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A B S T R A C T   

Deep learning models have achieved remarkable accuracy for structural response modeling. However, these 
models heavily depend on having a suf昀椀cient amount of training data, which can be challenging and time- 
consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints. 
Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to struc-
tural response modeling by incorporating physics constraints into deep learning. The physics constraints were 
modi昀椀ed to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired 
by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated 
using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental 
results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and 
validation across the four cases of the SDOF system and numerical simulation results of the six-story building 
with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the 
regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated 
and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These 
昀椀ndings demonstrate that the PI-LSTM network presents a reliable and ef昀椀cient approach for structural response 
modeling.   

1. Introduction 

Infrastructures, encompassing buildings, pavements, bridges, and 
tunnels, play a crucial role in public life, directly impacting living 
standards and life safety. However, natural disasters, such as earth-
quakes, pose signi昀椀cant challenges to infrastructure, often leading to 
reduced service life or even destruction. In light of this, ensuring the safe 
operation of infrastructure is of utmost importance. To address this, 
structural health monitoring has been developed to sense, detect, and 
evaluate the safety and health of infrastructure [1,2]. A key aspect of 
structural health monitoring is modeling the structural response accu-
rately. Presently, there are two main approaches for structural response 
modeling: analytical methods and physics-based methods. Analytical 
methods involve employing various time series modeling techniques 

such as autoregressive models [3], autoregressive moving average 
models [4], and autoregressive integrated moving average models [5]. 
Additionally, time history analysis based on the structural mechanics 
model has also been utilized for modeling structural response [6,7]. For 
instance, Lu et al. [6] developed an open-source work昀氀ow for urban 
building seismic damage simulation using time history analysis and 
multiple-degree-of-freedom models. However, these analytical methods 
still face challenges in terms of accuracy [8]. On the other hand, physics- 
based methods, particularly the 昀椀nite element method (FEM), have 
gained popularity for modeling structural responses. FEM has been 
widely applied to simulate structural responses. For example, Zheng 
et al. [9] utilized FEM to simulate the small deformation in a three-story 
reinforced concrete frame, while they proposed a hybrid framework that 
combines FEM and physics engine to simulate the whole process of 
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building collapse. Wu et al. [10] applied FEM to investigate the seismic 
performance in a two-story, three-span Shanghai Metro station situated 
in soft soil and validated their 昀椀nite element models with the experi-
mental results. Meng and Lui [11] employed FEM to analyze the seimic 
responses of a skew reinforced concrete box girder bridge, studying the 
effects of external forces, boundary conditions, and structural parame-
ters. While FEM offers high 昀椀delity and accuracy, it is computationally 
expensive and sensitive to material properties, boundary conditions, and 
interaction between substructures. Consequently, ef昀椀ciently and reli-
ably modeling structural response, particularly under extreme loads, 
remains a signi昀椀cant challenge. 

In recent times, the application of data-driven methods in structural 
response modeling has gained momentum due to the rapid development 
of technology. Deep learning, in particular, has emerged as a powerful 
and ef昀椀cient tool for this purpose [1,12–17]. For example, Zhang et al. 
[12] proposed two schemes of the long-short term memory (LSTM) 
network to model and predict nonlinear structural responses, leveraging 
experimental data from a six-story instrumented building. Huang and 
Chen [13] employed the one-dimensional convolutional neural network 
(CNN) and LSTM network to model the seismic response of a two-story, 
three-span metro station, comparing their results with a baseline multi- 
layer perceptron (MLP) model. Li et al. [14] developed an arti昀椀cial 
neural network (ANN) framework for modeling the dynamic responses 
of the vehicle-bridge interaction system, incorporating a 3D train 
vehicle model, a bridge 昀椀nite element model, and a wheel-rail contact 
model. Li et al. [1] proposed a new modeling paradigm utilizing 1D-CNN 
and the gated recurrent unit (GRU) for dam structural response 
modeling with validation conducted on a high arch dam using three 
monitoring items (dam displacement, crack opening displacement, and 
seepage). These studies have achieved exceptional accuracy; however, 
they heavily rely on the assumption of having suf昀椀cient data for training 
the deep learning models. Collecting a large amount of data is often 
time-consuming, expensive, and challenging, and purely data-driven 
models may not always adhere to physics constraints. 

To address these challenges, integrating scienti昀椀c knowledge into 
deep learning has emerged as a potential solution [8,18,19]. This 
approach aims to harness the bene昀椀ts of both data-driven and 
knowledge-driven approaches. Various strategies have been employed 
to incorporate knowledge into deep learning models. For instance, the 
algebraic equation or logic rule has been included in the loss function to 
impose constraints during model training [20,21]. The knowledge graph 
has been introduced to provide information about relationships between 
instances [22], especially in the image classi昀椀cation task [23]. 
Furthermore, physical simulation has been utilized to augment and 
enrich training data [24]. 

Therefore, this work introduces a physics-informed long short-term 
memory (PI-LSTM) network for modeling structural responses. The 
main contributions of this work are summarized as follows:  

" The physics-informed long short-term memory network was applied 
to modeling structural responses by incorporating physics con-
straints into deep learning. The physics constraints were modi昀椀ed to 
accommodate the characteristics of both linear and nonlinear cases.  

" The PI-LSTM network, inspired by and compared with existing 
physics-informed deep learning models (PhyCNN and PhyLSTM), 
was validated using the numerical simulation results of the single- 
degree-of-freedom system and the experimental results from the 
six-story building.  

" The performance of the PI-LSTM was further explored through four 
cases of the single-degree-of-freedom system subjected to ground 
motion and the numerical analysis of the six-story building under 
different earthquake ground motions. A comparison was made be-
tween the PI-LSTM network and the regular LSTM to assess the 
effectiveness of the PI-LSTM network. 

2. Physics-informed long short-term memory (PI-LSTM) 

Given that structural response data often takes the form of time se-
ries, modeling structural response can be considered a sequence pre-
diction task. Extensive research has demonstrated that LSTM is a 
powerful and dependable tool for this type of task [25,26,27]. The 
strength of LSTM lies in its ability to capture long-term dependencies by 
selectively storing crucial information from the past and disregarding 
irrelevant or unimportant information [28,29]. However, traditional 
training strategies for deep learning models rely solely on data. Inte-
grating scienti昀椀c knowledge as the physics constraint during the 
training process could improve the robustness and reliability of the deep 
learning model [8]. Therefore, a physics-informed long short-term 
memory network is applied in this work for structural response 
modeling. 

Let’s revisit the fundamental equation (Eq. (1)) for structural dy-
namics based on the single-degree-of-freedom (SDOF) system. 
mẍ+ c Ûx+ kx = FE (1) 

where m, c, and k are the mass, damping coef昀椀cient, and stiffness; x, 
Ûx, and ẍ are the displacement, velocity, and acceleration; FE is the 
external force. 

In the context of structural response modeling, ground motion is a 
commonly encountered scenario. When infrastructure is exposed to 
ground motion, the equation of motion for the SDOF system could be 
expressed as Eq. (2) or (3). 
mẍ+ c Ûx+ kx = −mẍg (2)  

ẍ+ 2ξω Ûx+ω2x = − ẍg, ω =

����

k

m

:

and ξ =
c

2mω
(3) 

where x, Ûx, and ẍ are the relative displacement, velocity, and ac-
celeration with respect to ground/support; ẍg is the ground acceleration; 
ω is the structural frequency; ξ is the damping ratio. 

The physics-informed long short-term memory network, as illus-
trated in Fig. 1, is applied to the structural response modeling under the 
ground motion. In structural response modeling, the input typically 
consists of the ground acceleration [8,13,30]. However, the current 
structural response is in昀氀uenced not only by the current load but also by 
the previous structural response. Therefore, it is crucial to incorporate 
the previous structural response as an additional input. Therefore, in the 
PI-LSTM network, both the ground acceleration (ẍg) and previous 
structural response (z) are considered as the input. The choice of the 
previous structural response (z) may vary depending on the speci昀椀c 
design or measurement requirements. For instance, during shake table 
tests or 昀椀eld monitoring, the displacement and acceleration of buildings 
on the ground could be easily measured separately by the displacement 
sensor and accelerometer [31,32]. However, directly measuring 
displacement can sometimes be challenging. In such cases, researchers 
or engineers may derive displacement by integrating the measured ac-
celeration to monitor the seismic response of underground structures 
[10,33]. Therefore, the previous structural response (z) could encom-
pass both displacement and acceleration indicators or solely rely on one 
of these indicators. The output of the PI-LSTM network corresponds to 
the structural response, which shares the same indicators as the previous 
structural response. This will be further discussed in detail in Section 
3.2. Once the input and output are de昀椀ned, the LSTM network is con-
structed to establish the relationship between the input and output 
variables. 

To incorporate scienti昀椀c knowledge into the deep learning model, 
the equation of motion for the structural dynamics (i.e. scienti昀椀c 
knowledge) is introduced as the physics constraint. This physics 
constraint involves the output structural response and the input ground 
acceleration. However, as indicated in Eq. (2) or (3), all three indicators 
(displacement, velocity, and acceleration) are required simultaneously, 
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which can pose challenges in experimental or 昀椀eld monitoring sce-
narios. To overcome this challenge, the differential method (e.g., the 
central 昀椀nite difference method) is used to estimate the unknown in-
dicators of the structural response. For instance, if the output structural 
response includes displacement and acceleration, the velocity could be 
obtained by taking the derivative of the predicted displacement. Sub-
sequently, the output structural response (e.g., displacement and ac-
celeration) and the structural response (e.g., velocity) obtained through 
the differential method are incorporated into the physics constraint 
alongside the input ground acceleration. 

The total loss comprises two main components: data loss and physics 
loss. The data loss is calculated based on the disparity between the 
prediction and ground truth, a common metric used in LSTM models for 
time series prediction tasks. The physics loss is derived from the physics 
constraint, speci昀椀cally the equation of motion for the structural dy-
namics. The physics loss could regularize the deep learning model, 
which helps to eliminate the over昀椀tting issue, reduce the dependency on 
large training datasets, and enhance the robustness of the model. It is 
important to note that the loss function is solely utilized during the 
training process for deep learning models. The physics constraint, based 
on physics knowledge, is not applied during the validation or test pha-
ses. Both the data loss and physics loss utilize the mean square loss (i.e., 
MSELoss), a widely used metric in time series forecasting tasks. 

Drawing upon the aforementioned concepts, the physics-informed 
long short-term memory network is constructed to model the struc-
tural response in the presence of ground motion. Nonetheless, this PI- 
LSTM network could be extended to address structural response 
modeling in various scenarios. It just needs to change the physics 
constraint and sometimes the target structural response. 

3. SDOF numerical validation 

The single-degree-of-freedom system serves as a quintessential and 
fundamental entity for comprehending and exploring structural dy-
namics. Consequently, the applicability and ef昀椀cacy of the PI-LSTM 
network are initially assessed by employing it on the SDOF system 
subjected to ground motion. The data about ground motion is sourced 
from previous literature [8] and numerical analysis conducted via the 
昀椀nite element method. The architecture con昀椀guration of LSTM remains 
consistent throughout this section. According to PyTorch [34], LSTM 
comprised 4 recurrent layers and a hidden state with 100 features, while 
the dropout rate was 0.1. The optimization function was Adam [35], the 
training epoch was 500, and the learning rate was 0.001. 

3.1. Comparison with the existing model 

Zhang et al. [8] proposed a physics-guided convolutional neural 
network (PhyCNN) for modeling structural responses under ground 
motion and found their proposed PhyCNN demonstrated superior per-
formance compared to the non-physics-guided neural network. Given 

the model’s effectiveness and the availability of data sources (datasets, 
model codes, and prediction results), PhyCNN was chosen for compar-
ison with the PI-LSTM network to validate its reliability. Initially, the 
SDOF system results from their work were utilized to make a comparison 
with the PI-LSTM network. They employed 100 independent seismic 
sequences from the PEER strong-motion database [36] as the input to 
the SDOF system, generating simulation results of 50 s each at a fre-
quency of 20 Hz, resulting in 1001 data points per simulation. Since they 
made their data, codes, and results publicly available, a fair comparison 
was facilitated by replacing their PhyCNN model with the PI-LSTM 
network. In their study, 10 samples were selected from the total 100 
samples as training data, while the remaining 90 samples were treated as 
test data to evaluate model performance. This procedure was also fol-
lowed in training and evaluating the PI-LSTM network in the present 
work. 

Table 1 provides a summary of the comparison between PhyCNN and 
PI-LSTM. In Zhang et al.’s work, the input was the ground acceleration, 
while the output comprised displacement, velocity, and restoring force. 
To incorporate physical constraints, they incorporated the equation of 
motion and also considered the discrepancy between the predicted ve-
locity and the derivative of the predicted displacement as part of the 
physical loss. Fig. 2 and Table 2 illustrate the performance of PhyCNN 
and PI-LSTM in predicting displacement, acceleration, and restoring 
force. Overall, PI-LSTM exhibited signi昀椀cantly higher accuracy than 
PhyCNN across all three indicators. The accuracy of PhyCNN displayed 
more variability over a wider range, with the mean accuracy for all three 
indicators being lower than the median accuracy when evaluated on the 
test data (consisting of 90 samples). Conversely, the accuracy of PI- 
LSTM was concentrated within a narrower range, with the mean and 
median accuracy being much closer for all three indicators. 

In addition to PhyCNN, Zhang et al. [30] also developed physics- 
informed multi-LSTM networks for structural metamodeling of 
nonlinear structures. Their models were able to integrate physics 

Fig. 1. Scheme of physics-informed long short-term memory (PI-LSTM) network. The input includes the ground acceleration (ẍg) and the previous structural 
response (z). The output is the structural response (z). The total loss consists of the data loss from the difference between the prediction and ground truth and the 
physics loss from the physics constraint. Both αD and αP are set to 1 in this work. 

Table 1 
Summary of the comparison between PhyCNN and PI-LSTM.   

PhyCNN PI-LSTM 
Input ẍg ẍg& Previous {x, Ûx, Frs}
Output x, Ûx,Frs x, Ûx,Frs 
Data Loss (LD) 1

N
(

6xp − xm62
2 +6 Ûxp − Ûxm62

2 +6Fp
rs − Fmrs6

2
2
)

Physics Loss (LP) 1
N
(

6 Ûxp − Ûxp
t 6

2
2 +6ẍp

t + Fp
rs + ẍg6

2
2

)

Total Loss (L) L = LD + LP 

Note: (1) Frs is the mass-normalized restoring force, (2) the superscript p and m 
denote the prediction and ground truth, respectively, (3) the subscript t denotes 
the derivative of the prediction. E.g. Ûxp

t =
dxp

dt , and (4)6u62
2 =

(
������������

3

ix2
i

:
)2 

=
3

ix2
i .  
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knowledge to improve the learning of sequence-to-sequence features. To 
provide a comprehensive comparison, these models were also included 
in the analysis. As shown in Table 2, PI-LSTM and PhyLSTM demon-
strated similar accuracy in predicting displacement and velocity. How-
ever, PI-LSTM outperformed PhyLSTM in predicting restoring force. In 
the case of PI-LSTM and PhyCNN, the accuracy of restoring force sur-
passed that of both displacement and velocity. Conversely, for 
PhyLSTM, the accuracy of restoring force was lower compared to the 
other two structural responses. This difference can be attributed to the 
fact that PI-LSTM and PhyCNN directly predict all structural responses 
(displacement, velocity, and restoring force), whereas PhyLSTM predicts 
the restoring force based on the displacement and velocity predicted in 
the previous step. This distinction leads to varied performance across the 
three structural responses among these three models. The comparison 
between these three models (PI-LSTM, PhyCNN, and PhyLSTM) provides 
strong validation for the effectiveness and reliability of the PI-LSTM 
network. 

3.2. Case study 

One limitation of Zhang et al.’s work [8] was that their SDOF system 
was primarily approached from a mathematical standpoint rather than 
being anchored in engineering applications. This raises concerns about 
the reliability of their numerical 昀椀ndings, as their SDOF system 
employed a mass of 1 kg, a damping coef昀椀cient of 1 Ns/m, and a linear 
stiffness of 20 N/m. To address this issue, the SDOF system with pa-
rameters resembling those of a one-story concrete building was utilized 
to build the dataset. The same earthquake records as Zhang et al.’s work 
[8] were adopted for consistency. In the SDOF system, the mass was set 
to 100 tons, corresponding to a period of 0.5 s (i.e., the stiffness is 
15791367 N/m), and a damping ratio of 0.05 (i.e., the damping 

coef昀椀cient is 125664 Ns/m). The numerical analysis of the SDOF system 
under ground motion was conducted using OpenSees [37]. Fig. 3 illus-
trates a sample of the ground acceleration, structural displacement, 
structural velocity, and structural acceleration in the SDOF system. 
Following the same data preprocessing procedures employed by Zhang 
et al. [8], 10 samples were selected from all 100 samples as the training 
data, while the remaining 90 samples were designated for testing the 
model’s performance. The satisfactory convergence of models also 
supports the adequacy of solely employing the training data and test 
data, as will be discussed in the subsequent section. 

To evaluate the effectiveness of the PI-LSTM network, various cases 
will be examined using various outputs. It should be noted that both the 
training and test earthquake records remained consistent across all 
cases. To establish a basis for comparison, the regular LSTM without the 
physics loss, denoted as “LSTM”, is employed to compare with the PI- 
LSTM network in this section. 

3.2.1. Case 1: Predicting x, ẍ 

Displacement and acceleration are widely recognized as essential 
indicators for monitoring purposes during shake table tests or 昀椀eld 
monitoring [31,32]. As a result, both displacement and acceleration are 
regarded as the output structural response. Table 3 provides an overview 
of the key differences between LSTM and PI-LSTM. The input of PI-LSTM 
consisted of the ground acceleration and previous structural responses 
(i.e., displacement and acceleration), while the output of PI-LSTM was 
displacement and acceleration. The total loss of PI-LSTM comprised both 
the data loss and physics loss, whereas the total loss of LSTM only 
accounted for the data loss. Fig. 5a and Table 4 summarize the results of 
LSTM and PI-LSTM for predicting displacement and acceleration. 
Overall, PI-LSTM demonstrated higher accuracy compared to LSTM. 
Furthermore, when examining the accuracy distribution of the test data, 

Fig. 2. Performance of PhyCNN and PI-LSTM for predicting displacement, velocity, and restoring force.  

Table 2 
Summary of model performance of PhyCNN, PhyLSTM, and PI-LSTM.  

Metric PhyCNN PhyLSTM PI-LSTM 
Dis. Vel. RF Dis. Vel. RF Dis. Vel. RF 

R2 0.75 ± 0.25 0.78 ± 0.23 0.81 ± 0.15 0.94 ± 0.09 0.92 ± 0.11 0.75 ± 0.19 0.94 ± 0.04 0.93 ± 0.15 0.97 ± 0.05 
RMSE 0.02 ± 0.02 0.12 ± 0.10 0.58 ± 0.61 0.01 ± 0.01 0.08 ± 0.07 0.63 ± 0.37 0.01 ± 0.004 0.05 ± 0.02 0.18 ± 0.13 
MAE 0.01 ± 0.01 0.07 ± 0.06 0.32 ± 0.35 0.01 ± 0.01 0.04 ± 0.03 0.32 ± 0.20 0.01 ± 0.003 0.03 ± 0.01 0.10 ± 0.06 

Note: Dis. is displacement, Vel. is velocity, and RF is restoring force. RMSE is the root mean squared error and MAE is the mean absolute error. The results shown in this 
table are the mean value ± the standard deviation. 
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PI-LSTM exhibited greater robustness and stability than LSTM, as the 
accuracy values of PI-LSTM were concentrated within a narrower range. 

Furthermore, one notable advantage of physics-informed deep 
learning models lies in their ability to achieve remarkable performance 
even with limited training data, owing to the incorporation of prior 
physics knowledge. However, a pertinent question arises: Will physics- 
informed deep learning models continue to outperform traditional 
deep learning models when provided with relatively abundant training 
data? To investigate this notion, a larger quantity of training data would 
be utilized for model training. The case involving 10 training samples 
could serve as a baseline, while additional sets of 20, 30, 40, 50, and 60 
training samples would be used to train both LSTM and PI-LSTM. Fig. 6 
illustrates the performance of LSTM and PI-LSTM across different 
numbers of training samples. As depicted in Fig. 5a and Fig. 6, when 
confronted with a limited quantity of training data (10 samples), PI- 
LSTM surpassed LSTM signi昀椀cantly. Nevertheless, as the number of 
training samples increased from 10 to 60, both LSTM and PI-LSTM 
exhibited enhanced accuracy, with LSTM experiencing a particularly 

noteworthy improvement. The gap between LSTM and PI-LSTM 
decreased substantially, and these two models demonstrated highly 
similar performance after the number of training samples reached 40. 
Although LSTM displayed slightly lower accuracy in displacement 
compared to PI-LSTM, both models exhibited similar accuracy in ac-
celeration. This implies that physics-informed deep learning models 
could outperform traditional deep learning models when confronted 
with limited training data. However, once a suf昀椀cient amount of 
training data is obtained, traditional and physics-informed deep 
learning models tend to exhibit comparable performance. 

3.2.2. Case 2: Predicting x 

Displacement serves as a valuable indicator of the structural condi-
tion and a descriptor of structural deformation behavior. When moni-
toring the structural condition of a building on the ground, it becomes 
essential to measure displacement as it provides crucial information 
while mitigating the impact of accelerometer noise. Therefore, the case 
of predicting displacement exclusively is applied to investigate the 
performance of the PI-LSTM network. Table 3 provides a summary of the 
comparison between LSTM and PI-LSTM regarding displacement pre-
diction. The input of PI-LSTM consisted of the ground acceleration and 
previous structural responses (i.e., displacement), while the output was 
solely the displacement. In terms of the physics loss, both velocity and 
acceleration were derived from the displacement. Fig. 5b and Table 4 
present the results of LSTM and PI-LSTM for predicting displacement. 
The predicted acceleration was obtained by taking the second-order 
derivative of the predicted displacement. This predicted acceleration 
was then used to assess the accuracy of the deep learning model by 
comparing it with the ground truth (acceleration obtained from the 
numerical results). Notably, PI-LSTM achieved higher accuracy in pre-
dicting displacement and demonstrated greater robustness and stability 
compared to LSTM. Furthermore, even after calculating acceleration 
from the predicted displacement, the predicted acceleration of PI-LSTM 
remained closer to the ground truth compared to LSTM. 

3.2.3. Case 3: Predicting ẍ 

Acceleration is a widely used metric in structural health monitoring 
due to its relative ease of measurement. In certain monitoring scenarios, 
researchers or engineers may only have access to acceleration data 
during shake table tests or 昀椀eld monitoring [10,33]. Hence, it is crucial 
to assess the performance of deep learning models speci昀椀cally designed 
to predict acceleration. When only an accelerometer is installed on a 
structure, double integration of the acceleration is typically required to 
obtain displacement. However, there are inherent challenges associated 
with double integration, such as de昀椀ning initial or boundary conditions 
and dealing with noise [8,38]. Consequently, concerns arise regarding 
the accuracy of displacement prediction based on predicted 

Table 3 
Summary of the comparison between LSTM and PI-LSTM.   

Case 1 Case 2 Case 3 Case 4 
LSTM PI-LSTM LSTM PI-LSTM LSTM PI-LSTM LSTM PI-LSTM 

Input ẍg& Previous {x, ẍ} ẍg& Previous {x} ẍg& Previous {x} ẍg& Previous {x, Frs}
Output x, ẍ x x x,Frs 
Data 

Loss 
(LD) 

1
N
(

6xp − xm62
2 +6ẍp − ẍm62

2
) 1

N
(

6xp − xm62
2
) 1

N
(

6ẍp
t − ẍm62

2

) 1
N
(

6ẍp
t − ẍm62

2 +6Fp
rs − Fmrs6

2
2

)

Physics 
Loss 
(LP) 

– 1
N
(

6ẍp + 2ξω Ûxp
t + ω2xp + ẍg6

2
2

) – 1
N
(

6ẍp
t + 2ξω Ûxp

t + ω2xp + ẍg6
2
2

) – 1
N
(

6ẍp
t + 2ξω Ûxp

t + ω2xp + ẍg6
2
2

) – 1
N
(

6ẍp
t + Fp

rs + ẍg6
2
2

)

Total 
Loss 
(L) 

L =

LD 
L = LD + LP L =

LD 
L = LD + LP L =

LD 
L = LD + LP L =

LD 
L = LD + LP 

Note: (1) Frs is the mass-normalized restoring force, (2) the superscript p and m denote the prediction and ground truth, respectively, (3) the subscript t denotes the 
derivative of the prediction. E.g. Ûxp

t =
dxp

dt , and (4)6u62
2 =

(
������������

3

ix2
i

:
)2 

=
3

ix2
i .  

Fig. 3. Data for the ground acceleration, structural displacement, structural 
velocity, and structural acceleration. 
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acceleration. To address this, displacement is considered as the output of 
the deep learning model, while the predicted acceleration is obtained 
from the second-order derivative of the predicted displacement. This 
predicted acceleration is then compared with the ground truth, which 
refers to the acceleration obtained from numerical results, to train the 
deep learning model. Table 3 provides a summary of the comparison 
between LSTM and PI-LSTM in terms of predicting acceleration. As 
previously mentioned, the input of PI-LSTM consisted of ground accel-
eration and previous structural responses (i.e., displacement), while the 
output of PI-LSTM was displacement. The data loss was calculated based 
on the difference between the predicted acceleration (i.e., the second- 
order derivative of the model output) and the ground truth (i.e., the 

acceleration derived from the numerical results). The physics loss 
involved obtaining both acceleration and velocity by taking derivatives 
of the model output. Fig. 5c and Table 4 summarize the performance of 
LSTM and PI-LSTM in predicting acceleration. PI-LSTM consistently 
achieved higher and more stable accuracy compared to LSTM. The ac-
curacy distribution of the test data demonstrates that PI-LSTM out-
performed LSTM in terms of accuracy and robustness. 

3.2.4. Case 4: Predicting ẍ (nonlinear analysis) 
When analyzing the motion of structures in nonlinear scenarios, it 

becomes challenging to rely on constant parameters, such as stiffness, to 
accurately describe their deformations. Consequently, applying the 

Fig. 4. Scheme of the PI-LSTM network for nonlinear analysis.  

Fig. 5. Performance of LSTM and PI-LSTM. (a) Case 1: predicting displacement and acceleration, (b) Case 2: predicting displacement, (c) Case 3: predicting ac-
celeration, and (d) Case 4: predicting acceleration (nonlinear analysis). 
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equation of motion (Eq. (2) or (3)) as the physics constraint in the PI- 
LSTM network becomes dif昀椀cult. To overcome this issue, one potential 
solution is to combine the stiffness force and damping force to form the 
restoring force. Consequently, the equation of motion (Eq. (2) or (3)) 
could be re-written as follows: 
ẍ+Frs = − ẍg (4) 

where Frs is the mass-normalized restoring force. 
This equation (Eq.(4)) would serve as the physics constraint for the 

PI-LSTM network. Fig. 4 illustrates the architecture of the PI-LSTM 
network designed for nonlinear analysis. In comparison to the original 
PI-LSTM architecture (shown in Fig. 1), this modi昀椀ed model preserves 

the LSTM architecture while altering the physics constraint and the 
corresponding structural responses (z) to accommodate nonlinear 
analysis requirements. To evaluate the performance of this modi昀椀ed PI- 
LSTM network, a speci昀椀c case is selected for comparison with LSTM. As 
previously mentioned, acceleration is a commonly monitored indicator 
of structural condition. Therefore, PI-LSTM and LSTM were compared in 
terms of predicting acceleration. The dataset utilized was the same as in 
the other cases, but the mass-normalized restoring force (Frs) was 
derived from the ground acceleration and structural acceleration, spe-
ci昀椀cally Frs = −ẍg −ẍ, to construct the dataset. 

Table 3 provides a comprehensive comparison between LSTM and PI- 
LSTM in terms of predicting acceleration in the context of nonlinear 
analysis. Both LSTM and PI-LSTM utilized the ground acceleration and 
previous structural responses (displacement and mass-normalized 
restoring force) as inputs, while the outputs consisted of displacement 
and mass-normalized restoring force for both models. In Case 3, as 
described in Section 3.2.3, the displacement was considered the model 
output for predicting acceleration, resulting in reduced errors. The data 
loss was calculated by measuring the difference between the model’s 
predictions (acceleration and mass-normalized restoring force) and the 
corresponding ground truth values obtained from the numerical results. 
Additionally, the physics loss was computed based on the physics 
constraint imposed by the modi昀椀ed equation (Eq.(4)). Fig. 5d and 
Table 4 present the results of LSTM and PI-LSTM for predicting accel-
eration in the context of nonlinear analysis. PI-LSTM consistently out-
performed LSTM in terms of accuracy. Moreover, the accuracy 
distribution of the test data for PI-LSTM demonstrated a more concen-
trated range compared to that of LSTM, indicating its superior perfor-
mance in predicting both displacement and acceleration. 

4. Experimental and numerical validation 

To further validate the performance of the PI-LSTM network, it is 
essential to assess its effectiveness using experimental or numerical re-
sults. However, due to the limited availability of publicly accessible 
benchmark experimental data, numerical analysis based on the 昀椀nite 
element method serves as a suitable alternative. The process involves 
constructing a 昀椀nite element model that aligns with the experimental 
conditions, including building parameters and boundary conditions. 
Subsequently, the structural response of the 昀椀nite element model is 
computed under the experimental loading conditions. If the simulation 
results closely resemble the experimental 昀椀ndings, it instills con昀椀dence 
in using the 昀椀nite element model to explore different scenarios, such as 
diverse ground motions. In this study, both experimental and numerical 

Table 4 
Summary of the performance of LSTM and PI-LSTM.  

Case 1 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.903 ± 0.082 0.795 ± 0.138 0.941 ± 0.048 0.918 ± 0.077 
RMSE 0.005 ± 0.002 1.232 ± 0.405 0.004 ± 0.001 0.756 ± 0.320 
MAE 0.003 ± 0.001 0.618 ± 0.284 0.002 ± 0.001 0.340 ± 0.178 

Case 2 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.937 ± 0.063 0.840 ± 0.125 0.953 ± 0.061 0.980 ± 0.031 
RMSE 0.004 ± 0.001 1.057 ± 0.350 0.003 ± 0.001 0.334 ± 0.204 
MAE 0.002 ± 0.0004 0.537 ± 0.244 0.002 ± 0.001 0.173 ± 0.126 
Case 3 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.935 ± 0.030 0.944 ± 0.083 0.958 ± 0.071 0.984 ± 0.018 
RMSE 0.004 ± 0.001 0.552 ± 0.325 0.003 ± 0.001 0.334 ± 0.157 
MAE 0.002 ± 0.001 0.280 ± 0.204 0.002 ± 0.001 0.179 ± 0.101 

Case 4 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.959 ± 0.024 0.920 ± 0.095 0.960 ± 0.060 0.970 ± 0.030 
RMSE 0.003 ± 0.001 0.702 ± 0.345 0.003 ± 0.001 0.465 ± 0.253 
MAE 0.002 ± 0.001 0.359 ± 0.224 0.002 ± 0.001 0.200 ± 0.117 

Note: RMSE is the root mean squared error and MAE is the mean absolute error. 
The results shown in this table are the mean value ± the standard deviation. 

Fig. 6. Performance of LSTM and PI-LSTM with different numbers of training samples for Case 1. (a) Displacement and (b) acceleration. The results are the mean 
value and the standard deviation. 
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results were employed to evaluate the performance of the PI-LSTM 
network for a multi-story building subjected to ground motion. The 
LSTM architecture utilized in this section mirrors the architecture 
described in Section 3. As per the PyTorch library [34], the LSTM 
comprised 4 recurrent layers and 500 features in the hidden state, with a 
dropout rate of 0.1. The Adam optimization function [35] was 
employed, with a training epoch of 3000 and a learning rate of 0.001. 

4.1. Experimental validation 

Zhang et al. [8] utilized the experimental results from a 6-story hotel 
building located in San Bernardino, California, to investigate the per-
formance of their proposed PhyCNN model. This building, designed in 
1970 was equipped with nine accelerometers positioned on the 昀椀rst and 
third 昀氀oors, as well as the roof. Twenty-one available records were ob-
tained from the Center for Engineering Strong Motion Data (CESMD) 
[39] to build the dataset. Further detailed information regarding this 
dataset could be found in the previous literature [8]. Fig. 7 illustrates a 
sample from the dataset, depicting the ground acceleration, structural 
displacement, structural velocity, and structural acceleration. Eleven 
samples were designated as the training data, four samples were chosen 
for evaluation purposes, and the remaining six samples were allocated as 
test data for model assessment. 

The deep learning model used in this study aimed to predict accel-
eration based on the data collected from installed accelerometers on the 
building. However, the process of obtaining displacement from accel-
eration through double integration could introduce errors, as mentioned 
earlier. To address this issue, a similar approach to Section 3.2.4 was 
employed, where the output of the deep learning model was treated as 
displacement, and the predicted acceleration was obtained by taking the 
second-order derivative of the predicted displacement. It is important to 
note that unlike the cases described in Section 3.2.4, the authors of 
Zhang et al. [8] did not incorporate the equation of motion as a physics 
constraint in their PhyCNN model. In their proposed PhyCNN model, 
displacement was the output, and the predicted acceleration was ob-
tained by taking the second-order derivative of the predicted displace-
ment. The loss function for this model was solely based on the difference 

between the predicted acceleration and the ground truth. In this work, 
the PI-LSTM network was utilized for nonlinear analysis of the structural 
response, as discussed in Section 3.2.4. The experimental results pre-
sented in this study fall under the category of nonlinear analysis of 
structural response, making the PI-LSTM network (depicted in Fig. 4) 
suitable for modeling the structural response based on these experi-
mental 昀椀ndings. Table 5 provides a summary of the comparison between 
PhyCNN and PI-LSTM in terms of predicting acceleration, speci昀椀cally 
focusing on modeling the experimental results. The input for PI-LSTM 
consisted of the ground acceleration and previous structural responses 
(displacement and mass-normalized restoring force), while the input for 
PhyCNN only included the ground acceleration. The output of PI-LSTM 
was displacement and mass-normalized restoring force, whereas 
PhyCNN solely produced displacement as its output. The loss function 
for PI-LSTM encompassed two components: the data loss, calculated 
from the difference between the predicted and ground truth values, and 
the physics loss, derived from the physics constraint. In contrast, the loss 
function for PhyCNN was determined solely by the disparity between the 
predicted acceleration and the experimental results. 

Fig. 8 and Table 6 present the performance comparison between 
PhyCNN and PI-LSTM in terms of predicting acceleration speci昀椀cally for 
the third 昀氀oor and roof. Additionally, Fig. 9 displays the corresponding 
predicted displacement and acceleration for both the third 昀氀oor and the 
roof. Regarding the third 昀氀oor, both PI-LSTM and PhyCNN exhibited 
similar accuracy in predicting displacement. However, when it came to 
predicting acceleration, PI-LSTM outperformed PhyCNN signi昀椀cantly in 
terms of accuracy. For the roof, PI-LSTM achieved higher accuracy than 
PhyCNN in predicting both displacement and acceleration. In particular, 
PI-LSTM displayed notably superior accuracy compared to PhyCNN in 
predicting acceleration. Its higher accuracy positions PI-LSTM as a more 
reliable option based on the results of this experiment. 

Based on Fig. 9, the structural response, including displacement and 
acceleration, of the roof was higher compared to that of the third 昀氀oor. 
When focusing on the displacement of the third 昀氀oor (Fig. 8a), PhyCNN 
and PI-LSTM exhibited similar performance. However, as the moni-
toring location shifted to the roof, and the displacement increased, PI- 
LSTM outperformed PhyCNN in predicting the displacement of the 
roof (Fig. 8b). The superiority of PI-LSTM became even more pro-
nounced when considering acceleration as the monitoring indicator. PI- 
LSTM demonstrated signi昀椀cantly higher accuracy than PhyCNN in 
predicting the acceleration of the third 昀氀oor (Fig. 8a), although PhyCNN 
still achieved a satisfactory accuracy level with an R2 value of 0.86. 
However, when the monitoring location shifted to the roof, the accel-
eration accuracy of PhyCNN dropped to 0.71, while PI-LSTM maintained 
a high level of accuracy, even surpassing that of the third 昀氀oor (Fig. 8b). 
The disparity in acceleration accuracy between PI-LSTM and PhyCNN 
further widened as the amplitude and range of the acceleration 
increased. Additionally, both for displacement and acceleration, the 
accuracy distribution of PI-LSTM was concentrated within a smaller 
range compared to PhyCNN. In conclusion, it can be stated that PI-LSTM 
offers a more accurate and robust approach to structural response 
modeling. Particularly when dealing with higher amplitudes and wider 
ranges of the monitoring indicator, the advantages of PI-LSTM become 
even more prominent. 

Fig. 7. Data for the ground acceleration, structural displacement, structural 
velocity, and structural acceleration. 

Table 5 
Summary of the comparison between PhyCNN and PI-LSTM.   

PhyCNN PI-LSTM 
Input ẍg ẍg& Previous {x, Frs}
Output x x,Frs 
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4.2. Numerical validation 

In addition to the experimental results, the numerical simulation of a 
six-story building was conducted to evaluate the performance of the PI- 

LSTM model. This six-story building, as described in previous literature 
[40], was designed in 1976 based on the 1973 UBC requirements [41]. 
Information regarding this building was selected from the California 
Strong Motion Instrumentation Program (CSMIP). The building had 
dimensions of 36.60 m by 36.60 m in plan, with six bays in one direction 
(6 × 6.10 m). The elevation of the building is depicted in Fig. 10, which 
also provides details such as the height of each 昀氀oor and the cross- 
section of the columns and beams. For further speci昀椀cs about this 
building, refer to the previous literature [40]. A total of 13 strong mo-
tion sensors were installed on the ground, second, third, and roof levels 
of this building. The recorded response data includes the behavior of the 
structure during three earthquakes: the 1987 Whittier Narrows earth-
quake, the 1991 Sierra Madre earthquake, and the 1994 Northridge 
earthquake. 

The 昀椀nite element model of the six-story building was constructed 
using OpenSees [37], as outlined in the previous literature [40]. The 
tributary seismic response masses were determined to be 235.6 tons per 
level, and a damping ratio of 0.03 was applied to the building. The 昀椀nite 
element model of the building exhibited a period of 1.43 s, which closely 
aligned with the target period speci昀椀ed in the literature [40]. 

To simulate the structural response under earthquake ground mo-
tions, popular ground motions for Los Angeles [42] were employed. 
These ground motions varied in terms of probabilities of exceedance and 
time intervals. In total, 40 earthquake ground motions with a consistent 

Fig. 8. Performance of PhyCNN and PI-LSTM for predicting the structural response in terms of the (a) third 昀氀oor and (b) roof.  

Table 6 
Summary of model performance of PhyCNN and PI-LSTM.  

Third Floor 
Metric PhyCNN PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.968 ± 0.013 0.864 ± 0.053 0.965 ± 0.009 0.937 ± 0.061 
RMSE 0.001 ± 0.001 0.364 ± 0.161 0.001 ± 0.001 0.210 ± 0.062 
MAE 0.001 ± 0.0003 0.181 ± 0.099 0.001 ± 0.001 0.096 ± 0.035 
Roof 
Metric PhyCNN PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.887 ± 0.048 0.709 ± 0.111 0.930 ± 0.037 0.977 ± 0.017 
RMSE 0.002 ± 0.001 1.094 ± 0.515 0.002 ± 0.002 0.280 ± 0.088 
MAE 0.001 ± 0.001 0.550 ± 0.312 0.001 ± 0.001 0.145 ± 0.054 

Note: RMSE is the root mean squared error and MAE is the mean absolute error. 
The results shown in this table are the mean value ± the standard deviation. 

Fig. 9. Prediction performance of PhyCNN and PI-LSTM in terms of the (a) third 昀氀oor and (b) roof.  
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time interval of 0.02 s but different probabilities of exceedance were 
selected for the analysis. The ground motions comprised LA01-LA02, 
LA07-LA14, LA17-LA20 (10% probability of exceedance); LA21-LA22, 
LA27-LA30, LA37-LA40 (2% probability of exceedance); and LA45- 
LA60 (50% probability of exceedance). To obtain numerical simula-
tion results for the six-story building, these earthquake ground motions 
were applied to the 昀椀nite element model mentioned earlier. Fig. 11 il-
lustrates one sample of the ground acceleration, structural displace-
ment, structural velocity, and structural acceleration obtained from this 

simulation. Out of the 40 samples, 20 samples were randomly selected 
from each group based on their corresponding proportion for use as 
training data. Additionally, 10 samples were allocated for validation 
purposes, and the remaining 10 samples were set aside as test data. For 
example, during the selection of training data, 7 samples were randomly 
chosen from the group consisting of the earthquake ground motion with 
a 10% probability of exceedance, 5 samples were selected from the 
group with a 2% probability of exceedance, and 8 samples were chosen 
from the group with a 50% probability of exceedance. 

The primary objective of this numerical validation is to assess ac-
celeration as the most commonly used indicator for structural health 
monitoring. The focus is on the third 昀氀oor and roof of the depicted six- 
story building (Fig. 10). Due to the complexity of directly calculating 
motion equation parameters, the PI-LSTM model illustrated in Fig. 4 
could effectively model the structural response of various 昀氀oors in the 
multi-story building. For comparison purposes, two models, PI-LSTM 
and LSTM, were utilized to simulate the structural response. Table 3 
(Case 4) provides a summary of the information regarding PI-LSTM and 
LSTM. The inputs for both models were ground acceleration and the 
previous structural responses (displacement and mass-normalized 
restoring force), while the outputs were displacement and mass- 
normalized restoring force. The predicted acceleration was derived 
from the second-order derivative of the predicted displacement. The 
data loss was determined by the variance between the predicted struc-
tural responses (acceleration and mass-normalized restoring force) and 
the results from numerical simulations, while the physics loss for PI- 
LSTM was based on adherence to physics constraints. Fig. 12 and 
Table 7 present the performance evaluation of PI-LSTM and LSTM in 

Fig. 10. Elevation of the six-story building (from [40]).  

Fig. 11. Data for the ground acceleration, structural displacement, structural velocity, and structural acceleration.  
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predicting the structural responses for the third 昀氀oor and roof. PI-LSTM 
outperformed LSTM signi昀椀cantly in terms of displacement accuracy, 
while its accuracy in acceleration prediction was only marginally higher 
than that of LSTM. Notably, PI-LSTM exhibited a narrower accuracy 
range for both displacement and acceleration compared to LSTM. Fig. 13 
showcases the predictions of LSTM and PI-LSTM for the structural re-
sponses of the third 昀氀oor and roof. PI-LSTM demonstrated superior 
performance in predicting acceleration compared to displacement. 
Although the predicted displacement amplitude of PI-LSTM was slightly 
lower than the numerical simulation results, it successfully captured the 
displacement trend with high accuracy. Consequently, PI-LSTM proves 
to be a precise and robust approach for modeling the structural response 
under ground motion. 

5. Discussion 

In this study, model comparisons and several case studies were 
conducted to assess the performance of the PI-LSTM network and vali-
date its effectiveness. For the purpose of model comparison, PhyCNN, a 
successful physics-informed deep learning model introduced by Zhang 
et al. [8], was selected, as it exhibited strong performance and datasets, 
model codes, and results were readily available. Furthermore, Zhang 
et al. [30] also developed PhyLSTM, another impressive physics- 
informed deep learning model for structural metamodeling of 
nonlinear structures. Several distinctions can be observed between PI- 
LSTM and PhyCNN/PhyLSTM, contributing to variations in the perfor-
mance and computational ef昀椀ciency:  

1) Incorporation of physics knowledge: While all three models treat the 
equation of motion as a physics constraint, they differ in their con-
siderations of the equation’s form. First, for linear analysis, PI- 
LSTM’s physics constraint involves stiffness and damping separately, 
while velocity and acceleration are calculated from the predicted 
displacement (Cases 2 and 3). In contrast, PhyCNN combines stiff-
ness and damping into a single variable known as restoring force. 
Second, in nonlinear analysis, PI-LSTM’s physics constraint com-
prises ground acceleration, predicted restoring force, and accelera-
tion derived from the predicted displacement. PhyCNN, on the other 
hand, does not consider the equation of motion as a physics 
constraint. PhyLSTM incorporates three items similar to PI-LSTM, 
but it obtains acceleration and restoring force from different steps.  

2) Input features: PI-LSTM utilizes two types of input features, namely 
ground acceleration and previous structural responses, which can be 
adjusted based on speci昀椀c requirements (e.g., both displacement and 
acceleration, or only displacement, or only acceleration, or both 

displacement and restoring force). Conversely, both PhyCNN and 
PhyLSTM rely on a single input feature, namely ground acceleration. 

3) Loss function (including physics loss) for nonlinear structural anal-
ysis: PI-LSTM’s outputs for nonlinear structural analysis are restoring 
force and displacement, from which acceleration is computed based 
on the predicted displacement. The data loss encompasses the vari-
ance between predicted and measured acceleration and restoring 
force. The physics loss incorporates equations and includes ground 
acceleration, predicted restoring force, and acceleration derived 
from predicted displacement. These two losses are combined to form 
the 昀椀nal loss function. In comparison, PhyCNN’s loss function solely 
considers the variance between predicted and measured accelera-
tion. PhyLSTM’s loss function consists of three components: data loss 
(predicted and measured displacement and velocity), “equality” loss 
(predicted and computed velocity), and physics loss (ground accel-
eration, acceleration, and restoring force).  

4) Operation logic: PI-LSTM employs a single LSTM architecture to 
directly compute structural responses, while PhyLSTM utilizes two or 
three LSTM architectures to incrementally calculate structural re-
sponses. For instance, PI-LSTM uses one LSTM architecture to 
directly predict displacement and restoring force. However, one 
variant of PhyLSTM (PhyLSTM2) initially employs one LSTM archi-
tecture to predict structural responses (displacement, velocity, and 
hysteretic parameters), followed by another LSTM architecture to 
predict restoring force based on the previously predicted structural 
responses. Consequently, these two models (PI-LSTM and PhyLSTM) 
differ in their operation logic and computational ef昀椀ciency. 

Fig. 12. Performance of LSTM and PI-LSTM for predicting the structural response in terms of the (a) third 昀氀oor and (b) roof.  

Table 7 
Summary of the performance of LSTM and PI-LSTM.  

Third Floor 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.608 ± 0.028 0.911 ± 0.069 0.778 ± 0.009 0.927 ± 0.037 
RMSE 0.024 ± 0.016 0.480 ± 0.308 0.018 ± 0.011 0.429 ± 0.206 
MAE 0.012 ± 0.007 0.239 ± 0.135 0.009 ± 0.005 0.210 ± 0.098 
Roof 
Metric LSTM PI-LSTM 

Displacement Acceleration Displacement Acceleration 
R2 0.677 ± 0.053 0.833 ± 0.079 0.813 ± 0.011 0.865 ± 0.028 
RMSE 0.054 ± 0.039 1.059 ± 0.765 0.040 ± 0.027 0.919 ± 0.530 
MAE 0.026 ± 0.016 0.512 ± 0.317 0.020 ± 0.012 0.449 ± 0.232 

Note: RMSE is the root mean squared error and MAE is the mean absolute error. 
The results shown in this table are the mean value ± the standard deviation. 
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5) Core model architecture: PI-LSTM and PhyLSTM utilize LSTM ar-
chitectures, whereas PhyCNN employs a CNN architecture. 

The case studies conducted in this work encompassed both linear and 
nonlinear structural analyses, revealing distinct performance charac-
teristics for the PI-LSTM network. Three linear SDOF case studies were 
speci昀椀cally employed to assess the model’s capabilities. In Case 1 
(Section 3.2.1), the objective was to predict both displacement and ac-
celeration, with both being considered as structural responses in the 
inputs and outputs (Table 3). Case 2 (Section 3.2.2) focused solely on 
predicting displacement, utilizing it as the only structural response in 
the inputs and outputs (Table 3). Case 3 aimed to predict acceleration 
exclusively. Unlike Cases 1 and 2, Case 3 employed displacement as the 
sole structural response in the inputs and outputs (Table 3), but the loss 
calculation was based on the acceleration derived from the predicted 
displacement. Table 4 presents the performances of LSTM and PI-LSTM 
in these three case studies, revealing notable distinctions. Firstly, PI- 
LSTM consistently outperformed LSTM across all case studies. Sec-
ondly, the accuracy of both LSTM and PI-LSTM was lower in Case 1 
compared to Cases 2 and 3, which can be attributed to the different 
ranges of displacement and acceleration. Balancing two distinct output 
features poses challenges for the models, making them more prone to 
reaching local minima instead of global minima. Thirdly, LSTM 
exhibited similar accuracy in predicting displacement for both Case 2 
and Case 3. However, its accuracy in predicting acceleration was higher 
in Case 3 compared to Case 2. This discrepancy arises due to the use of 
displacement as the input and output structural response in both cases, 
but the loss functions employed different structural responses. Case 2 
utilized displacement, while Case 3 employed acceleration, leading 
LSTM to achieve higher accuracy in predicting acceleration in Case 3. 
Lastly, PI-LSTM demonstrated remarkably similar accuracy in predicting 
both displacement and acceleration in both Case 2 and Case 3 (R2: 0.953 
and 0.958 for displacement, and 0.980 and 0.984 for acceleration). The 
accuracy of PI-LSTM in both displacement and acceleration surpassed 
that of LSTM in all cases, particularly for acceleration in Case 2. The 
inclusion of physics knowledge in the loss function, serving as a physics 
constraint, contributed to enhanced model performance, especially in 
terms of generalization for unknown structural responses (e.g., accel-
eration in Case 2). This highlights the advantage of physics-informed 
deep learning approaches. 

In addition to linear structural analysis, the performance of the PI- 
LSTM network was examined through case studies involving nonlinear 
structural analysis. Both SDOF systems and multi-DOF systems, utilizing 

experimental and numerical data, were considered. Compared to linear 
analysis, the PI-LSTM network adjusts the physics constraint (as depic-
ted in Fig. 1 and Fig. 4) to accommodate the requirements of nonlinear 
analysis. For nonlinear analysis, PI-LSTM and LSTM exhibited differing 
performances. Firstly, PI-LSTM consistently outperformed LSTM across 
all case studies. Secondly, in comparison to linear analysis (Case 3), both 
PI-LSTM and LSTM achieved higher accuracy in predicting displacement 
for nonlinear analysis (Case 4). However, their accuracy in predicting 
acceleration declined after transitioning from linear to nonlinear anal-
ysis (Table 4), although PI-LSTM maintained higher accuracy than 
LSTM. This can be attributed to two factors: 1) The two outputs, namely 
displacement and restoring force, possess distinct ranges, making it 
challenging for the models to strike a balance between them and more 
prone to converging to local minima. 2) The incorporation of physics 
knowledge aids in improving the models’ ability to generalize to un-
known structural responses. Thirdly, multi-DOF nonlinear systems 
exhibit considerably greater complexity compared to SDOF linear or 
nonlinear systems. Consequently, both PI-LSTM and LSTM achieved 
lower accuracy in predicting displacement and acceleration for multi- 
DOF nonlinear systems (Table 4 and Table 7). Future investigations 
should encompass additional tests of physics-informed deep learning 
models on multi-DOF nonlinear systems to explore the applicability and 
generalization of these models. 

6. Conclusion 

Deep learning has emerged as a powerful and ef昀椀cient tool for 
modeling structural responses. However, it often requires a large 
amount of training data, which can be time-consuming and challenging 
to collect. Additionally, purely data-driven models may not always 
satisfy the physics constraints of the problem at hand. To address these 
issues, this work introduces physics-informed deep learning, which in-
corporates scienti昀椀c knowledge into deep learning models. In this study, 
a physics-informed long short-term memory (PI-LSTM) network was 
applied to structural response modeling. To validate the reliability of the 
PI-LSTM network, comparisons were made with existing physics- 
informed deep learning models, namely PhyCNN and PhyLSTM, using 
numerical simulation results of SDOF systems and experimental results 
of the six-story building. The PI-LSTM network was also evaluated and 
validated using the regular LSTM model in four cases of the SDOF system 
and numerical simulation results for the six-story building. The results 
demonstrated that the PI-LSTM network exhibited higher accuracy and a 
narrower range of predictions compared to the PhyCNN model for both 

Fig. 13. Prediction performance of LSTM and PI-LSTM in terms of the (a) third 昀氀oor and (b) roof.  
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numerical simulation results of the SDOF system and experimental re-
sults of the six-story building. Furthermore, the PI-LSTM network out-
performed the regular LSTM model in terms of accuracy and robustness 
for the SDOF system and the six-story building’s numerical simulation 
results. These 昀椀ndings highlight the reliability and effectiveness of the 
PI-LSTM network for structural response modeling. In the future, this 
model can be further applied to model the structural response of various 
infrastructures, such as tunnels and bridges, under different loads or 
hazard events. By incorporating physics knowledge into deep learning, 
the PI-LSTM network holds promise for improving the accuracy and 
reliability of structural response predictions in various engineering 
applications. 

Furthermore, it is important to note that this study primarily utilized 
data from a single building for training and evaluating the PI-LSTM 
network. Enhancing the generalization capabilities of the PI-LSTM 
network is a key area for future improvement. One possible approach 
is to incorporate additional building-speci昀椀c information into the input 
data, which can help enhance the model’s ability to generalize to 
different structures. Moreover, in this work, physics knowledge was 
integrated into the model through the physics constraint included in the 
loss function. However, there is potential to further investigate how 
physics knowledge can be effectively incorporated into the architecture 
of the proposed models. One potential avenue is to explore the concept 
of a physics layer, where the model explicitly incorporates physics 
principles as a distinct component within its architecture. Investigating 
the integration of physics knowledge at a deeper level can contribute to 
further improvements in the accuracy and robustness of models. 
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