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A B S T R A C T   

Deep transfer learning (TL) has great potential for a wide range of applications in civil engineering. This work 
aims to propose a deep transfer learning-based method for vehicle classi昀椀cation by asphalt pavement vibration. 
This work 昀椀rst used the pavement vibration IoT monitoring system to collect raw vibration signals and per-
formed the wavelet transform to obtain denoised vibration signals. The vibration signals were then represented 
in two different ways, including the time-domain graph and the time-frequency graph. Finally, two deep transfer 
learning-based methods, namely Method I (Time-domain & TL) and Method II (Time-frequency & TL), were 
applied for vehicle classi昀椀cation according to the two different representations of vibration signals. The results 
show that the CNN model had a satisfactory performance in both methods with the accuracy of Method I 
exceeding 0.94 and Method II exceeding 0.95. The CNN model in Method II performed better in the accuracy 
metrics with considering label imbalance, but worse in the accuracy metrics without considering label imbalance 
than that in Method I. The differences between these two methods have been investigated and discussed in detail 
in terms of input types, accuracy metrics, and application prospects. The CNN model with deep transfer learning 
could be an effective, accurate, and reliable technique for vehicle classi昀椀cation based on asphalt pavement 
vibration.   

1. Introduction 

How to effectively, rapidly, and accurately classify vehicles? Vehicle 
classi昀椀cation plays an important role in intelligent traf昀椀c management 
and pavement performance evaluation. Currently, various technologies 
are used for vehicle classi昀椀cation and they are divided into two main 
groups, non-intrusive and intrusive technologies. Non-intrusive tech-
nologies contain video imaging (e.g. cameras) and radar [1,2], while 
intrusive technologies include piezoelectric sensors, inductive loops, 
昀椀ber optic sensors, and integrated electronic piezoelectric accelerome-
ters [3–6]. Non-intrusive technologies are sensitive to traf昀椀c and 
weather conditions, while the monitoring information and accuracy are 
limited [7,8]. Intrusive technologies strongly relied on the sensor, 
resulting in high installation and maintenance costs [7,9]. The weigh-in- 
motion (WIM) systems are the typical and popular intrusive technolo-
gies, while they consist of various sensors and can collect numerous 
traf昀椀c information, such as vehicle types, vehicle speed, vehicle axle 
counts, and vehicle weight. Due to the high requirements for pavement 
stiffness and roughness, the pavement needs to be improved to install 

the WIM systems, increasing the construction and maintenance costs. 
Apart from high costs, the traditional WIM systems are often susceptible 
to traf昀椀c or weather disruptions [9]. In addition, those sensors used for 
intrusive technologies sometimes have to be equipped with additional 
adapters and data acquisition devices due to the lack of data processing, 
storage, and communication techniques [8,9]. These limit the wide-
spread use of those sensors and make real-time monitoring more 
dif昀椀cult. 

To overcome the aforementioned limitations, an acceleration sensor 
based on the Micro-Electro-Mechanical System (MEMS) was developed 
and applied in the asphalt pavement vibration monitoring. MEMS vi-
bration sensors show strong advantages in terms of low power con-
sumption, miniaturization, and scalability, meanwhile they achieve 
wireless communication functions with the help of the Internet of Things 
(IoT) technology. Numerous researchers have successfully applied 
MEMS vibration sensors to collect traf昀椀c information. Bajwa et al. [7] 
developed a wireless sensor network for vehicle classi昀椀cation based on 
axle count and spacing and this network included vibration sensors 
(measure pavement acceleration), vehicle detection sensors (monitor 
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vehicle’s time of arrival and departure), and an access point (record the 
sensors’ data). Ma et al. [10] proposed a prototype axle count and 
spacing automatic vehicle classi昀椀cation system based on wireless 
accelerometer sensors (detect vehicle axles) and magnetometer sensors 
(estimate vehicle speed). Huang et al. [11] developed an IoT-based 
wireless sensor system (based entirely on wireless accelerometer sen-
sors) for traf昀椀c volume and vehicle classi昀椀cation, while they conducted 
a series of laboratory tests, 昀椀eld tests, and numerical simulations to 
validate the monitoring system. Ye et al. [9] collected comprehensive 
traf昀椀c information by a vibration-based in-昀椀eld pavement monitoring 
system (MEMS acceleration sensor) and applied the arti昀椀cial neural 
network and the k-means++ cluster analysis for vehicle classi昀椀cation 
and the abnormal vehicle weight, separately. Duarte and Hu [12] 
investigated the wireless sensor network for vehicle classi昀椀cation, while 
they built a dataset extracted from this wireless sensor network and 
applied machine learning models for data conditioning and classi昀椀ca-
tion. Although all these works used wireless sensors, some of them 
installed the sensors on the roadside, which might lead to the missing 
the real pavement vibration caused by vehicle load. This is because 
pavement vibration fades rapidly during the transmission in the pave-
ment and pavement vibration measured by the sensors on the roadside 
tends to be smaller than those caused by vehicle loads [13]. Therefore, 
the pavement vibration should be collected in the center of the road, 
where it is usually directly subjected to vehicle loads. 

Another issue is how to accurately and ef昀椀ciently classify vehicles by 
pavement vibration. The vehicle type and pavement vibration are more 
likely to have a nonlinear relationship and traf昀椀c-induced vibration is 
often in昀氀uenced by numerous factors, such as temperature, vehicle 
speed, location of vehicle loads, pavement structure, pavement rough-
ness, and so on [9,14]. It is quite dif昀椀cult to propose an empirical and 
simple function to establish the relationship between vehicle type and 
pavement vibration. Deep learning is becoming an ideal solution. In 
recent decades, deep learning has been widely applied in civil engi-
neering [15–23]. As showing the powerful non-linearity and automatic 
feature extraction capacities, deep learning, especially convolutional 
neural network (CNN), has become a popular and ef昀椀cient tool for vi-
bration signal processing. Yu et al. [15] proposed a CNN-based method 
to identify and localize the damage of building structures by detecting 
vibration signals from structures. Dang et al. [16] developed a practical 
end-to-end framework using a hybrid deep learning model that incor-
porated CNN and long-short term memory (LSTM), which they applied 
to process vibration signals and detect the damage. Pal et al. [17] 
developed a CNN-based method to process the vibration signals of a steel 
frame structure with bolted connections and then detect the damage 
condition. Alazzawi and Wang [18] proposed a new deep learning-based 
structural health monitoring method that combined the raw time- 
domain structural response signals and the deep residual network. 
Although these works achieved satisfactory accuracy, the size of their 
datasets tended to be relatively small. This limits the performance of 
deep learning models, especially CNN which typically requires a large 
dataset to maximize its performance. In this case, transfer learning (TL) 
attracts more attention as it relaxes the requirement for the large data-
set. How can transfer learning achieve it? Transfer learning is de昀椀ned as: 
given a source domain DS and learning task TS, and a target domain DT 
and learning task TT, transfer learning aims to improve the performance 
of predictive function for learning task TT by transferring the knowledge 
from DS and TS, where DS 7= DT and TS 7= TT, and the size of DS is much 
larger than that of DT in most cases [24,25]. When transfer learning is 
applied in deep neural networks, it is often called deep transfer learning 
which examines how to leverage knowledge from other domains 
through deep neural networks [25]. Deep transfer learning is divided 
into four categories, instance-based deep transfer learning, mapping- 
based deep transfer learning, network-based deep transfer learning, 
and adversarial-based deep transfer learning [25]. Deep transfer 
learning needs a small amount of labeled data in the target domain to 
昀椀ne-tune the pre-trained deep learning models that have already been 

trained by a large dataset in the source domain. Deep transfer learning 
has started to be applied in civil engineering. Gao and Mosalam [26] 
applied deep transfer learning and CNN to structural damage recogni-
tion with two strategies, namely feature extractor and 昀椀ne-tuning. 
Gopalakrishnan et al. [27] employed deep transfer learning and CNN 
to automatically detect cracks in pavement images, which include a 
large number of defects and non-crack anomalies. Kim et al. [28] 
developed a CNN-based construction object-detection method to accu-
rately identify construction equipment with the help of deep transfer 
learning. Li et al. [29] proposed a deep transfer learning-based frame-
work for estimating missing sensor data for high arch dams, which was 
based on the deep-stacked bidirectional LSTM model. These demon-
strate that deep transfer learning has great potential for a wide range of 
applications in civil engineering. 

Therefore, this work aims to propose a deep transfer learning-based 
vehicle classi昀椀cation by asphalt pavement vibration. The key contribu-
tions of this work are summarized as follows: 

" The wavelet transform was applied to denoise the pavement vibra-
tion signals which were collected by the pavement vibration IoT 
monitoring system.  

" The pavement vibration signals were represented in two different 
ways, including the time-domain graph and the time-frequency 
graph.  

" Two deep transfer learning-based methods were proposed for vehicle 
classi昀椀cation according to the two different representations of the 
pavement vibration signals. 

2. Methods 

Fig. 1 shows the framework of this work. It aims to apply deep 
transfer learning for vehicle classi昀椀cation by asphalt pavement vibration 
and includes three main steps. Firstly, a pavement vibration IoT moni-
toring system was used to monitor pavement vibration, and raw vibra-
tion signals were collected through this system. Secondly, raw vibration 
signals were denoised by the wavelet transform to obtain denoised vi-
bration signals. Finally, deep transfer learning was applied for vehicle 
classi昀椀cation. During this step, two deep transfer learning-based 
methods, namely Method I (Time-domain & TL) and Method II (Time- 
frequency & TL), were proposed for different types of inputs (time- 

Fig. 1. Framework of deep transfer learning-based vehicle classi昀椀cation by 
asphalt pavement vibration. 
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domain graph and time-frequency graph). In Method I, the CNN model 
processed time-domain graphs to classify vehicles. In Method II, the 
CNN model employed time-frequency graphs, which were the results of 
time-frequency analysis, for vehicle classi昀椀cation. 

2.1. Monitoring pavement vibration 

A pavement vibration IoT monitoring system was used to ef昀椀ciently 
collect pavement vibration in real-time [8]. This system consisted of 
acceleration sensing nodes, a gateway, and a cloud platform. This sys-
tem has been applied in the 昀椀eld to monitor asphalt pavement vibration 
[8]. Fig. 2 shows the 昀椀eld layout of the pavement vibration IoT moni-
toring system. For each traf昀椀c direction, two rows of acceleration 
sensing nodes were deployed, with 7 acceleration sensing nodes in each 
row. The distance between the two acceleration sensing nodes was 50 
cm and the distance between the acceleration sensing node and the 
roadside was 25 cm and 50 cm in two rows, respectively. The acceler-
ation sensing nodes applied the MEMS technology to support the inte-
gration of MEMS sensors, processors, and other electronic components 
and the detailed information on acceleration sensing nodes could be 
found in the literature [8]. The acceleration sensing nodes collected 
pavement vibration signals at a sampling frequency of 500 Hz. Based on 
low power consumption and high scalability, this system enabled the 
monitoring, transmission and analysis of pavement vibration signals [8]. 
More details could be found in the literature [8]. 

2.2. Denoising vibration signals 

2.2.1. Wavelet transform 
The raw vibration signals collected by the pavement vibration IoT 

monitoring system contained noises that might affect the accuracy of 
vehicle classi昀椀cation, highlighting the importance of denoising. Wavelet 
transform could decompose a signal into several scales representing 
different frequency bands, and at each scale, the location of the 
instantaneous structure of the signal can be approximated [30]. Based 
on this property, wavelet transform has become a popular method for 
denoising vibration signals [30] in civil engineering [31,32]. Compared 
with continuous wavelet transform (CWT), discrete wavelet transform 
(DWT) is more suitable for denoising signals and more computationally 
ef昀椀cient [32]. The threshold function and the wavelet function (i.e. the 
mother wavelet) play a crucial role in the signal denoising by DWT. The 
threshold function includes the hard thresholding, the soft thresholding, 
the compromising method of the hard and soft thresholding, and others. 
The compromising method of the hard and soft thresholding was pro-
posed in the literature [33] and in the compromising method, the 

threshold values of the detail coef昀椀cients are de昀椀ned as: 
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where, �ωj,k is the estimated wavelet coef昀椀cients, ωj,k is the wavelet 
coef昀椀cients, λ is the selected threshold, sign() is the sign function, α is 
usually 0.5. 

To determine the threshold, Johnstone and Silverman [34] de昀椀ned a 
level-dependent threshold applied at each detail level for processing 
various noises and the threshold is de昀椀ned as follows: 
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where MADm is the median absolute value of the detail coef昀椀cients at 
level m and N is the length of the signal. 

The wavelet function is critical in practice as it affects the perfor-
mance of DWT [32]. Several wavelet functions were investigated in this 
paper, including Biorthogonal (bior), Symlets (sym), Coi昀氀ets (coif), 
Reverse biorthogonal (rbio), and Daubechies (db), while some wavelet 
functions are presented in Fig. 3. The wavelet functions used in this work 
are based on a Python library named ’PyWavelets’ [35]. 

2.2.2. Evaluation metrics 
Various quantitative evaluation metrics have been used to evaluate 

the performance of signal denoising in terms of the reconstructed signal 
quality. The common evaluation metrics include the signal-to-noise 
ratio (SNR) and the root mean square error (RMSE). The SNR and 
RMSE were de昀椀ned as follows [32,36].  
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Where yi is the original signal and yi’ is the denoised signal. 

2.3. Classifying vehicles 

During the process of classifying vehicles, two methods were pro-
posed based on deep transfer learning (Fig. 1). The difference between 
these two methods lies in the input image. Method I (Time-domain & TL) 

Fig. 2. The 昀椀eld layout of the pavement vibration IoT monitoring system. (a) Scheme and (b) image of the on-site monitoring.  
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was proposed based on the time-domain graph and Method II (Time- 
frequency & TL) was developed based on the time-frequency graph 
which was the result of time-frequency analysis. 

2.3.1. Time-domain graph and Time-frequency graph 
The vibration signal has both time and frequency features, and 

accordingly, the vibration signal is represented as a function of time and 
frequency. Based on time-domain and frequency-domain representa-
tions, the signal graphs are divided into the time-domain graph and the 
frequency-domain graph. In short, the time-domain graph shows how 
the signal varies over time (Fig. 4a), while the frequency-domain graph 
shows how many signals are in each given frequency band within a 
certain frequency range. However, either the time-domain graph or the 
frequency-domain graph ignores one feature of the vibration signal. To 
address this issue, time-frequency analysis studies the signal in both the 
time and frequency domains simultaneously and produces time- 
frequency representations of the vibration signals. Therefore, two 
different representations were used to represent the pavement vibration 
signals, including the time-domain graph and the time-frequency graph. 
The former is the most commonly used method for representing vibra-
tion signals, while the latter can study the vibration signals in both the 
time and frequency domains simultaneously. Based on these two 
different representations, two different deep transfer learning-based 
methods would be proposed and compared for vehicle classi昀椀cation, 
which will be discussed in detail below. 

The continuous wavelet transform is an excellent tool for time- 
frequency analysis, which has already attracted countless attention in 
the past decades. The continuous wavelet transform generates the time- 
frequency representation of the signal and plots it in the time-frequency 
graph (Fig. 4b). In the time-frequency graph, each data point corre-
sponds to a certain time (X-axis) and frequency (Y-axis), while its color 
represents the absolute value of the wavelet coef昀椀cients. In this work, 
the continuous wavelet transform was performed by the complex 
Gaussian wavelet 8 (cgau8), while all these were based on a Python li-
brary named ’PyWavelets’ [35]. 

2.3.2. Deep transfer learning 
For the image classi昀椀cation task (e.g. vehicle classi昀椀cation in this 

work), deep transfer learning applied to CNN has two main steps 
(Fig. 5): (1) For the source domain, the CNN model is trained with a very 
larger dataset, usually, ImageNet [37] which has 1.2 million images 
with 1000 categories. The trained CNN model is often referred to as the 
pre-trained CNN model. (2) For the target domain, the pre-trained CNN 
model is used to accomplish the target task (vehicle classi昀椀cation in this 
work). In this process, the convolutional layers of the pre-trained CNN 
model (i.e., pre-trained convolutional layers) are retained, but the fully 
connected layers (i.e., FC layers) need to be changed to meet the re-
quirements of the target task. As there are 1000 labels in the source 
domain and 10 labels in the target domain in this work, the output of the 
fully connected layers needs to be changed from 1000 to 10. After that, 
the adjusted pre-trained CNN model is 昀椀ne-tuned with the dataset of the 
target domain (i.e., the dataset of asphalt pavement vibration signals). 

Ef昀椀cientNet [38] was used as the CNN model for deep transfer 
learning in this work. It balances network depth, width, and resolution 
to have a better performance than traditional CNN models [38]. With 
the relatively low computation complexity and model complexity, Ef昀椀-
cientNet has a satisfactory performance in computer vision tasks. Ef昀椀-
cientNet achieved a top-1 accuracy of 84.3% and a top-5 accuracy of 
97.0% in ImageNet image classi昀椀cation [38]. Until now, the top-ranked 
CNN models in the ImageNet image classi昀椀cation task are still based on 
Ef昀椀cientNet. Therefore, pre-trained Ef昀椀cientNets (-B0, -B1, -B2, -B3, 
-B4, -B5, -B6, and -B7) were used for vehicle classi昀椀cation in this work, 
which are available on the online sources [39,40]. 

2.3.3. Evaluations metrics 
Several evaluation metrics are commonly used to evaluate the per-

formance of the CNN model for the image classi昀椀cation task. They 
include accuracy (Eq.(5)), precision (Eq.(6)), recall (Eq.(7)), and F1 
score (Eq.(8)). To consider the effect of multiple classes which are 
common in the image classi昀椀cation task, the three accuracy metrics have 
three subsets, ‘macro’, ‘weighted’, and ‘micro’. ‘Macro’ means that it 

Fig. 3. Wavelet functions used in this work. (a) Biorthogonal 6.8 (bior6.8), (b) Symlets 6 (sym6), and (c) Coi昀氀ets 3 (coif3).  

Fig. 4. Overview of (a) the time-domain graph and (b) the time-frequency graph.  
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needs to calculate accuracy metrics for each class and then obtain un-
weighted averages, regardless of label imbalances [41]. Similar to’ma-
cro’, but ‘weighted’ takes into account label imbalances and calculates 
weighted averages [41]. In comparison, ‘micro’ calculates accuracy 
metrics by counting the total true positives, false negatives, and false 
positives, and thus the value of micro precision, micro recall, micro F1 
score, and accuracy are identical.  

" Accuracy 

Accuracy =
TP + TN

TP + TN + FP + FN
(5)    

" Precision 

Precision =
TP

TP + FP
(6)    

" Recall 

Recall =
TP

TP + FN
(7)    

" F1 score 

F1 =
2 " Precision " Recall

Precision + Recall
(8)    

" Macro Precision 

Precisionmacro =

3
l*LPrecision(yl, �yl)

|L|
(9)    

" Macro Recall 

Recallmacro =

3
l*LRecall(yl, �yl)

|L|
(10)    

" Macro F1 score 

F1, macro =

3
l*LF1(yl, �yl)

|L|
(11)    

" Weighted Precision 

Precisionweighted =

3
l*LPrecision(yl, �yl) × |yl|3

l*L|yl|
(12)    

" Weighted Recall 

Recallweighted =

3
l*LRecall(yl, �yl) × |yl|3

l*L|yl|
(13)    

" Weighted F1 score 

F1, weighted =

3
l*LF1(yl, �yl) × |yl|3

l*L|yl|
(14) 

where L is the set of labels. y is the set of true (sample, label) pairs and 
yl is the subset of y with label l. Æy is the set of predicted (sample, label) 
pairs and Æyl is the subset of Æy with label l. TP is true positive, TN is true 
negative, FP is false positive, and FN is false negative. 

2.3.4. Image preprocessing and hyperparameters 
Image preprocessing is the step of formatting images before images 

are used for model training. The aim of image preprocessing is to 
improve the image and make it more suitable for deep learning models. 
In this work, resizing and normalization, two methods of image pre-
processing, are applied to all images. In addition, as a form of image 
preprocessing, image data augmentation creates different versions of 
similar content so that the deep learning model is exposed to more 
training images to avoid the over昀椀tting issue. Image data augmentation 
used in this work includes random cropping (RandomCrop), random 
horizontal 昀氀ipping (RandomHorizontalFlip), and random rotation 
(RandomRotation). They are only applied in the training set. 

The CNN model was based on the online sources [39,40] and run on 
PyTorch. The optimization algorithm is Adam [42] and the loss function 
is the cross-entropy loss. The input image size is 224 × 224 which meets 
the requirements of the pre-trained CNN model. Other hyperparameters 
include the learning rate (0.001), training epoch (100), and batch size 

Fig. 5. Scheme of deep transfer learning applied to CNN.  
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(32). 

3. Results 

3.1. Denoised vibration signals 

As mentioned in Section 2.2, various threshold functions and wavelet 
functions were used in the wavelet transform for signal denoising. 
Table 1 summarizes the evaluation metrics of the wavelet transform for 
signal denoising. In three thresholding functions, the compromising 
method of hard and soft thresholding had the highest SNR and lowest 
RMSE. Its SNR was more than twice that of the hard thresholding and 
over three times that of the soft thresholding, while its RMSE is about 
one-third that of the hard and soft thresholding for Direction A. 
Although all wavelet functions had similar SNR and RMSE, ‘bior6.82 had 
the highest SNR and lowest RMSE. Therefore, the compromising method 
of hard and soft thresholding and ‘bior6.82 were 昀椀nally selected as the 
threshold function and wavelet function. 

To visualize the performance of signal denoising, Fig. 6 shows the 
images of the raw signals and denoised signals. As shown in Fig. 6a, the 
raw signals had numerous noises and after signal denoising, there were 
very few noises in the denoised signals which retained the meaningful 
signal. In the raw signal of acceleration sensing nodes, noises were 
mainly presented at low signal values (昀氀uctuations at the beginning or 
end in Fig. 6b) and the signals with high absolute values (peaks or 
valleys in Fig. 6b) had few noises, which are more important for vehicle 
classi昀椀cation. In the denoised signals of acceleration sensing nodes, the 
most important signals (peaks or valleys in Fig. 6b) were almost retained 
in the original value while noises were almost removed (smoothed 
curves at the beginning or end in Fig. 6b). According to Table 1 and 
Fig. 6, the wavelet transform had a very satisfactory performance in 
signal denoising, which is important for signal preprocessing. 

3.2. Datasets for deep transfer learning 

After denoising signals, it needs to build the dataset for deep transfer 
learning to classify vehicles. As mentioned in Section 2.3, two methods 
were proposed for vehicle classi昀椀cation based on deep transfer learning. 
These two methods differed in the type of the input image, the time- 
domain graph and the time-frequency graph. Fig. 7a shows the time- 
domain graph of seven acceleration sensing nodes for one passing 
vehicle. The time-domain graph allows the vibration signals of all ac-
celeration sensing nodes to be plotted in one graph, which could be 
found by the legend from ’Node-1’ to ’Node-7’. In comparison, the time- 
frequency graph requires a single graph to plot the vibration signals of 
only one acceleration sensing node. It means that one passing vehicle 
needs seven time-frequency graphs to present the vibration signals of all 

acceleration sensing nodes. Fig. 7b shows three of the seven time- 
frequency graphs for the one passing vehicle in the same manner as 
Fig. 7a. In Fig. 7a, Node-6 had the highest vibration signals, followed by 
Node-3 and the other acceleration sensing nodes had very few vibration 
signals. Accordingly, Node-6 had the highest and most variable wavelet 
coef昀椀cients, and in Fig. 7b, it had the most colorful time-frequency 
graph. The wavelet coef昀椀cients of Node-3 were much lower than those 
of Node-6 and varied in a smaller ranger, so the time-frequency graph of 
Node-3 was less colorful with a few colors. In comparison, the time- 
frequency graph of Node-7 was plotted in blue as its vibration signals 
were almost zero. 

When building the dataset, two methods need two different datasets. 
Method I (Time-domain & TL) is much easier to build its dataset because 
it only needs one time-domain graph to plot the vibration signals of all 
acceleration sensing nodes for one passing vehicle. However, Method II 
(Time-frequency & TL) needs seven time-frequency graphs to present 
the same corresponding information. How to combine these seven 
graphs to classify one passing vehicle? As shown in Fig. 7a, not all ac-
celeration sensing nodes observed vibration signals. Therefore, the 
number of acceleration sensing nodes successfully obtaining vibration 
signals for one passing vehicle was summarized in Fig. 8. A maximum of 
three acceleration sensing nodes was employed to measure vibration 
signals for all vehicles. Only trucks and big trucks needed three accel-
eration sensing nodes and two acceleration sensing nodes were required 
for the other vehicles except for motorcycles which used one. It means 
three time-frequency graphs were needed instead of seven graphs to 
illustrate the vibration signals of all acceleration sensing nodes for one 
passing vehicle. However, the three time-frequency graphs were 
numbered differently for different vehicles because vehicles often 
passed through different locations of one lane. How to select these three 
time-frequency graphs? When selecting the three time-frequency 
graphs, it was necessary to choose the time-frequency graphs of accel-
eration sensing nodes that observed vibration signals. Therefore, it 
needed to 昀椀rst sort the acceleration sensing nodes by the absolute value 
of the observed vibration signals and then select the top three acceler-
ation sensing nodes to plot their time-frequency graphs. These three 
graphs would be used for vehicle classi昀椀cation. 

As there are three time-frequency graphs for one passing vehicle, it is 
possible to consider one graph as one channel of an RGB image. In 
particular, the time-frequency graph was changed from the RGB image 
(3 channels) to the gray image (1 channel) and then three time- 
frequency graphs were combined together into an RGB image. For 
example, three time-frequency graphs in Fig. 7b were combined to plot 
an RGB image in Fig. 9b. This image would be used to build the dataset 
for Method II (Time-frequency & TL). In order to eliminate irrelevant 
information, the axis ticks, axis labels, legends, titles, color bars, etc. 
were removed during the building of the datasets. Fig. 9 shows the 
exemplary images of the datasets for the two methods. 

Table 2 summarizes the information of the dataset built in this work. 
This dataset contained 10 categories of vehicles, including the motor-
cycle, hatchback, sedan, SUV, mini VAN, VAN, pickup truck, mini truck, 
truck, and big truck. The number of each category varied a lot and there 
was a total of 2098 vehicles collected in this dataset. The number of 
sedans was the largest, followed by the truck and big truck, which was 
much larger than the other vehicle types. To train and evaluate the CNN 
model, the whole dataset was separated into two subsets, training (80%) 
and test (20%) sets. The number of vehicles in each category in the 
training and test sets could also be found in Table 2. 

3.3. Accuracy metrics of vehicle classi昀椀cation 

3.3.1. Accuracy metrics of image preprocessing methods 
As mentioned above, image data augmentation exposes the CNN 

model to more complex training images to avoid the over昀椀tting issue. 
Three image data augmentation methods, including RandomCrop, 
RandomHorizontalFlip, and RandomRotation, were used in this work. 

Table 1 
Evaluation metrics of the wavelet transform for signal denoising.  

Threshold function Wavelet 
function 

Direction A Direction B 
SNR RMSE SNR RMSE 

Hard thresholding bior6.8  4.0702  1.7223  3.1715  0.9486 
Soft thresholding bior6.8  2.6665  2.1132  2.0028  1.1278 
Compromising method 

of hard and soft 
thresholding 

bior6.8  9.3397  0.6010  4.3913  0.5754 
sym10  9.2976  0.6032  4.3494  0.5770 
sym8  9.3029  0.6029  4.3567  0.5769 
sym6  9.3104  0.6023  4.3540  0.5768 
coif5  9.2897  0.6035  4.3548  0.5768 
coif3  9.3093  0.6025  4.3567  0.5767 
rbio6.8  9.2801  0.6043  4.3421  0.5779 
db10  9.2304  0.6056  4.2475  0.5798 
db8  9.2401  0.6053  4.2641  0.5792 
db6  9.2736  0.6038  4.2914  0.5785 
db4  9.2849  0.6034  4.3116  0.5782 

Note: ‘bior’ is Biorthogonal, ‘sym’ is Symlets, ‘coif’ is Coi昀氀ets, ‘rbio’ is Reverse 
biorthogonal, and ‘db’ is Daubechies. 
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Table 3 summarizes the accuracy metrics of the test set in terms of image 
preprocessing methods. Without image data augmentation, the CNN 
model in both methods faced the over昀椀tting issue. After applying image 
data augmentation, the accuracy of the CNN model improved a lot no 
matter which method was chosen. So it is necessary to apply image data 
augmentation to the training set. In addition, the same image data 
augmentation method differently affected the accuracy of the two 
methods. RandomCrop had the highest accuracy in Method I and 

RandomHorizontalFlip plus RandomRotation achieved the highest ac-
curacy in Method II. Therefore, Method I and Method II employed 
different image data augmentation methods to maximize their perfor-
mance. After applying the selected image data augmentation methods to 
the training set, the pre-trained CNN models for Method I and Method II 
were trained and evaluated on the dataset for vehicle classi昀椀cation. 

Fig. 6. Comparison of raw signals and denoised signals. (a) Raw signals and denoised signals of one acceleration sensing node and (b) raw signals and denoised 
signals of seven acceleration sensing nodes. 

Fig. 7. Denoised signals of seven acceleration sensing nodes and their corresponding time-frequency graphs. (a) Denoised signals of seven acceleration sensing nodes 
and (b) time-frequency graphs of Node-3, Node-6, and Node-7. 

Fig. 8. The number of acceleration sensing nodes that received effective vibration signals (de昀椀ned in [8,13]). 0: motorcycle, 1: hatchback, 2: sedan, 3: SUV, 4: mini 
VAN, 5: VAN, 6: pickup truck, 7: mini truck, 8: truck, and 9: big truck. 

F. Liu et al.                                                                                                                                                                                                                                       



Construction and Building Materials 342 (2022) 127997

8

3.3.2. Accuracy metrics of deep transfer learning 
Two methods, Method I (Time-domain & TL) and Method II (Time- 

frequency & TL), were proposed for vehicle classi昀椀cation. Fig. 10 shows 
the loss of these two methods. Three Ef昀椀cientNets (-B0, -B3, and -B7) 
were selected to present their results because these three CNN models 
have different accuracy on ImageNet with different computational and 

model complexity. For Method I (Fig. 10a), the loss of three CNN models 
had a similar pattern that the loss decreased with the increasing epoch 
and then converged despite few 昀氀uctuations. The models in Method II 
performed similarly to those in Method I. However, these three CNN 
models in Method II converged at approximately Epoch-40, much faster 
than those in Method I (about Epoch-65), while the 昀椀nal loss values of 

Fig. 9. Image of the dataset for two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL).  

Table 2 
Summary of the dataset.   

0 1 2 3 4 5 6 7 8 9 Total 
Train 32 40 443 206 169 50 18 38 390 301 1687 
Test 4 14 133 49 30 7 4 6 56 108 411 
Total 36 54 576 255 199 57 22 44 446 409 2098 

Note: 0: motorcycle, 1: hatchback, 2: sedan, 3: SUV, 4: mini VAN, 5: VAN, 6: pickup truck, 7: mini truck, 8: truck, and 9: big truck. 

Table 3 
Accuracy metrics of image preprocessing methods.  

Image preprocessing Method I (Time-domain & TL) Method II (Time-frequency & TL) 
Accuracy Macro F1 Weighted F1 Accuracy Macro F1 Weighted F1 

Resize  0.8200  0.6431  0.8103  0.8856  0.7731  0.8818 
Resize 

RandomCrop  
0.9489  0.9299  0.9475  0.9416  0.8089  0.9372 

Resize 
RandomHorizontalFlip 
RandomRotation  

0.9270  0.8836  0.9259  0.9611  0.8738  0.9578 

Resize 
RandomCrop 
RandomHorizontalFlip  

0.9319  0.8516  0.9286  0.9246  0.7176  0.9148 

Resize 
RandomCrop 
RandomHorizontalFlip 
RandomRotation  

0.9173  0.8392  0.9146  0.9221  0.7390  0.9155  

Fig. 10. Loss of two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL).  

F. Liu et al.                                                                                                                                                                                                                                       



Construction and Building Materials 342 (2022) 127997

9

the three CNN models were similar in these two methods. 
Fig. 11 shows the accuracy metrics of two methods, Method I (Time- 

domain & TL) and Method II (Time-frequency & TL). In summary, 
similar to the loss (Fig. 10), the CNN models in Method II converged 
much faster than those in Method I. Although three CNN models even-
tually reached similar values for all accuracy metrics in both methods, 
the accuracy metrics of Ef昀椀cientNet-B0 and -B3 increased more rapidly 
than Ef昀椀cientNet-B7, especially in Method II. In both two methods, all 
three CNN models had similar patterns between the accuracy and 
weighted F1 score, which was higher than the macro F1 score. 

Table 4 summarizes the accuracy metrics of Method I (Time-domain 
& TL). Ef昀椀cientNet-B3 achieved the highest values for all accuracy 
metrics, except for the macro precision and macro F1 score, which were 
the highest in Ef昀椀cientNet-B0. It means that considering the label 
imbalance, Ef昀椀cientNet-B3 had the best performance, but without 
eliminating the effect of the label imbalance, Ef昀椀cientNet-B0 performed 
better than Ef昀椀cientNet-B3. Table 5 summarizes the accuracy metrics of 
Method II (Time-frequency & TL). Similar to the result of Method I, 
Ef昀椀cientNet-B3 had the highest values for all accuracy metrics, except 
for the macro precision, macro recall, and macro F1 score. Ef昀椀cientNet- 
B2 achieved the highest macro precision and Ef昀椀cientNet-B7 did it in the 
macro recall and macro F1 score. In both two methods, Ef昀椀cientNet-B3 

had the highest accuracy metrics when considering the label imbalance, 
but other Ef昀椀cientNets performed better in the accuracy metrics without 
taking into account the label imbalance. Meanwhile, Ef昀椀cientNet had a 
satisfactory performance in both methods with the accuracy of Method I 
exceeding 0.94 and Method II exceeding 0.95, indicating that the CNN 
model with deep transfer learning could be an effective, accurate, and 
reliable tool for vehicle classi昀椀cation based on asphalt pavement vi-
bration. From the perspective of accuracy metrics, Ef昀椀cientNet-B3 is the 
best model in both methods. 

In addition, there is no obvious relationship between the accuracy 
and the computation and model complexity. For example, Ef昀椀cientNet- 
B2 and Ef昀椀cientNet-B7 had identical accuracy in Method I while the 
computation and model complexity of Ef昀椀cientNet-B7 were much more 
complex than Ef昀椀cientNet-B2. In Method II, the accuracy of 
Ef昀椀cientNet-B2 was much higher than that of Ef昀椀cientNet-B7. 

4. Discussion 

Two deep transfer learning-based methods, Method I (Time-domain 
& TL) and Method II (Time-frequency & TL), were proposed for vehicle 
classi昀椀cation in this work and the results of both methods show that the 
CNN model with deep transfer learning could be an effective, accurate, 

Fig. 11. Accuracy metrics of two methods, Method I (Time-domain & TL) and Method II (Time-frequency & TL). (a) Accuracy, (b) macro F1 score, and (c) weighted 
F1 score. 
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and reliable technique for vehicle classi昀椀cation based on asphalt pave-
ment vibration. These two methods employed different input types and 
performed differently on the accuracy metrics. So what is the difference 
between these two methods? What are the advantages and disadvan-
tages of these two methods? These two methods differ in three aspects: 

4.1. Difference in input types 

These two methods utilized different inputs, the time-domain graph 
and the time-frequency graph. Their inputs are different in three ways. 
(1) The features of vibration signals. Method I only used time features of 
vibration signals and Method II processed both time and frequency 
features of vibration signals simultaneously. (2) The dimension of in-
puts. Although both methods employed graphs, the dimension of inputs 
is different. The time-domain graph is two-dimensional, while the X-axis 
is time and the Y-axis is the vibration signal (Fig. 4a). The time- 
frequency graph could be viewed as three-dimensional, while the X- 
axis is time, the Y-axis is frequency, and the Z-axis (color) is the wavelet 
coef昀椀cients (Fig. 4b). (3) The data fusion method. As seven acceleration 
sensing nodes were used to measure pavement vibration for one passing 
vehicle, it needs to combine the vibration signals of all acceleration 
sensing nodes as the input to the CNN model. In Method I, the vibration 
signals of all acceleration sensing nodes are easily plotted in an image 
that is considered as the input (Fig. 9a). In comparison, in Method II, 
each acceleration sensing node has its own time-frequency graph. After 
statistical analysis (Fig. 8), the top three acceleration sensing nodes are 
selected to plot their time-frequency graphs as gray (1 channel) images. 
Then these three gray images are combined as one RGB (3 channels) 
image that is considered as the input (Fig. 9b). 

4.2. Difference in accuracy metrics 

To better compare the two methods, Fig. 12 summarizes the accuracy 
metrics of the CNN models for two methods and Fig. 13 presents the 
normalized confusion matrix of Ef昀椀cientNet-B0 and -B3 for two 
methods. In terms of accuracy metrics, these two methods differ in three 
ways. 

(1) The accuracy considers the label imbalance. The label imbalance 
means that the distribution of images across classes is not identical. In 
the label imbalance, there are two groups, majority class and minority 

class, while the former has many images and the latter has few images. 
The mass of images from the majority class would drown out the mi-
nority class, resulting in the deep learning model focusing only on 
learning the feature of the majority class with abundant images and 
ignoring the minority class which is in fact equally meaningful [43,44]. 
This is because the deep learning model assumes that each class has an 
equal distribution [44]. The dataset in this work had ten classes with 
different numbers of images (Table 2), resulting in the label imbalance. 
The accuracy, weighted precision, weighted recall, and weighted F1 
score take into account the label imbalance. As shown in Fig. 12a and c, 
the accuracy and weighted F1 score of almost all CNN models in Method 
II were higher than those in Method I. When back to the confusion 
matrix shown in Fig. 13, compared to Method I, the CNN models in 
Method II have better performance in the majority class. This is because 
the important informative region in the time-frequency graph is larger 
than that of the time-domain graph (Fig. 14a). Also, the discrepancy 
between similar vibration signals is more apparent in the time-frequency 
graph compared to the time-domain graph (Fig. 14b and c). These 
characteristics help make the CNN model easier to learn from the time- 
frequency graph, thus improving accuracy. 

(2) The accuracy without taking into account the label imbalance. In 
comparison, the macro precision, macro recall, and macro F1 score do 
not account for the label imbalance and assume that each label is equally 
important. As shown in Fig. 12b, the macro F1 score of all CNN models in 
Method I was higher than those in Method II. This is due to the fact that 
the CNN models in Method I perform better in the minority class (e.g. 
motorcycle and pickup truck) than Method II (Fig. 13) and the un-
weighted mean between the majority class and minority class improves 
the 昀椀nal value of accuracy metrics. The minority class has few examples, 
making the CNN models in Method II more dif昀椀cult to be trained 
because the time-frequency graph is more complex than the time- 
domain graph. In addition, different time-domain graphs might have 
similar time-frequency graphs (Fig. 14d), especially for the motorcycle 
that collects vibration signals with one acceleration sensing node. This 
led to the low accuracy of the CNN models in Method II for the motor-
cycle (Fig. 13). 

(3) The convergence speed and stability of the CNN model. As shown 
in Fig. 11, the CNN models in Method II converged faster and performed 
more stably than those in Method I by using the same hyperparameters. 
This is important for training the CNN model. The rapid convergence 

Table 4 
Accuracy metrics of Method I (Time-domain & TL).  

Model Accuracy Precision Recall F1 score 
Macro Weighted Macro Weighted Macro Weighted 

Ef昀椀cientNet-B0  0.9489  0.9714  0.9503  0.9022  0.9489  0.9299  0.9475 
Ef昀椀cientNet-B1  0.9513  0.9410  0.9545  0.8982  0.9513  0.9082  0.9509 
Ef昀椀cientNet-B2  0.9586  0.9533  0.9608  0.8840  0.9586  0.9046  0.9571 
Ef昀椀cientNet-B3  0.9684  0.9247  0.9728  0.9099  0.9684  0.9042  0.9688 
Ef昀椀cientNet-B4  0.9635  0.9518  0.9653  0.8868  0.9635  0.8941  0.9615 
Ef昀椀cientNet-B5  0.9635  0.9437  0.9637  0.8359  0.9635  0.8761  0.9618 
Ef昀椀cientNet-B6  0.9562  0.9534  0.9601  0.8819  0.9562  0.8934  0.9546 
Ef昀椀cientNet-B7  0.9586  0.9631  0.9606  0.8819  0.9586  0.9097  0.9569  

Table 5 
Accuracy metrics of Method II (Time-frequency & TL).  

Model Accuracy Precision Recall F1 score 
Macro Weighted Macro Weighted Macro Weighted 

Ef昀椀cientNet-B0  0.9611  0.9765  0.9626  0.8356  0.9611  0.8738  0.9578 
Ef昀椀cientNet-B1  0.9611  0.9740  0.9619  0.8501  0.9611  0.8918  0.9590 
Ef昀椀cientNet-B2  0.9708  0.9844  0.9715  0.8529  0.9708  0.8909  0.9680 
Ef昀椀cientNet-B3  0.9732  0.9702  0.9744  0.8340  0.9732  0.8673  0.9700 
Ef昀椀cientNet-B4  0.9684  0.9735  0.9692  0.8212  0.9684  0.8514  0.9641 
Ef昀椀cientNet-B5  0.9635  0.9752  0.9646  0.8293  0.9635  0.8679  0.9604 
Ef昀椀cientNet-B6  0.9659  0.9628  0.9664  0.8691  0.9659  0.8916  0.9637 
Ef昀椀cientNet-B7  0.9562  0.9698  0.9571  0.8841  0.9562  0.9035  0.9541  
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means that the CNN model needs fewer epochs or training time and the 
high stability means that the CNN model is more robust. 

4.3. Difference in application prospects 

These two methods also have different application prospects. (1) 
Method I runs at a higher running speed than Method II and requires less 

Fig. 12. Accuracy metrics of the CNN models for two methods, Method I (Time-domain & TL) and Method II (Time-frequency & TL). (a) Accuracy, (b) macro F1 
score, and (c) weighted F1 score. 
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time for vehicle classi昀椀cation. Compared to Method I, Method II in-
troduces the time-frequency analysis to obtain the time-frequency graph 
and although the time-frequency analysis is very fast, it still takes some 

time. The high usage time for vehicle classi昀椀cation might limit the 
application of Method II in contrast to Method I. (2) Method II needs 
more data (image) than Method I. According to Fig. 12 and Fig. 13, 

Fig. 13. Normalized confusion matrix of Ef昀椀cientNet-B0 and -B3 for two methods. (a) Method I (Time-domain & TL) and (b) Method II (Time-frequency & TL). Note: 
0: motorcycle, 1: hatchback, 2: sedan, 3: SUV, 4: mini VAN, 5: VAN, 6: pickup truck, 7: mini truck, 8: truck, and 9: big truck. 

Fig. 14. Comparison of time-domain graphs and time-frequency graphs.  
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compared with Method I, the CNN model in Method II performed better 
in the majority class, but worse in the minority class. The time-frequency 
graph is more complex than the time-domain graph (Fig. 14), so the CNN 
model in Method II requires more data to maximize its performance. In 
the future, more data will be collected on each vehicle type to increase 
the dataset size and eliminate the label imbalance in the dataset. (3) 
Method II employs a different data fusion method than Method I. Unlike 
Method I, which plots the vibration signals of all acceleration sensing 
nodes in one graph, Method II requires several graphs to present the 
same information about one passing vehicle as in Method I. In this work, 
after statistics analysis, three time-frequency graphs were combined as 
the input. But if the acceleration sensing nodes are arranged too close 
together or the vehicle is too wide, more than three acceleration sensing 
nodes might collect the vibration signal. How to fuse data? There are 
two alternatives. The 昀椀rst method is to increase the channel of the input 
to combine all possible time-frequency graphs. If the input has more 
than three channels, the 昀椀rst convolutional layer of the pre-trained CNN 
model needs to be adjusted, which may affect its performance. Another 
method is to use the results of the time-frequency analysis as the matrix 
rather than the graph and then apply the LSTM to process the matrix. 
This method was also investigated by previous literature [45,46]. The 
problem with this method is that it is dif昀椀cult to 昀椀nd the pre-trained 
LSTM with large datasets, which is different from the pre-trained CNN 
model. In this case, the LSTM might not achieve a similar performance to 
the pre-trained CNN model due to the lack of data. 

5. Conclusion 

Deep transfer learning needs a small number of labeled data to 
achieve satisfactory performance in the target domain, and thus has 
great potential for a wide range of applications in civil engineering. This 
work aims to propose a deep transfer learning-based method for vehicle 
classi昀椀cation by asphalt pavement vibration. The main contributions of 
this work include: (1) the wavelet transform was used to denoise the 
pavement vibration signals which were collected by the pavement vi-
bration IoT monitoring system; (2) the pavement vibration signals were 
represented in two different ways, including the time-domain graph and 
the time-frequency graph; (3) two deep transfer learning-based methods 
were proposed for vehicle classi昀椀cation based on the two different 
representations of the pavement vibration signals. In addition, the input 
types, accuracy metrics, and application prospects were applied to 
investigate the feasibility and validity of two deep transfer learning- 
based methods for vehicle classi昀椀cation. The results show that the 
CNN model had a satisfactory performance in both methods with the 
accuracy of Method I exceeding 0.94 and Method II exceeding 0.95. The 
CNN model in Method II performed better in the accuracy metrics with 
considering label imbalance, but worse in the accuracy metrics without 
considering label imbalance than that in Method I. In both two methods, 
Ef昀椀cientNet-B3 had the highest accuracy metrics when considering the 
label imbalance, but other Ef昀椀cientNets performed better in the accu-
racy metrics without taking into account the label imbalance. The CNN 
model with deep transfer learning could be an effective, accurate, and 
reliable method for vehicle classi昀椀cation based on asphalt pavement 
vibration. 
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