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Deep learning models have achieved remarkable accuracy for structural response modeling. However, these
models heavily depend on having a sufficient amount of training data, which can be challenging and time-
consuming to collect. Moreover, data-driven models sometimes struggle to adhere to physics constraints.
Therefore, in this study, a physics-informed long short-term memory (PI-LSTM) network was applied to struc-
tural response modeling by incorporating physics constraints into deep learning. The physics constraints were
modified to accommodate the characteristics of both linear and nonlinear cases. The PI-LSTM network, inspired
by and compared with existing physics-informed deep learning models (PhyCNN and PhyLSTM), was validated
using the numerical simulation results of the single-degree-of-freedom (SDOF) system and the experimental
results of the six-story building. Additionally, the PI-LSTM network underwent thorough investigation and
validation across the four cases of the SDOF system and numerical simulation results of the six-story building
with the comparison of the regular LSTM. The results indicate that the PI-LSTM network outperformed the
regular LSTM models in terms of accuracy. Furthermore, the PI-LSTM network exhibited a more concentrated
and higher accuracy range when analyzing the results of both the SDOF system and the six-story building. These
findings demonstrate that the PI-LSTM network presents a reliable and efficient approach for structural response
modeling.

1. Introduction such as autoregressive models [3], autoregressive moving average

models [4], and autoregressive integrated moving average models [5].

Infrastructures, encompassing buildings, pavements, bridges, and
tunnels, play a crucial role in public life, directly impacting living
standards and life safety. However, natural disasters, such as earth-
quakes, pose significant challenges to infrastructure, often leading to
reduced service life or even destruction. In light of this, ensuring the safe
operation of infrastructure is of utmost importance. To address this,
structural health monitoring has been developed to sense, detect, and
evaluate the safety and health of infrastructure [1,2]. A key aspect of
structural health monitoring is modeling the structural response accu-
rately. Presently, there are two main approaches for structural response
modeling: analytical methods and physics-based methods. Analytical
methods involve employing various time series modeling techniques

Additionally, time history analysis based on the structural mechanics
model has also been utilized for modeling structural response [6,7]. For
instance, Lu et al. [6] developed an open-source workflow for urban
building seismic damage simulation using time history analysis and
multiple-degree-of-freedom models. However, these analytical methods
still face challenges in terms of accuracy [8]. On the other hand, physics-
based methods, particularly the finite element method (FEM), have
gained popularity for modeling structural responses. FEM has been
widely applied to simulate structural responses. For example, Zheng
et al. [9] utilized FEM to simulate the small deformation in a three-story
reinforced concrete frame, while they proposed a hybrid framework that
combines FEM and physics engine to simulate the whole process of
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building collapse. Wu et al. [10] applied FEM to investigate the seismic
performance in a two-story, three-span Shanghai Metro station situated
in soft soil and validated their finite element models with the experi-
mental results. Meng and Lui [11] employed FEM to analyze the seimic
responses of a skew reinforced concrete box girder bridge, studying the
effects of external forces, boundary conditions, and structural parame-
ters. While FEM offers high fidelity and accuracy, it is computationally
expensive and sensitive to material properties, boundary conditions, and
interaction between substructures. Consequently, efficiently and reli-
ably modeling structural response, particularly under extreme loads,
remains a significant challenge.

In recent times, the application of data-driven methods in structural
response modeling has gained momentum due to the rapid development
of technology. Deep learning, in particular, has emerged as a powerful
and efficient tool for this purpose [1,12-17]. For example, Zhang et al.
[12] proposed two schemes of the long-short term memory (LSTM)
network to model and predict nonlinear structural responses, leveraging
experimental data from a six-story instrumented building. Huang and
Chen [13] employed the one-dimensional convolutional neural network
(CNN) and LSTM network to model the seismic response of a two-story,
three-span metro station, comparing their results with a baseline multi-
layer perceptron (MLP) model. Li et al. [14] developed an artificial
neural network (ANN) framework for modeling the dynamic responses
of the vehicle-bridge interaction system, incorporating a 3D train
vehicle model, a bridge finite element model, and a wheel-rail contact
model. Li etal. [1] proposed a new modeling paradigm utilizing 1D-CNN
and the gated recurrent unit (GRU) for dam structural response
modeling with validation conducted on a high arch dam using three
monitoring items (dam displacement, crack opening displacement, and
seepage). These studies have achieved exceptional accuracy; however,
they heavily rely on the assumption of having sufficient data for training
the deep learning models. Collecting a large amount of data is often
time-consuming, expensive, and challenging, and purely data-driven
models may not always adhere to physics constraints.

To address these challenges, integrating scientific knowledge into
deep learning has emerged as a potential solution [8,18,19]. This
approach aims to harness the benefits of both data-driven and
knowledge-driven approaches. Various strategies have been employed
to incorporate knowledge into deep learning models. For instance, the
algebraic equation or logic rule has been included in the loss function to
impose constraints during model training [20,21]. The knowledge graph
has been introduced to provide information about relationships between
instances [22], especially in the image -classification task [23].
Furthermore, physical simulation has been utilized to augment and
enrich training data [24].

Therefore, this work introduces a physics-informed long short-term
memory (PI-LSTM) network for modeling structural responses. The
main contributions of this work are summarized as follows:

o The physics-informed long short-term memory network was applied

to modeling structural responses by incorporating physics con-

straints into deep learning. The physics constraints were modified to
accommodate the characteristics of both linear and nonlinear cases.

The PI-LSTM network, inspired by and compared with existing

physics-informed deep learning models (PhyCNN and PhyLSTM),

was validated using the numerical simulation results of the single-
degree-of-freedom system and the experimental results from the
six-story building.

e The performance of the PI-LSTM was further explored through four
cases of the single-degree-of-freedom system subjected to ground
motion and the numerical analysis of the six-story building under
different earthquake ground motions. A comparison was made be-
tween the PI-LSTM network and the regular LSTM to assess the
effectiveness of the PI-LSTM network.
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2. Physics-informed long short-term memory (PI-LSTM)

Given that structural response data often takes the form of time se-
ries, modeling structural response can be considered a sequence pre-
diction task. Extensive research has demonstrated that LSTM is a
powerful and dependable tool for this type of task [25,26,27]. The
strength of LSTM lies in its ability to capture long-term dependencies by
selectively storing crucial information from the past and disregarding
irrelevant or unimportant information [28,29]. However, traditional
training strategies for deep learning models rely solely on data. Inte-
grating scientific knowledge as the physics constraint during the
training process could improve the robustness and reliability of the deep
learning model [8]. Therefore, a physics-informed long short-term
memory network is applied in this work for structural response
modeling.

Let’s revisit the fundamental equation (Eq. (1)) for structural dy-
namics based on the single-degree-of-freedom (SDOF) system.

mx+cx+kx = Fg (€8}

where m, ¢, and k are the mass, damping coefficient, and stiffness; x,
x, and x are the displacement, velocity, and acceleration; Fg is the
external force.

In the context of structural response modeling, ground motion is a
commonly encountered scenario. When infrastructure is exposed to
ground motion, the equation of motion for the SDOF system could be
expressed as Eq. (2) or (3).

mx+cx+kx = —mx, (2)

k n
P4 2b05 + 0'x = f)'ég,w:\/:andfz— 3)
m

where x, x, and X are the relative displacement, velocity, and ac-
celeration with respect to ground/support; X, is the ground acceleration;
w is the structural frequency; ¢ is the damping ratio.

The physics-informed long short-term memory network, as illus-
trated in Fig. 1, is applied to the structural response modeling under the
ground motion. In structural response modeling, the input typically
consists of the ground acceleration [8,13,30]. However, the current
structural response is influenced not only by the current load but also by
the previous structural response. Therefore, it is crucial to incorporate
the previous structural response as an additional input. Therefore, in the
PI-LSTM network, both the ground acceleration (x,) and previous
structural response (z) are considered as the input. The choice of the
previous structural response (z) may vary depending on the specific
design or measurement requirements. For instance, during shake table
tests or field monitoring, the displacement and acceleration of buildings
on the ground could be easily measured separately by the displacement
sensor and accelerometer [31,32]. However, directly measuring
displacement can sometimes be challenging. In such cases, researchers
or engineers may derive displacement by integrating the measured ac-
celeration to monitor the seismic response of underground structures
[10,33]. Therefore, the previous structural response (z) could encom-
pass both displacement and acceleration indicators or solely rely on one
of these indicators. The output of the PI-LSTM network corresponds to
the structural response, which shares the same indicators as the previous
structural response. This will be further discussed in detail in Section
3.2. Once the input and output are defined, the LSTM network is con-
structed to establish the relationship between the input and output
variables.

To incorporate scientific knowledge into the deep learning model,
the equation of motion for the structural dynamics (i.e. scientific
knowledge) is introduced as the physics constraint. This physics
constraint involves the output structural response and the input ground
acceleration. However, as indicated in Eq. (2) or (3), all three indicators
(displacement, velocity, and acceleration) are required simultaneously,
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Fig. 1. Scheme of physics-informed long short-term memory (PI-LSTM) network. The input includes the ground acceleration (X;) and the previous structural
response (z). The output is the structural response (2). The total loss consists of the data loss from the difference between the prediction and ground truth and the
physics loss from the physics constraint. Both ap and ap are set to 1 in this work.

which can pose challenges in experimental or field monitoring sce-
narios. To overcome this challenge, the differential method (e.g., the
central finite difference method) is used to estimate the unknown in-
dicators of the structural response. For instance, if the output structural
response includes displacement and acceleration, the velocity could be
obtained by taking the derivative of the predicted displacement. Sub-
sequently, the output structural response (e.g., displacement and ac-
celeration) and the structural response (e.g., velocity) obtained through
the differential method are incorporated into the physics constraint
alongside the input ground acceleration.

The total loss comprises two main components: data loss and physics
loss. The data loss is calculated based on the disparity between the
prediction and ground truth, a common metric used in LSTM models for
time series prediction tasks. The physics loss is derived from the physics
constraint, specifically the equation of motion for the structural dy-
namics. The physics loss could regularize the deep learning model,
which helps to eliminate the overfitting issue, reduce the dependency on
large training datasets, and enhance the robustness of the model. It is
important to note that the loss function is solely utilized during the
training process for deep learning models. The physics constraint, based
on physics knowledge, is not applied during the validation or test pha-
ses. Both the data loss and physics loss utilize the mean square loss (i.e.,
MSELoss), a widely used metric in time series forecasting tasks.

Drawing upon the aforementioned concepts, the physics-informed
long short-term memory network is constructed to model the struc-
tural response in the presence of ground motion. Nonetheless, this PI-
LSTM network could be extended to address structural response
modeling in various scenarios. It just needs to change the physics
constraint and sometimes the target structural response.

3. SDOF numerical validation

The single-degree-of-freedom system serves as a quintessential and
fundamental entity for comprehending and exploring structural dy-
namics. Consequently, the applicability and efficacy of the PI-LSTM
network are initially assessed by employing it on the SDOF system
subjected to ground motion. The data about ground motion is sourced
from previous literature [8] and numerical analysis conducted via the
finite element method. The architecture configuration of LSTM remains
consistent throughout this section. According to PyTorch [34], LSTM
comprised 4 recurrent layers and a hidden state with 100 features, while
the dropout rate was 0.1. The optimization function was Adam [35], the
training epoch was 500, and the learning rate was 0.001.

3.1. Comparison with the existing model

Zhang et al. [8] proposed a physics-guided convolutional neural
network (PhyCNN) for modeling structural responses under ground
motion and found their proposed PhyCNN demonstrated superior per-
formance compared to the non-physics-guided neural network. Given

the model’s effectiveness and the availability of data sources (datasets,
model codes, and prediction results), PhyCNN was chosen for compar-
ison with the PI-LSTM network to validate its reliability. Initially, the
SDOF system results from their work were utilized to make a comparison
with the PI-LSTM network. They employed 100 independent seismic
sequences from the PEER strong-motion database [36] as the input to
the SDOF system, generating simulation results of 50 s each at a fre-
quency of 20 Hz, resulting in 1001 data points per simulation. Since they
made their data, codes, and results publicly available, a fair comparison
was facilitated by replacing their PhyCNN model with the PI-LSTM
network. In their study, 10 samples were selected from the total 100
samples as training data, while the remaining 90 samples were treated as
test data to evaluate model performance. This procedure was also fol-
lowed in training and evaluating the PI-LSTM network in the present
work.

Table 1 provides a summary of the comparison between PhyCNN and
PI-LSTM. In Zhang et al.’s work, the input was the ground acceleration,
while the output comprised displacement, velocity, and restoring force.
To incorporate physical constraints, they incorporated the equation of
motion and also considered the discrepancy between the predicted ve-
locity and the derivative of the predicted displacement as part of the
physical loss. Fig. 2 and Table 2 illustrate the performance of PhyCNN
and PI-LSTM in predicting displacement, acceleration, and restoring
force. Overall, PI-LSTM exhibited significantly higher accuracy than
PhyCNN across all three indicators. The accuracy of PhyCNN displayed
more variability over a wider range, with the mean accuracy for all three
indicators being lower than the median accuracy when evaluated on the
test data (consisting of 90 samples). Conversely, the accuracy of PI-
LSTM was concentrated within a narrower range, with the mean and
median accuracy being much closer for all three indicators.

In addition to PhyCNN, Zhang et al. [30] also developed physics-
informed multi-LSTM networks for structural metamodeling of
nonlinear structures. Their models were able to integrate physics

Table 1
Summary of the comparison between PhyCNN and PI-LSTM.
PhyCNN PI-LSTM
Input Xg Xg& Previous {x, X, Frs}
Output X, X, Frs X, X, Frs

1 . i
pata Loss (L) 5 (152 = m 3+ — 3213 + % — )

1 . 12 o w2
o (1 =08 152+ 72 4 51
L=1Lp+1Lp

Physics Loss (Lp)

Total Loss (L)

Note: (1) Fys is the mass-normalized restoring force, (2) the superscript p and m
denote the prediction and ground truth, respectively, (3) the subscript t denotes

and (Ol = (o)

the derivative of the prediction. E.g. X =

ot

dt’
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Fig. 2. Performance of PhyCNN and PI-LSTM for predicting displacement, velocity, and restoring force.

Table 2
Summary of model performance of PhyCNN, PhyLSTM, and PI-LSTM.
Metric PhyCNN PhyLSTM PI-LSTM
Dis. Vel. RF Dis. Vel. RF Dis. Vel. RF
R? 0.75 £ 0.25 0.78 + 0.23 0.81 +£0.15 0.94 + 0.09 0.92 +0.11 0.75 + 0.19 0.94 £+ 0.04 0.93 £ 0.15 0.97 £+ 0.05
RMSE 0.02 £ 0.02 0.12 £ 0.10 0.58 £ 0.61 0.01 £ 0.01 0.08 £+ 0.07 0.63 £ 0.37 0.01 + 0.004 0.05 + 0.02 0.18 £0.13
MAE 0.01 £ 0.01 0.07 £ 0.06 0.32 £ 0.35 0.01 £ 0.01 0.04 £+ 0.03 0.32 £ 0.20 0.01 + 0.003 0.03 £ 0.01 0.10 £+ 0.06

Note: Dis. is displacement, Vel. is velocity, and RF is restoring force. RMSE is the root mean squared error and MAE is the mean absolute error. The results shown in this

table are the mean value =+ the standard deviation.

knowledge to improve the learning of sequence-to-sequence features. To
provide a comprehensive comparison, these models were also included
in the analysis. As shown in Table 2, PI.LSTM and PhyLSTM demon-
strated similar accuracy in predicting displacement and velocity. How-
ever, PI-LSTM outperformed PhyLSTM in predicting restoring force. In
the case of PI-LSTM and PhyCNN, the accuracy of restoring force sur-
passed that of both displacement and velocity. Conversely, for
PhyLSTM, the accuracy of restoring force was lower compared to the
other two structural responses. This difference can be attributed to the
fact that PI-.LSTM and PhyCNN directly predict all structural responses
(displacement, velocity, and restoring force), whereas PhyLSTM predicts
the restoring force based on the displacement and velocity predicted in
the previous step. This distinction leads to varied performance across the
three structural responses among these three models. The comparison
between these three models (PI-LSTM, PhyCNN, and PhyLSTM) provides
strong validation for the effectiveness and reliability of the PI-LSTM
network.

3.2. Case study

One limitation of Zhang et al.’s work [8] was that their SDOF system
was primarily approached from a mathematical standpoint rather than
being anchored in engineering applications. This raises concerns about
the reliability of their numerical findings, as their SDOF system
employed a mass of 1 kg, a damping coefficient of 1 Ns/m, and a linear
stiffness of 20 N/m. To address this issue, the SDOF system with pa-
rameters resembling those of a one-story concrete building was utilized
to build the dataset. The same earthquake records as Zhang et al.’s work
[8] were adopted for consistency. In the SDOF system, the mass was set
to 100 tons, corresponding to a period of 0.5 s (i.e., the stiffness is
15791367 N/m), and a damping ratio of 0.05 (i.e., the damping

coefficient is 125664 Ns/m). The numerical analysis of the SDOF system
under ground motion was conducted using OpenSees [37]. Fig. 3 illus-
trates a sample of the ground acceleration, structural displacement,
structural velocity, and structural acceleration in the SDOF system.
Following the same data preprocessing procedures employed by Zhang
et al. [8], 10 samples were selected from all 100 samples as the training
data, while the remaining 90 samples were designated for testing the
model’s performance. The satisfactory convergence of models also
supports the adequacy of solely employing the training data and test
data, as will be discussed in the subsequent section.

To evaluate the effectiveness of the PI-LSTM network, various cases
will be examined using various outputs. It should be noted that both the
training and test earthquake records remained consistent across all
cases. To establish a basis for comparison, the regular LSTM without the
physics loss, denoted as “LSTM”, is employed to compare with the PI-
LSTM network in this section.

3.2.1. Case 1: Predicting x, ¥

Displacement and acceleration are widely recognized as essential
indicators for monitoring purposes during shake table tests or field
monitoring [31,32]. As a result, both displacement and acceleration are
regarded as the output structural response. Table 3 provides an overview
of the key differences between LSTM and PI-LSTM. The input of PI-LSTM
consisted of the ground acceleration and previous structural responses
(i.e., displacement and acceleration), while the output of PI-LSTM was
displacement and acceleration. The total loss of PI-LSTM comprised both
the data loss and physics loss, whereas the total loss of LSTM only
accounted for the data loss. Fig. 5a and Table 4 summarize the results of
LSTM and PI-LSTM for predicting displacement and acceleration.
Overall, PI-LSTM demonstrated higher accuracy compared to LSTM.
Furthermore, when examining the accuracy distribution of the test data,
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Fig. 3. Data for the ground acceleration, structural displacement, structural
velocity, and structural acceleration.

PI-LSTM exhibited greater robustness and stability than LSTM, as the
accuracy values of PI-LSTM were concentrated within a narrower range.

Furthermore, one notable advantage of physics-informed deep
learning models lies in their ability to achieve remarkable performance
even with limited training data, owing to the incorporation of prior
physics knowledge. However, a pertinent question arises: Will physics-
informed deep learning models continue to outperform traditional
deep learning models when provided with relatively abundant training
data? To investigate this notion, a larger quantity of training data would
be utilized for model training. The case involving 10 training samples
could serve as a baseline, while additional sets of 20, 30, 40, 50, and 60
training samples would be used to train both LSTM and PI-LSTM. Fig. 6
illustrates the performance of LSTM and PI-LSTM across different
numbers of training samples. As depicted in Fig. 5a and Fig. 6, when
confronted with a limited quantity of training data (10 samples), PI-
LSTM surpassed LSTM significantly. Nevertheless, as the number of
training samples increased from 10 to 60, both LSTM and PI-LSTM
exhibited enhanced accuracy, with LSTM experiencing a particularly
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noteworthy improvement. The gap between LSTM and PI-LSTM
decreased substantially, and these two models demonstrated highly
similar performance after the number of training samples reached 40.
Although LSTM displayed slightly lower accuracy in displacement
compared to PI-LSTM, both models exhibited similar accuracy in ac-
celeration. This implies that physics-informed deep learning models
could outperform traditional deep learning models when confronted
with limited training data. However, once a sufficient amount of
training data is obtained, traditional and physics-informed deep
learning models tend to exhibit comparable performance.

3.2.2. Case 2: Predicting x

Displacement serves as a valuable indicator of the structural condi-
tion and a descriptor of structural deformation behavior. When moni-
toring the structural condition of a building on the ground, it becomes
essential to measure displacement as it provides crucial information
while mitigating the impact of accelerometer noise. Therefore, the case
of predicting displacement exclusively is applied to investigate the
performance of the PI-LSTM network. Table 3 provides a summary of the
comparison between LSTM and PI-LSTM regarding displacement pre-
diction. The input of PI-LSTM consisted of the ground acceleration and
previous structural responses (i.e., displacement), while the output was
solely the displacement. In terms of the physics loss, both velocity and
acceleration were derived from the displacement. Fig. 5b and Table 4
present the results of LSTM and PI-LSTM for predicting displacement.
The predicted acceleration was obtained by taking the second-order
derivative of the predicted displacement. This predicted acceleration
was then used to assess the accuracy of the deep learning model by
comparing it with the ground truth (acceleration obtained from the
numerical results). Notably, PI-LSTM achieved higher accuracy in pre-
dicting displacement and demonstrated greater robustness and stability
compared to LSTM. Furthermore, even after calculating acceleration
from the predicted displacement, the predicted acceleration of PI-LSTM
remained closer to the ground truth compared to LSTM.

3.2.3. Case 3: Predicting X

Acceleration is a widely used metric in structural health monitoring
due to its relative ease of measurement. In certain monitoring scenarios,
researchers or engineers may only have access to acceleration data
during shake table tests or field monitoring [10,33]. Hence, it is crucial
to assess the performance of deep learning models specifically designed
to predict acceleration. When only an accelerometer is installed on a
structure, double integration of the acceleration is typically required to
obtain displacement. However, there are inherent challenges associated
with double integration, such as defining initial or boundary conditions
and dealing with noise [8,38]. Consequently, concerns arise regarding
the accuracy of displacement prediction based on predicted

Table 3
Summary of the comparison between LSTM and PI-LSTM.
Case 1 Case 2 Case 3 Case 4
LSTM PI-LSTM LSTM PI-LSTM LSTM PI-LSTM LSTM PI-LSTM

Input Xg& Previous {x, X} Xg& Previous {x} Xg& Previous {x} Xg& Previous {x, Fr}

Output x, X x X X, Fys

Data 1 @ M2 1 @ 2 1/  om2 1/ 0 om2 2
o (e =X ) 5 (b = x13) A 55 (168 =15+ 175 — Pl
(Lp)

Physics - 1/ . .2 1/ . . .2 1/ . .2 1/ .
Loss N(|\x"+2§wxf+w2x4’ +xgH2) N(Hxﬁ‘+2§wxf+w2x4’+xgu2) N(fo+2§wxf+w2xp +xgH2> N(fo’JrFI,’erxgHﬁ)
Lp)

Total L= L=Lp+Lp L= L=Lp+Lp L= L=Lp+Lp L= L=Lp+Lp
Loss Lp Lp Lp Lp
(€9]

Note: (1) F is the mass-normalized restoring force, (2) the superscript p and m denote the prediction and ground truth, respectively, (3) the subscript t denotes the

- - . dx? 2
derivative of the prediction. E.g. X = a and (4)|u? = (1 /Zixiz) =Y X2
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Fig. 5. Performance of LSTM and PI-LSTM. (a) Case 1: predicting displacement and acceleration, (b) Case 2: predicting displacement, (c) Case 3: predicting ac-

celeration, and (d) Case 4: predicting acceleration (nonlinear analysis).

acceleration. To address this, displacement is considered as the output of
the deep learning model, while the predicted acceleration is obtained
from the second-order derivative of the predicted displacement. This
predicted acceleration is then compared with the ground truth, which
refers to the acceleration obtained from numerical results, to train the
deep learning model. Table 3 provides a summary of the comparison
between LSTM and PI-LSTM in terms of predicting acceleration. As
previously mentioned, the input of PI-LSTM consisted of ground accel-
eration and previous structural responses (i.e., displacement), while the
output of PI-LSTM was displacement. The data loss was calculated based
on the difference between the predicted acceleration (i.e., the second-
order derivative of the model output) and the ground truth (i.e., the

acceleration derived from the numerical results). The physics loss
involved obtaining both acceleration and velocity by taking derivatives
of the model output. Fig. 5c and Table 4 summarize the performance of
LSTM and PI-LSTM in predicting acceleration. PI-LSTM consistently
achieved higher and more stable accuracy compared to LSTM. The ac-
curacy distribution of the test data demonstrates that PI-LSTM out-
performed LSTM in terms of accuracy and robustness.

3.2.4. Case 4: Predicting ¥ (nonlinear analysis)

When analyzing the motion of structures in nonlinear scenarios, it
becomes challenging to rely on constant parameters, such as stiffness, to
accurately describe their deformations. Consequently, applying the
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Table 4
Summary of the performance of LSTM and PI-LSTM.
Case 1
Metric LSTM PI-LSTM
Displacement Acceleration Displacement Acceleration
R? 0.903 + 0.082 0.795 + 0.138 0.941 + 0.048 0.918 + 0.077
RMSE 0.005 + 0.002 1.232 4 0.405 0.004 + 0.001 0.756 + 0.320
MAE 0.003 + 0.001 0.618 + 0.284 0.002 + 0.001 0.340 + 0.178
Case 2
Metric LSTM PI-LSTM
Displacement Acceleration Displacement Acceleration
R? 0.937 £ 0.063 0.840 + 0.125 0.953 + 0.061 0.980 + 0.031
RMSE 0.004 + 0.001 1.057 £+ 0.350 0.003 + 0.001 0.334 + 0.204
MAE 0.002 + 0.0004 0.537 + 0.244 0.002 + 0.001 0.173 £ 0.126
Case 3
Metric LSTM PI-LSTM
Displacement Acceleration Displacement Acceleration
R? 0.935 + 0.030 0.944 + 0.083 0.958 + 0.071 0.984 + 0.018
RMSE 0.004 + 0.001 0.552 + 0.325 0.003 + 0.001 0.334 + 0.157
MAE 0.002 + 0.001 0.280 + 0.204 0.002 + 0.001 0.179 £ 0.101
Case 4
Metric LSTM PI-LSTM
Displacement Acceleration Displacement Acceleration
R? 0.959 + 0.024 0.920 + 0.095 0.960 + 0.060 0.970 + 0.030
RMSE 0.003 + 0.001 0.702 + 0.345 0.003 + 0.001 0.465 + 0.253
MAE 0.002 + 0.001 0.359 + 0.224 0.002 + 0.001 0.200 + 0.117

Note: RMSE is the root mean squared error and MAE is the mean absolute error.
The results shown in this table are the mean value + the standard deviation.

equation of motion (Eq. (2) or (3)) as the physics constraint in the PI-
LSTM network becomes difficult. To overcome this issue, one potential
solution is to combine the stiffness force and damping force to form the
restoring force. Consequently, the equation of motion (Eq. (2) or (3))
could be re-written as follows:

P4 F, = — %, @

where F,, is the mass-normalized restoring force.

This equation (Eq.(4)) would serve as the physics constraint for the
PI-LSTM network. Fig. 4 illustrates the architecture of the PI-LSTM
network designed for nonlinear analysis. In comparison to the original
PI-LSTM architecture (shown in Fig. 1), this modified model preserves
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the LSTM architecture while altering the physics constraint and the
corresponding structural responses (z) to accommodate nonlinear
analysis requirements. To evaluate the performance of this modified PI-
LSTM network, a specific case is selected for comparison with LSTM. As
previously mentioned, acceleration is a commonly monitored indicator
of structural condition. Therefore, PI-LSTM and LSTM were compared in
terms of predicting acceleration. The dataset utilized was the same as in
the other cases, but the mass-normalized restoring force (F.) was
derived from the ground acceleration and structural acceleration, spe-
cifically Fr; = —X; —X, to construct the dataset.

Table 3 provides a comprehensive comparison between LSTM and PI-
LSTM in terms of predicting acceleration in the context of nonlinear
analysis. Both LSTM and PI-LSTM utilized the ground acceleration and
previous structural responses (displacement and mass-normalized
restoring force) as inputs, while the outputs consisted of displacement
and mass-normalized restoring force for both models. In Case 3, as
described in Section 3.2.3, the displacement was considered the model
output for predicting acceleration, resulting in reduced errors. The data
loss was calculated by measuring the difference between the model’s
predictions (acceleration and mass-normalized restoring force) and the
corresponding ground truth values obtained from the numerical results.
Additionally, the physics loss was computed based on the physics
constraint imposed by the modified equation (Eq.(4)). Fig. 5d and
Table 4 present the results of LSTM and PI-LSTM for predicting accel-
eration in the context of nonlinear analysis. PI-LSTM consistently out-
performed LSTM in terms of accuracy. Moreover, the accuracy
distribution of the test data for PI-LSTM demonstrated a more concen-
trated range compared to that of LSTM, indicating its superior perfor-
mance in predicting both displacement and acceleration.

4. Experimental and numerical validation

To further validate the performance of the PI-LSTM network, it is
essential to assess its effectiveness using experimental or numerical re-
sults. However, due to the limited availability of publicly accessible
benchmark experimental data, numerical analysis based on the finite
element method serves as a suitable alternative. The process involves
constructing a finite element model that aligns with the experimental
conditions, including building parameters and boundary conditions.
Subsequently, the structural response of the finite element model is
computed under the experimental loading conditions. If the simulation
results closely resemble the experimental findings, it instills confidence
in using the finite element model to explore different scenarios, such as
diverse ground motions. In this study, both experimental and numerical
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results were employed to evaluate the performance of the PI-LSTM
network for a multi-story building subjected to ground motion. The
LSTM architecture utilized in this section mirrors the architecture
described in Section 3. As per the PyTorch library [34], the LSTM
comprised 4 recurrent layers and 500 features in the hidden state, with a
dropout rate of 0.1. The Adam optimization function [35] was
employed, with a training epoch of 3000 and a learning rate of 0.001.

4.1. Experimental validation

Zhang et al. [8] utilized the experimental results from a 6-story hotel
building located in San Bernardino, California, to investigate the per-
formance of their proposed PhyCNN model. This building, designed in
1970 was equipped with nine accelerometers positioned on the first and
third floors, as well as the roof. Twenty-one available records were ob-
tained from the Center for Engineering Strong Motion Data (CESMD)
[39] to build the dataset. Further detailed information regarding this
dataset could be found in the previous literature [8]. Fig. 7 illustrates a
sample from the dataset, depicting the ground acceleration, structural
displacement, structural velocity, and structural acceleration. Eleven
samples were designated as the training data, four samples were chosen
for evaluation purposes, and the remaining six samples were allocated as
test data for model assessment.

The deep learning model used in this study aimed to predict accel-
eration based on the data collected from installed accelerometers on the
building. However, the process of obtaining displacement from accel-
eration through double integration could introduce errors, as mentioned
earlier. To address this issue, a similar approach to Section 3.2.4 was
employed, where the output of the deep learning model was treated as
displacement, and the predicted acceleration was obtained by taking the
second-order derivative of the predicted displacement. It is important to
note that unlike the cases described in Section 3.2.4, the authors of
Zhang et al. [8] did not incorporate the equation of motion as a physics
constraint in their PhyCNN model. In their proposed PhyCNN model,
displacement was the output, and the predicted acceleration was ob-
tained by taking the second-order derivative of the predicted displace-
ment. The loss function for this model was solely based on the difference
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between the predicted acceleration and the ground truth. In this work,
the PI-LSTM network was utilized for nonlinear analysis of the structural
response, as discussed in Section 3.2.4. The experimental results pre-
sented in this study fall under the category of nonlinear analysis of
structural response, making the PI-LSTM network (depicted in Fig. 4)
suitable for modeling the structural response based on these experi-
mental findings. Table 5 provides a summary of the comparison between
PhyCNN and PI-LSTM in terms of predicting acceleration, specifically
focusing on modeling the experimental results. The input for PI-LSTM
consisted of the ground acceleration and previous structural responses
(displacement and mass-normalized restoring force), while the input for
PhyCNN only included the ground acceleration. The output of PI-LSTM
was displacement and mass-normalized restoring force, whereas
PhyCNN solely produced displacement as its output. The loss function
for PI-LSTM encompassed two components: the data loss, calculated
from the difference between the predicted and ground truth values, and
the physics loss, derived from the physics constraint. In contrast, the loss
function for PhyCNN was determined solely by the disparity between the
predicted acceleration and the experimental results.

Fig. 8 and Table 6 present the performance comparison between
PhyCNN and PI-LSTM in terms of predicting acceleration specifically for
the third floor and roof. Additionally, Fig. 9 displays the corresponding
predicted displacement and acceleration for both the third floor and the
roof. Regarding the third floor, both PI-LSTM and PhyCNN exhibited
similar accuracy in predicting displacement. However, when it came to
predicting acceleration, PI-LSTM outperformed PhyCNN significantly in
terms of accuracy. For the roof, PI-LSTM achieved higher accuracy than
PhyCNN in predicting both displacement and acceleration. In particular,
PI-LSTM displayed notably superior accuracy compared to PhyCNN in
predicting acceleration. Its higher accuracy positions PI-LSTM as a more
reliable option based on the results of this experiment.

Based on Fig. 9, the structural response, including displacement and
acceleration, of the roof was higher compared to that of the third floor.
When focusing on the displacement of the third floor (Fig. 8a), PhyCNN
and PI-LSTM exhibited similar performance. However, as the moni-
toring location shifted to the roof, and the displacement increased, PI-
LSTM outperformed PhyCNN in predicting the displacement of the
roof (Fig. 8b). The superiority of PI-LSTM became even more pro-
nounced when considering acceleration as the monitoring indicator. PI-
LSTM demonstrated significantly higher accuracy than PhyCNN in
predicting the acceleration of the third floor (Fig. 8a), although PhyCNN
still achieved a satisfactory accuracy level with an R? value of 0.86.
However, when the monitoring location shifted to the roof, the accel-
eration accuracy of PhyCNN dropped to 0.71, while PI-LSTM maintained
a high level of accuracy, even surpassing that of the third floor (Fig. 8b).
The disparity in acceleration accuracy between PI-LSTM and PhyCNN
further widened as the amplitude and range of the acceleration
increased. Additionally, both for displacement and acceleration, the
accuracy distribution of PI-LSTM was concentrated within a smaller
range compared to PhyCNN. In conclusion, it can be stated that PI-LSTM
offers a more accurate and robust approach to structural response
modeling. Particularly when dealing with higher amplitudes and wider
ranges of the monitoring indicator, the advantages of PI-LSTM become
even more prominent.

Table 5
Summary of the comparison between PhyCNN and PI-LSTM.
PhyCNN PI-LSTM

Input Xg Xg& Previous {x,F}

Output X X, Frs

Data Loss (Lp) 1 . - 1 ., -

’ w1 - 512) o (182 =715 1 - )
Physics Loss (Lp) - 1/, . .
’ HERAST
Total Loss (L) L=1Lp L=1Lp+1Lp
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Fig. 8. Performance of PhyCNN and PI-LSTM for predicting the structural response in terms of the (a) third floor and (b) roof.

Summary of model performance of PhyCNN and PI-LSTM.

Third Floor

Metric PhyCNN PI-LSTM

Displacement Acceleration Displacement Acceleration
R? 0.968 + 0.013 0.864 + 0.053 0.965 + 0.009 0.937 + 0.061
RMSE 0.001 + 0.001 0.364 + 0.161 0.001 + 0.001 0.210 + 0.062
MAE 0.001 + 0.0003 0.181 + 0.099 0.001 + 0.001 0.096 + 0.035
Roof
Metric PhyCNN PI-LSTM

Displacement Acceleration Displacement  Acceleration
R? 0.887 £ 0.048 0.709 £ 0.111 0.930 + 0.037 0.977 £ 0.017
RMSE 0.002 + 0.001 1.094 £+ 0.515 0.002 + 0.002 0.280 + 0.088
MAE 0.001 + 0.001 0.550 + 0.312 0.001 + 0.001 0.145 + 0.054

Note: RMSE is the root mean squared error and MAE is the mean absolute error.
The results shown in this table are the mean value + the standard deviation.

4.2. Numerical validation

In addition to the experimental results, the numerical simulation of a
six-story building was conducted to evaluate the performance of the PI-
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LSTM model. This six-story building, as described in previous literature
[40], was designed in 1976 based on the 1973 UBC requirements [41].
Information regarding this building was selected from the California
Strong Motion Instrumentation Program (CSMIP). The building had
dimensions of 36.60 m by 36.60 m in plan, with six bays in one direction
(6 x 6.10 m). The elevation of the building is depicted in Fig. 10, which
also provides details such as the height of each floor and the cross-
section of the columns and beams. For further specifics about this
building, refer to the previous literature [40]. A total of 13 strong mo-
tion sensors were installed on the ground, second, third, and roof levels
of this building. The recorded response data includes the behavior of the
structure during three earthquakes: the 1987 Whittier Narrows earth-
quake, the 1991 Sierra Madre earthquake, and the 1994 Northridge
earthquake.

The finite element model of the six-story building was constructed
using OpenSees [37], as outlined in the previous literature [40]. The
tributary seismic response masses were determined to be 235.6 tons per
level, and a damping ratio of 0.03 was applied to the building. The finite
element model of the building exhibited a period of 1.43 s, which closely
aligned with the target period specified in the literature [40].

To simulate the structural response under earthquake ground mo-
tions, popular ground motions for Los Angeles [42] were employed.
These ground motions varied in terms of probabilities of exceedance and
time intervals. In total, 40 earthquake ground motions with a consistent

=y

-~ Roof
~ | 0025 p
g 0.000{/ \ AN i!
o 0.02{-0025{ VY " i
5 26 27 1
E 0.00] s fi
1>
2
g
(=]

-0.04— T

N
el
3
S

\ i A
I¥AYA
0 \}I\I \\ \_', ‘?f\"

27

s

-10.00

Acceleration (m/sz)
2

'
»
S
o
S

0 10 20 30

Time (s)
PhyCNN

50

Experiment s

Fig. 9. Prediction performance of PhyCNN and PI-LSTM in terms of the (a) third floor and (b) roof.



F. Liu et al.

6@6100=36600

—_—
—

r— W24 X 68 Roof
v
(=)}
X W24 X84
i
B [=]
4 W24 X84 2
© T
(5} (=
5 W27 X84 2
: g
3 W27X 102 Third |
Floor
<
® W30% 116
X
= 2
z 2
% VA WA 7 VA V2% v/

Fig. 10. Elevation of the six-story building (from [40]).

time interval of 0.02 s but different probabilities of exceedance were
selected for the analysis. The ground motions comprised LA0O1-LA02,
LA07-LA14, LA17-LA20 (10% probability of exceedance); LA21-LA22,
LA27-LA30, LA37-LA40 (2% probability of exceedance); and LA45-
LA60 (50% probability of exceedance). To obtain numerical simula-
tion results for the six-story building, these earthquake ground motions
were applied to the finite element model mentioned earlier. Fig. 11 il-
lustrates one sample of the ground acceleration, structural displace-
ment, structural velocity, and structural acceleration obtained from this
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simulation. Out of the 40 samples, 20 samples were randomly selected
from each group based on their corresponding proportion for use as
training data. Additionally, 10 samples were allocated for validation
purposes, and the remaining 10 samples were set aside as test data. For
example, during the selection of training data, 7 samples were randomly
chosen from the group consisting of the earthquake ground motion with
a 10% probability of exceedance, 5 samples were selected from the
group with a 2% probability of exceedance, and 8 samples were chosen
from the group with a 50% probability of exceedance.

The primary objective of this numerical validation is to assess ac-
celeration as the most commonly used indicator for structural health
monitoring. The focus is on the third floor and roof of the depicted six-
story building (Fig. 10). Due to the complexity of directly calculating
motion equation parameters, the PI-LSTM model illustrated in Fig. 4
could effectively model the structural response of various floors in the
multi-story building. For comparison purposes, two models, PI-LSTM
and LSTM, were utilized to simulate the structural response. Table 3
(Case 4) provides a summary of the information regarding PI-LSTM and
LSTM. The inputs for both models were ground acceleration and the
previous structural responses (displacement and mass-normalized
restoring force), while the outputs were displacement and mass-
normalized restoring force. The predicted acceleration was derived
from the second-order derivative of the predicted displacement. The
data loss was determined by the variance between the predicted struc-
tural responses (acceleration and mass-normalized restoring force) and
the results from numerical simulations, while the physics loss for PI-
LSTM was based on adherence to physics constraints. Fig. 12 and
Table 7 present the performance evaluation of PI-LSTM and LSTM in
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predicting the structural responses for the third floor and roof. PI-LSTM
outperformed LSTM significantly in terms of displacement accuracy,
while its accuracy in acceleration prediction was only marginally higher
than that of LSTM. Notably, PI-LSTM exhibited a narrower accuracy
range for both displacement and acceleration compared to LSTM. Fig. 13
showcases the predictions of LSTM and PI-LSTM for the structural re-
sponses of the third floor and roof. PI-LSTM demonstrated superior
performance in predicting acceleration compared to displacement.
Although the predicted displacement amplitude of PI-LSTM was slightly
lower than the numerical simulation results, it successfully captured the
displacement trend with high accuracy. Consequently, PI-LSTM proves
to be a precise and robust approach for modeling the structural response
under ground motion.

5. Discussion

In this study, model comparisons and several case studies were
conducted to assess the performance of the PI-LSTM network and vali-
date its effectiveness. For the purpose of model comparison, PhyCNN, a
successful physics-informed deep learning model introduced by Zhang
et al. [8], was selected, as it exhibited strong performance and datasets,
model codes, and results were readily available. Furthermore, Zhang
et al. [30] also developed PhyLSTM, another impressive physics-
informed deep learning model for structural metamodeling of
nonlinear structures. Several distinctions can be observed between PI-
LSTM and PhyCNN/PhyLSTM, contributing to variations in the perfor-
mance and computational efficiency:

1) Incorporation of physics knowledge: While all three models treat the
equation of motion as a physics constraint, they differ in their con-
siderations of the equation’s form. First, for linear analysis, PI-
LSTM'’s physics constraint involves stiffness and damping separately,
while velocity and acceleration are calculated from the predicted
displacement (Cases 2 and 3). In contrast, PhyCNN combines stiff-
ness and damping into a single variable known as restoring force.
Second, in nonlinear analysis, PI-LSTM’s physics constraint com-
prises ground acceleration, predicted restoring force, and accelera-
tion derived from the predicted displacement. PhyCNN, on the other
hand, does not consider the equation of motion as a physics
constraint. PhyLSTM incorporates three items similar to PI-LSTM,
but it obtains acceleration and restoring force from different steps.

Input features: PI-LSTM utilizes two types of input features, namely
ground acceleration and previous structural responses, which can be
adjusted based on specific requirements (e.g., both displacement and
acceleration, or only displacement, or only acceleration, or both

2

—
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Table 7
Summary of the performance of LSTM and PI-LSTM.

Third Floor

Metric LSTM PI-LSTM

Displacement Acceleration Displacement Acceleration
R? 0.608 + 0.028 0.911 + 0.069 0.778 + 0.009 0.927 + 0.037
RMSE 0.024 + 0.016 0.480 + 0.308 0.018 £ 0.011 0.429 + 0.206
MAE 0.012 + 0.007 0.239 + 0.135 0.009 + 0.005 0.210 + 0.098
Roof
Metric LSTM PI-LSTM

Displacement Acceleration Displacement Acceleration
R? 0.677 + 0.053 0.833 £ 0.079 0.813 £ 0.011 0.865 + 0.028
RMSE 0.054 + 0.039 1.059 + 0.765 0.040 =+ 0.027 0.919 + 0.530
MAE 0.026 + 0.016 0.512 + 0.317 0.020 £ 0.012 0.449 + 0.232

Note: RMSE is the root mean squared error and MAE is the mean absolute error.
The results shown in this table are the mean value + the standard deviation.

displacement and restoring force). Conversely, both PhyCNN and

PhyLSTM rely on a single input feature, namely ground acceleration.

Loss function (including physics loss) for nonlinear structural anal-

ysis: PI-LSTM’s outputs for nonlinear structural analysis are restoring

force and displacement, from which acceleration is computed based
on the predicted displacement. The data loss encompasses the vari-
ance between predicted and measured acceleration and restoring
force. The physics loss incorporates equations and includes ground
acceleration, predicted restoring force, and acceleration derived
from predicted displacement. These two losses are combined to form
the final loss function. In comparison, PhyCNN’s loss function solely
considers the variance between predicted and measured accelera-
tion. PhyLSTM’s loss function consists of three components: data loss

(predicted and measured displacement and velocity), “equality” loss

(predicted and computed velocity), and physics loss (ground accel-

eration, acceleration, and restoring force).

4) Operation logic: PI-LSTM employs a single LSTM architecture to
directly compute structural responses, while PhyLSTM utilizes two or
three LSTM architectures to incrementally calculate structural re-
sponses. For instance, PI-LSTM uses one LSTM architecture to
directly predict displacement and restoring force. However, one
variant of PhyLSTM (PhyLSTM2) initially employs one LSTM archi-
tecture to predict structural responses (displacement, velocity, and
hysteretic parameters), followed by another LSTM architecture to
predict restoring force based on the previously predicted structural
responses. Consequently, these two models (PI-LSTM and PhyLSTM)
differ in their operation logic and computational efficiency.
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Fig. 13. Prediction performance of LSTM and PI-LSTM in terms of the (a) third floor and (b) roof.

5) Core model architecture: PI-LSTM and PhyLSTM utilize LSTM ar-
chitectures, whereas PhyCNN employs a CNN architecture.

The case studies conducted in this work encompassed both linear and
nonlinear structural analyses, revealing distinct performance charac-
teristics for the PI-LSTM network. Three linear SDOF case studies were
specifically employed to assess the model’s capabilities. In Case 1
(Section 3.2.1), the objective was to predict both displacement and ac-
celeration, with both being considered as structural responses in the
inputs and outputs (Table 3). Case 2 (Section 3.2.2) focused solely on
predicting displacement, utilizing it as the only structural response in
the inputs and outputs (Table 3). Case 3 aimed to predict acceleration
exclusively. Unlike Cases 1 and 2, Case 3 employed displacement as the
sole structural response in the inputs and outputs (Table 3), but the loss
calculation was based on the acceleration derived from the predicted
displacement. Table 4 presents the performances of LSTM and PI-LSTM
in these three case studies, revealing notable distinctions. Firstly, PI-
LSTM consistently outperformed LSTM across all case studies. Sec-
ondly, the accuracy of both LSTM and PI-LSTM was lower in Case 1
compared to Cases 2 and 3, which can be attributed to the different
ranges of displacement and acceleration. Balancing two distinct output
features poses challenges for the models, making them more prone to
reaching local minima instead of global minima. Thirdly, LSTM
exhibited similar accuracy in predicting displacement for both Case 2
and Case 3. However, its accuracy in predicting acceleration was higher
in Case 3 compared to Case 2. This discrepancy arises due to the use of
displacement as the input and output structural response in both cases,
but the loss functions employed different structural responses. Case 2
utilized displacement, while Case 3 employed acceleration, leading
LSTM to achieve higher accuracy in predicting acceleration in Case 3.
Lastly, PI-LSTM demonstrated remarkably similar accuracy in predicting
both displacement and acceleration in both Case 2 and Case 3 (R2: 0.953
and 0.958 for displacement, and 0.980 and 0.984 for acceleration). The
accuracy of PI-LSTM in both displacement and acceleration surpassed
that of LSTM in all cases, particularly for acceleration in Case 2. The
inclusion of physics knowledge in the loss function, serving as a physics
constraint, contributed to enhanced model performance, especially in
terms of generalization for unknown structural responses (e.g., accel-
eration in Case 2). This highlights the advantage of physics-informed
deep learning approaches.

In addition to linear structural analysis, the performance of the PI-
LSTM network was examined through case studies involving nonlinear
structural analysis. Both SDOF systems and multi-DOF systems, utilizing
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experimental and numerical data, were considered. Compared to linear
analysis, the PI-LSTM network adjusts the physics constraint (as depic-
ted in Fig. 1 and Fig. 4) to accommodate the requirements of nonlinear
analysis. For nonlinear analysis, PI-LSTM and LSTM exhibited differing
performances. Firstly, PI-LSTM consistently outperformed LSTM across
all case studies. Secondly, in comparison to linear analysis (Case 3), both
PI-LSTM and LSTM achieved higher accuracy in predicting displacement
for nonlinear analysis (Case 4). However, their accuracy in predicting
acceleration declined after transitioning from linear to nonlinear anal-
ysis (Table 4), although PI-LSTM maintained higher accuracy than
LSTM. This can be attributed to two factors: 1) The two outputs, namely
displacement and restoring force, possess distinct ranges, making it
challenging for the models to strike a balance between them and more
prone to converging to local minima. 2) The incorporation of physics
knowledge aids in improving the models’ ability to generalize to un-
known structural responses. Thirdly, multi-DOF nonlinear systems
exhibit considerably greater complexity compared to SDOF linear or
nonlinear systems. Consequently, both PI-LSTM and LSTM achieved
lower accuracy in predicting displacement and acceleration for multi-
DOF nonlinear systems (Table 4 and Table 7). Future investigations
should encompass additional tests of physics-informed deep learning
models on multi-DOF nonlinear systems to explore the applicability and
generalization of these models.

6. Conclusion

Deep learning has emerged as a powerful and efficient tool for
modeling structural responses. However, it often requires a large
amount of training data, which can be time-consuming and challenging
to collect. Additionally, purely data-driven models may not always
satisfy the physics constraints of the problem at hand. To address these
issues, this work introduces physics-informed deep learning, which in-
corporates scientific knowledge into deep learning models. In this study,
a physics-informed long short-term memory (PI-LSTM) network was
applied to structural response modeling. To validate the reliability of the
PI-LSTM network, comparisons were made with existing physics-
informed deep learning models, namely PhyCNN and PhyLSTM, using
numerical simulation results of SDOF systems and experimental results
of the six-story building. The PI-LSTM network was also evaluated and
validated using the regular LSTM model in four cases of the SDOF system
and numerical simulation results for the six-story building. The results
demonstrated that the PI-LSTM network exhibited higher accuracy and a
narrower range of predictions compared to the PhyCNN model for both
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numerical simulation results of the SDOF system and experimental re-
sults of the six-story building. Furthermore, the PI-LSTM network out-
performed the regular LSTM model in terms of accuracy and robustness
for the SDOF system and the six-story building’s numerical simulation
results. These findings highlight the reliability and effectiveness of the
PI-LSTM network for structural response modeling. In the future, this
model can be further applied to model the structural response of various
infrastructures, such as tunnels and bridges, under different loads or
hazard events. By incorporating physics knowledge into deep learning,
the PI-LSTM network holds promise for improving the accuracy and
reliability of structural response predictions in various engineering
applications.

Furthermore, it is important to note that this study primarily utilized
data from a single building for training and evaluating the PI-LSTM
network. Enhancing the generalization capabilities of the PI-LSTM
network is a key area for future improvement. One possible approach
is to incorporate additional building-specific information into the input
data, which can help enhance the model’s ability to generalize to
different structures. Moreover, in this work, physics knowledge was
integrated into the model through the physics constraint included in the
loss function. However, there is potential to further investigate how
physics knowledge can be effectively incorporated into the architecture
of the proposed models. One potential avenue is to explore the concept
of a physics layer, where the model explicitly incorporates physics
principles as a distinct component within its architecture. Investigating
the integration of physics knowledge at a deeper level can contribute to
further improvements in the accuracy and robustness of models.
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