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ARTICLE INFO ABSTRACT

Keywords: Deep transfer learning (TL) has great potential for a wide range of applications in civil engineering. This work
Deep transfer learning aims to propose a deep transfer learning-based method for vehicle classification by asphalt pavement vibration.
CNN model

This work first used the pavement vibration IoT monitoring system to collect raw vibration signals and per-
formed the wavelet transform to obtain denoised vibration signals. The vibration signals were then represented
in two different ways, including the time-domain graph and the time-frequency graph. Finally, two deep transfer
learning-based methods, namely Method I (Time-domain & TL) and Method II (Time-frequency & TL), were
applied for vehicle classification according to the two different representations of vibration signals. The results
show that the CNN model had a satisfactory performance in both methods with the accuracy of Method I
exceeding 0.94 and Method II exceeding 0.95. The CNN model in Method II performed better in the accuracy
metrics with considering label imbalance, but worse in the accuracy metrics without considering label imbalance
than that in Method I. The differences between these two methods have been investigated and discussed in detail
in terms of input types, accuracy metrics, and application prospects. The CNN model with deep transfer learning
could be an effective, accurate, and reliable technique for vehicle classification based on asphalt pavement

Asphalt pavement
Vibration signals
Vehicle classification

vibration.

1. Introduction

How to effectively, rapidly, and accurately classify vehicles? Vehicle
classification plays an important role in intelligent traffic management
and pavement performance evaluation. Currently, various technologies
are used for vehicle classification and they are divided into two main
groups, non-intrusive and intrusive technologies. Non-intrusive tech-
nologies contain video imaging (e.g. cameras) and radar [1,2], while
intrusive technologies include piezoelectric sensors, inductive loops,
fiber optic sensors, and integrated electronic piezoelectric accelerome-
ters [3-6]. Non-intrusive technologies are sensitive to traffic and
weather conditions, while the monitoring information and accuracy are
limited [7,8]. Intrusive technologies strongly relied on the sensor,
resulting in high installation and maintenance costs [7,9]. The weigh-in-
motion (WIM) systems are the typical and popular intrusive technolo-
gies, while they consist of various sensors and can collect numerous
traffic information, such as vehicle types, vehicle speed, vehicle axle
counts, and vehicle weight. Due to the high requirements for pavement
stiffness and roughness, the pavement needs to be improved to install
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the WIM systems, increasing the construction and maintenance costs.
Apart from high costs, the traditional WIM systems are often susceptible
to traffic or weather disruptions [9]. In addition, those sensors used for
intrusive technologies sometimes have to be equipped with additional
adapters and data acquisition devices due to the lack of data processing,
storage, and communication techniques [8,9]. These limit the wide-
spread use of those sensors and make real-time monitoring more
difficult.

To overcome the aforementioned limitations, an acceleration sensor
based on the Micro-Electro-Mechanical System (MEMS) was developed
and applied in the asphalt pavement vibration monitoring. MEMS vi-
bration sensors show strong advantages in terms of low power con-
sumption, miniaturization, and scalability, meanwhile they achieve
wireless communication functions with the help of the Internet of Things
(IoT) technology. Numerous researchers have successfully applied
MEMS vibration sensors to collect traffic information. Bajwa et al. [7]
developed a wireless sensor network for vehicle classification based on
axle count and spacing and this network included vibration sensors
(measure pavement acceleration), vehicle detection sensors (monitor
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vehicle’s time of arrival and departure), and an access point (record the
sensors’ data). Ma et al. [10] proposed a prototype axle count and
spacing automatic vehicle classification system based on wireless
accelerometer sensors (detect vehicle axles) and magnetometer sensors
(estimate vehicle speed). Huang et al. [11] developed an IoT-based
wireless sensor system (based entirely on wireless accelerometer sen-
sors) for traffic volume and vehicle classification, while they conducted
a series of laboratory tests, field tests, and numerical simulations to
validate the monitoring system. Ye et al. [9] collected comprehensive
traffic information by a vibration-based in-field pavement monitoring
system (MEMS acceleration sensor) and applied the artificial neural
network and the k-means++ cluster analysis for vehicle classification
and the abnormal vehicle weight, separately. Duarte and Hu [12]
investigated the wireless sensor network for vehicle classification, while
they built a dataset extracted from this wireless sensor network and
applied machine learning models for data conditioning and classifica-
tion. Although all these works used wireless sensors, some of them
installed the sensors on the roadside, which might lead to the missing
the real pavement vibration caused by vehicle load. This is because
pavement vibration fades rapidly during the transmission in the pave-
ment and pavement vibration measured by the sensors on the roadside
tends to be smaller than those caused by vehicle loads [13]. Therefore,
the pavement vibration should be collected in the center of the road,
where it is usually directly subjected to vehicle loads.

Another issue is how to accurately and efficiently classify vehicles by
pavement vibration. The vehicle type and pavement vibration are more
likely to have a nonlinear relationship and traffic-induced vibration is
often influenced by numerous factors, such as temperature, vehicle
speed, location of vehicle loads, pavement structure, pavement rough-
ness, and so on [9,14]. It is quite difficult to propose an empirical and
simple function to establish the relationship between vehicle type and
pavement vibration. Deep learning is becoming an ideal solution. In
recent decades, deep learning has been widely applied in civil engi-
neering [15-23]. As showing the powerful non-linearity and automatic
feature extraction capacities, deep learning, especially convolutional
neural network (CNN), has become a popular and efficient tool for vi-
bration signal processing. Yu et al. [15] proposed a CNN-based method
to identify and localize the damage of building structures by detecting
vibration signals from structures. Dang et al. [16] developed a practical
end-to-end framework using a hybrid deep learning model that incor-
porated CNN and long-short term memory (LSTM), which they applied
to process vibration signals and detect the damage. Pal et al. [17]
developed a CNN-based method to process the vibration signals of a steel
frame structure with bolted connections and then detect the damage
condition. Alazzawi and Wang [ 18] proposed a new deep learning-based
structural health monitoring method that combined the raw time-
domain structural response signals and the deep residual network.
Although these works achieved satisfactory accuracy, the size of their
datasets tended to be relatively small. This limits the performance of
deep learning models, especially CNN which typically requires a large
dataset to maximize its performance. In this case, transfer learning (TL)
attracts more attention as it relaxes the requirement for the large data-
set. How can transfer learning achieve it? Transfer learning is defined as:
given a source domain Dg and learning task T, and a target domain Dy
and learning task Tr, transfer learning aims to improve the performance
of predictive function for learning task T by transferring the knowledge
from Dg and Ts, where Ds # D7 and Ts # T, and the size of Dg is much
larger than that of Dy in most cases [24,25]. When transfer learning is
applied in deep neural networks, it is often called deep transfer learning
which examines how to leverage knowledge from other domains
through deep neural networks [25]. Deep transfer learning is divided
into four categories, instance-based deep transfer learning, mapping-
based deep transfer learning, network-based deep transfer learning,
and adversarial-based deep transfer learning [25]. Deep transfer
learning needs a small amount of labeled data in the target domain to
fine-tune the pre-trained deep learning models that have already been
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trained by a large dataset in the source domain. Deep transfer learning
has started to be applied in civil engineering. Gao and Mosalam [26]
applied deep transfer learning and CNN to structural damage recogni-
tion with two strategies, namely feature extractor and fine-tuning.
Gopalakrishnan et al. [27] employed deep transfer learning and CNN
to automatically detect cracks in pavement images, which include a
large number of defects and non-crack anomalies. Kim et al. [28]
developed a CNN-based construction object-detection method to accu-
rately identify construction equipment with the help of deep transfer
learning. Li et al. [29] proposed a deep transfer learning-based frame-
work for estimating missing sensor data for high arch dams, which was
based on the deep-stacked bidirectional LSTM model. These demon-
strate that deep transfer learning has great potential for a wide range of
applications in civil engineering.

Therefore, this work aims to propose a deep transfer learning-based
vehicle classification by asphalt pavement vibration. The key contribu-
tions of this work are summarized as follows:

e The wavelet transform was applied to denoise the pavement vibra-
tion signals which were collected by the pavement vibration IoT
monitoring system.

The pavement vibration signals were represented in two different
ways, including the time-domain graph and the time-frequency
graph.

Two deep transfer learning-based methods were proposed for vehicle
classification according to the two different representations of the
pavement vibration signals.

2. Methods

Fig. 1 shows the framework of this work. It aims to apply deep
transfer learning for vehicle classification by asphalt pavement vibration
and includes three main steps. Firstly, a pavement vibration IoT moni-
toring system was used to monitor pavement vibration, and raw vibra-
tion signals were collected through this system. Secondly, raw vibration
signals were denoised by the wavelet transform to obtain denoised vi-
bration signals. Finally, deep transfer learning was applied for vehicle
classification. During this step, two deep transfer learning-based
methods, namely Method I (Time-domain & TL) and Method II (Time-
frequency & TL), were proposed for different types of inputs (time-
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Fig. 1. Framework of deep transfer learning-based vehicle classification by
asphalt pavement vibration.
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domain graph and time-frequency graph). In Method I, the CNN model
processed time-domain graphs to classify vehicles. In Method II, the
CNN model employed time-frequency graphs, which were the results of
time-frequency analysis, for vehicle classification.

2.1. Monitoring pavement vibration

A pavement vibration IoT monitoring system was used to efficiently
collect pavement vibration in real-time [8]. This system consisted of
acceleration sensing nodes, a gateway, and a cloud platform. This sys-
tem has been applied in the field to monitor asphalt pavement vibration
[8]. Fig. 2 shows the field layout of the pavement vibration IoT moni-
toring system. For each traffic direction, two rows of acceleration
sensing nodes were deployed, with 7 acceleration sensing nodes in each
row. The distance between the two acceleration sensing nodes was 50
cm and the distance between the acceleration sensing node and the
roadside was 25 cm and 50 ¢cm in two rows, respectively. The acceler-
ation sensing nodes applied the MEMS technology to support the inte-
gration of MEMS sensors, processors, and other electronic components
and the detailed information on acceleration sensing nodes could be
found in the literature [8]. The acceleration sensing nodes collected
pavement vibration signals at a sampling frequency of 500 Hz. Based on
low power consumption and high scalability, this system enabled the
monitoring, transmission and analysis of pavement vibration signals [8].
More details could be found in the literature [8].

2.2. Denoising vibration signals

2.2.1. Wavelet transform

The raw vibration signals collected by the pavement vibration IoT
monitoring system contained noises that might affect the accuracy of
vehicle classification, highlighting the importance of denoising. Wavelet
transform could decompose a signal into several scales representing
different frequency bands, and at each scale, the location of the
instantaneous structure of the signal can be approximated [30]. Based
on this property, wavelet transform has become a popular method for
denoising vibration signals [30] in civil engineering [31,32]. Compared
with continuous wavelet transform (CWT), discrete wavelet transform
(DWT) is more suitable for denoising signals and more computationally
efficient [32]. The threshold function and the wavelet function (i.e. the
mother wavelet) play a crucial role in the signal denoising by DWT. The
threshold function includes the hard thresholding, the soft thresholding,
the compromising method of the hard and soft thresholding, and others.
The compromising method of the hard and soft thresholding was pro-
posed in the literature [33] and in the compromising method, the
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threshold values of the detail coefficients are defined as:

6 {zr(0) o] =), o =

o= <a<l 1
Dj k O7 W 1 7(07&7 ) ()

where, @; is the estimated wavelet coefficients, w;, is the wavelet
coefficients, 1 is the selected threshold, sign() is the sign function, « is
usually 0.5.

To determine the threshold, Johnstone and Silverman [34] defined a
level-dependent threshold applied at each detail level for processing
various noises and the threshold is defined as follows:

A = 0 % \/2l0g(N) = MAD,, / 0.6745 x +/2log(N) @

where MAD,, is the median absolute value of the detail coefficients at
level m and N is the length of the signal.

The wavelet function is critical in practice as it affects the perfor-
mance of DWT [32]. Several wavelet functions were investigated in this
paper, including Biorthogonal (bior), Symlets (sym), Coiflets (coif),
Reverse biorthogonal (rbio), and Daubechies (db), while some wavelet
functions are presented in Fig. 3. The wavelet functions used in this work
are based on a Python library named "PyWavelets’ [35].

2.2.2. Evaluation metrics

Various quantitative evaluation metrics have been used to evaluate
the performance of signal denoising in terms of the reconstructed signal
quality. The common evaluation metrics include the signal-to-noise
ratio (SNR) and the root mean square error (RMSE). The SNR and
RMSE were defined as follows [32,36].

e SNR:
Psi na,
SNR = 10log,, (ﬁl) (3)
o RMSE:

1 ,
RMSE = 4/ NZL i =) )

Where y; is the original signal and y;’ is the denoised signal.

2.3. Classifying vehicles

During the process of classifying vehicles, two methods were pro-
posed based on deep transfer learning (Fig. 1). The difference between
these two methods lies in the input image. Method I (Time-domain & TL)

Acceleration
sensing nodes

Traffic
direction

Fig. 2. The field layout of the pavement vibration IoT monitoring system. (a) Scheme and (b) image of the on-site monitoring.
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Fig. 3. Wavelet functions used in this work. (a) Biorthogonal 6.8 (bior6.8), (b) Symlets 6 (sym6), and (c) Coiflets 3 (coif3).

was proposed based on the time-domain graph and Method II (Time-
frequency & TL) was developed based on the time-frequency graph
which was the result of time-frequency analysis.

2.3.1. Time-domain graph and Time-frequency graph

The vibration signal has both time and frequency features, and
accordingly, the vibration signal is represented as a function of time and
frequency. Based on time-domain and frequency-domain representa-
tions, the signal graphs are divided into the time-domain graph and the
frequency-domain graph. In short, the time-domain graph shows how
the signal varies over time (Fig. 4a), while the frequency-domain graph
shows how many signals are in each given frequency band within a
certain frequency range. However, either the time-domain graph or the
frequency-domain graph ignores one feature of the vibration signal. To
address this issue, time-frequency analysis studies the signal in both the
time and frequency domains simultaneously and produces time-
frequency representations of the vibration signals. Therefore, two
different representations were used to represent the pavement vibration
signals, including the time-domain graph and the time-frequency graph.
The former is the most commonly used method for representing vibra-
tion signals, while the latter can study the vibration signals in both the
time and frequency domains simultaneously. Based on these two
different representations, two different deep transfer learning-based
methods would be proposed and compared for vehicle classification,
which will be discussed in detail below.

The continuous wavelet transform is an excellent tool for time-
frequency analysis, which has already attracted countless attention in
the past decades. The continuous wavelet transform generates the time-
frequency representation of the signal and plots it in the time-frequency
graph (Fig. 4b). In the time-frequency graph, each data point corre-
sponds to a certain time (X-axis) and frequency (Y-axis), while its color
represents the absolute value of the wavelet coefficients. In this work,
the continuous wavelet transform was performed by the complex
Gaussian wavelet 8 (cgau8), while all these were based on a Python li-
brary named 'PyWavelets’ [35].
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2.3.2. Deep transfer learning

For the image classification task (e.g. vehicle classification in this
work), deep transfer learning applied to CNN has two main steps
(Fig. 5): (1) For the source domain, the CNN model is trained with a very
larger dataset, usually, ImageNet [37] which has 1.2 million images
with 1000 categories. The trained CNN model is often referred to as the
pre-trained CNN model. (2) For the target domain, the pre-trained CNN
model is used to accomplish the target task (vehicle classification in this
work). In this process, the convolutional layers of the pre-trained CNN
model (i.e., pre-trained convolutional layers) are retained, but the fully
connected layers (i.e., FC layers) need to be changed to meet the re-
quirements of the target task. As there are 1000 labels in the source
domain and 10 labels in the target domain in this work, the output of the
fully connected layers needs to be changed from 1000 to 10. After that,
the adjusted pre-trained CNN model is fine-tuned with the dataset of the
target domain (i.e., the dataset of asphalt pavement vibration signals).

EfficientNet [38] was used as the CNN model for deep transfer
learning in this work. It balances network depth, width, and resolution
to have a better performance than traditional CNN models [38]. With
the relatively low computation complexity and model complexity, Effi-
cientNet has a satisfactory performance in computer vision tasks. Effi-
cientNet achieved a top-1 accuracy of 84.3% and a top-5 accuracy of
97.0% in ImageNet image classification [38]. Until now, the top-ranked
CNN models in the ImageNet image classification task are still based on
EfficientNet. Therefore, pre-trained EfficientNets (-BO, -B1, -B2, -B3,
-B4, -B5, -B6, and -B7) were used for vehicle classification in this work,
which are available on the online sources [39,40].

2.3.3. Evaluations metrics

Several evaluation metrics are commonly used to evaluate the per-
formance of the CNN model for the image classification task. They
include accuracy (Eq.(5)), precision (Eq.(6)), recall (Eq.(7)), and F;
score (Eq.(8)). To consider the effect of multiple classes which are
common in the image classification task, the three accuracy metrics have
three subsets, ‘macro’, ‘weighted’, and ‘micro’. ‘Macro’ means that it
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Fig. 4. Overview of (a) the time-domain graph and (b) the time-frequency graph.
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Fig. 5. Scheme of deep transfer learning applied to CNN.

needs to calculate accuracy metrics for each class and then obtain un-
weighted averages, regardless of label imbalances [41]. Similar to’ma-
cro’, but ‘weighted’ takes into account label imbalances and calculates
weighted averages [41]. In comparison, ‘micro’ calculates accuracy
metrics by counting the total true positives, false negatives, and false
positives, and thus the value of micro precision, micro recall, micro F;
score, and accuracy are identical.

e Accuracy

TP + TN
Accuracy = —————————— (5)
TP + TN + FP + FN
e Precision

TP

Precision = TP 7P (6)
e Recall

Recall = TPZ-—PFN @)
e Fq score
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where L is the set of labels. y is the set of true (sample, label) pairs and
y is the subset of y with label L y is the set of predicted (sample, label)
pairs and y; is the subset of y with label . TP is true positive, TN is true
negative, FP is false positive, and FN is false negative.

2.3.4. Image preprocessing and hyperparameters

Image preprocessing is the step of formatting images before images
are used for model training. The aim of image preprocessing is to
improve the image and make it more suitable for deep learning models.
In this work, resizing and normalization, two methods of image pre-
processing, are applied to all images. In addition, as a form of image
preprocessing, image data augmentation creates different versions of
similar content so that the deep learning model is exposed to more
training images to avoid the overfitting issue. Image data augmentation
used in this work includes random cropping (RandomCrop), random
horizontal flipping (RandomHorizontalFlip), and random rotation
(RandomRotation). They are only applied in the training set.

The CNN model was based on the online sources [39,40] and run on
PyTorch. The optimization algorithm is Adam [42] and the loss function
is the cross-entropy loss. The input image size is 224 x 224 which meets
the requirements of the pre-trained CNN model. Other hyperparameters
include the learning rate (0.001), training epoch (100), and batch size
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(32).

3. Results

3.1. Denoised vibration signals

As mentioned in Section 2.2, various threshold functions and wavelet
functions were used in the wavelet transform for signal denoising.
Table 1 summarizes the evaluation metrics of the wavelet transform for
signal denoising. In three thresholding functions, the compromising
method of hard and soft thresholding had the highest SNR and lowest
RMSE. Its SNR was more than twice that of the hard thresholding and
over three times that of the soft thresholding, while its RMSE is about
one-third that of the hard and soft thresholding for Direction A.
Although all wavelet functions had similar SNR and RMSE, ‘bior6.8' had
the highest SNR and lowest RMSE. Therefore, the compromising method
of hard and soft thresholding and ‘bior6.8’ were finally selected as the
threshold function and wavelet function.

To visualize the performance of signal denoising, Fig. 6 shows the
images of the raw signals and denoised signals. As shown in Fig. 6a, the
raw signals had numerous noises and after signal denoising, there were
very few noises in the denoised signals which retained the meaningful
signal. In the raw signal of acceleration sensing nodes, noises were
mainly presented at low signal values (fluctuations at the beginning or
end in Fig. 6b) and the signals with high absolute values (peaks or
valleys in Fig. 6b) had few noises, which are more important for vehicle
classification. In the denoised signals of acceleration sensing nodes, the
most important signals (peaks or valleys in Fig. 6b) were almost retained
in the original value while noises were almost removed (smoothed
curves at the beginning or end in Fig. 6b). According to Table 1 and
Fig. 6, the wavelet transform had a very satisfactory performance in
signal denoising, which is important for signal preprocessing.

3.2. Datasets for deep transfer learning

After denoising signals, it needs to build the dataset for deep transfer
learning to classify vehicles. As mentioned in Section 2.3, two methods
were proposed for vehicle classification based on deep transfer learning.
These two methods differed in the type of the input image, the time-
domain graph and the time-frequency graph. Fig. 7a shows the time-
domain graph of seven acceleration sensing nodes for one passing
vehicle. The time-domain graph allows the vibration signals of all ac-
celeration sensing nodes to be plotted in one graph, which could be
found by the legend from 'Node-1" to "Node-7’. In comparison, the time-
frequency graph requires a single graph to plot the vibration signals of
only one acceleration sensing node. It means that one passing vehicle
needs seven time-frequency graphs to present the vibration signals of all

Table 1
Evaluation metrics of the wavelet transform for signal denoising.

Threshold function Wavelet Direction A Direction B
function SNR RMSE SNR RMSE
Hard thresholding bior6.8 4.0702 1.7223 3.1715 0.9486
Soft thresholding bior6.8 2.6665 2.1132 2.0028 1.1278
Compromising method bior6.8 9.3397 0.6010 4.3913  0.5754
of hard and soft sym10 9.2976 0.6032 4.3494 0.5770
thresholding sym8 9.3029 0.6029 4.3567 0.5769
symé6 9.3104  0.6023  4.3540  0.5768
coif5 9.2897  0.6035  4.3548  0.5768
coif3 9.3093 0.6025 4.3567 0.5767
rbio6.8 9.2801 0.6043  4.3421 0.5779
db10 9.2304  0.6056  4.2475  0.5798
db8 9.2401 0.6053 4.2641 0.5792
db6 9.2736  0.6038  4.2914  0.5785
db4 9.2849  0.6034 43116  0.5782

Note: ‘bior’ is Biorthogonal, ‘sym’ is Symlets, ‘coif’ is Coiflets, ‘rbio’ is Reverse
biorthogonal, and ‘db’ is Daubechies.
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acceleration sensing nodes. Fig. 7b shows three of the seven time-
frequency graphs for the one passing vehicle in the same manner as
Fig. 7a. In Fig. 7a, Node-6 had the highest vibration signals, followed by
Node-3 and the other acceleration sensing nodes had very few vibration
signals. Accordingly, Node-6 had the highest and most variable wavelet
coefficients, and in Fig. 7b, it had the most colorful time-frequency
graph. The wavelet coefficients of Node-3 were much lower than those
of Node-6 and varied in a smaller ranger, so the time-frequency graph of
Node-3 was less colorful with a few colors. In comparison, the time-
frequency graph of Node-7 was plotted in blue as its vibration signals
were almost zero.

When building the dataset, two methods need two different datasets.
Method I (Time-domain & TL) is much easier to build its dataset because
it only needs one time-domain graph to plot the vibration signals of all
acceleration sensing nodes for one passing vehicle. However, Method II
(Time-frequency & TL) needs seven time-frequency graphs to present
the same corresponding information. How to combine these seven
graphs to classify one passing vehicle? As shown in Fig. 7a, not all ac-
celeration sensing nodes observed vibration signals. Therefore, the
number of acceleration sensing nodes successfully obtaining vibration
signals for one passing vehicle was summarized in Fig. 8. A maximum of
three acceleration sensing nodes was employed to measure vibration
signals for all vehicles. Only trucks and big trucks needed three accel-
eration sensing nodes and two acceleration sensing nodes were required
for the other vehicles except for motorcycles which used one. It means
three time-frequency graphs were needed instead of seven graphs to
illustrate the vibration signals of all acceleration sensing nodes for one
passing vehicle. However, the three time-frequency graphs were
numbered differently for different vehicles because vehicles often
passed through different locations of one lane. How to select these three
time-frequency graphs? When selecting the three time-frequency
graphs, it was necessary to choose the time-frequency graphs of accel-
eration sensing nodes that observed vibration signals. Therefore, it
needed to first sort the acceleration sensing nodes by the absolute value
of the observed vibration signals and then select the top three acceler-
ation sensing nodes to plot their time-frequency graphs. These three
graphs would be used for vehicle classification.

As there are three time-frequency graphs for one passing vehicle, it is
possible to consider one graph as one channel of an RGB image. In
particular, the time-frequency graph was changed from the RGB image
(3 channels) to the gray image (1 channel) and then three time-
frequency graphs were combined together into an RGB image. For
example, three time-frequency graphs in Fig. 7b were combined to plot
an RGB image in Fig. 9b. This image would be used to build the dataset
for Method II (Time-frequency & TL). In order to eliminate irrelevant
information, the axis ticks, axis labels, legends, titles, color bars, etc.
were removed during the building of the datasets. Fig. 9 shows the
exemplary images of the datasets for the two methods.

Table 2 summarizes the information of the dataset built in this work.
This dataset contained 10 categories of vehicles, including the motor-
cycle, hatchback, sedan, SUV, mini VAN, VAN, pickup truck, mini truck,
truck, and big truck. The number of each category varied a lot and there
was a total of 2098 vehicles collected in this dataset. The number of
sedans was the largest, followed by the truck and big truck, which was
much larger than the other vehicle types. To train and evaluate the CNN
model, the whole dataset was separated into two subsets, training (80%)
and test (20%) sets. The number of vehicles in each category in the
training and test sets could also be found in Table 2.

3.3. Accuracy metrics of vehicle classification

3.3.1. Accuracy metrics of image preprocessing methods

As mentioned above, image data augmentation exposes the CNN
model to more complex training images to avoid the overfitting issue.
Three image data augmentation methods, including RandomCrop,
RandomHorizontalFlip, and RandomRotation, were used in this work.
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Table 3 summarizes the accuracy metrics of the test set in terms of image
preprocessing methods. Without image data augmentation, the CNN
model in both methods faced the overfitting issue. After applying image
data augmentation, the accuracy of the CNN model improved a lot no
matter which method was chosen. So it is necessary to apply image data
augmentation to the training set. In addition, the same image data
augmentation method differently affected the accuracy of the two
methods. RandomCrop had the highest accuracy in Method I and

RandomHorizontalFlip plus RandomRotation achieved the highest ac-
curacy in Method II. Therefore, Method I and Method II employed
different image data augmentation methods to maximize their perfor-
mance. After applying the selected image data augmentation methods to
the training set, the pre-trained CNN models for Method I and Method II
were trained and evaluated on the dataset for vehicle classification.
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Fig. 9. Image of the dataset for two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL).

Table 2
Summary of the dataset.
0 1 2 3 4 5 6 7 8 9 Total
Train 32 40 443 206 169 50 18 38 390 301 1687
Test 4 14 133 49 30 7 4 6 56 108 411
Total 36 54 576 255 199 57 22 44 446 409 2098

Note: 0: motorcycle, 1: hatchback, 2: sedan, 3: SUV, 4: mini VAN, 5: VAN, 6: pickup truck, 7: mini truck, 8: truck, and 9: big truck.

Table 3
Accuracy metrics of image preprocessing methods.

Image preprocessing Method I (Time-domain & TL) Method II (Time-frequency & TL)

Accuracy Macro F; Weighted F; Accuracy Macro F; Weighted F,
Resize 0.8200 0.6431 0.8103 0.8856 0.7731 0.8818
Resize 0.9489 0.9299 0.9475 0.9416 0.8089 0.9372
RandomCrop
Resize 0.9270 0.8836 0.9259 0.9611 0.8738 0.9578
RandomHorizontalFlip
RandomRotation
Resize 0.9319 0.8516 0.9286 0.9246 0.7176 0.9148
RandomCrop
RandomHorizontalFlip
Resize 0.9173 0.8392 0.9146 0.9221 0.7390 0.9155
RandomCrop
RandomHorizontalFlip
RandomRotation

3.3.2. Accuracy metrics of deep transfer learning model complexity. For Method I (Fig. 10a), the loss of three CNN models

Two methods, Method I (Time-domain & TL) and Method II (Time-
frequency & TL), were proposed for vehicle classification. Fig. 10 shows
the loss of these two methods. Three EfficientNets (-BO, -B3, and -B7)
were selected to present their results because these three CNN models
have different accuracy on ImageNet with different computational and

had a similar pattern that the loss decreased with the increasing epoch
and then converged despite few fluctuations. The models in Method II
performed similarly to those in Method I. However, these three CNN
models in Method II converged at approximately Epoch-40, much faster
than those in Method I (about Epoch-65), while the final loss values of
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Fig. 10. Loss of two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL).
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the three CNN models were similar in these two methods.

Fig. 11 shows the accuracy metrics of two methods, Method I (Time-
domain & TL) and Method II (Time-frequency & TL). In summary,
similar to the loss (Fig. 10), the CNN models in Method II converged
much faster than those in Method I. Although three CNN models even-
tually reached similar values for all accuracy metrics in both methods,
the accuracy metrics of EfficientNet-BO and -B3 increased more rapidly
than EfficientNet-B7, especially in Method II. In both two methods, all
three CNN models had similar patterns between the accuracy and
weighted F; score, which was higher than the macro F; score.

Table 4 summarizes the accuracy metrics of Method I (Time-domain
& TL). EfficientNet-B3 achieved the highest values for all accuracy
metrics, except for the macro precision and macro F; score, which were
the highest in EfficientNet-BO. It means that considering the label
imbalance, EfficientNet-B3 had the best performance, but without
eliminating the effect of the label imbalance, EfficientNet-BO performed
better than EfficientNet-B3. Table 5 summarizes the accuracy metrics of
Method II (Time-frequency & TL). Similar to the result of Method I,
EfficientNet-B3 had the highest values for all accuracy metrics, except
for the macro precision, macro recall, and macro F; score. EfficientNet-
B2 achieved the highest macro precision and EfficientNet-B7 did it in the
macro recall and macro F; score. In both two methods, EfficientNet-B3

Construction and Building Materials 342 (2022) 127997

had the highest accuracy metrics when considering the label imbalance,
but other EfficientNets performed better in the accuracy metrics without
taking into account the label imbalance. Meanwhile, EfficientNet had a
satisfactory performance in both methods with the accuracy of Method I
exceeding 0.94 and Method II exceeding 0.95, indicating that the CNN
model with deep transfer learning could be an effective, accurate, and
reliable tool for vehicle classification based on asphalt pavement vi-
bration. From the perspective of accuracy metrics, EfficientNet-B3 is the
best model in both methods.

In addition, there is no obvious relationship between the accuracy
and the computation and model complexity. For example, EfficientNet-
B2 and EfficientNet-B7 had identical accuracy in Method I while the
computation and model complexity of EfficientNet-B7 were much more
complex than EfficientNet-B2. In Method II, the accuracy of
EfficientNet-B2 was much higher than that of EfficientNet-B7.

4. Discussion

Two deep transfer learning-based methods, Method I (Time-domain
& TL) and Method II (Time-frequency & TL), were proposed for vehicle
classification in this work and the results of both methods show that the
CNN model with deep transfer learning could be an effective, accurate,
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Fig. 11. Accuracy metrics of two methods, Method I (Time-domain & TL) and Method II (Time-frequency & TL). (a) Accuracy, (b) macro F; score, and (c) weighted

F; score.
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Table 4

Accuracy metrics of Method I (Time-domain & TL).
Model Accuracy Precision Recall F; score

Macro Weighted Macro Weighted Macro Weighted

EfficientNet-BO 0.9489 0.9714 0.9503 0.9022 0.9489 0.9299 0.9475
EfficientNet-B1 0.9513 0.9410 0.9545 0.8982 0.9513 0.9082 0.9509
EfficientNet-B2 0.9586 0.9533 0.9608 0.8840 0.9586 0.9046 0.9571
EfficientNet-B3 0.9684 0.9247 0.9728 0.9099 0.9684 0.9042 0.9688
EfficientNet-B4 0.9635 0.9518 0.9653 0.8868 0.9635 0.8941 0.9615
EfficientNet-B5 0.9635 0.9437 0.9637 0.8359 0.9635 0.8761 0.9618
EfficientNet-B6 0.9562 0.9534 0.9601 0.8819 0.9562 0.8934 0.9546
EfficientNet-B7 0.9586 0.9631 0.9606 0.8819 0.9586 0.9097 0.9569

Table 5

Accuracy metrics of Method II (Time-frequency & TL).
Model Accuracy Precision Recall F; score

Macro Weighted Macro Weighted Macro Weighted

EfficientNet-BO 0.9611 0.9765 0.9626 0.8356 0.9611 0.8738 0.9578
EfficientNet-B1 0.9611 0.9740 0.9619 0.8501 0.9611 0.8918 0.9590
EfficientNet-B2 0.9708 0.9844 0.9715 0.8529 0.9708 0.8909 0.9680
EfficientNet-B3 0.9732 0.9702 0.9744 0.8340 0.9732 0.8673 0.9700
EfficientNet-B4 0.9684 0.9735 0.9692 0.8212 0.9684 0.8514 0.9641
EfficientNet-B5 0.9635 0.9752 0.9646 0.8293 0.9635 0.8679 0.9604
EfficientNet-B6 0.9659 0.9628 0.9664 0.8691 0.9659 0.8916 0.9637
EfficientNet-B7 0.9562 0.9698 0.9571 0.8841 0.9562 0.9035 0.9541

and reliable technique for vehicle classification based on asphalt pave-
ment vibration. These two methods employed different input types and
performed differently on the accuracy metrics. So what is the difference
between these two methods? What are the advantages and disadvan-
tages of these two methods? These two methods differ in three aspects:

4.1. Difference in input types

These two methods utilized different inputs, the time-domain graph
and the time-frequency graph. Their inputs are different in three ways.
(1) The features of vibration signals. Method I only used time features of
vibration signals and Method II processed both time and frequency
features of vibration signals simultaneously. (2) The dimension of in-
puts. Although both methods employed graphs, the dimension of inputs
is different. The time-domain graph is two-dimensional, while the X-axis
is time and the Y-axis is the vibration signal (Fig. 4a). The time-
frequency graph could be viewed as three-dimensional, while the X-
axis is time, the Y-axis is frequency, and the Z-axis (color) is the wavelet
coefficients (Fig. 4b). (3) The data fusion method. As seven acceleration
sensing nodes were used to measure pavement vibration for one passing
vehicle, it needs to combine the vibration signals of all acceleration
sensing nodes as the input to the CNN model. In Method I, the vibration
signals of all acceleration sensing nodes are easily plotted in an image
that is considered as the input (Fig. 9a). In comparison, in Method II,
each acceleration sensing node has its own time-frequency graph. After
statistical analysis (Fig. 8), the top three acceleration sensing nodes are
selected to plot their time-frequency graphs as gray (1 channel) images.
Then these three gray images are combined as one RGB (3 channels)
image that is considered as the input (Fig. 9b).

4.2. Difference in accuracy metrics

To better compare the two methods, Fig. 12 summarizes the accuracy
metrics of the CNN models for two methods and Fig. 13 presents the
normalized confusion matrix of EfficientNet-BO and -B3 for two
methods. In terms of accuracy metrics, these two methods differ in three
ways.

(1) The accuracy considers the label imbalance. The label imbalance
means that the distribution of images across classes is not identical. In
the label imbalance, there are two groups, majority class and minority
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class, while the former has many images and the latter has few images.
The mass of images from the majority class would drown out the mi-
nority class, resulting in the deep learning model focusing only on
learning the feature of the majority class with abundant images and
ignoring the minority class which is in fact equally meaningful [43,44].
This is because the deep learning model assumes that each class has an
equal distribution [44]. The dataset in this work had ten classes with
different numbers of images (Table 2), resulting in the label imbalance.
The accuracy, weighted precision, weighted recall, and weighted F;
score take into account the label imbalance. As shown in Fig. 12a and c,
the accuracy and weighted F; score of almost all CNN models in Method
II were higher than those in Method I. When back to the confusion
matrix shown in Fig. 13, compared to Method I, the CNN models in
Method II have better performance in the majority class. This is because
the important informative region in the time-frequency graph is larger
than that of the time-domain graph (Fig. 14a). Also, the discrepancy
between similar vibration signals is more apparent in the time-frequency
graph compared to the time-domain graph (Fig. 14b and c). These
characteristics help make the CNN model easier to learn from the time-
frequency graph, thus improving accuracy.

(2) The accuracy without taking into account the label imbalance. In
comparison, the macro precision, macro recall, and macro F; score do
not account for the label imbalance and assume that each label is equally
important. As shown in Fig. 12b, the macro F; score of all CNN models in
Method I was higher than those in Method II. This is due to the fact that
the CNN models in Method I perform better in the minority class (e.g.
motorcycle and pickup truck) than Method II (Fig. 13) and the un-
weighted mean between the majority class and minority class improves
the final value of accuracy metrics. The minority class has few examples,
making the CNN models in Method II more difficult to be trained
because the time-frequency graph is more complex than the time-
domain graph. In addition, different time-domain graphs might have
similar time-frequency graphs (Fig. 14d), especially for the motorcycle
that collects vibration signals with one acceleration sensing node. This
led to the low accuracy of the CNN models in Method II for the motor-
cycle (Fig. 13).

(3) The convergence speed and stability of the CNN model. As shown
in Fig. 11, the CNN models in Method II converged faster and performed
more stably than those in Method I by using the same hyperparameters.
This is important for training the CNN model. The rapid convergence
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Fig. 12. Accuracy metrics of the CNN models for two methods, Method I (Time-domain & TL) and Method II (Time-frequency & TL). (a) Accuracy, (b) macro F;
score, and (c) weighted F; score.

means that the CNN model needs fewer epochs or training time and the 4.3. Difference in application prospects
high stability means that the CNN model is more robust.

These two methods also have different application prospects. (1)
Method I runs at a higher running speed than Method II and requires less

11



F. Liu et al.

A Method I (Time-domain & TL)-EfficientNet-B0

True label

o 1 2 3

4

5
Predicted label

6 7 8 9

b Method II (Time-frequency & TL)-EfficientNet-B0

Lk 0.50

True label

o 1 2

3 4 5 6
Predicted label

1.0

Construction and Building Materials 342 (2022) 127997

Method I (Time-domain & TL)-EfficientNet-B3

1.0
0 |
1 0.9
— 08
2- 9
3 0.9
- 0.6
2 0
24 |
]
g5 00
= 0.4
6- .50
71 0.8
-0.2
8- 0.9
94 00
- . : . . 5 , . . -0.0
0 1 2 3 4 5 6 7 8 9
Predicted label
Method II (Time-frequency & TL)-EfficientNet-B3 -
[E 0.50
1- 00
— 08
29 0.99
34 00
= 0.6
2 0
g 4- |
g §
1 0
£
= 04
6-
74 0.6
— -0.2
8- 0.96
91 0
. . . . -0.0
0 1 2 7 8 9

3 4 5 6
Predicted label

Fig. 13. Normalized confusion matrix of EfficientNet-BO and -B3 for two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL). Note:
0: motorcycle, 1: hatchback, 2: sedan, 3: SUV, 4: mini VAN, 5: VAN, 6: pickup truck, 7: mini truck, 8: truck, and 9: big truck.

time for vehicle classification. Compared to Method I, Method II in-
troduces the time-frequency analysis to obtain the time-frequency graph
and although the time-frequency analysis is very fast, it still takes some
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Fig. 14. Comparison of time-domain graphs and time-frequency graphs.

Motorcycle

time. The high usage time for vehicle classification might limit the
application of Method II in contrast to Method I. (2) Method II needs
more data (image) than Method I. According to Fig. 12 and Fig. 13,
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compared with Method I, the CNN model in Method II performed better
in the majority class, but worse in the minority class. The time-frequency
graph is more complex than the time-domain graph (Fig. 14), so the CNN
model in Method II requires more data to maximize its performance. In
the future, more data will be collected on each vehicle type to increase
the dataset size and eliminate the label imbalance in the dataset. (3)
Method II employs a different data fusion method than Method I. Unlike
Method I, which plots the vibration signals of all acceleration sensing
nodes in one graph, Method II requires several graphs to present the
same information about one passing vehicle as in Method I. In this work,
after statistics analysis, three time-frequency graphs were combined as
the input. But if the acceleration sensing nodes are arranged too close
together or the vehicle is too wide, more than three acceleration sensing
nodes might collect the vibration signal. How to fuse data? There are
two alternatives. The first method is to increase the channel of the input
to combine all possible time-frequency graphs. If the input has more
than three channels, the first convolutional layer of the pre-trained CNN
model needs to be adjusted, which may affect its performance. Another
method is to use the results of the time-frequency analysis as the matrix
rather than the graph and then apply the LSTM to process the matrix.
This method was also investigated by previous literature [45,46]. The
problem with this method is that it is difficult to find the pre-trained
LSTM with large datasets, which is different from the pre-trained CNN
model. In this case, the LSTM might not achieve a similar performance to
the pre-trained CNN model due to the lack of data.

5. Conclusion

Deep transfer learning needs a small number of labeled data to
achieve satisfactory performance in the target domain, and thus has
great potential for a wide range of applications in civil engineering. This
work aims to propose a deep transfer learning-based method for vehicle
classification by asphalt pavement vibration. The main contributions of
this work include: (1) the wavelet transform was used to denoise the
pavement vibration signals which were collected by the pavement vi-
bration IoT monitoring system; (2) the pavement vibration signals were
represented in two different ways, including the time-domain graph and
the time-frequency graph; (3) two deep transfer learning-based methods
were proposed for vehicle classification based on the two different
representations of the pavement vibration signals. In addition, the input
types, accuracy metrics, and application prospects were applied to
investigate the feasibility and validity of two deep transfer learning-
based methods for vehicle classification. The results show that the
CNN model had a satisfactory performance in both methods with the
accuracy of Method I exceeding 0.94 and Method II exceeding 0.95. The
CNN model in Method II performed better in the accuracy metrics with
considering label imbalance, but worse in the accuracy metrics without
considering label imbalance than that in Method I. In both two methods,
EfficientNet-B3 had the highest accuracy metrics when considering the
label imbalance, but other EfficientNets performed better in the accu-
racy metrics without taking into account the label imbalance. The CNN
model with deep transfer learning could be an effective, accurate, and
reliable method for vehicle classification based on asphalt pavement
vibration.
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