thus, in particular, a vector space. We show that the map g — (g(r))rer is in
fact a vector space isomorphism. The map is obviously linear, so we only need to
show that it is a bijection. In order to do so, remember that R* is the union of the
5! = 120 simplicial cones Cj. In particular, given the function values on the extreme
rays of these cones, there is a unique positively homogeneous, continuous continuation
that is linear within each of the 120 cones. This implies that the considered map is a
bijection between S3° and R3°. ]

The previous lemma also provides a canonical basis of the vector space S3°:
the one consisting of all CPWL functions attaining value 1 at one ray r € R and
value 0 at all other rays. However, it turns out that for our purposes it is more
convenient to work with a different basis. For this purpose, let gy (z) = max;en z;
for each {0,{0}} # M C [4]o. These 30 functions contain, among other functions, the
four (linear) coordinate projections gg;y(x) =z, i € [4], and the function f(z) =
gpap, () = max{0, x1, xo, 3,74}

LEMMA 2.7. The 30 functions gpr(z) = max;ep x; with {0,{0}} 2 M C [4]o
form a basis of S3°.

Proof. Evaluating the 30 functions gj; at all 30 rays r € R yields 30 vectors
in R3. Tt can be easily verified (e.g., using a computer) that these vectors form a
basis of R30. Thus, due to the isomorphism of Lemma 2.6, the functions gy; form a
basis of S30. a0

Next, we focus on particular subspaces of S?° generated by only some of the 30
functions gp;. We prove that they correspond to the spaces of functions computable
by H-conforming 2- and 3-layer NNs, respectively.

To do so, let B be the set of the 14 basis functions gy with {0, {0}} Z M C [4]o
and |M| < 2. Let S'* be the 14-dimensional subspace spanned by B'. Similarly,
let B2Y be the set of the 29 basis functions gy with {0, {0}} # M C [4]o (all but [4]o).
Let 8% be the 29-dimensional subspace spanned by 329,

LEMMA 2.8. The space S** consists of all functions computable by H-conforming
2-layer NNs.

Proof. Each function in S is a linear combination of 2-term max functions by
definition. Hence, by Lemma 1.2, it can be represented by a 2-layer NN.

Conversely, we show that any function representable by a 2-layer NN is indeed
contained in S'*. It suffices to show that the output of every neuron in the first (and
only) hidden layer of an H-conforming ReLU NN is in §'* because the output of a
2-layer NN is a linear combination of such outputs. Let a € R* be the first-layer
weights of such a neuron, computing the function g,(z) := max{a’z, 0}, which has
the hyperplane {z € R* | a’x = 0} as breakpoints (or is constantly zero). Since
the NN must be H-conforming, this must be one of the ten hyperplanes z; = z;,
0 <i<j <4 Thus, go(z) = max{A(z; — x;),0} for some A € R. If A > 0, it follows
that go = Aggs 1 — Aggjy € S' and if A < 0, we obtain g, = —Agqi iy + A9y € S,
This concludes the proof. 0

For 3-layer NNs, an analogous statement can be made. However, only one direc-
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tion can be easily seen.

LEMMA 2.9. Any function in S?° can be represented by an H-conforming 3-layer
NN.

Proof. As in the previous lemma, each function in $? is a linear combination of
4-term max functions by definition. Hence, by Lemma 1.2, it can be represented by
a 3-layer NN. ]

Our goal is to prove the converse as well: any H-conforming function represented
by a 3-layer NN is in §%°. Since f(z) = max{0,z, 72, 23,24} is the 30th basis
function, which is linearly independent from B2° and thus not contained in $2°, this
implies Theorem 2.5. To achieve this goal, we first provide another characterization
of §??, which can be seen as an orthogonal direction to S2° in S3°. For a function
g €83, let

#9) =Y (=1)¥lg(rs)

PCSC[4)o
be a linear map from S3° to R.
LEMMA 2.10. A function g € 83° is contained in S?° if and only if ¢(g) = 0.

Proof. Any g € 830 can be represented as a unique linear combination of the 30
basis functions gy; and is contained in S% if and only if the coefficient of f = g4, 18
zero. One can easily check (with a computer) that ¢ maps all functions in B to 0,
but not the 30th basis function f. Thus, g is contained in S?? if and only if it satisfies
¢(g) = 0. 0

In order to make use of our Assumption 2.4, we need the following insight about
when the property of being H-conforming is preserved after applying a ReLU activa-
tion.

LEMMA 2.11. Let g € 8*°. The function h = o o g is H-conforming (and thus
in 83 as well) if and only if there is no pair of sets ) € S C S" C [4]o with g(rs)
and g(rg/) being nonzero and having different signs.

Proof. The key observation to prove this lemma is the following: for two rays rg
and rgs, there exists a cell C' of the hyperplane arrangement H for which both rg
and rg/ are extreme rays if and only if S C 5" or S’ C S.

Hence, if there exists a pair of sets 0 € .S C 5" C [4]p with g(rg) and g(rs/) being
nonzero and having different signs, then the function g restricted to C is a linear
function with both strictly positive and strictly negative values. Therefore, after
applying the ReLU activation, the resulting function A has breakpoints within C' and
is not H-conforming.

Conversely, if for each pair of sets § C S C S’ C [4]p, both g(rg) and g(rg/)
are either nonpositive or nonnegative, then g restricted to any cell C' of H is either
nonpositive or nonnegative everywhere. In the first case, h restricted to that cell C' is
the zero function, while in the second case, h coincides with g in C. In both cases, h
is linear within all cells and, thus, H-conforming. ]

Having collected all these lemmas, we are finally able to construct a MIP whose
solution proves that any function computed by an H-conforming 3-layer NN is in S2Y.
As in the proof of Lemma 2.8, it suffices to focus on the output of a single neuron in
the second hidden layer. Let h = o o g be the output of such a neuron with g being
its input. Observe that, by construction, g is a function computed by a 2-layer NN,
and thus, by Lemma 2.8, a linear combination of the 14 functions in B'. The MIP

This manuscript is for review purposes only.
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143 contains three types of variables, which we denote in bold to distinguish them from

444 constants:
445 e 14 continuous variables ap; € [—1,1], being the coefficients of the linear
446 combination of the basis of S forming ¢, that is, g = ZgMeBM aprgn (since
447 multiplying g and h with a nonzero scalar does not alter the containment of h
148 in §% we may assume unit interval bounds),
149 e 30 binary variables zg € {0,1} for § € S C [4]o, determining whether the
450 considered neuron is strictly active at ray rg, that is, whether g(rg) > 0,
451 e 30 continuous variables ys € R for ) C S C [4]g, representing the output of
452 the considered neuron at all rays, that is, ys = h(rg).
453 To ensure that these variables interact as expected, we need two types of con-
154 straints:
455 e For each of the 30 rays rg, 0 C S C [4]o, the following constraints en-
456 sure that zg and output yg are correctly calculated from the variables a,,
457 that is, zs = 1 if and only if g(rs) = >, cpaamgum(rs) is positive, and
458 vs = max{0,g(rs)}. Also compare the references given in Subsection 1.5
159 concerning MIP models for ReLU units. Note that the restriction of the
460 coefficients aps to [—1,1] ensures that the absolute value of g(rg) is always
461 bounded by 14, allowing us to use 15 as a replacement for 4oo:

ys >0

ys 2 Z angnm(rs)
162 (2.1) gmEB

ys < 15zg

ys < Y. amgu(rs)+15(1 — zs)
463 gmEBH
464 Observe that these constraints ensure that one of the following two cases
465 occurs: If zg = 0, then the first and third line imply yg = 0 and the second
166 line implies that the incoming activation is in fact nonpositive. The fourth
467 line is always satisfied in that case. Otherwise, if zg = 1, then the second and
468 fourth line imply that ys equals the incoming activation, and, in combination
469 with the first line, this has to be nonnegative. The third line is always satisfied
470 in that case. Hence, the set of constraints (2.1) correctly models the ReL.U
471 activation function.
472 e For each of the 150 pairs of sets § C S C 5" C [4]o, the following constraints
473 ensure that the property in Lemma 2.11 is satisfied. More precisely, if one of
474 the variables zg or zg: equals 1, then the ray of the other set has nonnegative
475 activation, that is, g(rg/) > 0 or g(rs) > 0, respectively:

Z aygm(rs) > 15(zsr — 1)
476 (2.2) g Bt
Z aMgM(rs/) Z 15(ZS - 1)

477 gmEBH
478 Observe that these constraints successfully prevent that the two rays rg
479 and g/ have nonzero activations with different signs. Conversely, if this
180 is not the case, then we can always satisfy constraints (2.2) by setting only

181 those variables zg to value 1 where the activation of ray rg is strictly positive.

This manuscript is for review purposes only.
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(Note that, if the incoming activation is precisely zero, constraints (2.1) make
it possible to choose both values 0 or 1 for zg.) Hence, these constraints are
in fact appropriate to model H-conformity.

In the light of Lemma 2.10, the objective function of our MIP is to maximize ¢(h),

that is, the expression
> (1)lys.

DS SC[4]o

The MIP has a total of 30 binary and 44 continuous variables, as well as 420
inequality constraints. The next proposition formalizes how this MIP can be used to
check whether a 3-layer NN function can exist outside S2°.

PROPOSITION 2.12. There exists an H -conforming 3-layer NN computing a func-
tion not contained in S*° if and only if the objective value of the MIP defined above
is strictly positive.

Proof. For the first direction, assume that such an NN exists. Since its final
output is a linear combination of the outputs of the neurons in the second hidden
layer, one of these neurons must compute a function h = o o g ¢ S, with § being
the input to that neuron. By Lemma 2.10, it follows that gf)(ﬁ) # 0. Moreover, we
can even assume without loss of generality that gf)(ﬁ) > 0, as we argue now. If this
is not the case, multiply all first-layer weights of the NN by —1 to obtain a new NN
computing function h instead of h. Observing that 7g = —7y,\s for all rs € R, we
obtain h(rg) = h(—rg) = ﬁ(r[4]0\s) for all r¢ € R. Plugging this into the definition
of ¢ and using that the cardinalities of S and [4]p \ S have different parity, we further
obtain ¢(h) = —¢(h). Therefore, we can assume that ¢(h) was already positive in the
first place.

Using Lemma 2.8, the function § can be represented as a linear combination
g= ZgMeBM ayrgu of the functions in B, Let a = maxys|ay| > 0. Let us define

modified functions g and h from § and h as follows. Let ap; = ap/a € [—1,1],
9= gyepiaamgn, and h = o o g. Moreover, for all rays rg € R, let ys = h(rs),
as well as zg =1 if yg > 0, and zg = 0 otherwise.

It is easy to verify that the variables aps, yg, and zg defined that way satisfy
(2.1). Moreover, since the NN is H-conforming, they also satisfy (2.2). Finally, they
also yield a strictly positive objective function value since ¢(h) = qﬁ(ﬁ)/a > 0.

For the reverse direction, assume that there exists a MIP solution consisting
of apr, ys, and zg, satisfying (2.1) and (2.2), and having a strictly positive objec-
tive function value. Define the functions g = ZgMeBM aygy and h == o og. One
concludes from (2.1) that h(rg) = yg for all rays rg € R. Lemma 2.8 implies that g
can be represented by a 2-layer NN. Thus, h can be represented by a 3-layer NN.
Moreover, constraints (2.2) guarantee that this NN is H-conforming. Finally, since
the MIP solution has strictly positive objective function value, we obtain ¢(h) > 0,
implying that h ¢ S29. O

In order to use the MIP as part of a mathematical proof, we employed a MIP
solver that uses exact rational arithmetics without numerical errors, namely the solver
by the Parma Polyhedral Library (PPL) [6]. We called the solver from a SageMath
(Version 9.0) [61] script on a machine with an Intel Core i7-8700 6-Core 64-bit CPU
and 15.5 GB RAM, using the openSUSE Leap 15.2 Linux distribution. SageMath,
which natively includes the PPL solver, is published under the GPLv3 license. After
a total running time of almost 7 days (153 hours), we obtained optimal objective
function value zero. This makes it possible to prove Theorem 2.5.
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Proof of Theorem 2.5. Since the MIP has optimal objective function value zero,
Proposition 2.12 implies that any function computed by an H-conforming 3-layer NN
is contained in S?°. In particular, under Assumption 2.4, it is not possible to compute
the function f(x) = max{0,x1, za, 23,24} with a 3-layer NN. 0

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [25], which is
commercial but offers free academic licenses, is able to solve the same MIP within
less than a second, providing the same result. However, Gurobi does not employ
exact arithmetics, making it impossible to exclude numerical errors and use it as a
mathematical proof.

The SageMath code can be found on GitHub at
https://github.com/ChristophHertrich /relu-mip-depth-bound.
Additionally, the MIP can be found there as .mps file, a standard format to represent

MIPs. This allows one to use any solver of choice to reproduce our result.

3. Going Beyond Linear Combinations of Max Functions. In this section
we prove the following result, showing that NNs with &k hidden layers can compute
more functions than only linear combinations of 2¥-term max functions.

THEOREM 3.1. For any k > 2, the class ReLU(k) is a strict superset of MAX(2F).

In order to prove this theorem, we provide a specific function that is contained
in ReLU(k) \ MAX(2%) for any number of hidden layers k > 2. The challenging part
is to show that the function is in fact not contained in MAX(2").

PROPOSITION 3.2. For any n > 3, the function f: R™ — R defined by
(3.1) f(z) = max{0, z1, 22, ..., Tn_3, max{Ty_2,Tn_1} + max{0,z,}}

is not contained in MAX(n).

This means that f cannot be written as a linear combination of n-term max
functions. Before we prove Proposition 3.2, we show that it implies Theorem 3.1.

Proof of Theorem 3.1. For k > 2, let n := 2F. By Proposition 3.2, function f
defined in (3.1) is not contained in MAX(2). It remains to show that it can be
represented using a ReLU NN with £ hidden layers. To see this, first observe that
any of the n/2 = 2*~1 terms max{0, 21}, max{wa;, x2;11} for i € [n/2 — 2], and
max{zy_2, Tn—1} + max{0,x,} can be expressed by a one-hidden-layer NN since all
these are (linear combinations of) 2-term max functions. Since f is the maximum of
these 2°=1 terms, and since the maximum of 2¥~! numbers can be computed with
k — 1 hidden layers (Lemma 1.2), this implies that f is in ReLU(k). 0

In order to prove Proposition 3.2, we need the concept of polyhedral complexes.
A polyhedral complex P is a finite set of polyhedra such that each face of a polyhedron
in P is also in P, and for two polyhedra P, ) € P, their intersection PN() is a common
face of P and @ (possibly the empty face). Given a polyhedral complex P in R™ and
an integer m € [n], we let P™ denote the collection of all m-dimensional polyhedra
in P.

For a convex CPWL function f, we define its underlying polyhedral complex as
follows: it is the unique polyhedral complex covering R™ (i.e., each point in R” belongs
to some polyhedron in P) whose n-dimensional polyhedra coincide with the domains
of the (maximal) affine pieces of f. In particular, f is affinely linear within each
P € P, but not within any strict superset of a polyhedron in P™.

Exploiting properties of polyhedral complexes associated with CPWL functions,
we prove the following proposition below.

This manuscript is for review purposes only.
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ProprosITION 3.3. Let fo: R™ — R be a conver CPWL function and let Py be the
underlying polyhedral complex. If there exists a hyperplane H C R™ such that the set

T:=|J{FepP; " |FcCH}

is nonempty and contains no line, then fo cannot be expressed as a linear combination
of n-term mazxima of affine linear functions.

Again, before we proceed to the proof of Proposition 3.3, we show that it implies
Proposition 3.2.

Proof of Proposition 3.2. Observe that f (defined in (3.1)) has the alternate rep-
resentation

f(z) = max{0, z1, x2, ..., Tn—3, Tn—2, Tn—1, Tn—2 + Tn, Tn-1 + Tn}

as a maximum of n 4+ 2 terms. Let P be its underlying polyhedral complex. Let the
hyperplane H be defined by z; = 0.

Observe that any facet in 2"~ ! is a polyhedron defined by two of the n 4 2 terms
that are equal and at least as large as each of the remaining n terms. Hence, the only
facet that could possibly be contained in H is

o— n _
F = {Z‘ eR | 1 =022, ..., Tn_3, Tn-2, Tn-1, Tn-2 + Tn, Tn-1 + xn}

Note that F is indeed an (n — 1)-dimensional facet in P"~!, because, for example,
the full neighborhood of (0,—1,...,—1) € R™ intersected with H is contained in F'.

Finally, we need to show that F' is pointed, that is, it contains no line. A
well-known fact from polyhedral theory says if there is any line in F with direc-
tion d € R™ \ {0}, then d must satisfy the defining inequalities with equality. However,
only the zero vector does this. Hence, F' cannot contain a line.

Therefore, when applying Proposition 3.3 to f with underlying polyhedral com-
plex P and hyperplane H, we have T' = F', which is nonempty and contains no line.
Hence, f cannot be written as linear combination of n-term maxima. ]

The remainder of this section is devoted to proving Proposition 3.3. In order
to exploit properties of the underlying polyhedral complex of the considered CPWL
functions, we will first introduce some terminology, notation, and results related to
polyhedral complexes in R™ for any n > 1.

DEFINITION 3.4. Given an abelian group (G,+), we define F™*(G) as the family
of all functions ¢ of type ¢: P™ — G, where P is a polyhedral complex that covers R™.
We say that P is the underlying polyhedral complex, or the polyhedral complex asso-
ciated with ¢.

Just to give an intuition of the reason for this definition, let us mention that later
we will choose (G, +) to be the set of affine linear maps R™ — R with respect to the
standard operation of sum of functions. Moreover, given a convex CPWL function
f: R™ — R with underlying polyhedral complex P, we will consider the following
function ¢ € F*(G): for every P € P", ¢(P) will be the affine linear map that
coincides with f over P. It can be helpful, though not necessary, to keep this in mind
when reading the next definitions and observations.

It is useful to observe that the functions in F™(G) can also be described in a
different way. Before explaining this, we need to define an ordering between the two
elements of each pair of opposite halfspaces. More precisely, let H be a hyperplane
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in R™ and let H', H” be the two closed halfspaces delimited by H. We choose an ar-
bitrary rule to say that H' “precedes” H”', which we write as H' < H”.' We can then
extend this ordering rule to those pairs of n-dimensional polyhedra of a polyhedral
complex in R™ that share a facet. Specifically, given a polyhedral complex P in R",
let P, P" € P" be such that F := P' N P"” € P*~!. Further, let H be the unique
hyperplane containing F. We say that P’ < P’ if the halfspace delimited by H and
containing P’ precedes the halfspace delimited by H and containing P”.

We can now explain the alternate description of the functions in 7™ (G), which is
based on the following notion.

DEFINITION 3.5. Let ¢ € F"™(G), with associated polyhedral complex P. The
facet-function associated with ¢ is the function : P! — G defined as follows:
given F € P*~1, let P, P" be the two polyhedra in P™ such that F = P' N P", where
P’ < P”; then we set (F) = ¢(P') — ¢(P").

Although it will not be used, we observe that knowing 4 is sufficient to recon-
struct ¢ up to an additive constant. This means that a function ¢’ € F"(G) associated
with the same polyhedral complex P has the same facet-function ¢ if and only if there
exists g € G such that ¢(P) — ¢/'(P) = g for every P € P"™. (However, it is not true
that every function 1: P"~1 — G is the facet-function of some function in F"(G).)

We now introduce a sum operation over F"(G).

DEFINITION 3.6. Given p functions ¢1,...,¢, € F*(G), with associated polyhe-
dral complezes P, ..., Pp, the sum ¢ = ¢1+- -+ ¢y, is the function in F*(G) defined
as follows:

e the polyhedral complex associated with ¢ is

P={PN---NP, | P, €P; for every i};

o given P € P", P can be uniquely obtained as Py N ---N P,, where P; € P/
for every i; we then define

P
¢(P)=>_ ¢i(P)
i=1
The term “sum” is justified by the fact that when P; = --- = P, (and thus
®1,...,¢p have the same domain) we obtain the standard notion of the sum of func-

tions.

The next results shows how to compute the facet-function of a sum of functions
in F*(G).

OBSERVATION 3.7. With the notation of Definition 3.6, let 1, ..., 1, be the facet-
functions associated with ¢1,. .., ¢y, and let ¢ be the facet-function associated with ¢.

Given F € P"~1, let I be the set of indices i € {1,...,p} such that P contains a
(unique) element F; with F' C F;. Then

(32) Y(F) = Zd}l(Fl)
iel

In case one wants to see such a rule explicitly, this is a possible way: Fix an arbitrary z € H.
We can say that H' < H" if and only if £ +e; € H’, where e; is the first vector in the standard basis
of R that does not lie on H (i.e., e1,...,e;_1 € H and e; ¢ H). Note that this definition does not
depend on the choice of Z.
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Proof. Let P',P"” be the two polyhedra in P™ such that F = P’ N P”, with
P' < P". We have P' = PN ---N P, and P" = P/'N---N P} for a unique choice of
P!, P! € P! for every i. Then

P
(33) $(F) = o(P') = 6(P") = > _(&:(P)) — 6i(P)).
i=1

Now fix ¢ € [p]. Since F C P/ NP/, dim(P,NP/)>n—1. If dim(P/NP)=n—1,
then F; == P/ NP’ € P! and ¢;(P!) — ¢;(P!") = ¢;(F;). Furthermore, i € T
because F' C F;. If, on the contrary, dim(P/NP}") = n, the fact that P; is a polyhedral
complex implies that P/ = P/, and thus ¢;(P]) — ¢;(P]") = 0. Moreover, in this case
i ¢ I: this is because P’ P” C P/, which implies that the relative interior of F is
contained in the relative interior of P/. With these observations, from (3.3) we obtain
(3.2). ]

DEFINITION 3.8. Fiz ¢ € F"(G), with associated polyhedral complex P. Let H
be a hyperplane in R™, and let H', H" be the closed halfspaces delimited by H. Define
the polyhedral complex

P={PNH|PecP}U{PNH |PecP}U{PNH"|PecP}

The refinement of ¢ with respect to H is the functzon ng € F™(Q) with associated
polyhedral complex P defined as Jollows: given P e P, (P) = ¢(P), where P is the
unique polyhedron in P that contains P.

The next results shows how to compute the facet-function of a refinement.

OBSERVATION 3.9. With the notation of Definition 3.8, let 1 be the facet-function
associated with ¢. Then, the facet-function 1 associated with ¢ is given by

By — W(F) if there exists a (unique) F € P~ containing F
0 otherwise,
for every Feprnt.

Proof. Let ]3’, P’ be the polyhedra in P such that F = }S’D JSA”, with P’ < P".
Further, let P/, P” be the unique polyhedra in P™ that contain P’, P” (respectively);
note that P’ < P”.

If there is F € P! containing | F then the fact that 7 is a polyhedral complex
implies that F = P’ N P”. Thus w( ) gi)(P’) - ng(P”) = ¢(P") — ¢(P") = (F).

Assume now that no element of P"~ ! contains F. Then there exists P € P" such
that /' = PNH and H intersects the interior of P, Then P’ = PNH' and P = PNH"
(or vice versa). It follows that ¢(F) = ¢(P’) — ¢(P") = ¢(P) — ¢(P) = 0. a

We now prove that the operations of sum and refinement commute: the refinement
of a sum is the sum of the refinements.

OBSERVATION 3.10. Let p functions ¢1,...,¢, € f”(G), with associated polyhe-
dral complexes P1,..., Py, be given. Define ¢ := ¢1+---+¢p. Let H be a hyperplane

inR", and let H', H” be the closed halfspaces delimited by H. Then d) ¢1 +- —|—¢p

Proof. Define (b (bl -+ qu It can be verified that qﬁ and (b are defined on

the same poyhedral complex which we denote by P. We now fix P € P" and show
that 6(P) = ¢(P).

This manuscript is for review purposes only.
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Since P € 73”, we have P =P N --- NP, N H', where P; € P} for every i. (We
ignore the case P = Py N---N P, N H”, which is identical.) Then

p p
O(P) = ¢(PiN---NP,) = ¢(P) =Y ¢i(PNH') = ¢(PN---NP,NH') = §(P),
=1 i=1

where the first and third equations follow from the definition of refinement, while the
second and fourth equations follow from the definition of the sum. ]

The lineality space of a (nonempty) polyhedron P = {z € R" | Az < b} is the null
space of the constraint matrix A. In other words, it is the set of vectors y € R™ such
that for every x € P the whole line {x + Ay | A € R} is a subset of P. We say that
the lineality space of P is trivial, if it contains only the zero vector, and nontrivial
otherwise.

Since, given a polyhedral complex P that covers R"™, all the nonempty polyhedra
in P share the same lineality space L, we will call L the lineality space of P.

LEMMA 3.11. Given an abelian group (G,+), pick ¢1,..., ¢, € F*(G), with as-
sociated polyhedral complexes P1,...,P,. Assume that for every i € [p] the lineality
space of P; is nontrivial. Define ¢ = ¢p1 + -+ + ¢, P as the underlying polyhedral
complez, and ¥ as the facet-function of ¢. Then for every hyperplane H C R"™, the
set

S=|J{FeP"!|FCHyF)+0}
is either empty or contains a line.

Proof. The proof is by induction on n. For n = 1, the assumptions imply that
all P; are equal to P, and each of these polyhedral complexes has R as its only
nonempty face. Since P"~! is empty, no hyperplane H such that S # @) can exist.

Now fix n > 2. Assume by contradiction that there exists a hyperplane H such
that S is nonempty and contains no line. Let (;5 be the refinement of ¢ with respect
to H, P be the underlying polyhedral complex, and 1/} be the associated facet-function.
Further, we define @ .= {PNH | P € 73}, which is a polyhedral complex that covers H.
Note that if H is identified with R*~! then we can think of Q as a polyhedral complex
that covers R®~!, and the restriction of ¥ to Q"!, which we denote by ¢’, can be
seen as a function in F"~1(G). We will prove that ¢’ does not satisfy the lemma,
contradicting the inductive hypothesis.

Since ¢ = ¢1 4 -+ ¢p, by Observation 3.10 we have (;5 ¢1 +- —|—¢p Note that
for every i € [p ] the hyperplane H is covered by the elements of Pr=1. This implies
that for every F' € P*~! and i € [ | there exists F; e 77" ! such that F C F,. Then,
by Observation 3.7, §(F) = 1y (Fy) + +1/Jp( )

Now, additionally suppose that F is contained in H, that is, FeQnl! Letie [p]
be such that the lineality space of P; is not parallel to H. Then no element of 771"

contains . By Observation 3.9, 1@(1@) = (0. We then conclude that

@(ﬁ) = Z’@(E) for every F € Q1

where J is the set of indices i such that the lineality space of P; is parallel to H. This

means that
¢'=> 4,

ic€J
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where ¢/ is the restriction of ¥; to Q! with Q; == {PNH|Pc 79\1} Note that
for every ¢ € J the lineality space of Q; is clearly nontrivial, as it coincides with the
lineality space of P;. R

NQW pick any F' € Q"~!. Note that if there exists F € P"~! such that F C F,
then F' = F. It then follows from Observation 3.9 that

U{Feo ) B(F) #0} = 5.
In other words,

(3.4) U{Freg | ¢F) #0} =5

Since S # H (as S contains no line), there exists a polyhedron F € Q"~!
such that F¥ C S and F' has a facet Fy which does not belong to any other poly-
hedron in Q"' contained in S. Then the facet-function v’ associated with ¢’ satis-
fies ¢/ (Fy) # 0. Let H' be the (n — 2)-dimensional affine space containing Fy. Then
the set

S =|J{FeQ?|FCH, F)#0}

is nonempty, as Fy C S’. Furthermore, we claim that S’ contains no line. To see why
this is true, take any F' € Q"2 such that F C H' and ¢/(F) # 0, and let F’, F" be
the two polyhedra in Q"' having F as facet. Then ¢'(F’) # ¢'(F"), and thus at
least one of these values (say ¢'(F”)) is nonzero. Then, by (3.4), F/ C S, and thus
also F' C S. This shows that S’ C S and therefore S’ contains no line.

We have shown that ¢’ does not satisfy the lemma. This contradicts the inductive
assumption that the lemma holds in dimension n — 1. 0

Finally, we can use this lemma to prove Proposition 3.3.

Proof of Proposition 3.3. Assume for the sake of a contradiction that
P
folz) = Z Aimax{l;1 (z),...,lin(x)} for every z € R™,
i=1

where p € N, Aq,..., A, € R and /;;: R® — R is an affine linear function for ev-
ery i € [p] and j € [n]. Define fi(z) = X\ max{l;;(x),..., ¢, (x)} for every i € [p],
which is a CPWL function.

Fix any i € [p] such that A\; > 0. Then f; is convex. Note that its epigraph

E; ={(z,2) e R" xR | z > {;;(x) for j € [n]}

is a polyhedron in R™*! defined by n inequalities, and thus has nontrivial lineality
space. Furthermore, the line orthogonal to the z-space is not contained in F;. Since
the underlying polyhedral complex P; of f; consists of the orthogonal projections of
the faces of E; (excluding E; itself) onto the x-space, this implies that P; has also
nontrivial lineality space. (More precisely, the lineality space of P; is the projection
of the lineality space of E;.)

If A\; < 0, then f; is concave. By arguing as above on the convex function — f;,
one obtains that the underlying polyhedral complex P; has again nontrivial lineality
space. Thus this property holds for every i € [p].

The set of affine linear functions R” — R forms an abelian group (with respect
to the standard operation of sum of functions), which we denote by (G,+). For
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every i € [plo, let ¢; be the function in F"(G) with underlying polyhedral complex P;
defined as follows: for every P € PP, ¢;(P) is the affine linear function that coincides
with f; over P. Define ¢ := ¢1 + --- + ¢, and let P be the underlying polyhedral
complex.

Note that for every P € P", ¢(P) is precisely the affine linear function that
coincides with fy within P. However, P may not coincide with Py, as there might
exist P’, P” € P? sharing a facet such that ¢(P’) = ¢(P”); when this happens, fo
is affine linear over P’ U P” and therefore P’ and P” are merged together in Pp.
Nonetheless, P is a refinement of Py, i.e., for every P € P} there exist Py, ..., P, € P"
(for some k > 1) such that P = PyU- - -UP;,. Moreover, ¢po(P) = ¢(Py) = --- = ¢(Py).
Denoting by 1 the facet-function associated with ¢, this implies for a facet F € P!
that (F) = 0 if and only if F is not subset of any facet F' € Py,

Let H be a hyperplane as in the statement of the proposition. The above discus-
sion shows that

T=J{FepPy ' |FCH}=J{FeP""|FCHF)#0}.

Using S := T, we obtain a contradiction to Lemma 3.11. ]

4. A Width Bound for Neural Networks with Small Depth. While the
proof of Theorem 1.1 by Arora et al. [5] shows that

CPWL,, = ReLU,([logy(n + 1)1),

it does not provide any bound on the width of the NN required to represent any
particular CPWL function. The purpose of this section is to prove that for fixed
dimension n, the required width for exact, depth-minimal representation of a CPWL
function can be polynomially bounded in the number p of affine pieces; specifically
by po(”z). This is closely related to works that bound the number of linear pieces of
an NN as a function of the size [44,45,49,51]. It can also be seen as a counterpart,
in the context of exact representations, to quantitative universal approximation theo-
rems that bound the number of neurons required to achieve a certain approximation
guarantee; see, e.g., [7,8,42,43,50].

4.1. The Convex Case. We first derive our result for the case of convex CPWL
functions and then use this to also prove the general nonconvex case. Our width bound
is a consequence of the following theorem about convex CPWL functions, for which
we are going to provide a geometric proof later.

THEOREM 4.1. Let f(x) = max{alz +b; | i € [p]} be a convex CPWL function
defined on R™. Then f can be written as

fly= > csmax{a/z+b;|ic S}
SClpl,
[S|<n+1

with coefficients cg € Z, for S C [p], |S] <n+1.

For the convex case, this yields a stronger version of Theorem 1.3, stating that
any (not necessarily convex) CPWL function can be written as a linear combination
of (n + 1)-term maxima. Theorem 4.1 is stronger in the sense that it guarantees that
all pieces of the (n + 1)-term maxima must be pieces of the original function, making
it possible to bound the total number of these (n + 1)-term maxima and, therefore,
the size of an NN representing f.

This manuscript is for review purposes only.
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THEOREM 4.2. Let f: R™ — R be a convex CPWL function with p affine pieces.
Then f can be represented by a ReLU NN with depth [logy(n + 1)] + 1 and width
O(p"th).

Proof. Using the representation of Theorem 4.1, we can construct an NN comput-
ing f by computing all the (n+1)-term max functions in parallel with the construction
of Lemma 1.2 (similar to the proof by Arora et al. [5] to show Theorem 1.1). This
results in an NN with the claimed depth. Moreover, the width is in the order of the
number of these (n + 1)-term max functions. This number can be bounded in terms
of the number of possible subsets S C [p] with |S| < n + 1, which is at most p"*!. O

Before we present the proof of Theorem 4.1, we show how we can generalize its
consequences to the nonconvex case.

4.2. The General (Nonconvex) Case. It is a well-known fact that every
CPWL function can be expressed as a difference of two convex CPWL functions, see,
e.g., [63, Theorem 1]. This allows us to derive the general case from the convex case.
What we need, however, is to bound the number of affine pieces of the two convex
CPWL functions in terms of the number of pieces of the original function. Therefore,
we consider a specific decomposition for which such bounds can easily be achieved.

PROPOSITION 4.3. Let f: R™ — R be a CPWL function with p affine pieces.
Then, one can write f as f = g — h where both g and h are convex CPWL functions
with at most p>"*1 pieces.

Proof. Suppose the p affine pieces of f are given by = — al'z +b;, i € [p]. Define
the function h(z) == 37, <, max{a] x + b;,a] © + b;} and let g == f + h. Then,
obviously, f = g — h. It remains to show that both g and h are convex CPWL
functions with at most p?"*+! pieces.

The convexity of h is clear by definition. Consider the (12’) = % < p? hy-
perplanes given by afx +b; = ajx +b;, 1 < i < j < p. They divide R™ into at
most (Zi) + (nlfl) +t (%2) < p?" regions (compare [15, Theorem 1.3]) in each of
which A is affine. In particular, h has at most p*>* < p?™*! pieces.

Next, we show that ¢ = f + h is convex. Intuitively, this holds because each
possible breaking hyperplane of f is made convex by adding h. To make this formal,
note that by the definition of convexity, it suffices to show that g is convex along each
affine line. For this purpose, consider an arbitrary line x(t) = ta + b, t € R, given by
ac€R"and b e R. Let f(t) := f(x(t)), §(t) = g(x(t)), and h(t) := h(z(t)). We need
to show that g: R — R is a convex function. Observe that f , g, and h are clearly
one-dimensional CPWL functions with the property § = f + h. Hence, it suffices
to show that g is locally convex around each of its breakpoints. Let ¢ € R be an
arbitrary breakpoint of g. If f is already locally convex around ¢, then the same holds
for g as well since h inherits convexity from h. Now suppose that ¢ is a nonconvex
breakpoint of f. Then there exist two distinct pieces of f, indexed by i,j € [p] with
i # j, such that f(#) = min{alz(t') + b;, aj z(t') 4 by} for all ' sufficiently close to ¢.
al z(t') + b;}. Thus,
adding this summand to f linearizes the nonconvex breakpoint of f , while adding all
the other summands preserves convexity. In total, g is locally convex around ¢, which
finishes the proof that g is a convex function.

Finally, observe that pieces of ¢ = f + h are always intersections of pieces of f
and h, for which we have only p - p?" = p?"*+! possibilities. 0

By construction, 2 (t') contains the summand max{aTz(t') + b;,

Having this, we may conclude the following.
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THEOREM 4.4. Let f: R™ — R be a CPWL function with p affine pieces.2 Then f
can be represented by a ReLU NN with depth [logy(n+1)]+1 and width O(p*» +3n+1).

Proof. Consider the decomposition f = g — h from Proposition 4.3. Using The-
orem 4.2, we obtain that both g and h can be represented with the required depth
Mogy(n +1)] + 1 and with width O((p?+1)n+1) = O(p?*+3n+1) Thus, the same
holds true for f. O

4.3. Extended Newton Polyhedra of Convex CPWL Functions. For our
proof of Theorem 4.1, we use a correspondence of convex CPWL functions with cer-
tain polyhedra, which are known as (extended) Newton polyhedra in tropical ge-
ometry [39]. These relations between tropical geometry and neural networks have
previously been applied to investigate expressivity of NNs; compare our references in
Subsection 1.5.

In order to formalize this correspondence, let CCPWL,, C CPWL,, be the set of
convex CPWL functions of type R* — R. For f(z) = max{alz + b, | i € [p]} in
CCPWL,,, we define its so-called extended Newton polyhedron to be

N(f) == conv({(a;, b;) € R" xR | i € [p]}) + cone({—eny1}) € R

We denote the set of all possible extended Newton polyhedra in R™*! as Newt,,. That
is, Newt,, is the set of (unbounded) polyhedra in R™*! that emerge from a polytope
by adding the negative of the (n + 1)-st unit vector —e, 1 as an extreme ray. Hence,
a set P C R™*! is an element of Newt,, if and only if P can be written as

P = conv({(a;,b;) € R" xR | i € [p]}) + cone({—e,11}).

Conversely, for a polyhedron P € Newt,, of this form, let F(P) € CCPWL,, be the
function defined by F(P)(x) = max{alz +b; | i € [p]}.

There is an intuitive way of thinking about the extended Newton polyhedron P
of a convex CPWL function f: it consists of all hyperplane coefficients (a,b) € R” x R
such that a”z + b < f(x) for all x € R™. This also explains why we add the extreme
ray —e,y1: decreasing b obviously maintains the property of a’z + b being a lower
bound on the function f.

In fact, there is a one-to-one correspondence between elements of CCPWL,, and
Newt,,, which is nicely compatible with some (functional and polyhedral) operations.
This correspondence has been studied before in tropical geometry [33,39], convex
geometry? [31], as well as neural network literature [1,12,44,66]. We summarize
the key findings about this correspondence relevant to our work in the following
proposition:

PROPOSITION 4.5. Let n € N and f1, fo € CCPWL,,. Then it holds that
(i) the functions N: CCPWL,, — Newt,, and F: Newt,, — CCPWL,, are well-

defined, that is, their output is independent from the representation of the input
by pieces or vertices, respectively,

(ii) N and F are bijections and inverse to each other,

(ii) N (max{fi, f2}) = conv(N(f1),N(f2)) = conv(N(f1) UN(f2)),

(iv) N(f1+ f2) = N(f1) + N(f2), where the + on the right-hand side is Minkowski
addition.

An algebraic way of phrasing this proposition is as follows: N and F are isomorphisms
between the semirings (CCPWL,,, max, +) and (Newt,,, conv, +).

2N (f) is the negative of the epigraph of the convex conjugate of f.
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4.4. Proof of Theorem 4.1. The rough idea to prove Theorem 4.1 is as follows.
Suppose we have a p-term max function f with p > n + 2. By Proposition 4.5, f
corresponds to a polyhedron P € Newt,, with at least n + 2 vertices. Applying a
classical result from discrete geometry known as Radon’s theorem allows us to carefully
decompose P into a “signed”® Minkowski sum of polyhedra in Newt,, whose vertices
are subsets of at most p — 1 out of the p vertices of P. Translating this back into the
world of CPWL functions by Proposition 4.5 yields that f can be written as linear
combination of p’-term maxima with p’ < p, where each of them involves a subset
of the p affine terms of f. We can then obtain Theorem 4.1 by iterating until every
occurring maximum expression involves at most n + 1 terms.

We start with a proposition that will be useful for our proof of Theorem 4.1.
Although its statement is well-known in the discrete geometry community, we include
a proof for the sake of completeness. To show the proposition, we make use of Radon’s
theorem (compare [15, Theorem 4.1]), stating that any set of at least n+2 points in R™
can be partitioned into two nonempty subsets such that their convex hulls intersect.

PROPOSITION 4.6. Given p > n+ 1 vectors (a;,b;) € R" X R, i € [p], there exists
a nonempty subset U C [p] featuring the following property: there is no ¢ € R"T!
with cp41 > 0 and v € R such that

cT(ai, b)) >~ forallic U, and

(4.1) . ,
¢ (a;, b)) <~ forallie[p|\U.

Proof. Radon’s theorem applied to the at least n + 2 vectors a;, @ € [p], yields a
nonempty subset U C [p] and coefficients A; € [0,1] with > .y Ai = 3, cppo A =1
such that ZieU )\iai = Zie[p]\U )\iai. Suppose that ZieU )\ibi < Zie[p]\U /\1b7, with-
out loss of generality (otherwise exchange the roles of U and [p] \ U).

For any ¢ and ~ that satisfy (4.1) and ¢,41 > 0 it follows that

v < CTZ)\z‘(ambi) <’ Z Ai(ai, bi) <,

€U i€[p)]\U

proving that no such ¢ and v can exist. 0

The following proposition is a crucial step in order to show that any convex CPWL
function with p > n + 1 pieces can be expressed as an integer linear combination of
convex CPWL functions with at most p — 1 pieces.

PROPOSITION 4.7. Let f(x) = max{al z+b; | i € [p]} be a convex CPWL function
defined on R™ with p > n+ 1. Then there exist a subset U C [p| such that

(4.2) Z max{al x +b; | i€ [p]\ W} = Z max{alx +b; | i€ [p]\ W}
WCU, WCu,
|[W| even W | odd

Proof. Consider the p > n+1 vectors (a;,b;) € R"™1 i € [p]. Choose U according
to Proposition 4.6. We show that this choice of U guarantees equation (4.2).

For W C U, let fw(z) = max{alz +b; | i € [p] \ W} and consider its extended
Newton polyhedron Py = N (fw) = conv({(ai,b;) | i € [p] \ W}) + cone({—en+1}).

3Some polyhedra may occur with “negative” coefficents in that sum, meaning that they are
actually added to P instead of the other polyhedra. The corresponding CPWL functions will then
have negative coefficients in the linear combination representing f.
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By Proposition 4.5, equation (4.2) is equivalent to

Peven:: Z PW: Z PW::POddu
WCU, WCU,
|W| even |[W| odd
where the sums are Minkowski sums.
We show this equation by showing that for all cost vectors ¢ € R"*1 it holds that

(4.3) max{ch | © € Poven} = max{ch | € Poaa}-

Let ¢ € R™! be an arbitrary cost vector. If ¢,11 < 0, both sides of (4.3) are
infinite. Hence, from now on, assume that ¢,4; > 0. Then, both sides of (4.3) are
finite since —e, 11 is the only extreme ray of all involved polyhedra.

Due to our choice of U according to Proposition 4.6, there exists an index u € U
such that

4.4 ¢’ Qy,b,) < max e’ ai,b;).
(1.4 () < max ¢ (a.b)

We define a bijection ¢,, between the even and the odd subsets of U as follows:

_f Wu{u}, ifugWw,
Pu(V) '_{ W\ {u}, ifueWw

That is, ¢, changes the parity of W by adding or removing u. Considering the
corresponding polyhedra Py and P, (), this means that ¢, adds or removes the
extreme point (a,, by) to or from Py,. Due to (4.4) this does not change the optimal
value of maximizing in c-direction over the polyhedra, that is,

max{c’z |z € Py} = max{c"z |z € P,,w}-
Hence, we may conclude

max{c’z | £ € Poyen} = Z max{c’z |z € Py}
WCu,
|W| even

= Z max{c’z |z € P, ow)}
WCu,
|W| even

= Z max{c’z | z € Py}
WCu,
|W odd

=max{c’z | z € Poaa},

which proves (4.3). Thus, the claim follows. |
With the help of this result, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let f(z) = max{alz +b; | i € [p]} be a convex CPWL
function defined on R™. Having a closer look at the statement of Proposition 4.7,
observe that only one term at the left-hand side of (4.2) contains all p affine combina-
tions al z + b;. Putting all other maximum terms on the other side, we may write f
as an integer linear combination of maxima of at most p — 1 summands. Repeating
this procedure until we have eliminated all maximum terms with more than n + 1
summands yields the desired representation. 0

This manuscript is for review purposes only.



978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

TOWARDS DEPTH LOWER BOUNDS OF RELU NETWORKS 25

4.5. Potential Approaches to Show Lower Bounds on the Width. In
light of the upper width bounds shown in this section, a natural question to ask is
whether also meaningful lower bounds can be achieved. This would mean constructing
a family of CPWL functions with p pieces defined on R™ (with different values of p
and n), for which we can prove that a large width is required to represent these
functions with NNs of depth [logy(n 4+ 1)] + 1.

A trivial and not very satisfying answer follows, e.g., from [51] or [57]: for fixed
input dimension n, they show that a function computed by an NN with k& hidden
layers and width w has at most O(w*™) pieces. For our setting, this means that an
NN with logarithmic depth needs a width of at least O(p!/("1°8™)) to represent a
function with p pieces. This is, of course, very far away from our upper bounds.

Similar upper bounds on the number of pieces have been proven by many other
authors and are often used to show depth-width trade-offs [5,44,45,49,60]. However,
there is a good reason why all these results only give rise to very trivial lower bounds
for our setting: the focus is always on functions with considerably many pieces, which
then, consequently, need many neurons to be represented (with small depth). How-
ever, since the lower bounds we strive for depend on the number of pieces, we would
need to construct a family of functions with comparably few pieces that still need a
lot of neurons to be represented. In general, it seems to be a tough task to argue why
such functions should exist.

A different approach could leverage methods from complexity theory, in particular
from circuit complexity. Neural networks are basically arithmetic circuits with very
special operations allowed. In fact, they can be seen as a tropical variant of arithmetic
circuits. Showing circuit lower bounds is a notoriously difficult task in complexity
theory, but maybe some conditional result (based on common conjectures similar to
P # NP) could be established.

We think that the question whether our bounds are tight, or whether at least
some non-trivial lower bounds on the width for NNs with logarithmic depth can be
shown, is an exciting question for further research.

5. Understanding Expressivity via Newton Polytopes. In Section 2, we
presented a mixed-integer programming approach towards proving that deep NNs can
strictly represent more functions than shallow ones. However, even if we could prove
Assumption 2.4, this approach would not generalize to deeper networks due to com-
putational limitations. Therefore, different ideas are needed to prove Conjecture 1.4
in its full generality. In this section, we point out that Newton polytopes of convex
CPWL functions (similar to what we used in the previous section) could also be a
way of proving Conjecture 1.4. Using a homogenized version of Proposition 4.5, we
provide an equivalent formulation of Conjecture 1.4 that is completely phrased in the
language of discrete geometry.

Recall that, by Proposition 2.3, we may restrict ourselves to NNs without bi-
ases. In particular, all CPWL functions represented by such NNs, or parts of it, are
positively homogeneous. For the associated extended Newton polyhedra (compare
Proposition 4.5), this has the following consequence: all vertices (a,b) € R™ x R lie
in the hyperplane b = 0, that is, their (n 4 1)-st coordinate is 0. Therefore, the
extended Newton polyhedron of a positively homogeneous, convex CPWL function
f(z) = max{alx | i € [p]} is cor — ‘tely characterized by the so-called Newton poly-
tope, that is, the bounded polytope conv({a; | i € [p]}) C R™.

To make this formal, let CCPWL,, be the set of all positively homogeneous, convex
CPWL functions of type R® — R and let Newt,, be the set of all bounded, convex
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polytopes in R™. Moreover, for f(z) = max{alz | i € [p]} in CCPWL,, let
N(f) == conv({a; | i € [p]}) € Newt,,
be the associated Newton polytope of f and for P = conv({a; | i € [p]}) € Newt,, let
F(P)(z) = max{alz | i € [p]}

be the so-called associated support function [30] of P in CCPWL,,. With this notation,
we obtain the following variant of Proposition 4.5.

PROPOSITION 5.1. Let n € N and f1, fo € CCPWL,,. Then it holds that
(i) the functions N: CCPWL,, — Newt,, and F: Newt,, — CCPWL,, are well-
defined, that is, their output is independent from the representation of the input
by pieces or vertices, respectively,
(ii)) N and F are bijections and inverse to each other,

(iii) N (max{f, f2}) = conv(N(f1), N(f2)) = conv(N(f1) UN(f2)),

(iv) N(fi + f2) = N(f1) + N(f2), where the + on the right-hand side is Minkowski
addition.

In other words, N and F are isomorphisms between the semirings (CCPWL,,, max, +)
and (Newt,,, conv, +).

Next, we study which polytopes can appear as Newton polytopes of convex CPWL
functions computed by NNs with a certain depth; compare Zhang et al. [66].

Before we apply the first ReLLU activation, any function computed by an NN is
linear. Thus, the corresponding Newton polytope is a single point. Starting from
that, let us investigate a neuron in the first hidden layer. Here, the ReLLU activation
function computes a maximum of a linear function and 0. Therefore, the Newton
polytope of the resulting function is the convex hull of two points, that is, a line
segment. After the first hidden layer, arbitrary many functions of this type can be
added up. For the corresponding Newton polytopes, this means that we take the
Minkowski sum of line segments, resulting in a so-called zonotope.

Now, this construction can be repeated layerwise, making use of Proposition 5.1:
in each hidden layer, we can compute the maximum of two functions computed by
the previous layers, which translates to obtaining the new Newton polytope as a
convex hull of the union of the two original Newton polytopes. In addition, the
linear combinations between layers translate to scaling and taking Minkowski sums
of Newton polytopes.

This intuition motivates the following definition. Let Newtglo) be the set of all
polytopes in R™ that consist only of a single point. Then, for each & > 1, we recursively
define

p
Newt) = {Zconv(Pi,Qi)

i=1

P, Q; € Newtg“_l), pE N} ,

where the sum is a Minkowski sum of polytopes. A first, but not precisely accurate
interpretation is as follows: the set mé’“) contains the Newton polytopes of posi-
tively homogeneous, convex CPWL functions representable with a k-hidden-layer NN.
See Figure 5 for an illustration of the case k = 2.

Unfortunately, this interpretation is not accurate for the following reason: our
NNs are allowed to have negative weights, which cannot be fully captured by Min-

kowski sums as introduced above. Therefore, it might be possible that a k-hidden-layer
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|

I / Newt
Newt(o) Newt(l)
points zonotopes

line segments conv (two zonotopes)

F1G. 5. Set of polytopes that can arise as Newton polytopes of convex CPWL functions computed
by (parts of) a 2-hidden-layer NN.

NN can compute a convex function with Newton polytope not in Newtgc). Luckily, one

can remedy this shortcoming, and even extend the interpretation to the non-convex
case, by representing the computed function as difference of two convex functions.

THEOREM 5.2. Any positively homogeneous (not necessarily convex) CPWL func-
tion can be computed by a k-hidden-layer NN if and only if it can be written as the
difference of two positively homogeneous, convex CPWL functions with Newton poly-
topes in m%k).

Proof. We use induction on k. For k = 0, the statement is clear since it holds
precisely for linear functions. For the induction step, suppose that, for some k > 1,
the equivalence is valid up to k£ — 1 hidden layers. We prove that it is also valid for k&
hidden layers.

We need to show two directions. For the first direction, assume that f is an
arbitrary, positively homogeneous CPWL function that can be written as f =g — h
with N (g), N'(h) € Newt¥). We need to show that a k-hidden-layer NN can com-
pute f. We show that this is even true for g and h, and hence, also for f. By
definition of m%k), there exist a finite number p € N and polytopes P;,Q; €
NewtF Y, i € [p], such that N(g) = >F_, conv(P;,Q;). By Proposition 5.1, we
have g = Y7 max{F(P;),F(Q;)}. By induction, F(P;) and F(Q;) can be com-
puted by NNS with k£ — 1 hidden layers. Since the maximum terms can be computed
with a single hidden layer, in total a k-th hidden layer is sufficient to compute g.
An analogous argument applies to h. Thus, f is computable with k& hidden layers,
completing the first direction.

For the other direction, suppose that f is an arbitrary, positively homogeneous
CPWL function that can be computed by a k-hidden-layer NN. Let us separately
consider the ny neurons in the k-th hidden layer of the NN. Let a;, ¢ € [ng], be the
weight of the connection from the i-th neuron in that layer to the output. Without
loss of generality, we have a; € {£1}, because otherwise we can normalize it and
multiply the weights of the incoming connections to the i-th neuron with |a;| instead.
Moreover, let us assume that, by potential reordering, there is some m < nj such that
a; =1 for i < m and a; = —1 for i > m. With these assumptions, we can write

np

(5.1) f:Zmax{O,fi}— > max{0, fi},

i=m-+1
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where each f; is computable by a (k — 1)-hidden-layer NN, namely the sub-NN com-
puting the input to the i-th neuron in the k-th hidden layer.
By induction, we obtain f; = ¢g; — h; for some positively homogeneous, convex

functions g;, h; with N'(g;), N (h;) € Newtgﬁl). We then have

(5.2) max{0, f;} = max{g;, hi} — h;
We define
m Nk
g = Zmax{gi,hi} + Z hi
i=1 i=m+1
and
m Nk
h = th + Z max{gi, hz}
i=1 i=m+1

Note that g and h are convex by construction as a sum of convex functions and
that (5.1) and (5.2) imply f = g — h. Moreover, by Proposition 5.1,

m ni
N(g) = conv(N(g:), N(hi)) + Y conv(N(hi), N(h;)) € Newt(”
i=1 i=m+1
and
o m o o N o o -
N(h) =" conv(N(hi), N (hi)) + > conv(N(g), N'(hs)) € Newt ).
i=1 i=m+1
Hence, f can be represented as desired, completing also the other direction. ]

The power of Theorem 5.2 lies in the fact that it provides a purely geometric
characterization of the class ReLU(k). The classes of polytopes Newt are solely
defined by the two simple geometric operations Minkowski sum and convex hull of
the union. Therefore, understanding the class ReLU(k) is equivalent to understanding
what polytopes one can generate by iterative application of these geometric opera-
tions.

In particular, we can give yet another equivalent reformulation of our main conjec-
ture. To this end, let the simplex A,, := conv{0, eq,...,e,} C R™ denote the Newton
polytope of the function f, = max{0,z1,...,z,} for each n € N.

CONJECTURE 5.3. For every k € N, n = 2%, there does not exist a pair polytopes

PQe Newtslk) with A, + Q = P (Minkowski sum,).

THEOREM 5.4. Conjecture 5.3 is equivalent to Conjecture 1.4 and Conjecture 1.5.

Proof. By Proposition 1.6, it suffices to show equivalence between Conjecture 5.3
and Conjecture 1.5. By Theorem 5.2, f,, can be represented with k hidden layers if
and only if there are functions g and h with Newton polytopes in Newt!F) satisfying
fn+h = g. By Proposition 5.1, this happens if and only if there are polytopes

P,Q € Newt"™ with A, +Q = P. 0

It is particularly interesting to look at special cases with small k. For k = 1,
the set Wﬁ}) is the set of all zonotopes. Hence, the (known) statement that
max{0,x1,z2} cannot be computed with one hidden layer [46] is equivalent to the
fact that the Minkowski sum of a zonotope and a triangle can never be a zonotope.
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The first open case is the case k = 2. An unconditional proof that two hidden
layers do not suffice to compute the maximum of five numbers is highly desired. In the
regime of Newton polytopes, this means to understand the class W&P. It consists
of finite Minkowski sums of polytopes that arise as the convex hull of the union of two
zonotopes. Hence, the major open question here is to classify this set of polytopes.

Finally, let us remark that there exists a generalization of the concept of polytopes,
known as virtual polytopes [48], that makes it possible to assign a Newton polytope
also to non-convex CPWL functions. This makes use of the fact that every (non-
convex) CPWL function is a difference of two convex ones. Consequently, a virtual
polytope is a formal Minkowski difference of two ordinary polytopes. Using this
concept, Theorem 5.2 and Conjecture 5.3 can be phrased in a simpler way, replacing
the pair of polytopes with a single virtual polytope.

6. Future Research. The most obvious and, at the same time, most exciting
open research question is to prove or disprove Conjecture 1.4, or equivalently Con-

jecture 1.5 or Conjecture 5.3. The first step could be to prove Assumption 2.4. The

assumption is intuitive because every breakpoint introduced at any place outside the
hyperplanes H;; needs to be canceled out later. Therefore, it is natural to assume
that these breakpoints do not have to be introduced in the first place. However, this
intuition does not seem to be enough for a formal proof because it could occur that
additional breakpoints in intermediate steps, which are canceled out later, also influ-
ence the behavior of the function at other places where we allow breakpoints in the
end.

Another step towards resolving our conjecture may be to find an alternative proof
of Theorem 2.5, not using Assumption 2.4. This might also be beneficial for general-
izing our techniques to more hidden layers, since, while theoretically possible, a direct
generalization of the MIP approach is infeasible due to computational limitations. For
example, it might be particularly promising to use a tropical approach as described
in Section 5 and apply methods from polytope theory to prove Conjecture 5.3.

In light of our results from Section 3, it would be desirable to provide a complete
characterization of the functions contained in ReLU(k). Another potential research
goal is improving our upper bounds on the width from Section 4 and/or proving
matching lower bounds as discussed in Subsection 4.5.

Some more interesting research directions are the following:

e establishing or strengthening our results for special classes of NNs like recur-
rent neural networks (RNNSs) or convolutional neural networks (CNNs),

e using exact representation results to show more drastic depth-width trade-offs
compared to existing results in the literature,

e understanding how the class ReLU(k) changes when a polynomial upper
bound is imposed on the width of the NN; see related work by Vardi et
al. [62].
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