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Abstract
Weinvestigate the information complexity ofmixed-integer convexoptimizationunder
different types of oracles. We establish new lower bounds for the standard first-order
oracle, improving upon the previous best known lower bound. This leaves only a lower
order linear term (in the dimension) as the gap between the lower and upper bounds.
This is derived as a corollary of a more fundamental “transfer” result that shows how
lower bounds on information complexity of continuous convex optimization under
different oracles can be transferred to the mixed-integer setting in a black-box manner.
Further, we (to the best of our knowledge) initiate the study of, and obtain the first
set of results on, information complexity under oracles that only reveal partial first-
order information, e.g., where one can only make a binary query over the function
value or subgradient at a given point. We give algorithms for (mixed-integer) convex
optimization that work under these less informative oracles.We also give lower bounds
showing that, for some of these oracles, every algorithm requires more iterations to
achieve a target error compared to when complete first-order information is available.
That is, these oracles are provably less informative than full first-order oracles for the
purpose of optimization.
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1 First-order information complexity

We consider the problem class of mixed-integer convex optimization:

inf{ f (x, y) : (x, y) ∈ C, (x, y) ∈ Z
n × R

d}, (1)

where f : Rn × R
d → R is a convex (possibly nondifferentiable) function and

C ⊆ R
n × R

d is a closed, convex set. Given ε ≥ 0, we wish to report a point
(x, y) ∈ C∩(Zn×Rd) such that f (x, y) ≤ f (x′, y′)+ε for all (x′, y′) ∈ C∩(Zn×Rd).
Such a point will be called an ε-approximate solution and points in C ∩ (Zn × R

d)

will be called feasible solutions.We say that x1, . . . , xn are the integer-valued decision
variables or simply the integer variables of the problem, and y1, . . . , yd are called the
continuous variables.

The notion of information complexity (a.k.a. oracle complexity or analytical com-
plexity) goes back to foundational work by Nemirovski and Yudin [13] on convex
optimization (without integer variables) and is based on the following. An algorithm
for reporting an ε-approximate solution to an instance ( f ,C) must be “given” the
instance somehow. Allowing only instances with explicit, algebraic descriptions (e.g.,
the case of linear programming) can be restrictive in some settings. To work with
more general, nonlinear instances, the algorithm is allowed to make queries to an ora-
cle to collect information about the instance. More formally, we have the following
definition.

Definition 1 An oracle O for an optimization problem class I is given by a family
Q of possible queries along with a set H of possible answers or responses. A query
q ∈ Q is a function q : I → H . We say that q(I ) ∈ H is the answer or response to
the query q for the instance I ∈ I.

Any algorithmusing such an oracle to find an ε-approximate solution for an instance
makes queries about the instance in a sequence according to some strategy depending
on the queries made and answers received, which we define formally as its query
strategy.

Definition 2 A query strategy is a function D : (Q × H)∗ → Q, where (Q × H)∗
denotes the set of all finite sequences over Q × H , including the empty sequence.
The transcript �(D, I ) of a strategy D on an instance I = ( f ,C) is the sequence of
query and response pairs (qi , qi (I )), i = 1, 2, . . . obtained when one applies D on I ,
i.e., q1 = D(∅) and qi = D((q1, q1(I )), . . . , (qi−1, qi−1(I ))) for i ≥ 2.

If different instances with no common ε-approximate solution produce the same
transcript for the queries an algorithm has made, then the algorithm cannot tell them
apart and will be unable to reliably report an ε-solution for those instances after those
queries. The goal is to design a query strategy that can report an ε-approximate solution
after making the smallest number of queries. This motivates the following definition
of information complexity:
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Definition 3 Given a family of instancesI and access to an oracleO, the ε-information
complexity icomp ε(D, I ,O) of an instance I for a query strategy D, is defined as
the minimum natural number k such that the set of all instances in I for which O
returns the same responses as the instance I to the first k queries of D have a common
ε-approximate solution. The ε-information complexity of the problem class I with
respect to the oracle O, is defined as

icomp ε(I,O) := inf
D

sup
I∈I

icomp ε(D, I ,O)

where the infimum is taken over all query strategies.

Thus, to prove an upper bound u on icomp ε(I,O), it suffices to construct a query
strategy that requires, in theworst case, atmost u queries to narrowdown to a collection
of instances that all have a common ε-approximate solution. On the other hand, to
establish a lower bound of � on icomp ε(I,O), one needs to show that for any query
strategy D, there exists a collection of instances in I that give the same responses to
the first � queries of D (on these instances), and there is no point in Rn ×R

d that is a
common ε-approximate solution to all these instances.

While we introduce information complexity allowing for any general choice of
oracle, the standard oracle that has been studied over the past several decades for
convex optimization is the so-called (full-information) first-order oracle, which has
two types of queries indexed by points inRn×Rd : i) a separation oracle query indexed
by a point z ∈ R

n+d reports “YES” if z ∈ C and otherwise reports a separating
hyperplane for z and C , ii) a subgradient oracle query indexed by a point z ∈ R

n+d
reports f (z) and a subgradient for f at z. Tight lower and upper bounds (differing
by only a small constant factor) on the number of queries required were obtained
by Nemirovski and Yudin in their seminal work [13] for the case with no integer
variables; roughly speaking, the bound is�

(
d log

( 1
ε

))
. These insights were extended

to the mixed-integer setting in [2, 3, 14], with the best known lower and upper bounds
stated in [2].

Observe that the response to any separation/subgradient query is a vector in Rn+d .
Thus, each query reveals at least n+ d bits of information about the instance. A more
careful accounting that measures the “amount of information” accrued would track
the total number of bits of information obtained as opposed to just the total number
of oracle queries made. A natural question, posed in [2], is whether the bounds from
the classical analysis would change if one uses this new measure of the total number
of bits, as opposed to the number of queries. The intuition, roughly, is that one should
need a factor (n + d) log

( 1
ε

)
larger than the number of first-order queries, because

one should need to probe at least log
( 1

ε

)
bits in n + d coordinates to recover the

full subgradient/separating hyperplane (up to desired approximations). We attempt to
make some progress on this question in this paper.

The above discussion suggests that one should consider oracles that return a desired
bit of a desired coordinate of the separating hyperplane vector or subgradient.However,
one can imagine making other binary queries on the instance; for example, one can
pick a direction and ask for the sign of the inner product of the subgradient and this
direction. In fact, one can consider more general binary queries that have nothing to do

123



A. Basu et al.

with subgradients/separating hyperplanes. If one allows all possible binary queries,
i.e., one can use any function from the space of instances to {0, 1} as a query, then one
can simply ask for the appropriate bits of the trueminimizer and in O((n+d) log(1/ε))
queries, one can get an ε-approximate solution. Amatching lower bound follows from
a fairly straightforward counting argument. Thus, allowing for all possible binary
queries gives the same information complexity bound as the original Nemirovski-
Yudin bound with subgradient queries in the n = 0 (no integer variables) case, but is
an exponential improvement when n ≥ 1 (see [2] and the discussion below). What
this shows is that the bounds on information complexity can be quite different under
different oracles. With all possible binary queries, while each query reveals only a
single bit of information, the queries themselves are a much richer class and this
compensates to give the same bound in the continuous case and exponentially better
bounds in the presence of integer variables. Thus, to get a better understanding of this
trade-off, we restrict to queries that still extract information by only acting “locally”.

1.1 Our contributions

Oracles based on first-order information. Our first contribution is formalizing this
notion of general “local” queries. While we focus on first-order information, our
framework can be readily extended to consider, for example, information from higher-
order derivatives.

Definition 4 Let n, d ∈ Z+ such that n+ d ≥ 1. An oracle using first-order informa-
tion O(G,H) for a family I of instances of (1) consists of two parts:

1. For every z ∈ [−R, R]n+d , there exist threemaps gsepz : I → R
n+d , gvalz : I → R,

and gsubz : I → R
n+d such that for all ( f ,C) ∈ I the following properties hold.

(a) C ⊆ {z′ ∈ R
n+d : 〈gsepz ( f ,C), z′〉 < 〈gsepz ( f ,C), z〉} if z /∈ C and

gsepz ( f ,C) = 0 if z ∈ C . In other words, gsepz ( f ,C) returns a (normal vector
to a) separating hyperplane if z /∈ C . We will assume that a nonzero response
gsepz ( f ,C) has norm 1, since scalings do not change the separation property.

(b) gvalz ( f ,C) = f (z). In other words, gvalz ( f ,C) returns the function value for
f at z.

(c) gsubz ( f ,C) ∈ ∂ f (z), where ∂ f (z) denotes the subdifferential (the set of all
subgradients) of f at z. In other words, gsubz ( f ,C) returns a subgradient for f
at z.

Such maps will be called first-order maps. A collection of first-order maps, one
for every z, is called a first-order chart and will be denoted by G.

2. There are three sets of functionsHsep,Hval, andHsub and with domains Rn+d , R
and Rn+d respectively. We will use the notationH = Hsep ∪Hval ∪Hsub.H will
be called the collection of permissible queries of the oracle.

An algorithm for instances of (1) using O(G,H) can, at any iteration, choose a
point z and a function h ∈ H and receive the response h(gsepz ( f̂ , Ĉ)), h(gvalz ( f̂ , Ĉ)) or
h(gsubz ( f̂ , Ĉ), depending on whether h ∈ Hsep, h ∈ Hval or h ∈ Hsub, where f̂ and Ĉ
are the objective function and feasible region, respectively, of the unknown instance.
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Hence, queries to an oracle O(G,H) using first-order information are indexed by
(z, h), z ∈ R

n+d , h ∈ H. Since the goal of this paper is to provide bounds for different
types of such oracles, i.e., with different permissible queries H, let us define some
cases of interest.

Definition 5 (Examples of oracles)

1. (Full-information first-order oracle) When H consists only of the identity func-
tions, i.e., hsep(gsepz ( f̂ , Ĉ)) = gsepz ( f̂ , Ĉ), hval(gvalz ( f̂ , Ĉ)) = gvalz ( f̂ , Ĉ) and
hsub(gsubz ( f̂ , Ĉ)) = gsubz ( f̂ , Ĉ), we recover a full-information first-order oracle.

2. (Bit oracle) Let Hbit be the set of binary queries that return a desired bit (of
a desired coordinate) of the binary representation of gsepz ( f̂ , Ĉ), gvalz ( f̂ , Ĉ) or
gsubz ( f̂ , Ĉ). LetHbit∗ be the shifted bit oracle that additionally returns a desired bit
of gvalz ( f̂ , Ĉ) + u, for any u ∈ R, i.e. Hbit∗ allows querying a bit of the function
value shifted by some number.

3. (Inner product threshold queries) Let

Hdir := {hsepu,c : hsepu,c(g
sep
z ( f̂ , Ĉ)) = sgn(〈u, gsepz ( f̂ , Ĉ)〉 − c),u ∈ R

n+d , c ∈ R}
∪ {hvalu,c : hvalu,c(g

val
z ( f̂ , Ĉ)) = sgn(u · gvalz ( f̂ , Ĉ)− c), u ∈ R, c ∈ R}

∪ {hsubu,c : hsubu,c(g
sub
z ( f̂ , Ĉ)) = sgn(〈u, gsubz ( f̂ , Ĉ)〉 − c),u ∈ R

n+d , c ∈ R},

where sgn denotes the sign functionmapping to {−1, 1}, be the set of binary queries
that answerswhether the inner product of the separating hyperplane, function value
or subgradient, with a vector or a number of choice u or u in the appropriate space,
is at least some value c or not. We write these asHdir since these queries allow for
the choice of a “direction” u, or a number u in the function value case, as part of
the query.

4. When H is the the set of all possible binary functions on R
n+d for the separating

hyperplanes, R for the functions values, and R
n+d for the subgradients, we will

call the resulting oracle the general binary oracle based on G.
These now give us a variety of oracles using first-order information, that clearly

provide very different information for each query depending on the choice of permis-
sible queriesH. Note that different first-order charts will result in different oracles of
each of these types that may give different answers at any point, depending on which
separating hyperplane/subgradient the oracle’s first-order map selects at those points
for that instance.

We are now ready to state our quantitative results for lower and upper bounds
on the information complexity of mixed-integer convex optimization under different
oracles; see Table 1 for a summary. It is not hard to see that we need to restrict the set
of possible instances I in order to have meaningful (finite) information complexity
icompε(I,O). We will focus on the following standard parameterization.

Definition 6 Define In,d,R,ρ,M to be the set of all instances of (1) such that:

(i) C is contained in the box {z ∈ R
n × R

d : ‖z‖∞ ≤ R}. The case C = {z ∈
R
n × R

d : ‖z‖∞ ≤ R} will be called unconstrained.
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(ii) If (x�, y�) is an optimal solution of the instance, then there exists ŷ ∈ R
d satisfying

{(x�, y) : ‖y− ŷ‖∞ ≤ ρ} ⊆ C . In other words, there is a “strictly feasible” point
(x�, ŷ) in the same fiber as the optimum (x�, y�).

(iii) f is Lipschitz continuous with respect to the ‖ · ‖∞-norm with Lipschitz con-
stant M on {x} × [−R, R]d for all x ∈ [−R, R]n ∩ Z

n . In other words,
for any (x, y), (x, y′) ∈ (Zn × R

d) ∩ [−R, R]n+d with ‖y − y′‖∞ ≤ R,
| f (x, y)− f (x, y′)| ≤ M‖y− y′‖∞ with the convention that∞−∞ = 0.

Lower bounds Our first result is a “transfer” theorem that will be a powerful tool for
obtaining concrete mixed-integer lower bounds under different oracles. This theorem
lifts lower bounds for unconstrained optimization from the continuous to the mixed-
integer setting. In particular, if one has a lower bound �with respect to an oracle using
first-order information (Definition 4) for the information complexity for some family
of purely continuous instances, then one can “transfer” that lower bound to the mixed-
integer case as 	(2n�) with access to the “same” oracle in the n + d dimensional
space. For this notion, we require the set of permissible queries H to be hereditary
(Definition 20). Roughly speaking, this means that the set of queries has the same
richness on a purely continuous space as it is in a mixed-integer space. We formally
define hereditary queries in Sect. 2, and note that all of the types of permissible queries
discussed in Definition 5 satisfy this property, except for Hbit (the slightly enhanced
Hbit∗ queries are hereditary).

Theorem 7 Let d ≥ 1 be any natural number. For every n ∈ Z+, let Hn,d be any
class of hereditary permissible queries (Definitions 4 and 20) for In,d,R,ρ,M, and
assume H0,d contains function threshold queries hc that answer hc(gvalz ( f̂ , Ĉ)) :=
sgn(gvalz ( f̂ , Ĉ) + c) for any c ∈ R. Let ε ≥ 0. Suppose there exists a class
I ⊆ I0,d,R,ρ,M of continuous convex (unconstrained) optimization problems in
R
d , and a first order chart G0 for I such that icompε(I,O(G0,H0,d)) ≥ �. Sup-

pose further that all instances in I have the same optimal value. Then, for any
number of integer variables n ≥ 1, there is a first order chart Gn such that
icompε(In,d,R,ρ,M ,O(Gn,Hn,d)) ≥ 2n−1�.

As a first consequence of this transfer theorem we obtain a sharpened lower bound
for the standard full-information first-order oracle case for mixed-integer problems.
For this setting, Basu [2] proved the lower bound of 	

(
2n · d log ( 2R

3ρ

))
. However, this

bound is independent of the Lipschitz constant M of the objective function, and thus
does not capture the hardness of the problem as M increases. By applying Theorem 7
to the classical lower bound of 	

(
d log

(MR
ε

))
for continuous convex optimization

with the standard first-order oracle by Nemirovski and Yudin [13], and combining the
result with the existing mixed-integer lower bound, we obtain the following improved
bound.

Corollary 8 There exists a first-order chart G such that for the full-information first-
order oracle based on G (Definition 5, part 1.) we have

icomp ε(In,d,R,ρ,M ,O(G,H)) = 	

(
2n

(
1+ d log

(
MR

min{ρ, 1}ε
)))

.
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Moving on to “non-standard” oracles, we consider mixed-integer convex optimiza-
tion under the general binary oracle. Recall from Definition 5, part 4., that this means
that the algorithm can make any binary query on subgradients/separating hyperplanes.
Despite the power of these queries, we prove a separation between the information
complexity under the standard full-informationfirst-order oracle and the general binary
oracle, i.e., the latter provides quantitatively less information for solving the problem.
For example, in the pure continuous setting, O(d) queries suffice (ignoring the loga-
rithmic dependence on other parameters) under the full-information first-order oracle.
However, we show that 	(d5/4) queries are needed under the general binary oracle.
More precisely, we show the following lower bound.

Theorem 9 For every n ≥ 0 and any ε ≤ 1
d4
, there exists a first-order chart G such

that for the general binary oracle based on G, i.e., H is the set of all possible binary
functions (Definition 5, part 4.), we have

icomp ε(In,d,R,ρ,M ,O(G,H)) = 	̃

(
2n

(
1+max

{
d

5
4 , d log

(
MR

min{ρ, 1}ε
)}))

,

where 	̃ hides polylogarithmic factors in d.

Wenote that, sinceHbit ,Hbit∗ andHdir aremore restrictive than the general binary
oracle, this lower bound applies to oracles with those permissible queries as well. The
proof of this result relies on a connection between information complexity and mem-
ory constrained algorithms for convex optimization, and the recent lower bound for
the latter from [4], which improved upon the results of [12] (in addition to Theorem 7
for lifting the result to the mixed-integer case). We note that for n = 0 (no integer con-

strained variables), the bound can be improved to 	̃
(
max

{
d

3
2 , d log

(
MR

min{ρ,1}ε
)})

;

see Theorems 1 and 2 in [4] for details.

Upper bounds We now present upper bound results that illustrate the connection
between information complexity based on full-information first-order oracles and
information complexity based on binary queries on separating hyperplanes and sub-
gradients. We first formalize the intuition that by making roughly O

(
(n + d) log

( 1
ε

))

bit or inner product sign queries on a separating hyperplane or subgradient, one should
have enough information to solve the problem as with full information (Theorems 10
and 11). Next, in Theorem 12 and Corollary 13, we show how this natural bound can
be improved in certain settings.

Theorem 10 Assume d ≥ 1. For U > 0, consider the subclass of instances of
In,d,R,ρ,M whose objective function values lie in [−U ,U ], and the fiber over the
optimal solution contains a z such that the (n + d)-dim ρ-radius �∞ ball centered
at z is contained in C. There exists a query strategy for this subclass that reports an
ε-approximate solution by making at most

O

(
2nd (n + d) log

(
MR

min{ρ, 1}ε
))
·
(

(n + d) log

(
(n + d)MR

ρε

)
+ log

U

ε

)
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queries to an oracle O(G,H), where G is any first-order chart and H is either Hbit

or Hdir.

Prescribing an a priori range for objective function values is not a serious restriction
for two reasons: i) The difference between the maximum and the minimum values of
an objective function in In,d,R,ρ,M is at most 2MR, and ii) All optimization problems
whose objective functions differ by a constant are equivalent. We also comment that
while we assume d ≥ 1 in Theorem 10, similar bounds can be established for the
d = 0 (pure integer) case. We omit this here because a unified expression for the
d = 0 and d ≥ 1 cases becomes unwieldy and difficult to parse.

The main idea behind Theorem 10 is to show that existing methods with the
best known information complexity for mixed-integer convex optimization that use
full-informationfirst-order oracles can alsoworkwith approximate separation and sub-
gradient oracles that return desired approximations of the true vectors (with no loss in
the information complexity). Then one shows that one can produce these approxima-
tionswith roughly O

(
(n + d) log

( 1
ε

))
bit or inner product sign queries on a separating

hyperplane or subgradient. With bit queries, this is just a matter of probing enough
bits of each coordinate of the vector. The case with inner product sign queries is a bit
more involved and our main tool is a result that shows how to approximate any vector
up to desired accuracy with such queries (Lemma 30).

Subsequently, using similar techniques we present an enhanced upper bound for
the scenario where n = 0 (pure continuous case).

Theorem 11 ForU > 0, consider the subclass of instances of In,d,R,ρ,M where n = 0
(pure continuous case) and the objective function values lie in [−U ,U ]. There exists
a query strategy for this subclass that reports an ε-approximate solution by making at
most

O

(
d log

(
MR

min{ρ, 1}ε
))
·
(
d log

(
dMR

ρε

)
+ log

U

ε

)

queries to an oracle O(G,H), where G is any first-order chart and H is either Hbit

or Hdir.

Finally, we provide a kind of transfer result that allows one to transfer algorithms
designed for full-information first-order oracles to the (harder) setting of a general
binary oracle.

Theorem 12 Suppose there exists an algorithm that reports an ε-approximate solution
for instances in In,d,ρ,M,R with at most u queries to the full-information first-order
oracle based on a first-order chart G. Then, for any subclass of finitely many instances
I ⊂ In,d,R,ρ,M,R, there exists a query strategy for this subclass using the general
binary oracle based on G that reports an ε-approximate solution by making at most

O
(
log |I| + u

)

queries.
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Using the centerpoint-based algorithm from [3, 14], we obtain the following corol-
lary:

Corollary 13 Given any subclass of finitely many instances I ⊂ In,d,R,ρ,M and any
first-order chart G, there exists a query strategy for this subclass using the general
binary oracle based onG, i.e.,H is the set of all possible binary functions (Definition 5,
part 4.), that reports an ε-approximate solution by making at most

O

(
log |I| + 2n d (n + d) log

(
dMR

min{ρ, 1}ε
))

queries. In the (pure continuous) case of n = 0, O
(
log |I| + d log

(
MR

min{ρ,1}ε
))

queries suffice.

In particular, when the number of instances under consideration is |I| =
O(22

nd(n+d)), Corollary 13 gives a strictly better upper bound than Theorem 10. Sim-
ilarly, for n = 0, in the case when |I| = O(2d), we get a better upper bound compared
to Theorem 11; in fact, we beat the lower bound provided by Theorem 9. This demon-
strates that even with exponentially many instances under consideration, the case of
finite instances yields a lower information complexity than the case of infinitely many
instances. We point out that the first-order chart G must be known to implement the
query strategy in Theorem 12. In contrast, the algorithms in Theorems 10 and 11 are
oblivious of the first order chart, i.e., they work with any first order chart.

1.2 Discussion and future avenues

The concept of information complexity in continuous convex optimization and its
study go back several decades, and it is considered a fundamental question in convex
optimization. In comparison, much less work on information complexity has been
carried out in the presence of integer constrained variables. Nevertheless, we believe
there are important and challenging questions that come up in that domain that are
worth studying. Further, evenwithin the context of continuous convexoptimization, the
notion of information complexity has almost exclusively focused on the number of full-
information first-order queries. As we hope to illustrate with the results of this paper,
considering other kinds of oracles leads to very interesting questions at the intersection
of mathematical optimization and information theory. In particular, the study of binary
oracles promises to give a more refined understanding of the fundamental question
“How much information about an optimization instance do we need to be able to
solve it with provable guarantees?”. For instance, establishing any superlinear (in the
dimension) lower bound for the continuous problemwith binary oracles, like the one in
Theorem 9, seems to be nontrivial. In fact, the results from [12], on which Theorem 9
is based, were considered a breakthrough in establishing superlinear lower bounds on
space complexity of convex optimization. Even so, the right bound is conjectured to be
quadratic in the dimension (see Theorem 11) and our Theorem 9 is far from that at this
point. These other oracles also have a practical motivation. Obtaining exact first-order
information may be difficult or impossible in many practical situations, and one has
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to work with approximations of separating hyperplanes and subgradients. The binary
oracles can be viewed as providing these approximations and information complexity
under these oracles becomes important from a practical standpoint.

We thus view the results of this paper as expanding our understanding of information
complexity of optimization in two different dimensions: what role does the presence of
integer variables play and what role does the nature of the oracle play (with or without
integer variables)? For the role of integer variables, in the pure optimization case
Theorem 7 provides a lifting of lower bound from the continuous case. Allowing for
constraints, Corollary 8 brings the lower bound closer to the best known upper bound
on information complexity based on the classical subgradient oracle. The remaining
gap is now simply a factor linear in the dimension. A conjecture in convex geometry
first articulated in [14, Conjecture 4.1.20] and elaborated upon in [2, 3] would resolve
this and would show that the right bound is essentially equal to the lower bound we
prove in this paper.

Beyond the contributions discussed above, our work also opens up new future direc-
tions for study.We believe the following additional conjectures to be good catalysts for
future research, especially in regard to understanding the interplay of integer variables
and other oracles.

The first conjecture is a generalization of our Theorem 7 to incorporate constraints
as well. This would make this “transfer” tool more powerful, and would, for example,
give Corollary 8 as a special case without appealing to [2] for the feasibility lower
bound.

Conjecture 1 If there exist continuous, constrained convex optimization instances
such that � is a lower bound for this family on the information complexity with respect
to an oracle, then for every n ≥ 1, there exist mixed-integer instances with n inte-
ger variables such that the information complexity of these mixed-integer instances is
lower bounded by 	(2n · �) for the same oracle.

Another consequence of resolving this conjecture is that if future research on the
information complexity of continuous convex optimization results in better/different
lower bounds based on feasibility, these would immediately imply new lower bounds
for the mixed-integer case. For instance, we believe the following conjecture to be
true for the mixed-integer convex optimization problem.

Conjecture 2 There exists a first-order chart G such that the general binary oracle

based on G has information complexity 	
(
2n

(
1+ d2 log

(
MR
ρε

) ))
.

A version of Conjecture 2 is also stated in the language of “memory-constrained”
algorithms in [12, 17] for the continuous case (see Sect. 3 below); the way we have
stated the conjecture here presents its transfer to the mixed-integer case.

Analogously, it would be nice to have “transfer” theorems for upper bounds as well.
In the spirit of Theorems 10, 11 and 12, we believe a useful result would be a theorem
that takes upper bound results proved in the full-information first-order oracle setting
and obtains upper bound results in the general binary oracle setting. A use case of
such a result would be the following: if the upper bound for the general mixed-integer
problem with full-information first-order oracles is improved by resolving the convex

123



A. Basu et al.

geometry conjecture mentioned above (and we believe the lower bound is correct and
the upper bound is indeed loose), then this would also give better upper bounds for
the general binary oracle setting. Thus, we make the following conjecture.

Conjecture 3 If there exists a query strategy with worst case information complexity
u(n, d, R, ρ, M,G) under the full-information first-order oracle based on a first-order
chart G, then there exists a query strategy with worst case information complexity
bounded by

u(n, d, R, ρ, M,G) · O
(

(n + d) log

(
MR

ρε

))

under the general binary oracle based on G.
We focus on oracles that use first order information in this paper (Definitions 4

and 5). Oracles that use “zero-order information” have also been studied in the lit-
erature, beginning with the seminal work of Yudin and Nemirovski [13]; see [9] for
an exposition of how those ideas can be used in the mixed-integer setting and [6] for
an exposition in the nonconvex setting. Such oracles report function values only for
the objective, with no subgradient information, and only report membership for the
constraints, with no separating hyperplanes. A related oracle is the “value compari-
son” oracle that has found many applications. These oracles comprise of questions
of the form “Is f (z) ≤ f (z′)?”, with no access to the subgradients of f . Such algo-
rithms are particularly useful in learning from users’ behaviors, since while a user
typically cannot accurately report its (dis)utility value f (z) for an option z, it can
more reliably compare the values f (z) and f (z′) of two options; see [11, 15] and
references therein for discussions and algorithms in the continuous convex case. The
mixed-integer setting under the value comparison oracle has been extensively studied
in recent work [5, 7, 8, 16]. The ideas in this paper can also be adapted to give algo-
rithms for mixed-integer convex optimization using the comparison oracle, but we do
not undertake a deeper study here. There seems to be scope for future research in this
direction, especially in tying together these different strands of ideas for “zero order
information”.

The remainder of this paper is dedicated to the formal proofs of our main results
discussed above.

2 Proof of Theorem 7

The high-level idea for the proof of Theorem 7 is to construct difficult mixed-integer
instances by taking hard instances of the continuous case, “placing” one of them on
each fiber x × R

d , x ∈ {0, 1}n , and interpolating between fibers appropriately. We
do this in a way such that effectively one needs to solve the continuous problems
obtained by restricting to each fiber, which leads the 	(2n�) lower bound from an �

lower bound on the continuous problems – namely, there will be one difficult function
from the continuous case placed on each of the 2n fibers, so if one can’t do better
than solving each of them separately, one ends up with an 	(2n�) lower bound. To
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make this idea work, the interpolation needs to be done in a way that no query in the
full [0, 1]n × R

d space reveals information about two (or more) of the continuous
functions placed on different fibers, or reveals significantly more information about a
function on a fiber than a query on that fiber would. For example, we need to ensure
that a single query at the point ( 12 , . . . ,

1
2 , y) for y ∈ Rd does not reveal information

about multiple functions on different fibers.
The technical nature of this proof requires us to organize it carefully. In Sect. 2.1,

we first reformulate the theorem statement using tools from game theory. In particular,
Lemma 15 below shows that to establish lower bounds on information complexity,
one can instead argue in terms of an adversary providing responses to an algorithm’s
queries. In Sect. 2.2, we prove the theorem (by explicitly constructing such adversar-
ial responses) for the special case of the standard full-information first-order oracle
(Definition 5, part 1.). This helps to convey the main idea of the adversarial argument
in a more familiar setting. We then extend this adversarial construction in Sect. 2.3 to
more general oracles using first-order information, assuming the permissible queries
satisfy the property of being hereditary (Definition 20). This will complete the proof
of Theorem 7.

2.1 Game-theoretic perspective

So far we have described the information complexity of optimization using an oracle
O over a family of instances I based on having an optimization algorithm that in
each round t makes a query qt to O and receives as answer the result qt ( Î ) for the
unknown instance Î it is trying to optimize. However, for obtaining lower bounds on
the information complexity, it is more helpful to consider the algorithm as interacting
with an adversary for the family of instances underO, instead of the unknown instance
Î . More precisely, at round t , the adversary receives the query qt of the algorithm and
produces, possibly based on all the previous queries q1, . . . , qt−1, a response rt . The
only requirement is that there must always exist at least one instance Ī ∈ I that is
consistent with all of its responses, namely rt = qt ( Ī ) for all t , under the oracle O
being considered.

With each such response, the set of instances that are consistent with all responses
given may change, motivating the following definition:

Definition 14 Given a class of instances I, an oracle O, and a transcript of query-
responsepairs (q1, r1), ..., (qt , rt ), the set of surviving instances for (q1, r1), ..., (qt , rt )
under O is

{I ∈ I : q j (I ) = r j ∀ j ∈ [t]},

i.e., the set of instances consistent with the responses in the transcript under the oracle
O. When all instances in I are unconstrained, let the set of surviving functions be the
set of functions corresponding to the surviving instances.

We say that an adversary Adv is ε-hard for � rounds if for any algorithm Alg, after
� rounds there are surviving instances in I that do not have a common ε-approximate
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solution, i.e., if q1, . . . , q� and r1, . . . , r� are Alg’s queries and Adv’s responses,
respectively, then there is a collection of instances J ⊂ I that have no common ε-
approximate solution but such that rt = qt (I ) for all I ∈ J and t = 1, . . . , �. Since
the sets of ε-approximate solutions of instances in In,d,R,ρ,M are compact convex sets,
this collection J of instances may always be taken to be finite.1

Intuitively, the existence of such an adversary should imply that no algorithm can
reliably report an ε-approximate solution within � iterations, that is, icompε(O, I) >

�. The next result shows that this adversary-based perspective is indeed equivalent to
information complexity, and may be of independent interest (for a proof see Appendix
A).

Lemma 15 Consider a class of instances I and an oracleO. Then icompε(I,O) > �

if and only if there exists an adversary under O using I that is ε-hard for � rounds.

2.2 Proof for the full-information first-order oracle

The full proof of Theorem 7 is a bit technical and requires a few conceptual connec-
tions. For a better exposition, we first prove the theorem in the case that the oracle is the
full-information first-order oracle. AsH thus consists of the identity maps, throughout
this subsection we will write oracles using first-order information as O(G), where G
is the corresponding first order chart.

Given the assumption of the theorem and the equivalent adversarial perspective
from Lemma 15, assume there is a family of continuous, unconstrained instances
Icont ⊆ I0,d,R,ρ,M , all with the same optimal value which we shall denote by OPT in
this and the next section, and a full-information first-order adversary Adv-Cont for I
that is ε-hard for � − 1 rounds. Let us use Fcont to denote the objective functions of
the instances Icont . In the full-information first-order case, queries of an optimization
algorithm consist of points y1, y2, . . . ∈ R

d , and either query the function value or the
subgradient. For simplicity, let us allow the algorithm to query both the function value
and subgradient in a single query, so that the queries become simply y1, y2, . . . ∈ R

d

and the responses of an adversary consist of a sequence of consistent function values
and subgradients, namely a sequence (v1, g1), (v2, g2), . . . ∈ R× R

d such that there
is some f ∈ Fcont satisfying vt = f (yt ) and gt ∈ ∂ f (yt ) for all rounds t .

To prove the theorem, we will construct a full-information first-order adversary
Adv-MI for a family of mixed-integer instances over {0, 1}n × R

d that is ε-hard
for 2n� − 1 rounds. As alluded to before, the very high-level is to place a copy of
the continuous adversary Adv-Cont on each of the continuous fibers x × R

d for
x ∈ {0, 1}n . In fact, we will work with a slightly modified version of the continuous
adversary that is constructed next.

2.2.1 Modifying the continuous adversary Adv-Cont

For themixed-integer adversaryAdv-MI, itwill be important to render afiber “useless”
for the optimization algorithm after it queries (close to) this fiber too many times, so

1 If a collection of compact sets has empty intersection, then there exists a finite subcollection that already
has empty intersection.
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as to intuitively force it to query (close to) other fibers, or gain no new information
otherwise. This will be done by modifying the continuous adversary Adv-Cont such
that whenever it is probed � or more times, it commits to answering all future queries
consistently with a single function that has optimal value > OPT + ε; since our
mixed-integer instances will be constructed to have optimal value OPT, gathering
more information about the function on such fibers will not help the algorithm solve
the mixed-integer problem. To do this, the modified continuous adversary will also
keep track of the set S of surviving functions (Definition 14) given its responses.

As a preliminary, the following lemma highlights the key property ofFcont that we
will use:

Lemma 16 Let J ⊂ Fcont be a finite set. If f ∈ J do not have a common ε-solution,
then the pointwise maximium function max f ∈J { f } has minimum value greater than
OPT + ε.

Proof Suppose for sake of contradiction that there exists a point z such that
max f ∈J { f (z)} ≤ OPT + ε. Then f (z) ≤ OPT + ε for all f ∈ J , which means
z is an ε-solution for all f ∈ J , which contradicts the assumption that they do not
share an ε-solution. ��

The following lemma precisely outlines the main properties we need from our
modified adversary.

Lemma 17 There is a family of convex functions Fcont corresponding to instances
I0,d,R,ρ,M of the purely continuous case, a first-order chart G and a full-information
first-order adversary Adv-Cont+ that, for any algorithm Alg, maintains a set of func-
tions St ⊆ Fcont for every query-response round t with the following properties:

1. In every round t ≥ 1, all functions in St are consistent with the responses returned
by Adv-Cont+ thus far, under some oracle using first-order information O(G).

2. In the first t ≤ �−1 rounds, there is a finite collection of functions in St∩Fcont that
do not share an ε-approximate solution. In particular, Adv-Cont+ is still ε-hard
for �− 1 rounds.

3. For all rounds t ≥ 1, St is closed under taking maxima of finitely many of its
elements, and also contains a function that has minimum value > OPT + ε.

4. For rounds t ≥ �, St contains a single function with minimum value > OPT + ε.

Item 1 means that for rounds t < �, there exists a full-information first-order oracle
O(G) such that St is exactly the set of surviving functions under O(G) given the
responses produced by Adv-Cont+ up to round t . Hence, we will refer to this St as
the set of surviving functions maintained by Adv-Cont+ at round t .

Proof of Lemma 17 Let Fcont denote the closure of Fcont under taking maxima of
finitely many functions, i.e. for any finite collectionJ ⊂ Fcont , max f ∈J { f } ∈ Fcont .
Notice these functions are still convex.

We now formally describeAdv-Cont+, and then prove that it satisfies the invariants
of the lemma.
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Procedure 1 Adv-Cont+

Initialize set of surviving functions S0 = Fcont .

For each round t = 1, 2 . . . :
1. Receive query point yt ∈ R

d from the optimization algorithm
2. If t ≤ �− 1: Send yt to the adversary Adv-Cont, receiving back a value vt

and subgradient gt . Obtain St by removing from St−1 the functions f that are
not consistent with this response for any first-order chart G, namely where
f (yt ) �= vt or gt /∈ ∂ f (yt ).
Send the response (vt , gt ) to the optimization algorithm.

3. If t = �: SinceAdv-Cont if ε-hard for �−1 rounds, there is a finite collection
of functions { f1, ..., fk} ⊂ St−1∩Fcont that do not share an ε-solution.Define
their pointwise maxima fmax = max{ f1, ..., fk} and set St+k = { fmax}, for
all k = 0, 1, 2....
Set the value vt to be fmax(yt ) and set gt to be a subgradient in ∂ fmax(yt )
(consistent with what the first order chart G0 gives for f1, . . . , fk at yt , if yt
has been queried in an earlier round), and send the response (vt , gt ) to the
optimization algorithm.

4. If t > �: Let fmax be the only function in St−1. If yt was queried in an earlier
round k, answer (vk, gk). Otherwise, set the value vt to be fmax(yt ) and set
gt to be any subgradient in ∂ fmax(yt ), and send the response (vt , gt ) to the
optimization algorithm.

We will proceed by induction on the number of rounds t . The lemma clearly holds
for S0, so suppose it holds for St−1.

If t ≤ � − 1, then St satisfies Item 1 due to to the update rule in the procedure
for obtaining St , since all functions that are not consistent with the given response
are removed. More precisely, since the responses given are those produced by Adv-
Cont, these functions in St are consistent with the responses under exactly the oracle
O(G0) that Adv-Cont is hard under. St also satisfies Item 2 because Adv-Cont is
assumed to be ε-hard for �− 1 rounds, so there exists a finite collection of functions
{ f1, ..., fk} ⊂ Fcont with no common ε-solution that are consistent with all responses
given to Adv-Cont+ by Adv-Cont; thus St contains them. For Item 3, to show the
closure under taking maxima, we need to argue that if functions f1, ..., fk were not
removed from S, then neither was max( f1, ..., fk). Since f1, ..., fk are convex, then
∂ f j (y) ⊂ ∂ max{ f1, ..., fk}(y) for any j such that f j (y) = max{ f1(y), ..., fk(y)}.

Hence, if f1, ..., fk all have function value vt and subgradient gt at y, then so does
max{ f1, ..., fk}, so max{ f1, ..., fk}was not removed from S, as desired. Furthermore,
if f1, ..., fk are taken to be the functions guaranteed by Item 2, Lemma 16 implies
that max{ f1, ..., fk} has optimal value greater than OPT+ ε, so since we just showed
max{ f1, ..., fk} ∈ St , the remainder of item 3 follows.

If t = �, St contains the single function fmax, which has optimal value greater than
OPT + ε by its construction as a consequence of Lemma 16. Hence, Item 3 follows.
To prove item 1, we will use that St−1 satisfies Item 1, and by Item 3 applied to St−1,
fmax is consistent with the responses returned by the procedure up to round t − 1.
For round t itself, consistency follows from the definition of vt and gt , and so fmax is
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consistent with all responses given. Item 2 does not apply in this case and Item 4 is
immediate by the construction of St := { fmax}.

If t > �, then St = St−1 = { fmax} and it suffices to check that the response
(vt , gt ) is compatible with fmax, which follows immediately from the definition of the
response.

Hence, Items 1–4 of the lemma follow. It remains to show that Adv-Cont+ is
indeed a well-defined adversary under a full-information first-order oracle. For rounds
t ≤ � − 1, this is inherited from Adv-Cont, while for t ≥ �, this is ensured because
if the queried point yt is the same as yt ′ for some round t ′ < t , Adv-Cont+ provides
the same response in round t as in round t ′. Thus, there is indeed a first-order chart
G (derived from the first order map G0 for Adv-Cont) such that Adv-Cont+ is an
adversary under the corresponding full-information first-order oracle O(G). ��

2.2.2 Constructing the mixed-integer adversary Adv-MI

We now construct the family FMI of functions over Rn × R
d used to transfer the

lower bound to the mixed-integer setting, along with the adversary Adv-MI for that
family. We call functions over Rn ×R

d full-dimensional to distinguish them from the
functions over Rd , the continuous part of the problem. As indicated previously, these
full-dimensional functionsψ inFMI will be obtained by considering combinations of
selecting one function fx̄ from Fcont for each of the mixed-integer fibers x̄×R

d , x̄ ∈
{0, 1}n , letting ψ equal the appropriate function selected over each corresponding
fiber, and applying an interpolation scheme between the fibers. This interpolation is
illustrated in Figure 1 and described in detail later in this section.

For the behavior of Adv-MI, we instantiate a copy of the modified continuous
adversary Adv-Cont+ on each fiber. Whenever the optimization algorithm queries a
point (x̄, y) on a fiber, we send y to the continuous adversary on the fiber and report
back the response (v, g) received, although g needs to be appropriately lifted to the full
R
n ×R

d space to be consistent with the way we interpolate the functions between the
fibers. If the optimization algorithm only probes on these fibers, then it is intuitive that
such an adversary would be ε-hard for 2n� − 1 rounds: informally, up to this round,
at least one of the 2n fibers that has received no more than � − 1 queries, so using
the hardness of Adv-Cont+ (Item 2 of Lemma 17) we can obtain full-dimensional
functions that do not share an ε-approximate solution, which confirm the desired
ε-hardness of the mixed integer adversary Adv-MI.

The crucial element is how to deal with queries on points outside of the mixed-
integer fibers. If such queries provide the algorithm with more information about
the full-dimensional functions FMI than queries on the fibers do, then we may not
have full-dimensional functions with no common ε-approximate solution surviving
for 2n� − 1 rounds. To handle this issue, the interpolation used to define the full-
dimensional functions ψ guarantees that its behavior on a fractional point (x̃, y) /∈
{0, 1}n ×R

d is completely determined by the value of the function fx̄(y) from Fcont

selected for the fiber x̄ × R
d , where x̄ ∈ {0, 1}n is the closest 0/1 point to x̃. Thus,

Adv-MI can also answer such a query at a fractional point by making a query to the
appropriate continuous adversary Adv-Cont+ on {x̄} × R

d , and the hardness of the
latter can still be leveraged.
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Fig. 1 (Left) Illustration of twopossible functions f0, f1 ∈ Fcont (blue and red) of the continuous adversary
Adv-Cont+, for d = 1. (Right) Illustration of the function ψ( f0, f1) for the mixed-integer adversary Adv-
MI obtained by placing the functions f0 and f1 on the fibers {0} × R and {1} × R and interpolating
appropriately between the fibers

We now formally define the functions FMI and the adversary Adv-MI.

Construction of the functionsFMI For a 0/1 point x̄ ∈ {0, 1}n and a function f ∈ Fcont

in Rd , we first define its (convex) extension to the full-dimensional space Rn+d as

f̂x̄(x, y) = max
{
f (y)+ 〈Mx̄, x − x̄〉 , OPT

}
, (2)

with Mx̄ := 3MR · sgn(x̄ − 0.5 · 1), where sgn denotes the sign function. This
construction effectively places f along the y space at the fiber x̄ and extends it in each
of the x variables via a linear function with slope ±3MR, in a way that it decreases
the value as it moves into the unit cube, or equivalently, away from x̄; it then truncates
the final value to being at least OPT; see Figure 2 for an illustration.

We note for later use that wherever the extension is not truncated by OPT, a sub-
gradient is given by appending the vectorMx̄ to a subgradient of f , and otherwise the
all zeroes vector is a subgradient. More precisely, we have

∂ f̂x̄(x, y) ⊇
{ {Mx̄} × ∂ f (y) , if f̂x̄(x, y) > OPT
{0} , otherwise.

(3)

Given a collection F = ( fx̄)x̄ with one function fx̄ ∈ Fcont for each 0/1 point x̄,
we combine them into the convex function

ψF(x, y) := max
x̄∈{0,1}n f̂x̄(x, y), (4)

where we abuse notation slightly and write the convex extension ( f̂x̄)x̄ as simply f̂x̄
to simplify the notation. As mentioned above, a crucial property of these functions
is that their behavior between the fibers is determined by the behavior on the closest
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Fig. 2 An example of a possible function from f ∈ Fcont (left) together with an illustration of its truncated
extension f̂0(x, y) (right) as constructed in (2)

fiber. Intuitively, the slope ±3MR guarantees that as the x argument moves away
from the base fiber x̄ of each extended function f̂x̄, f̂x̄ decreases rapidly enough so
that the maximum in (4) is always achieved by the extended function at the closest
fiber to x. Figure 1 illustrates this, where one can see that both functions placed on
the fibers get fully truncated in between the fibers. To make this precise, let r(x) :
[0, 1]n → {0, 1}n map any x in the box to its closest 0/1 point in �∞-norm, that is
r(x) := argminx′ {‖x − x′‖∞ : x′ ∈ {0, 1}n}.
Lemma 18 For every collectionF = ( fx̄)x̄, for every point (x, y) ∈ [0, 1]n×[−R, R]d
we have

ψF(x, y) = f̂r(x)(x, y), and ∂ψF(x, y) = ∂ f̂r(x)(x, y)

Proof Define Bx̄ :=
{
x′ ∈ R

n : ‖x′ − x̄‖∞ ≤ 1
3

}
for every x̄ ∈ {0, 1}n . Consider an

arbitrary (x, y) ∈ [0, 1]n × [−R, R]d .
Case 1 : x /∈ Bx̄ for any x̄ ∈ {0, 1}n . This implies that for every x̄ ∈ {0, 1}n , we have

fx̄(y)+ 〈Mx̄, x − x̄〉 = fx̄(y)+
∑

j∈[n]
3MR · sgn(x̄ j − 0.5) · (x j − x̄ j )

≤ fx̄(y)− 3MR · max
j∈[n] |x j − x̄ j | < fx̄(y)− MR ≤ OPT,

Thus, f̂x̄(x, y) = OPT for all x̄ ∈ {0, 1}n . As a result, ψF (x, y) = OPT =
f̂r(x)(x, y).
Moreover, since fx̄(y) + 〈Mx̄, x − x̄〉 < OPT for all x̄ ∈ {0, 1}n , there exists a

neighborhood of (x, y) such that for any point (x′, y′) in the neighborhood, it holds
that fx̄(y′) + 〈Mx̄, x′ − x̄〉 < OPT, and f̂x̄(x′, y′) = OPT for all x̄ ∈ {0, 1}n . As a
result, ∂ f̂x̄(x, y) = {0} for all x̄ ∈ {0, 1}n , and ∂ψF (x, y) = {0}.
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Case 2 : x ∈ Bx̄ for some x̄ ∈ {0, 1}n . In this case, r(x) = x̄. This is because for any
x̃ ∈ {0, 1}n\{x̄}, we have that

‖x − x̃‖∞ ≥ 2

3
>

1

3
≥ ‖x − x̄‖∞. (5)

It is also true that f̂x̄(x, y) ≥ OPT = f̂x̃(x, y) for any x̃ �= x̄, which holds due to the
result from Case 1.

Moreover, the arguments fromCase 1 and (5) imply that there exists a neighborhood
of (x, y) such that for any point (x′, y′) in the neighborhood, it holds that r(x′) =
r(x) = x̄, and f̂x̄(x′, y′) ≥ OPT = f̂x̃(x′, y′) for all x̃ �= x̄. As a result, ψF (x′, y′) =
f̂x̄(x′, y′) = f̂r(x′)(x′, y′) = f̂r(x)(x′, y′) and ∂ψF (x, y) = ∂ f̂x̄(x, y) = ∂ f̂r(x)(x, y).

��
Construction of the mixed-integer adversary Adv-MI We finally describe Adv-MI in
Procedure 2. Its main property is captured in the following invariant.

Procedure 2 Adv-MI

Instantiate a copy of Adv-Cont+ on each fiber x ∈ {0, 1}n , and let S(x) denote
the set of surviving functions maintained in every round by this copy, initialized
to Fcont .

For each round t = 1, 2 . . . :
1. Adv-MI receives the query (xt , yt ) from the algorithm. Send yt to the adver-

sary Adv-Cont+ associated with the closest fiber r(xt ), which then returns
a value v and subgradient g, and updates its maintained set of surviving
functions S(r(xt )) of its fiber r(xt ).

2. Adv-MI returns as its response to the query (xt , yt ) the value

ṽt = max
{
v + 〈Mr(xt ), xt − r(xt )〉 , OPT

}
,

and as subgradient returns either g̃t = (Mx̄, g) or g̃t = 0 depending whether
ṽt > OPT or not (i.e., whether f̂r(x) was truncated at (xt , yt ) or not), respec-
tively.

Invariant 1 There exists a first order chart G (derived from G0) such that, for any
algorithm, the sets S(x), x ∈ {0, 1}n maintained by Adv-MI satisfy the following
property.

In every round, for every collection F = ( fx)x∈{0,1}n of current surviving functions
fx ∈ S(x) for x ∈ {0, 1}n, the function ψF is consistent with the response returned by
Adv-MI under the full-information first-order oracle O(G), i.e., ψF(xt , yt ) = ṽt and
g̃t ∈ ∂ψF(xt , yt ).

Notice that Invariant 1 is indeed maintained after each response in Step 2 of Proce-
dure 2: For every collection F = ( fx̄)x̄ of still surviving functions fx̄ ∈ S(x̄), by the
consistency guarantee of Adv-Cont+ (Item1ofLemma17) the function fr(xt ) selected
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for the fiber r(xt ) has value v and subgradient g at yt ; thus, Lemma 18 combined with
(2) implies that the function ψF has value

ψF(xt , yt ) = f̂r(x)(xt , yt ) = max
{
fr(xt )(yt )+ 〈Mr(xt ), xt − r(xt )〉 , OPT

}
= ṽt ,

and similarly from (3) we see that g̃ is a subgradient in ∂ψF(xt , yt ) = ∂ f̂r(xt )(xt , yt ),
as desired.

We now prove that Adv-MI is ε-hard for 2n� − 1 rounds; using Lemma 15, this
implies Theorem 7 for the case of full-information first-order oracle. Suppose the
optimization algorithm runs for fewer than 2n · � iterations. Then there is a fiber
x∗ ∈ {0, 1} where Adv-MI sent at most �− 1 queries to the adversary Adv-Cont+ of
the fiber x∗. Thus, by the guarantee of the latter (Item 2 of Lemma 17), the surviving
set S(x∗) has some finite collection of functions f 1x∗ , ..., f kx∗ with no common ε-
approximate solution. Consider the collections F1, ...,Fk of surviving functions that
have f 1x∗ , ..., f kx∗ , respectively, for the fiber x

∗ and any function fx̄ ∈ S(x̄)with optimal
value > OPT+ ε for each of the other fibers x̄ �= x∗, which exist on each of the other
fibers by Item 3 of Lemma 17. By Invariant 1, all functionsψF1 , ..., ψFk are compatible
with the responses returned by Adv-MI. The desired ε-hardness of Adv-MI then
follows from the following lemma, which then concludes the proof of Theorem 7
when the oracle is the full-information first-order oracle.

Lemma 19 The functions ψF1 , ..., ψFk share no common ε-approximate solution.

Proof From the construction above, we have that F† := F1\{ f 1x∗} = F2\{ f 2x∗}... =
Fk\{ f kx∗}. Due to (4) and the definitions of F1, ...,Fk , for any fiber x̄ �= x∗ and
fx̄ ∈ F†, it follows that ψF1(x̄, y) = ... = ψFk (x̄, y) = fx̄(y) > OPT + ε. Thus, the
ε-approximate solutions for the functions ψF1 , ..., ψFk only exist within the fiber x∗.
Given that the ε-approximate solutions of f 1x∗ , ..., f kx∗ are disjoint, and considering

that ψF j (x∗, y) = f j
x∗(y) for all j ∈ [k], we can conclude our proof. ��

2.3 Proof of Theorem 7 for general oracles

We now prove Theorem 7 in full generality. We will do this using the exact same
family of difficult functionsψF from (4), and also with the same idea of constructing a
mixed-integer adversary that produces its answers by making queries to an adversary
for the continuous problems on the fibers. Since the mixed-integer adversary will need
to answer queries made in the fullRn×R

d space by making queries in the continuous
space R

d on each fiber, we will require that the set of permissible queries that can
be made to the continuous adversary is, in some sense, as rich as the queries allowed
in the full space. For example, if one allows full-information queries to be made in
R
n × R

d , but only binary queries to be made in R
d to the continuous adversary, one

would struggle to determine how the mixed-integer adversary should answer those
full-information queries by making only binary queries to the adversaries for the
continuous subproblems. Specifically, for a query at (x, y) ∈ R

n ×R
d , knowing how

x affects the function values and subgradients ofψF, themixed-integer adversary needs
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to be able to determine what response to give by making a suitably chosen query about
fr(x) to the continuous adversary. We formalize this requirement of having the same
richness of queries for the continuous subproblems as for the full Rn ×R

d space with
the concept of hereditary queries.

Hereditary queriesFor simplicity, we define the notion of hereditary queries for uncon-
strained problems (i.e., only for value/subgradient queries), but we remark that the
same idea can be applied to separation queries as well.

Definition 20 Let d ≥ 1 be any natural number. For every n ∈ Z+, letHval
n,d andHsub

n,d
be classes of permissible function value and subgradient queries, respectively, with
response sets (codomains) Hval

n,d and H sub
n,d . {Hval

n,d}n,d∈N and {Hsub
n,d}n,d∈N are said to

be hereditary if the following holds for all n ∈ Z+ and functionsM : {0, 1}n → R
n .

For any x ∈ {0, 1}n , δ ∈ R, hval ∈ Hval
n,d , and hsub ∈ Hsub

n,d , there exists h
val∗ ∈ Hval

0,d ,

hsub∗ ∈ Hsub
0,d and functions Bval : Hval

0,d → Hval
n,d , B

sub : H sub
0,d → H sub

n,d such that

Bval(hval∗ (v)) = hval(v + δ) ∀v ∈ R, (6)

Bsub(hsub∗ (v, g)) = hsub(M(x), g) ∀g ∈ R
d (7)

Intuitively, a class of queries being hereditary has the consequence that if for a
point (x, y) ∈ R

n×R
d , one knows exactly the x componentM(x) of the subgradient,

then one can simulate a query in the Rn × R
d space by only making a query on the

R
d space, and similarly that there are queries rich enough to consider shifted function

values v+δ, where the interpretation is that δ is the effect x has on the overall function
value – see (2).

Example 21 We show that natural permissible queries, as fromDefinition 5, are hered-
itary. Let M(x), δ be as in Definition 20.

1. (Full-information first-order oracle) IfHval
n,d andHsub

n,d are simply the identity func-

tions, then we can take Bval to be Bval(v) = v + δ and take Bsub to be the
“lifting/rotation” map Bsub(g) = (M(x), g), noting that hsub, hval, hsub∗ , and hval∗
are all the identity functions.

2. (General binary oracle) For the general binary oracle based on a first-order chart
G, Bval and Bsub can be taken to be the identity map from {0, 1} to {0, 1}, and one
can take hval∗ (v) = h(v + δ), hsub∗ = h(M(x), g), which are permissible queries
since all binary queries are permissible.

3. (Shifted bit oracle) IfHval
n,d andHsub

n,d are from a shifted bit oracleHbit∗ , then Bval

can be taken to be the identity map from {0, 1} to {0, 1}. For a query on the function
value, if hval reports some bit of v + δ, then the appropriate hereditary query is
exactly the query hval∗ such that hval∗ (v) = h(v + δ), i.e. using the shift u = δ in
the notation of Definition 5. A subgradient bit query hsub(M(x), g) returns a bit
of either M(x) or g, so there are two cases.

(i) hsub returns the j th bit of the kth entry ofM(x). Set Bsub(·) to return exactly
that bit ofM(x), no matter the input to Bsub, so hsub∗ may be chosen arbitrarily.

(ii) hsub returns the j th bit of the kth entry of g. Set Bsub to be the identity map
from {0, 1} to {0, 1}, and set hsub∗ to return the desired bit of g.
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4. (Inner product threshold queries) If Hval
n,d and Hsub

n,d consist of the inner product

threshold queries, take both Bval and Bsub to be the identity maps. For function
value queries hvalu,c(v) = sgn(u · (v + δ)− c), use

hval∗ (v) := hvalu,c−uδ(v) = sgn(uv − (c − uδ)),

since then hval∗ (v) = sgn(uv − (c − uδ)) = sgn(u · (v + δ) − c) = hvalu,c(v) as
desired.
For subgradient queries hsubu (M(x), g) = sgn(〈u,M(x), g〉−c),with u ∈ R

n+d ,
denote by un the vector of the first n entries of u, and by ud the vector of the last
d entries of u. One may use

hsub∗ (g) := hsubud ,c−〈un ,M(x)〉(g) = sgn
(
〈ud , g〉 − (c − 〈un,M(x)〉)

)
,

since then we similarly have

hsub∗ (g) = sgn
(
〈ud , g〉 − (c − 〈un,M(x)〉)

)

= sgn(〈u, (M(x), g)〉 − c) = hsubu (M(x), g)

as desired. For these hereditary queries, note that hvalu,c−uδ and h
sub
ud ,c−〈un ,M(x)〉 are

indeed inHval
0,d and Hsub

0,d , respectively, since u ∈ R, un ∈ R
n , and ud ∈ R

d .

We remark here that Hbit , without the permitted “shifts” allowed in Hbit∗ is not
hereditary, as it may not satisfy condition (6) for the function values for all δ; however,
any lower bounds obtained with Hbit∗ must also hold for Hbit , since the former is a
richer class of queries.

Definition of the adversary We will define Adv-Cont+ analogously as in the
full-information case, now receiving queries in H according to the oracle setting
considered. Adv-Cont+ will be ε-hard for � rounds answering queries from H, and
after � − 1 rounds it commits to a single surviving function with optimal value
> OPT + ε. As queries for general oracles using first-order information consist
of a point z = (x, y) ∈ R

n ×R
d and a permissible query h ∈ H, let us write (x, y, h)

for notational simplicity to denote such a query.
We describe here the behavior of Adv-Cont+ in the general oracle case, and such

that it satisfies the same invariant of Lemma 17 as in the full-information case, i.e. it
is ε-hard for � rounds and only keeps a single surviving function with optimal value
at least OPT + ε after � queries have been made.
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Procedure 3 Adv-Cont+

Initialize set of survived functions S0 = Fcont

For each round t = 1, 2 . . . :
1. Receive query point (yt , ht ) ∈ R

d ×H from the optimization algorithm.
2. If t ≤ � − 1: Send (yt , ht ) to the adversary Adv-Cont, receiving back the

answer α. Obtain St by removing from St−1 the functions f that are not
consistent with this response under any first-order chart G, namely f for
which ht ( f (yt )) �= α if ht ∈ Hval, or for which there does not exist a
gt ∈ ∂ f (yt ) such that ht ( f (yt ), gt ) = α if ht ∈ Hsub.
Send the response α to the optimization algorithm.

3. If t = �: SinceAdv-Cont is ε-hard for �−1 rounds, there is a finite collection
of functions { f1, ..., fk} ⊂ St−1∩Fcont that do not share an ε-solution.Define
their pointwise maxima fmax = max{ f1, ..., fk} and set St+k = { fmax}, for
all k = 0, 1, 2....
Set the value vt to be fmax(yt ) and set gt to be a subgradient in ∂ fmax(yt )
(consistent with what the first order chart G0 gives for f1, . . . , fk at yt , if yt
has been queried in an earlier round), and send the response ht (vt ) or ht (gt )
to the optimization algorithm, according to whether ht ∈ Hval or ht ∈ Hsub

respectively.
4. If t > �: Let fmax be the only function in St−1. If yt was queried in an earlier

round k, answer (vk, gk). Otherwise, as in the step above, set the value vt to
be fmax(yt ) and set gt to be any subgradient in ∂ fmax(yt ), and again send the
appropriate response ht (vt ) or ht (gt ) to the optimization algorithm.

Proving that thisAdv-Cont+ satisfies the invariant from Lemma 17 follows exactly
the same steps as in the full-information case. Hence, using this Adv-Cont+ and the
same family of functions ψF from (4), we will be able to construct Adv-MI for this
general oracle case to satisfy a version of Invariant 1, slightly modified for this general
case to refine what we mean by functions being consistent with responses given to the
more general queries. To achieve this, let Adv-MI operate according to the following
procedure.
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Procedure 4 Adv-MI

Instantiate a copy of Adv-Cont+ on each fiber x ∈ {0, 1}n , and let S(x) denote
the set of surviving functions maintained by this copy, initialized to Fcont .

SetMx := 3MR · sgn(x− 0.5 · 1), for any x ∈ {0, 1}n , as in (2). For each round
t = 1, 2 . . . :
1. Adv-MI receives the query (xt , yt , ht ) from the algorithm. Set δ :=
〈Mr(xt ), xt − r(xt )〉.

2. Send the function value threshold query that answers“is fr(xt )(yt ) ≤ OPT +
δ?” to the adversary Adv-Cont+ of the closest fiber r(xt ), which responds
and updates its set of surviving functions S(r(xt )).
If the answer is yes, Adv-MI responds ht (OPT ) or ht (0) to the original
query, according to whether ht ∈ Hval or ht ∈ Hsub, respectively.

Else, determine an appropriate B and hereditary query h∗ as from Defini-
tion 20 using r(xt ), Mr(xt ), δ and ht , and send the query (yt , h∗) to the
adversary Adv-Cont+ of the closest fiber r(xt ), which then returns some
answer α and updates its set of surviving functions S(r(xt )).Adv-MI returns
B(α) as its response to the original query.

Invariant 2 There exists a first order chart G (derived from G0) such that, for any
algorithm, the sets S(x), x ∈ {0, 1}n maintained by Adv-MI satisfy the following
property.

In every round, for every collection F = ( fx)x∈{0,1}n of current surviving functions
fx ∈ S(x) for x ∈ {0, 1}n, the function ψF is consistent with the response returned by
Adv-MI under under the oracle O(H,G), i.e., the response Adv-MI gives is equal to
ht (ṽt , g̃t ) for ṽt = ψF(xt , yt ) and some g̃t ∈ ∂ψF(xt , yt ).

We claim that the Invariant 2 is maintained after each response in Step 2 of Proce-
dure 4.

If Adv-Cont+ answers yes, then ψF (xt , yt ) = OPT and 0 ∈ ∂ψF (xt , yt ) for any
collection of surviving functions F = ( fx̄)x̄, since all the extensions f̂x̄ as in (2) that
are consistent with this affirmative response in Step 2 must be truncated at (xt , yt ).
To see this, note that due to the choice of δ, the query “is fr(xt )(yt ) ≤ OPT + δ?”
is equivalent to asking whether f̂r(xt ) has value OPT at (xt , yt ) (i.e., was truncated),
and Lemma 18 guarantees that we only need to consider f̂r(xt ) for ψF(xt , yt ).

If the answer is no, then Lemma 18 combined with (2) implies that for every choice
F of surviving functions from each fiber, the function ψF has value

ψF(xt , yt ) = f̂r(x)(xt , yt ) = max
{
fr(xt )(yt )+ 〈Mr(xt ), xt − r(xt )〉 , OPT

}

= fr(xt )(yt )+ δ, (8)

and for its subgradient we have

g ∈ ∂ f̂r(xt ) �⇒ (Mr(xt ), g) ∈ ∂ψF(xt , yt ), (9)

123



A. Basu et al.

by Lemma 18 and (3).
Suppose first that ht ∈ Hval was a function value query, and denote by Bval and

hval∗ the transformation and hereditary query that Adv-MI uses, according to def-
inition 20, giving Bval(hval∗ (v)) = ht (v + δ) for all v ∈ R. For every collection
F = ( fx̄)x̄ of surviving functions fx̄ ∈ S(x̄), by the consistency guarantee of Adv-
Cont+ (Item 1 of Lemma 17), the function fr(xt ) selected for the fiber r(xt ) has
response hval∗ ( fr(xt )(yt )) = α. Then, from the definition of hereditary queries and (8),
we have Bval(hval∗ ( fr(xt )(yt ))) = ht ( fr(xt )(yt ) + δ) = ht (ψF(xt , yt )), and so ψF is
indeed consistent with the response Bval(α) provided by Adv-MI.

If instead h ∈ Hsub was a subgradient query, again denote Bsub and hsub∗ as the
appropriate transformation and hereditary query, with Bsub(hsub∗ (g)) = h(M(x), g)
for all g ∈ R

d . Again, for every choice F of surviving functions on the fibers, the
function fr(xt ) on r(xt ) has hsub∗ (g) = α, for some g ∈ ∂ fr(xt )(yt ). Then, from the
definition of hereditary queries and (9), Bsub(hsub∗ (g)) = ht (Mr(xt ), g) = ht (gψ),
with gψ ∈ ∂ψF(xt , yt ). Hence, whether ht is a function value or subgradient query,
all functions ψF for choices F of the surviving functions on the fibers are consistent
with the responses given byAdv-MI, for the oracleO(G,H)with permissible queries
H and the first-order chart G from Invariant 2.

We now prove thatAdv-MI is ε-hard for 2n−1�−1 rounds, thus proving Theorem 7
in the general case. Since Adv-MI makes at most 2 queries to Adv-Cont+ in every
round (Step 2) of Procedure 4, if the optimization algorithm runs for fewer than 2n−1 ·�
iterations, there is a fiber x∗ ∈ {0, 1} where Adv-MI sent at most � − 1 hereditary
queries to the adversary Adv-Cont+ of the fiber x∗. Thus, by the guarantee of the
latter (Item 2 of Lemma 17), the surviving set S(x∗) has some finite collection of
functions f 1x∗ , ..., f kx∗ with no common ε-approximate solution, and the remainder
of the proof follows as in the full-information case, by considering ψF1 , ..., ψFk that
have f 1x∗ , ..., f kx∗ on the fiber x∗, and some functions with optimal value greater than
OPT + ε on all the other fibers.

This completes the proof of Theorem 7.

3 Proof of Theorem 9

To demonstrate Theorem 9, we need to introduce the idea of information memory of
any query strategy/algorithm.

Definition 22 A first-order query strategy with information memory comprises four
functions:

1. φquery : {0, 1}∗ → [−R, R]n × [−R, R]d
2. φ

sep
update :

(
R
n × R

d
)× {0, 1}∗ → {0, 1}∗

3. φval
update : R× {0, 1}∗ → {0, 1}∗

4. φsub
update :

(
R
n × R

d
)× {0, 1}∗ → {0, 1}∗,

where {0, 1}∗ denotes the set of all binary strings (finite sequences over {0, 1}), includ-
ing the empty string.

Given access to a first-order chart G, the query strategy maintains an informa-
tion memory rk at every iteration k ≥ 0, which is a finite length binary string in
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{0, 1}∗, with r0 initialized as the empty string. At every iteration k = 1, 2, . . .,
the query strategy computes zk := φquery(rk−1) and updates its memory using
either rk = φ

sep
update

(
gsepzk ( f̂ , Ĉ), rk−1

)
, rk = φval

update

(
gvalzk ( f̂ , Ĉ), rk−1

)
or rk =

φsub
update

(
gsubzk ( f̂ , Ĉ), rk−1

)
, where ( f̂ , Ĉ) is the unknown true instance. After finitely

many iterations, the query strategy does a final computation based on its informa-
tion memory and reports an ε-approximate solution, i.e., there is a final function
φfin : {0, 1}∗ → Z

n × R
d .

The informationmemory complexity of an algorithm for an instance is themaximum
length of its information memory rk over all iterations k during the processing of this
instance.

The following proposition allows us to relate the information memory complexity
of first-order algorithms with information complexity under access to a general binary
oracle using first-order information.

Proposition 23 Let G be a first-order chart. For any first-order query strategyA with
information memory that uses G, there exists a query strategy A′ using the general
binary oracle based onG, such that for any instance ( f ,C), ifA stops after T iterations
with information memory complexity Q, A′ stops after making at most Q · T oracle
queries.

Conversely, for any query strategy A′ using the general binary oracle based on
G, there exists a first-order query strategy A with information memory such that for
any instance ( f ,C), if A′ stops after T iterations, A stops after making at most T
iterations with information memory complexity at most T .

Proof LetA be a first-order query strategy with informationmemory.We can simulate
A by the query strategywhose queries are precisely the bits of the informationmemory
state rk at each iteration k of A. More formally, the query is z = φquery(rk−1) and
h(·) = (φ

sep
update(·, rk−1))i , h(·) = (φval

update(·, rk−1))i , or h(·) = (φsub
update(·, rk−1))i ,

depending on which type of query was made, where i indexes different bits of the
corresponding binary string.

Conversely, given a query strategy A′ based on the general binary oracle, we can
simulate it with a first-order query strategy with information memory where in each
iteration, we simply append the new bit queried by A′ to the current state of the
memory. ��

We need the following result derived from Blanchard et al. [4] on information
memory complexity.

Theorem 24 [4, Theorem 1] For every δ ∈ [0, 1], there is a class of unconstrained
continuous convex optimization instances I ⊆ I0,d,R,ρ,M and a first-order chart G
such that any first-order query strategy with information memory must have either

d2−δ information memory complexity (in the worst case) or make at least 	̃(d1+ δ
3 )

iterations (in the worst case) to find an ε = 1
d4

approximate solution.

Proof of Theorem 9 In the case when n = 0, we can set δ = 3
4 in Theorem 24 to obtain

that any first-order query strategy uses either d5/4 information memory or makes at
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least 	̃(d5/4) iterations. Using the second part of Proposition 23, we obtain the lower
bound of 	̃(d5/4) on the number of queries made by any query strategy using the
general binary oracle based on G.

Applying Theorem 7 enables us to extend the bound to the mixed-integer scenario
(n > 0). Further, by integrating this with Corollary 8, we can obtain the desired bound.

��

4 Proof of Theorems 10 and 11

We will use B∞(p, δ) to denote the �∞ ball of radius δ centered at p ∈ R
n ×R

d , i.e.,
B∞(p, δ) = {z ∈ R

n × R
d : ‖z − p‖∞ ≤ δ}. Recall that we consider the subclass

of instances ( f ,C) ∈ In,d,R,ρ,M such that the fiber containing the optimal solution
also contains a point that is ρ-deep in C , that is: if (x∗, y∗) ∈ Z

n × R
d is an optimal

solution for this instance, then there is a point (x∗, ȳ) such that the full-dimensional
ball B∞((x∗, ȳ), ρ) is contained in C . We use Ideep

n,d,R,ρ,M to denote this subclass of
instances.Wewill useC−ρ := {z ∈ C : B∞(z, ρ) ⊆ C} to denote the set of all ρ-deep
points in C .

Our strategy for proving Theorems 10 and 11 is to: 1) solve the the problems using
approximate subgradients/separating hyperplanes; 2) use bit queries/inner product
sign queries to construct such approximations.

For the first item, we use an algorithm designed by Oertel [14] (see also [3]) based
on the concept of a centerpoint: this is a point in the convex set where every halfspace
supported on it cuts off a significant (mixed-integer) volume of the set. The algorithm
maintains an outer relaxation P of the feasible region C in every iteration, and repeat-
edly applies separation or subgradient-based cuts through the centerpoint of P . The
assumption that the feasible region contains a ball (in the optimal fiber) establishes a
volume lower bound that essentially limits the number of iterations of the algorithm.
While the original algorithm in [3, 14] uses exact separation/subgradient oracles, we
show, not surprisingly, that approximate ones suffice. To proveTheorem11,we employ
a similar approach. However, due to the continuous nature of the setting, we can obtain
a better upper bound compared to Theorem 10 by applying a stronger bound on the
centerpoints from Grünbaum [10].

The next item is to construct approximate separation/subgradient oracles by mak-
ing only a limited number of binary queries on the separating hyperplanes and/or
subgradients. In case of bit queries Hbit this can be easily done by querying enough
bits of the latter. The case of inner product sign queries Hdir, where we can pick a
direction a and ask “Is 〈a, g〉 ≥ 0?” for the subgradient or separating hyperplane g, is
more interesting. It boils down to approximating the vector g (subgradient/separating
hyperplane) using few such queries.2

To formalize the first item, we begin by defining three approximate oracles as
follows.

2 This is related to (actively) learning the linear classifier whose normal is given by g [1]. These methods
can perhaps be adapted to our setting, but we present a different and self-contained statement and proof.
See the discussion at the end of Sect. 4.2.
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Definition 25 We have the following:

• An ε-approximate separation oracle ĝsep is such that ĝsepz̄ ( f ,C) = 0 iff z̄ belongs
toC , and otherwise the cut 〈ĝsepz̄ ( f ,C), z〉 ≤ 〈ĝsepz̄ ( f ,C), z̄〉 is valid for all ε-deep
points z ∈ C−ε.
• An ε-approximate value cut oracle ĝsub is such that for every z such that
〈ĝsubz̄ ( f ,C), z〉 ≥ 〈ĝsubz̄ ( f ,C), z̄〉, we have f (z) ≥ f (z̄)− ε.
• An ε-approximate value comparison oracle is such that for every function f :
[−R, R]n+d → [−U ,U ] and every pair of points z, z′ we obtain the answer to
the query “Is f (z) ≤ f (z′)+ ε?”.

Then the first item can be formalized as the following.

Theorem 26 There exists an algorithm that, for any M, R > 0, 0 < ε ≤ MR and
ρ > 0, can report an ε-approximate solution for every instance in Ideep

n,d,R,ρ,M, using
at most

O

(
2n(n + d)d log

(
MR

min{ρ, 1}ε
))

oracle calls, given access to any ρ′-approximate separation oracle, ε′-approximate
value cut oracle, and ε′-approximate value comparison oracle with ρ′ = ε′ρ

4MR and
ε′ = ε

6 .
For the continuous setting with n = 0, the bound can be improved to

O

(
d log

(
MR

min{ρ, 1}ε
))

.

We postpone the proof of Theorem 26 to Sect. 4.1.
The next lemma shows that one can implement the approximate oracles from Def-

inition 25 using bit queries and inner product sign queries.

Lemma 27 Consider a first-order chartG. Let f : Rn+d → Rbe a convex M-Lipschitz
function taking values in [−U ,U ], and C ⊆ [−R, R]n+d a convex set.

Then for every pair of points z̄, z̄′ ∈ [−R, R]n+d , we can obtain an ε-approximate
separation oracle vector ĝsepz̄ ( f ,C), an ε-approximate value cut vector ĝsubz̄ ( f ,C),
and an ε-approximate value comparison between z̄ and z̄′ using either a sequence of
bit queries from Hbit, or a sequence of inner product sign queries from Hdir, on the
separating hyperplane gsepz̄ ( f ,C), the subgradient gsubz̄ ( f ,C) and the function value
gvalz̄ ( f ,C). The number of required queries to implement the approximate oracles is

O
(
(n + d) log (n+d)R

ε

)
, O

(
(n + d) log (n+d)MR

ε

)
and O

(
log U

ε

)
respectively, for

both Hbit and Hdir.

The proof of Lemma 27 is deferred to Sect. 4.2.

Proof Theorems 10 and 11 follow from Theorem 26 and Lemma 27. ��
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4.1 Proof of Theorem 26

We first describe the centerpoint algorithm for convex optimization due to Oertel [14]
(see also [3]). Let the mixed-integer volume of a (Borel) set U ∈ R

n+d be μ(U ) :=∑
x∈Zn vold(U ∩ ({x} × R

d)), where vold is the d-dimensional Lebesgue measure.
The following notion is the main element of the algorithm.

Theorem 28 (Mixed-integer centerpoint [3, 14]) For any compact convex set C ⊆
R
n+d , there is a point z ∈ C ∩ (Zn × R

d) (called a mixed-integer centerpoint) such
that for every halfspace H with z on its boundary, we haveμ(C∩H) ≥ 1

2n(d+1) μ(C).

Algorithm 1 below is the centerpoint-based algorithm for solving mixed-integer
convex optimization problems from [14], restated in terms of approximate separation
(ĝsepz̄ ( f ,C)), value cut (ĝsubz̄ ( f ,C)) and value comparison oracles.

Algorithm 1 Centerpoints
1. Initialize the version set P0 := [−R, R]n+d and the collection of feasible points F = ∅. For iterations

t = 0, . . . , T − 1:

(a) Let zt ∈ Pt ∩ (Zn × R
d ) be a mixed-integer centerpoint of Pt given by Lemma 28.

(b) If the ρ′-approximate separation oracle says that zt is infeasible forC , add the cut 〈ĝsepzt ( f ,C), z〉 ≤
〈ĝsepzt ( f ,C), zt 〉 to Pt , namely set Pt+1 = Pt ∩ {z : 〈ĝsepzt ( f ,C), z〉 ≤ 〈ĝsepzt ( f ,C), zt 〉}

(c) Else, add zt to the set of feasible solutions F , and add the cut from the ε′-approximate value cut
oracle, namely set Pt+1 = Pt ∩ {z : 〈ĝsubzt ( f ,C), z〉 ≤ 〈ĝsubzt ( f ,C), zt 〉}.

2. Finally, return a point ẑ from F that has approximately the minimum value among all solutions in F ,
namely such that f (ẑ) ≤ minz∈F f (z)+ ε′. This can be accomplished by asking |F | − 1 queries to the
ε′-approximate value comparison oracle.

To analyze this algorithm we need the following technical lemma regarding deep
points in instances in Ideep

n,d,R,ρ,M .

Lemma 29 For every instance ( f ,C) in Ideep
n,d,R,ρ,M, and for every 0 < ε < 2MR,

there is an ε-approximate solution z such that the ball B∞(z, ερ
2MR ) is contained in C.

Proof Let z∗ = (x∗, y∗) be an optimal solution for the instance, and let z̄ = (x∗, ȳ)
be such that B∞(z̄, ρ) is contained in C . For α = ε

2MR , we claim that the point
z := (1− α)z∗ + αz̄ has the desired properties. First, by convexity of C we have that
the desired ball B∞(z, ερ

2MR ) = (1−α)z∗ +αB∞(z̄, ρ) is contained inC . In addition,
since z− z∗ = α · (0, ȳ− y∗) and f is M-Lipschitz over the integer fibers, we have

f (z) ≤ f (z∗)+ αM · ‖y∗ − ȳ‖∞ ≤ f (z∗)+ ε,

where the last inequality uses that y∗, ȳ ∈ [−R, R]d and the definition of α; so z is an
ε-approximate solution. This concludes the proof. ��
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Proof of Theorem 26 We show that Algorithm 1 with number of iterations set as

T = 2n(n + d)(d + 1) ln

(
2R

min{ρ′, 1}
)
∈ O

(
2n(n + d)d ln

(
MR

min{ρ, 1}ε
))

has the desired properties First, regarding the number of oracle queries performed: in
each iteration it performs at most 2 approximate separation/value cut queries, and in
Step 2 it performs |F | − 1 ≤ T approximate value comparison queries. In total, the
algorithm performs at most 3T queries, giving the desired complexity.

Now we show that the algorithm returns an ε-optimal solution. For that, it suffices
to show that for this value of T , the set of feasible solutions F contains an ε

2 -optimal
solution.

Using Lemma 29, let z̄ be an ε′-approximate solution such that the ball
B∞(z̄, ε′ρ

2MR ) = B∞(z̄, 2ρ′) is contained inC . Thus, the ball B∞(z̄, ρ′) is contained in
C−ρ′ . Since the cut added to Pt , whether in Step (b) or (c), goes through the centerpoint
zt , the mixed-integer volume of Pt is reduced by a factor of at least (1 − 1

2n(d+1) ) in
each iteration (to simplify the notation let α := 1

2n(d+1) ). The definition of T shows
that the last set PT has mixed-integer volume at most

(1− α)Tμ(P0) = (1− α)T (2R)n+d ≤ e−Tα(2R)n+d ≤ (
min{ρ′, 1})n+d

≤ (
min{ρ′, 1})d . (10)

Let X be the intersection of B∞(z̄, ρ′) with the mixed-integer fiber containing z̄.
X has the same structure as an �∞ ball of radius ρ′ in R

d , and thus has volume at
least (2ρ′)d , which is strictly bigger than the right-hand side of (10). This means that
some mixed-integer point from X is cut off by one of the hyperplanes applied by
the algorithm. However, such a hyperplane cannot be one added in Step (b), since
B∞(z̄, ρ′) ⊆ C−ρ′ and the cuts in that step are valid for C−ρ′ . Thus, there is an
iteration t that added a Step (c) approximate value cut that cut off a point z̃ ∈ X . Thus,
〈ĝsubzt ( f ,C), z̃〉 > 〈ĝsubzt ( f ,C), zt 〉. Since this is an ε′-approximate value cut, we get
that f (z̃) ≥ f (zt ) − ε′. Since f is M-Lipschitz on the fiber containing z̄ and z̃, and
the �∞ distance between z̄ and z̃ is at most ρ′, we get

f (zt ) ≤ f (z̃)+ ε′ ≤ f (z̄)+ ρ′M + ε′ ≤ OPT + 2ε′ + ρ′M ≤ OPT + ε

2
,

where the last inequality uses that ρ′ = ε′ρ
4MR ≤ ε′

M and that ε′ = ε
6 .

This shows that the set of feasible solutions F contains an ε
2 -approximate solution,

namely the above zt , as desired. This concludes the proof for themixed-integer setting.
For the continuous setting with n = 0, the improved bound follows from using an

improved bound on centerpoints due to Grünbaum [10]. Specifically, α in the left hand
side of (10) can be taken to be 1

e , where e is Euler’s constant. ��
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4.2 Proof of Lemma 27

The proof will be divided into two parts: first, we show how to obtain approximate
oracles using bit queries, after which we show how to do the same using inner product
sign queries.

Obtaining approximate oracles using bit queries Since f is M-Lipschitz with
respect to the �∞ norm, any subgradient has �∞ norm at most M . Thus, let-
ting ε′ := ε

2(n+d)R , we will query the sign and the bits indexed by the integers

�logM�, �logM� − 1, . . . ,−�log 1
ε′ � of each coordinate of gsubz̄ ( f ,C) (nonnegative

integers index the bits before the decimal, and negative integers index the bits after
the decimal in the binary representation). This can be done by querying the bits of
gsubz̄ ( f ,C) for a total of (n+d)(log M

ε′ +2) queries – for each coordinate, one queries
logM+log( 1

ε
)+1 bits for the desired precision and one additional bit for the sign. This

gives a vector ĝsubz̄ ( f ,C) such that ‖gsubz̄ ( f ,C)− ĝsubz̄ ( f ,C)‖∞ ≤∑
i>log 1

ε′
1
2i
≤ ε′.

Then ĝsubz̄ ( f ,C) is an ε-approximate value cut. Let g := gsubz̄ ( f ,C) and ĝ :=
ĝsubz̄ ( f ,C) to simplify notation. For every z ∈ [−R, R]n+d such that 〈ĝ, z〉 ≥ 〈ĝ, z̄〉
we have by convexity of f

f (z)− f (z̄) ≥ 〈g, z− z̄〉 = 〈ĝ, z− z̄〉
︸ ︷︷ ︸
≥0

+〈g − ĝ, z− z̄〉

≥ −‖g − ĝ‖∞ · ‖z− z̄‖1
≥ −2ε′(n + d)R = −ε, (11)

where the second inequality follows fromHölder’s inequality, and so ĝ has the desired
property.

For ĝsepz̄ ( f ,C), recall that by assumption the separating vector gsepz̄ ( f ,C) has unit
length, and hence ‖gsepz̄ ( f ,C)‖∞ ≤ 1. Then querying the sign and the bits indexed
by 0,−1, . . . ,− log 1

ε′ of each coordinate of g
sep
z̄ ( f ,C)we obtain a vector ĝsepz̄ ( f ,C)

such that ‖gsepz̄ ( f ,C)− ĝsepz̄ ( f ,C)‖∞ ≤ ε′.
We claim that ĝsepz̄ ( f ,C) is an ε-approximate separation oracle, namely the inequal-

ity 〈ĝsepz̄ ( f ,C), z〉 ≤ 〈ĝsepz̄ ( f ,C), z̄〉 holds for all z ∈ C−ε. As before, to simplify the
notation we use g := gsepz̄ ( f ,C) and ĝ := ĝsepz̄ ( f ,C). For every z ∈ [−R, R]n+d we
have

〈ĝ, z〉 = 〈g, z〉 + 〈ĝ − g, z〉 ≤ 〈g, z〉 + ‖ĝ − g‖∞ · ‖z‖1
≤ 〈g, z〉 + ε′R(n + d) = 〈g, z〉 + ε

2
. (12)

Now we claim that for every point z ∈ C−ε we have 〈g, z〉 ≤ 〈g, z̄〉 − ε: since the
inequality 〈g, x〉 ≤ 〈g, z̄〉 is valid for the ball B(z, ε) ⊆ C , we have

〈g, z̄〉 ≥ max
w∈B(0,ε)

〈g, z+ w〉 = 〈g, z〉 + ε, (13)
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proving the claim. Finally, we claim that 〈g, z̄〉 ≤ 〈ĝ, z̄〉 + ε
2 :

〈g, z̄〉 − 〈ĝ, z̄〉 = 〈g − ĝ, z̄〉 ≤ ‖g − ĝ‖∞ · ‖z̄‖1 ≤ ε′R(n + d) = ε

2
. (14)

Combining inequalities (12)–(14) proves that the cut 〈ĝ, z〉 ≤ 〈ĝ, z̄〉 is valid for C−ε.
To obtain the ε-approximate value comparison oracle, since f takes values in

[−U ,U ], it suffices to probe the sign plus log 2U
ε
bits of f (z̄) and f (z̄′) to approximate

each of the values within± ε
2 , in which case we can decide whether f (z̄) ≤ f (z̄′)+ ε

or not. This concludes the proof when using bit queries.

Obtaining approximate oracles using inner product sign queries This proof largely
follows the same steps as for the first part, except for the need for the following result,
which may be of independent interest.

Lemma 30 For any ε ∈ (0, 1) and any vector g ∈ R
d , using O(d log d

ε
) inner product

sign queries one can obtain a unit-length vector ĝ ∈ R
d such that

∥
∥ĝ − g

‖g‖
∥
∥ ≤ ε.

Proof We prove by induction on the dimension d that for every δ ∈ (0, 2), with d log 8
δ

inner product sign queries we can obtain a vector ĝ such that
∥∥ĝ − g

‖g‖
∥∥ ≤ 2dδ; the

lemma then follows by setting δ = ε
2d .

Just one query suffices when d = 1, so consider the base case d = 2. Perform a
binary search as follows: Start with the cone K0 = R

2, with corresponding angle 2π .
In iteration t , we maintain a cone Kt containing g whose angle is half that of Kt−1
as follows. For each iteration, find a line {x : 〈a, x〉 = 0} that cuts Kt into two cones
K L
t = Kt ∩ {x : 〈a, x〉 ≤ 0} and K R

t = Kt ∩ {x : 〈a, x〉 ≥ 0} each with half the angle
of Kt , i.e. bisecting Kt . Ask the query “Is 〈a, g〉 ≥ 0?”, and if so set Kt+1 = K R

t ,
otherwise set to Kt+1 = K L

t , and repeat the procedure. By construction all the cones
Kt contain g, and after log 8

δ
iterations we obtain a cone K with angle δπ

4 . Let ĝ be
any vector in this cone with unit �2-norm. For any other x ∈ K also of unit norm, we
have

‖ĝ − x‖22 = 2− 2〈ĝ, x〉 ≤ 2− 2 cos(δπ/4) ≤ (δπ/4)2 ≤ δ2,

where the second inequality uses that fact that cos(θ) ≥ 1− θ2

2 for all θ ∈ (0, π/2).
So ‖ĝ − x‖2 ≤ δ for all unit-norm vectors in K , and in particular ĝ gives the desired
approximation of g

‖g‖2 , proving the desired result when d = 2.
Now consider the general case d > 2. Consider any 2-dimensional subspace A of

R
d , and let�A denote the projection onto this subspace. Using the 2-dimensional case

on the subspace A, we see that by using log 8
δ
queries of the form “Is 〈a,�Ag〉 ≥ 0?”,

we can obtain a unit length vector g̃ ∈ A such that ‖λA · g̃−�Ag‖ ≤ δ‖�Ag‖, where
λA := ‖�Ag‖. We note that since 〈a,�Ag〉 = 〈�∗Aa, g〉, the required queries can be
obtained by inner product sign queries (here �∗A denotes the adjoint linear operator
for the projection operator �A, whose matrix representation is given by the transpose
of the matrix representing the projection �A).

Now consider the (d−1)-dimensional subspace B := span{g̃, A⊥}, and notice that
dist(g, B) ≤ δ‖g‖: the vector b := λA · g̃+ (g−�Ag) belongs to B and ‖g− b‖ =
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‖λA ·g̃−�Ag‖ ≤ δ‖�Ag‖ ≤ δ‖g‖. Since g is close to this subspace,we project it there
and recurse on dimension. More precisely, consider the projection �Bg of g onto B,
and inductively obtain a vector ĝ ∈ B such that ‖λB · ĝ−�Bg‖2 ≤ 2(d−1)δ ·‖�Bg‖
(letting λB := ‖�Bg‖), by using additional (d−1) log 8

δ
queries (for a total of d log 8

δ
queries).

We claim that ĝ is the desired approximation of g, namely ‖ g
‖g‖ − ĝ‖2 ≤ 2dδ. To

see this, from triangle inequality we have

∥∥g − ‖g‖ · ĝ∥∥ ≤ ‖g −�Bg‖ + ‖�Bg − λB · ĝ‖ + ‖λB · ĝ − ‖g‖ · ĝ
∥∥. (15)

The first term of the right-hand side equals dist(g, B), which is at most δ‖g‖ as argued
above. For the second term, by induction we have

‖�Bg − λB · ĝ‖2 ≤ 2(d − 1)δ · ‖�Bg‖ ≤ 2(d − 1)δ‖g‖.

Finally, we claim that the last term of (15) is at most δ‖g‖: since ĝ has unit norm, it
equals |λB − ‖g‖| = |‖�Bg‖ − ‖g‖| = ‖g‖ − ‖�Bg‖, and by triangle inequality we
have

‖g‖ ≤ ‖�Bg‖ + ‖g −�Bg‖ ≤ ‖�Bg‖ + δ‖g‖,

giving the claim.
Applying all these bounds to (15), we get that

∥∥g−‖g‖ · ĝ∥∥ ≤ 2dδ‖g‖, as desired.
This concludes the proof of the lemma. ��

Nowwe are ready to finish the proof. To obtain an ε-approximate value comparison
oracle using Hdir, we can do a binary search on the function values using the queries
hvalu,c with u = 1 and different values of c (as the midpoint of the interval in the
binary search) – see Definition 5. Thus, with O(log U

ε
) queries, we can implement an

ε-approximate value comparison oracle.
For the ε-approximate separation, we apply Lemma 30 above to the separation

oracle gsepz̄ ( f ,C), with O
(
(n + d) log (n+d)R

ε

)
inner product sign queries to obtain a

vector ĝsepz̄ ( f ,C) such that ‖gsepz̄ ( f ,C)− ĝsepz̄ ( f ,C)‖ ≤ ε

2R
√
n+d (recall the non-zero

separation oracles are assumed to have unit length). Using the same arguments as in
inequalities (12)–(14), we see that ĝsepz̄ ( f ,C) gives a cut valid for C−ε, and hence is
an ε-approximate separation oracle.

For the ε-approximate value cut oracle,wedo the same thing, but applyLemma30 to

gsubz̄ ( f ,C), with O
(
(n + d) log

(
(n+d)MR

ε

))
oracle calls to obtain an approximation

‖gsubz̄ ( f ,C)− ĝsubz̄ ( f ,C)‖ ≤ ε

2MR
√
n+d and then use the argument from (11).

Remark 31 Notice that the main ingredient for implementing approximate oracles
using inner product sign queries is to use such queries for approximating a given
vector g (Lemma 30). We remark that this task is related to (actively) learning a linear
classifier, namely that whose normal is given by g. While there are existing procedures
for doing this, they only guarantee the desired approximation with high probability
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(albeit on a slightly weaker query model), instead of with probability 1 as we want
here; see for example [1]. While it is possible that these methods can be adapted to
our setting, we present a different, self-contained statement and proof.

5 Proofs of Theorem 12 and Corollary 13

Proof Suppose we have an algorithm A that reports an ε-solution to any instance in
In,d,R,ρ,M after u queries to a full-information first-order oracle based on the first-
order chart G, a finite set of instances I ⊆ In,d,R,ρ,M , and a true (unknown) instance
I ∈ I. Our goal is to report a feasible ε-solution using few queries toO(G,H), where
H contains all binary queries. For this, we design a procedure that maintains a family
U ⊆ I of the instances, which always includes the true instance I , and possibly
determines exact information to pass to A. We will show that we can always either
reduce |U | by a constant factor, or determine exact information to use with A.

Denote by D the query strategy of A. Initialize U = I, and (ordered) lists Q =
∅, H = ∅, which will serve as query-response pairs for the algorithmA. In particular,
H will contain full first-order information about the true instance, and Q will be the
sequence of queries A makes. While |U | > 1 and |Q| ≤ u, do the following:

• Set z = D(Q, H), and query whether z is feasible. Let us simply write gz(I ) to
mean gsepz (I ) if z is infeasible for the instance I , and gvalz (I ) or gsubz (I ) if feasible,
wheregsepz ,gvalz andgsubz are thefirst-ordermaps for separatinghyperplane, function
value and subgradient, respectively, used by the general binary oracle at z. Write
Vz to be the appropriate codomain.
• Case 1: For every v ∈ Vz, at most half of the instances I ′ ∈ U give gz(I ′) = v.
Then there exists a set A ⊆ Vz such that the number of instances I ′ ∈ U with
gz(I ′) ∈ A is between 1

4 |U | and 3
4 |U |. Let U0 := {I ∈ U : gz(I ′) /∈ A}, U1 :=

{I ∈ U : gz(I ′) ∈ A}; thus, |Ui | ≤ 3
4 |U | for i = 0, 1. Query whether the true

instance I has gz(I ) ∈ A, using the binary query hA : hA(v) = 1 iff v ∈ A, so
that hA(gz(I )) = 0 if I ∈ U0 and hA(gz(I )) = 1 if I ∈ U1.
Update U ← Uq , where q is the answer to the query (z, hA) given by the oracle.
• Case 2: There exists v̄ ∈ Vz such that more than half of the instances I ′ ∈ U have
gz(I ′) = v̄. Query whether the true instance I has gz(I ) = v̄, using the binary
query h : h(v̄) = 1 and h(x) = 0 for all other inputs x �= v̄, so that h(gz(I )) = 1
iff gz(I ) = v̄. If gz(I ) �= v̄, then update U by removing from it all instances I ′
such that gz(I ′) = v̄, reducing the size of U by at least half. Otherwise, if z was
infeasible, we then know the exact separating hyperplane (or function value or
subgradient, in the case z is feasible) for the true instance I and the first-order
chart G, namely gsepz (I ) = v̄, and so employ it to update Q and H by appending z
and v to them, respectively, which will serve as information for the algorithm A.

In each step, either the size of U decreases by at least 1/4, or full (exact) first-order
information at the query point determined by the query strategy of A is obtained and
Q, H are updated. The former can only happen O(log |I|) times until U becomes a
singleton, in which case we know the true instance and can report its optimal solution,
while if the latter happens u times, one can run the algorithm A with the information
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(Q, H) to report an ε-approximate solution to the true instance I , noting that since
the points in Q were determined according to the query strategy of the algorithm, the
information in (Q, H) is indeed sufficient to run theA on for u iterations. Hence, after
at most log |I| + u queries to the general binary oracle, one can report an ε-solution
to the true instance.

Corollary 13 follows immediately when one uses the centerpoint-based algorithm
of [3, 14] as A, which is the exact oracle version of Algorithm 1 above and needs at
most

O

(
2n d (n + d) log

(
dMR

min{ρ, 1}ε
))

queries in the mixed-integer case, or

O

(
d log

(
MR

min{ρ, 1}ε
))

queries in the continuous (n = 0) case to produce an ε-approximate solution to any
instance in In,d,ρ,M,R .

A information games

In this section we define the game-theoretic perspective for information complexity
and prove Lemma 15, which we restate for convenience.

Lemma 15 Consider a class of instances I and an oracleO. Then icompε(I,O) > �

if and only if there exists an adversary under O using I that is ε-hard for � rounds.

Let I be a family of optimization instances in R
n × R

d . Let O be an oracle for
I. Let ε > 0. We define the information game for (I,O, ε) as a two player game
between Alg and Adv. The players make moves alternatingly with Alg moving first.
For Alg, a move is a choice of query q from the oracleO. For Adv, a move is a choice
of r ∈ H , where H is the response set of q from the immediately preceding move
by Alg. The only constraint on Adv is that there should exist at least one instance in
I that will give the same responses as the moves made by Adv in the game so far to
queries corresponding to the moves made by Alg so far. More precisely, at any stage
of the game, there must exist an instance I such that for every response r given by Adv
at any round of the game played so far to an immediately preceding query q made by
Alg, we have r = q(I ).

Notice that a game strategy for Alg is equivalent to a query strategy from Defini-
tion 2. Also, any instance Ī ∈ I gives a game strategy for Adv, by simply reporting
the response q( Ī ) for all queries q made by Alg.

In the game tree defined by the above game, a node is said to be ε-unambiguous if
the instances that are consistent with Adv’s moves all have a common ε-approximate
solution; otherwise, the node is ε-ambiguous. The game stops when the game reaches
an ε-unambiguous node; thus, all leaf nodes of the game tree are ε-unambiguous.When
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the game stops at an ε-unambigious node L , the loss (or payoff) Lε(L) is defined as
the number of moves made by Alg to arrive at L in the game tree, i.e., it is exactly half
of the depth of L in the game tree.

A subtree T of the game tree is said to be a full subgame tree if it is precisely the set
of all descendants of a node in the game tree (including itself). A subtree T is said to
have finite horizon if it has bounded depth, i.e., there exists D > 0 such that all nodes
of T have depth (in T ) bounded by D. Otherwise, T is said to have infinite horizon
(note this includes the case where T has an infinite length path and the case where all
paths are finite length, but there is no upper bound on the lengths).

We define the value v(T ) of a finite horizon subtree T by induction on the depth of
T , which we call the value of the subgame defined by T .

• If T consists of a single node N , v(T ) := Lε(N ) if N is an ε-unambiguous node,
else v(T ) := ∞.
• If T is rooted at a node N corresponding to Alg, then v(T ) := inf{v(T ′) :

T ′ child subtree in T at N }.
• If T is rooted at a node N corresponding to Adv, then v(T ) := sup{v(T ′) :

T ′ child subtree in T at N }.
Let T and T ′ be subtrees of the game tree. T ′ is said to be a (finite horizon) truncation

of T if there exists D > 0 such that T ′ consists of all nodes of T with depth bounded
by D. Observe that if T , T ′ are finite horizon subtrees and T ′ is a truncation of T , then
v(T ′) ≥ v(T ). We can thus naturally extend the notion of value to an infinite horizon
subtree T , as a limit of its finite horizon truncations:

v(T ) := inf{v(T ′) : T ′ finite horizon truncation of T }.

A game strategy for Alg (resp. Adv) is a choice of a specific move at every non
leaf node corresponding to Alg (resp. Adv). Thus, any game strategy Q for Alg (resp.
game strategy A for Adv) corresponds to a subtree of the entire game tree, where we
select a single outgoing edge at every node corresponding to Alg (resp. Adv). Such a
subtree is called a decision tree forAlg (resp. Adv).With a slight abuse of notation, we
will use v(Q) (resp. v(A)) to denote the values of these decision trees. A simultaneous
choice of strategies Q, A yields a single path in the original game tree; v(Q, A) will
denote the value of this path (subtree).

We note that we can express the notion of an ε-hard adversary for � using this
notation; it follows directly from the definition of the value function v(·).
Observation 32 An adversary A is ε-hard for �-rounds iff infQ v(Q, A) > �, where
the infimum is taken over all strategies for Alg.

We now focus on proving Lemma 15, which requires a few preparatory observa-
tions. The first is the following, which is a useful extension of the recursive nature of
the value of a subtree to infinite horizon trees.

Lemma 33 Let T be any subtree of the game tree (not necessarily of finite horizon).
Then,

• If T consists of a single node N, v(T ) = Lε(N ) if N is an ε-unambiguous node,
else v(N ) = ∞.
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• If T is rooted at a node N corresponding to Alg, then v(T ) = inf{v(T ′) :
T ′ child subtree in T at N }.
• If T is rooted at a node N corresponding to Adv, then v(T ) = sup{v(T ′) :

T ′ child subtree in T at N }.
Proof The result follows from the fact that for any finite horizon truncation T ′ of T ,
the subtrees of T ′ rooted at the children of the root of T ′ (and T ) are finite horizon
truncations of the subtrees of T rooted at the children of the root. ��

The following technical property will be used several times in the sequel.

Lemma 34 The value of the full game is finite if and only if every full subgame has
finite value.

Proof Since the full game is a subgame of itself, if every subgame has finite value so
does the full game. For the other direction, suppose now that the full game tree has
finite value. Then, there is a finite horizon truncation T with finite value. The next
claim shows that for every full subgame tree, its value can be upper bounded using
the value of T , so in particular is finite as desired.

Claim 35 Let S be a full subgame tree, and let N denote its root node. Then v(S) ≤
v(T )+ depth(N )+ 1.

Proof Let D be the depth of T . Consider the truncation S′ of S which has depth D if
N is a node corresponding to Alg, and depth D + 1 if N is a node corresponding to
Adv. Since S′ is a truncation of S, it follows that v(S) ≤ v(S′), and so we only need
to show v(S′) ≤ v(T )+ depth(N )+ 1.

To prove this bound, consider first the case when N is a node corresponding to
Alg. In this case, T is isomorphic to a subtree of S′, i.e., each node of T corresponds
to a node in S′ in the natural way: the root of T corresponds to the root of S′, the
children of the root of T corresponds to (some of) the children of the root of S′, etc.
Observe that the nodes corresponding to Alg have the same possibilities for moves
in both trees S′ and T (in fact, every node of Alg in the full game tree has the same
choice of moves by definition). However, nodes corresponding to Adv have a smaller
set of choices in S′, i.e., children, compared to T , because they are deeper in the game
tree. Thus, in the inductive definition of v(S′), a supremum computed at a node in
S′ for Adv is over a smaller set of choices compared to the corresponding supremum
when computing v(T ). Finally, the depth (in the full game tree) of any node in S
is precisely depth(N ) more than the depth of the corresponding node in T . Thus,
v(S′) ≤ v(T )+ depth(N ) ≤ v(T )+ depth(N )+ 1.

Next, consider the case when N is a node corresponding to Adv. All the subtrees
of S′ rooted at the children of N are again in correspondence with T , since S is of
depth D + 1. The previous argument applies to these subtrees and thus, their values
are all bounded by v(T )+ depth(N )+ 1. Taking a supremum at node N shows that
v(S′) ≤ v(T )+ depth(N )+ 1. !

The completion of Claim 35’s proof concludes the entire proof. ��
Wefirst prove the existence of a saddle-point in this game (in fact, the same argument

gives that there is a subgame perfect equilibrium, which essentially means that this
saddle point property holds for every subtree).
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Lemma 36 Suppose the value of the full game is finite (in other words, the optimization
problem is solvable with finitely many queries using the given oracles). Then, there
exists a saddle-point Q�, A� for Alg and Adv respectively, i.e., strategies Q� and A�

satisfying

inf
Q

v(Q, A�) = v(Q�, A�) = sup
A

v(Q�, A) = v(full game), (16)

where full game denotes the full game tree, the infimum on the left-hand side is over
all possible strategies for Alg, and the supremum on the right-hand side is over all
strategies for Adv.

Proof Since we assume the full game has finite value, by Lemma 34 we know that the
value v(S) of any full subgame tree S is also finite. Combined with the fact that v(S)

is integer valued, the supremum or infimum in Lemma 33 is attained. A saddle-point
Q� and A� can now be defined as follows. At any node N corresponding to a move by
Alg, select the move that attains the infimum giving the value of the full subgame tree
rooted at N by Lemma 33. At any node N corresponding to a move by Adv, select
the move that attains the supremum giving the value of the full subgame tree rooted
at N by Lemma 33.

We now prove that Q�, A� satisfy the desired properties.When the full tree is finite,
this follows directly from the definition of Q�, A�; the case where it is not finite is that
requires more subtle arguments based on finite horizon truncations. Let T denote the
full game tree, and for a node u let Tu denote its full subtree rooted at u.

We start by proving that v(Q�, A�) = v(T ). Let p1, p2, . . . be the nodes in the path
P� induced by Q�, A� (p1 being the root of the full game tree). By the second item
of Lemma 33, we have that v(Tp1) is the smallest value of the subtrees rooted at the
children of p1; since the strategy Q� chooses precisely such child p2 of smallest value,
we get v(Tp1) = v(Tp2). Similarly, using the same lemma and the definition of the
adversarial strategy A�, we get v(Tp2) = v(Tp3). Thus, subtrees Tpi ’s have the same
value, equal to v(Tp1) = v(T ) (which is finite). Moreover, the value of a subtree Tu is
at least half of the depth of u: v(Tu) is either∞ or is the (finite) payoff of a node w in
Tu , which is at least half the depth of w, and so at least half the depth of u. Therefore,
all nodes in the path P� are at depth at most 2 ·v(T ); in particular, P� has finite length.
Now consider a finite horizon truncation T ′ of T with value v(T ′) = v(T ); we can
further increase the depth of this truncation and assume that the path P� is contained
in T ′.

Since T ′ is finite, its value v(T ′) is defined by taking the child that has subtree of
smallest/largest value on the nodes of Alg/Adv, until a leaf (of finite value) is reached.
But this is by construction the choices that the path P� makes, namely they reach the
same leaf (or leaves of the same value). The values of v(T ′) and v(P�) are then the
value of this leaf/leaves, and hence v(T ′) = v(P�), or equivalently v(Q�, A�) = v(T )

as desired.
We now consider the first desired equation, namely infQ v(Q, A�) = v(Q�, A�),

and notice that it suffices to show

inf
Q

v(Q, A�) ≥ v(Q�, A�) (17)
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(the equality follows by taking Q = Q�). Assume that the paths induced by Q, A�

and Q�, A� are different, else there is nothing to show. Let u be the first node of Alg in
these paths where Q and Q� make different decisions; let w and w� be the children of
u on the paths induced by Q, A� and Q�, A� respectively. Notice that by construction
of the choice Q� makes at u, we have v(Tw�) ≤ v(Tw).

Now we claim that v(Q, A�) ≥ v(Tw). If the path P induced by Q, A� has infinite
length, then all of its nodes are ε-ambiguous and so by definition v(Q, A�) = ∞ and
the inequality holds. So suppose P has finite length. Since the value v(Tw) is finite,
again due to our assumption that v(T ) is finite, there is a finite horizon truncation T ′
of this subtree with the same value; again, we can further increase the depth of this
truncation and assume that the path P ∩ Tw (the suffix of P starting at w) is contained
in T ′ (and hence P ∩Tw = P ∩T ′). By definition, the nodes of Adv in the path P∩T ′
always select the action that lead to the child whose subtree has largest value (being
basedon A�),while the nodes ofAlgmaynot necessarily select the childrenwith lowest
value subtrees (being based on Q). Since in the definition of the value v(T ′), both the
nodes ofAdv andAlgmake the optimal decisions,we see that v(T ′) ≤ v(P∩T ′). Since
the value of the path v(P) and of its suffix v(P ∩ T ′) are the same (they are the value
of the leaf of the path), we obtain v(Tw) = v(T ′) ≤ v(P ∩ T ′) = v(P) = v(Q, A�),
as claimed.

Next, we claim that v(Tw�) = v(Q�, A�). As proved above, the path P� induced
by Q�, A� has finite length. Since the value v(Tw�) is finite, as above, consider a
truncation T ′ of Tw� with same value v(T ′) = v(Tw�) and that contains the suffix
P� ∩ Tw� . By the same argument as in the previous paragraph, but now using that
both Q� and A� make optimal decisions, we have v(T ′) = v(P�∩ Tw�), which is also
equal to v(P�); this implies v(Tw�) = v(P�) = v(Q�, A�) as desired.

Putting together the bounds from the three previous paragraphs yields v(Q�, A�) =
v(Tw�) ≤ v(Tw) ≤ v(Q, A�) for every strategy Q for the algorithm. Taking an infi-
mumover all such Q’s finally proves (17), and hence that infQ v(Q, A�) = v(Q�, A�).

The proof that supA v(Q�, A) = v(Q�, A�) uses the exact same arguments, but
exchanging the roles of the players Alg and Adv. ��

By standard arguments, the existence of a saddle-point implies a minimax result,
which is the first element required to prove Lemma 15.

Lemma 37 Suppose the value of the full game is finite, and let Q�, A� be a subgame
perfect equilibrium guaranteed to exist by Lemma 36. The the following minimax
holds;

sup
A

inf
Q

v(Q, A) = v(Q�, A�) = inf
Q

sup
A

v(Q, A),

where the infima are over all possible strategies for Alg, and the suprema are over all
strategies for Adv.

Proof From the guarantees of Q�, A�, for all strategies Q, A for Alg and Adv respec-
tively, we have

v(Q�, A�) ≤ inf
Q

v(Q, A�) ≤ sup
A

inf
Q

v(Q, A)
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and

inf
Q

sup
A

v(Q, A) ≤ sup
A

v(Q�, A) ≤ v(Q�, A�).

Since we always have supA infQ v(Q, A) ≤ infQ supA v(Q, A), we get equalities
throughout. ��

The last element required for proving Lemma 15 is the equivalence between the
value of this game and the information complexity of the underlying optimization
problem.

Lemma 38 The value of the full game v(full game) equals icompε(I,O).

Proof Combining Lemmas 36 and 37, v(full game) = infQ supA v(Q, A), so it suf-
fices to show

inf
Q

sup
A

v(Q, A) = inf
Q

sup
I∈I

icomp ε(Q, I ,O).

To see the “≥” direction: Consider any strategy Q for Alg and instance I ∈ I.
Consider the adversary A based on the instance I , namely that reports q(I ) whenever
Q asks a query q. Notice that v(Q, A) = icompε(Q, I ,O) (if icompε(Q, I ,O) is
finite, after exactly icompε(Q, I ,O) many moves of the algorithm Q we reach an
ε-unambiguous node in the path induced by Q, A, so v(Q, A) = icompε(Q, I ,O);
if icompε(Q, I ,O) is infinite, every finite horizon truncation of the path induced by
Q, Amust end on an ε-ambiguous node, so v(Q, A) is also infinite). That is, for every
I we can find a strategy A for the adversary with the “same value”, which then implies
supA v(Q, A) ≥ supI∈I icompε(Q, I ,O). Taking an infimum over all Q’s on both
sides gives the desired inequality infQ supA v(Q, A) ≥ infQ supi∈I icompε(Q, I ,O).

The proof for the “≤” direction is analogous: Consider any strategy Q for Alg
and strategy A for Adv. If v(Q, A) = ∞, then for every finite horizon truncation of
length N (i.e. with N

2 queries by the algorithm) of the path induced by Q, A ends
on an ε-ambiguous node; let I ∈ I be an instance consistent with A given up to
this node. Then we see that icompε(Q, I ,O) ≥ N

2 . Since this holds for every even
number N , we get supI∈I icompε(Q, I ,O) = ∞. Similarly, if v(Q, A) is finite,
then there is a node L in the path induced by Q, A with Lε(L) = v(Q, A); any
instance I associated to this node L (i.e., compatible with the answers given by A
until reaching L) then has icompε(Q, I ,O) ≥ Lε(L) = v(Q, A). These observations
imply supI∈I icompε(Q, I ,O) ≥ supA v(Q, A). Taking an infimum over Q gives
infQ supI∈I icompε(Q, I ,O) ≥ infQ supA v(Q, A) as desired.

This concludes the proof of the lemma. ��
Now we can finally prove Lemma 15, stated in the beginning of the section.

Proof of Lemma 15. From Observation 32, there is an adversary A that is ε-hard for
�-rounds iff supA infQ v(Q, A) > �. Combining Lemmas 36, 37, and 38, the latter is
equivalent to icompε(I,O) > �, which concludes the proof. ��
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