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ABSTRACT

The brain’s functional connectome continually rewires throughout an organism’s life. In this study,
we sought to elucidate the operational principles of such rewiring in mouse primary motor cortex
(M1) by analyzing calcium imaging of layer 2/3 (L2/3) and layer 5 (L5) neuronal activity in M1 of
awake mice during a lever-press task learning. Our results show that L2/3 and L5 functional con-
nectomes follow a similar learning-induced rewiring trajectory. More specifically, the connectomes
rewire in a biphasic manner, where functional connectivity increases over the first few learning
sessions, and then, it is gradually pruned to return to a homeostatic level of network density.
We demonstrated that the increase of network connectivity in L2/3 connectomes, but not in L5,
generates neuronal co-firing activity that correlates with improved motor performance
(shorter cue-to-reward time), while motor performance remains relatively stable throughout the
pruning phase. The results show a biphasic rewiring principle that involves the maximization of
reward/performance and maintenance of network density. Finally, we demonstrated that the
connectome rewiring in L2/3 is clustered around a core set of movement-associated neurons that
form a highly interconnected hub in the connectomes, and that the activity of these core neurons
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stably encodes movement throughout learning.

1. Introduction

The brain’s functional connectome—the functional connect-
ivity of neurons—is the foundation of its myriad functions.
This connectome is not static; quite the opposite, it continues
to rewire throughout an organism’s life (Citri and Malenka
2008; Bassett et al. 2011; Caroni et al. 2012; Bennett et al.
2018; Papale and Hooks 2018; Kao et al. 2020). Such plasti-
city is critical in enabling organisms to learn new skills, store
new memory, and adapt and respond appropriately to novel
environment (Bassett et al. 2011; Caroni et al. 2012; Papale
and Hooks 2018; Kao et al. 2020). By unraveling the underly-
ing principles governing the rewiring of the brain’s func-
tional connectome, we will be able to not only enhance our
understanding of neurological disorders but also pave the
way for developing innovative data storage paradigms and
computing architectures (Bathe et al. 2021).

The primary motor cortex M1 is a hub for motor-skill
learning and movement executions (Lee et al. 2022). M1
comprises multiple neuronal subtypes that are organized in
layers (L1, L2/3, L4, L5 and L6), each with distinct

molecular markers, projections, and functions (Munoz-
Castaneda et al. 2021; Lee et al. 2022). It is generally thought
that L2/3 is primarily involved in local processing, integrat-
ing sensory information with motor commands, and coordi-
nating motor outputs, while L5 is responsible for generating
motor commands and transmitting them to subcortical
structures including the spinal cord, playing a direct role in
the execution of motor movements. Connectome plasticity
in M1 related to motor skill learning have been reported in
both L2/3 and L5 (Greenough et al. 1985; Withers and
Greenough 1989; Wang et al. 2011). However, the pattern of
neuronal ensemble activity that evolves during motor learn-
ing differs between L2/3 and L5, suggesting that the two
layers might exhibit distinct connectome plasticity (Peters
et al. 2014; Peters et al. 2017).

Connectome plasticity occurs through the formation and
degradation of synaptic connectivity between pre- and post-
synaptic neurons, and the associated appearance and dis-
appearance of dendritic spines (Fu et al. 2012; Peters et al.
2014; Huang et al. 2020; Albarran et al. 2021). Spine
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formation has been observed across a variety of motor
learning tasks (Papale and Hooks 2018) such as reaching
and grasping (Xu et al. 2009), lever-pressing (Peters et al.
2014), and running on an accelerated motorized rod (Yang
et al. 2009), across M1 layers, including L2/3 (Peters et al.
2014) and L5 (Xu et al. 2009; Yang et al. 2009).

Progress has been made in understanding how the func-
tional circuitry of brain regions reconfigures during learning
(e.g. using functional MRI (fMRI) data (Bassett et al. 2011;
Kao et al. 2020)). Still, the principles behind functional rewir-
ing among neurons are much less understood. Recent advances
in neural activity recordings, such as two-photon (2 P) calcium
imaging (Stosiek et al. 2003), have produced large-scale activity
data of single neurons in awake animals while learning various
tasks (Peters et al. 2014, 2017), opening the avenue to study
brain’s functional connectome at neuronal population level.

This work leverages large datasets of neuronal activities
from L2/3 and L5 of M1 of mice during a lever-press task
learning (Peters et al. 2014, 2017) for elucidating how func-
tional connectomes in these regions are rewired during a
motor-task learning and what operational objective(s) drives
the connectome rewiring. To this end, we used the partial
correlations of spiking activities, inferred from 2P calcium
imaging, between any pair of neurons as a measure of their
functional connectivity. We analyzed how functional connec-
tomes in L2/3 and L5 of M1 rewire during learning and how
this rewiring is associated with motor performance. We then
studied the rewiring of functional connectivity among neu-
rons that are most impacted by learning and identified
groups of neurons that have different learning-induced rewir-
ing patterns. Our results show that the functional connec-
tomes in both layers continually rewire throughout the
learning period following a common trajectory where connec-
tomes transiently increase their functional connections before
returning to a homeostatic level of connectivity. Further, we
observed the existence of an interconnected hub of move-
ment-associated neurons in the connectomes that are heavily
rewired and stably encode movement during learning.

2. Materials and Methods
2.1. Animals

Two groups of mice were used in this work from two separ-
ate studies previously published where neuronal activity in
L2/3 (Peters et al. 2014) and L5 (Peters et al. 2017) was
recorded during learning a lever-press task. These animals
are referred to as L2/3 (n=7) and L5 (n=28) mice corre-
sponding to the cortical layer of neurons from each mouse.
The number of neurons N recorded from each animal and
layer is provided in Table S1. Note that one animal (Mouse
L2/3-6) was removed from the analyses due to multiple
missing sessions of training.

2.2. Experiments: Lever-Press Task

Details on experimental procedure and data collection are
available in the original publication (Peters et al. 2014,

2017). Briefly, genetically encoded calcium indicator
(GCaMP5G or GCaMPé6f) was virally expressed in the motor
cortex of mice (C57BL/6). In the experiments, water
deprived head-fixed mice performed a lever-press task learn-
ing. In the task, the mice learned to press a lever beyond a
set threshold (~ 3 mm) using their left forelimb within 10-
30s after an auditory tone was presented to receive a water
droplet as reward (see Figure 2a). Calcium fluorescence
images of L2/3 and L5 neuronal activity were recorded at
~28 Hz using 2 P microscopy, from the same field of view—
for L2/3, an area of 472 umx 508 um of the right forelimb
of the motor cortex (Peters et al. 2014) and for L5, an area
of 340 ymx 340 um of the apical corticospinal dendrites of
the motor cortex (Peters et al. 2017)—across 14 learning ses-
sions (1 session/day; 20-30 min/session). Meanwhile, lever
displacement trace was recorded at 10 kHz. Regions of inter-
est (ROIs) in the calcium images were manually drawn to
demarcate the somas or dendritic shafts of individual single
neurons and then, aligned across sessions. Pixels within each
ROI were averaged, and background fluorescence fluctua-
tions were subtracted from the average before calculating a
calcium fluorescence time series (dF/F) for each neuron.

2.3. Functional connectome inference

Functional connectomes were inferred from 2p calcium
fluorescence imaging data using FARCI, a recently devel-
oped connectome inference pipeline (Meamardoost et al.
2021). Briefly, the input to FARCI is calcium time-series
dF/F data. FARCI uses Online Active Set method to Infer
Spikes (OASIS) algorithm (Friedrich et al. 2017) from the
Suite2p package (Pachitariu et al. 2018), to deconvolve neur-
onal spiking activity from 2p calcium imaging data.
Subsequently, the deconvolved spikes are thresholded to
keep only significant calcium spikes (larger than p+ 20)
and then, smoothened using a moving window weighted
average (5 frames) (Meamardoost et al. 2021). As described
in the original FARCI publication, the preprocessing steps
above were tuned to give robust and accurate functional
connectivity. Finally, an N x N partial correlation matrix is
generated where N represents the number of neurons. To
produce the adjacency matrix of the functional connectome,
we thresholded the partial correlations, keeping only those
that are larger than p + 20 in each session. Each element in
this N x N adjacency matrix represents the functional con-
nectivity between two corresponding neurons, and each pair
of neurons forms an edge in the connectome.

2.4. Functional connectome rewiring

To study the dynamics of connectome rewiring over mul-
tiple sessions of motor skill learning, the functional connec-
tome inference as described above was applied to the
neuronal activity data collected from different sessions sep-
arately. This step generated an (N x N) adjacency matrix.
Note that the number of neurons N differs across mice (see
Table S1). The upper triangular part of this matrix was
extracted and stored as a single-row adjacency vector
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containing w elements. The adjacency vectors from dif-

ferent sessions were then stacked to give a matrix with
w columns and s rows, where s is the number of
learning sessions. Finally, Principal Component Analysis
(PCA) was applied to this matrix—each row vector from a
session represents an observation, while each column vector
(partial correlation between two neurons) is a feature. The
PC scores were used to visualize the connectome rewiring
dynamics during motor skill learning. To check whether our
results are consistent across different dimensionality reduc-
tion methods, we also applied Multidimensional Scaling
(MDS) (Anon 1987) and Uniform Manifold Approximation
and Projection (UMAP) (Mclnnes et al. 2020) to the func-
tional connectome matrix above.

2.5. Trial-Based Functional Connectome Activity

To evaluate the activity of functional connectome on a sin-
gle trial basis, we first extracted smoothened calcium spikes
from movement-related frames in the respective session, as
illustrated in Figure la. We applied FARCI to generate
movement-related functional connectome for the learning
session. The adjacency matrix of this connectome was then
binarized—partial coefficients that are larger than p+ 20
are set to 1, and otherwise 0. Separately, we extracted
smoothened calcium spikes for each rewarded trial and eval-
uated pairwise Pearson’s correlations for all neuron pairs to
produce a correlation matrix (see Figure 1b). Finally, we
computed the Hadamard product of the Pearson correlation
matrix of a trial and the binarized adjacency matrix of
movement-related functional connectome of the session, to
give trial-based activity of the connectome (see Figure 1c).
Following the visualization of functional connectome rewir-
ing above, we extracted the upper triangular part of the
resulting connectome activity matrices and applied PCA to
obtain a reduced dimensional visualization.

2.6. Time-Series PCA

Time-series PCA was applied to project neuronal population
activity during rewarded trials to a lower dimensional space
(Sauerbrei et al. 2020). To do so, for each rewarded trial, we
identified the frame corresponding to movement onset (see
Figure 1b) and extracted smoothened calcium spikes from a
98-frame time window that was defined such that the move-
ment onset is the 15-th frame in this window. Then, we
converted the smoothened calcium spikes of each neuron to
z-scores by using their trial-based average and variance.
These z-scores were then averaged across the trials in a ses-
sion, to which PCA was applied—each time point was an
observation and the average z-score of a neuron was a fea-
ture. The resulting principal components were then used to
visualize the time-series neuronal activity as 3D trajectory in
PC1-3 space. We applied the above procedure to calcium
data from each session separately.

DATA SCIENCE IN SCIENCE . 3

2.7. Network connectivity Analysis

We employed four different metrics: mean degree, network
density, transitivity, and clustering coefficient, to character-
ize the interconnectedness of the functional connectomes.
Mean degree is the average number of connections for a
neuron. Meanwhile, network density gives the ratio of the
number of connections (i.e. the number of non-zero ele-
ments in the adjacency matrix) and the total possible con-
nections (ie. N°). Transitivity is computed as the ratio
between the number of existing closed triplets in the con-
nectome graph and the total possible number of triplets in a
neuronal population. Finally, clustering coefficient is defined
for each node (neuron) i as the ratio between the number of
triangles connected to neuron i and the number of triplets
centered on i. For a functional connectome, we evaluated
the mean (average) clustering coefficient across all neurons.
Both transitivity and clustering coefficients give a measure
for the tendency of neurons to form clusters in the connec-
tome. For all of the above metrics, a higher value indicates a
more interconnected network.

2.8. Pseudotime analysis of Trial-Based Functional
Connectome Activity

Trial-based functional connectome activities were computed
and PCA was applied to the connectome activity matrices, as
described above. Pseudotime analysis was performed using
the method Diffusion PseudoTime (DPT) that was originally
developed for reconstructing gene expression dynamics from
static snapshot single-cell transcriptome data of cell differen-
tiation (Haghverdi et al. 2016). DPT employs the diffusion
map to organize data points into a nearest neighbor graph
with weighted edges, based on which a transition matrix is
generated. This transition matrix approximates the dynamic
transitions across the data points, starting from a user-
prescribed root, mimicking a random walk. We applied the
DPT function in the Python package scanpy (Wolf et al.
2018), specifically using the ‘umap’ kernel function for neigh-
borhood graph, with the default parameters (number of
neighbors, n_neighbors = 15 and number of diffusion com-
ponent, n_dcs = 10). Each trial was represented by its PC
scores, the number of which was determined so that the
cumulative explained variance reached 95% of the total vari-
ance. The first trial from the first session was assigned to be
the root node that corresponds to the pseudotime of 0.
Finally, Pearson correlations between the cue-to-reward time
and pseudotime were computed for Sessions 1-4 (first phase)
and Sessions 5-14 (second phase) of learning. To establish
the statistical significance, Fisher z-transformation was first
applied to the correlations (Fisher 1921) and then, a two-
sided two-sample t-test was applied to their difference.

2.9. Classification and Analysis of Movement-Related
Neurons

We followed the procedure outlined in the original publication
to classify neurons as ‘movement-related’ (Peters et al. 2014).



4 (&) S.MEAMARDOOST ET AL.

a [[] Non-Movement epochs [E] Movement epochs

Neurons

Functional Connectome Inference
(FARCI)

b [[] Non-Movement epochs [E] Movement epochs

C:Cue R

R

=

C
o ca—
UGy

¥

-.}

2%~ =

z E f.‘-r_ LY I
|
.. ! I =
T T . T T
Trial 1 Trial 2 Trial 3 Trial N-1 Trial N
Pearson’s Correlation Coefficient

Trial 1 Trial 2 Trial 3 Trial N-1 Trial N
15
=
19
13
Iy
s Trial Connectome Activity
v

Figure 1. Data processing for the inference of functional connectome and trial connectome activity. a. Functional connectome inference pipeline. For each ses-
sion, FARCI is applied to produce the functional connectome. b-c. Trial-based connectome activity. Pairwise Pearson’s correlations are computed using the activities
of neuron pairs for a rewarded trial (cue-to-reward), which are then filtered using a binary adjacency matrix obtained from functional connectome, to give the con-

nectome activity of the trial.

The classification was performed based on the level of neur-
onal activity during movement epochs. Briefly, binarized lever
traces were used to label the calcium fluorescence imaging
frames into movement and quiescent epochs. The mean activ-
ity of each neuron was computed over the movement epochs
in a session. Subsequently, the movement and quiescent
epochs were shuffled, thereby randomizing the relative pos-
ition of these epochs with each other. The mean activity of
neurons for the shuffled epochs was computed in each shuffle,
and this shuffling was repeated 10,000 times. A neuron was
classified as movement related if its mean activity during the
movement epochs was higher than the 0.5th percentile of the
10,000 mean activities computed for the randomly shuffled
epochs.

To evaluate the fraction of movement related neurons in
the edges that account for the largest connectome changes
over learning, we first sorted edges based on their loadings to
PC1 in the above PCA of functional connectome rewiring in
descending order. Subsequently, we identified two groups: the
highest 100 edges (top positive PC1 loadings) and the lowest
100 edges (top negative PC1 loading). For each group, we
compiled neurons that are incident to these edges—two for
every edge-resulting in a set of 200 non-unique neurons for
each group. For each neuron in these groups, we calculated
the number of times that it was classified as movement-
related across different periods of learning: sessions 1-2, 3-5,
6-9, and 10-14. The fraction of movement-related neurons
was computed by dividing the total number of times that the
top PC1 neurons are classified as movement-related with the
total number of neurons multiplied by the number of

sessions in the learning period (i.e. 200 x m, where m is the
number of sessions in a learning period. For example, for ses-
sions 6--9, m is 4). To establish the significance level, we
repeated the above procedure using 100 edges that are ran-
domly sampled from the union of edges in the connectomes
across all sessions, for a total of 1000 times. To establish stat-
istical significance, we evaluated the kth upper percentile
associated with the fraction of movement-related neurons for
each learning period with respect to the distribution of the
fraction from the random sampling of edges.

2.10. Evaluation of Session-to-Session Changes in
Functional Connectivity

To assess the degree to which neurons change their connect-
ivity during motor learning, we first computed functional
connectome in each session and evaluated the number of
connections that change between two consecutive sessions
for each neuron. Next, for a given group of neurons, we
computed the average session-to-session change in connect-
ivity as the ratio of total number of altered connections
across all the neurons to n x (s — 1) where n and s are the
number of neurons and sessions, respectively.

2.11. Identification of Core, Naive Phase, Expert Phase,
and Other Neurons

We classified neurons based on their connectivity changes
into four types: Core, Naive Phase (NP), Expert Phase (EP),
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Figure 2. Neuronal population activity of L2/3 and L5 regions of primary motor cortex M1 in lever-press task learning. a. Lever-press task schematic. b. Mean
duration between cue and reward, averaged across all rewarded trials from each session. ¢, d. Scores of the first three principal components (PCs) of neuronal popu-
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and Other (O). The classification used the PCA of the func- that are associated with highly positive and negative PC1
tional connectomes described above. For each mouse, we loadings using a threshold determined by the knee detection
determined the set of edges in the functional connectome algorithm (Satopaa et al. 2011). Then, we identified two sets
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of neurons, one set that is incident to connectivity from the
top positive PC1 loading and another to the top negative
PC1 loadings. Neurons belonging to both sets are labelled as
Core neurons. Those that are associated with only the top
positive PC1 loadings are labeled as EP, while those associ-
ated with only the top negative PCl loadings as NP.
Neurons that are not in the three sets above are called
Other (O) neurons.

2.12. Correlations with Expert (Learned) Activity and
Movement Pattern

To examine the similarity of neural population activity in an
individual trial to the learned expert activity or the similarity
of movement to the learned movement pattern, we per-
formed correlation analysis. Neuronal spiking activity data
were preprocessed as above. The expert activity and move-
ment patterns refer to the average activity and movement in
84-frame windows of rewarded trials over sessions 10-14.
The first frame in this 84-frame window corresponds to the
movement onset.

2.13. Linear Decoders of Neuronal Activity to Lever
Position

To map neuronal activity to movement for each group of
neurons, we used pre-processed neuronal spiking activity
data as above. Rewarded trials in each session were then
split randomly into train and test sets at 80% and 20% ratio,
respectively. For a given session, a decoder was trained using
linear regression (ordinary least square) to predict lever pos-
ition (i.e. lever voltages) from the spike data of a specific set
of neurons (Core, EP, NP, and O neurons). The perform-
ance of the trained linear decoder was then assessed by
computing the correlations between the predicted and actual
lever positions (measured in voltages) using data from the
test set. In addition, an expert decoder was trained using the
combined data from sessions 10-14, and its performance
was tested on the data from sessions 1-3.

3. Results

3.1. Motor Skill Learning Reconfigures Functional
Connectome in the Motor Cortex

Lever-press task learning experiments were previously car-
ried out where water-deprived head-fixed mice (n=7)
learned to press a lever in response to an auditory cue in
order to receive a water droplet reward. Neuronal activity
from L2/3 or L5 of mouse primary motor cortex (M1) were
recorded using 2p calcium imaging (see illustration in
Figure 2a) (Peters et al. 2014, 2017). The average times
between the cue and the corresponding reward decreased
with learning (see Figure 2b), indicating that these mice
were able to acquire reward increasingly more efficiently.
Lever-press task learning reshaped the neuronal activity
in M1 L2/3 generating reproducible neuronal activity pattern
and more consistent relationship between neuronal activity

and movements (Peters et al. 2014). Time-series PCA of
L2/3 neuronal activity in Figure 2c confirms the emergence
of more consistent temporal activity pattern with learning
(see Supplementary Figure S1-6 for the complete results)
with increased synchronization of activity at or around the
movement onset. In contrast, the activity of L5 corticospinal
neurons did not become more consistent with learning.
Rather, learning led to more dissimilar neuronal activity for
dissimilar movements (Peters et al. 2017). In congruence
with these observations, time-series PCA of L5 neuronal
activity as shown in Figure 2d shows a lack of trial-to-trial
coherence across the learning sessions (see Supplementary
Figure S7-14 for the complete results). Thus, lever-press
task learning induces distinct reorganizations of neuronal
population activities and thus the functional connectome in
different layers of MI.

To study functional connectome rewiring dynamics asso-
ciated with lever-press task learning, we used partial correla-
tions of neuronal spikes, computed using a recent
connectome inference method FARCI, to establish func-
tional connectivity among excitatory neurons in L2/3 and in
L5. Figure 3a displays L2/3 functional connectome rewiring,
projected to the first two PC axes (see Methods), portraying
homogeneous common trajectories for different animals (see
Supplementary Figure S15 for individual mice using PCA).
The similarities in the rewiring trajectories are not depend-
ent on the thresholding of the partial correlations (see
Supplementary Figure S16 for results without thresholding),
nor on the dimensionality reduction technique since MDS
(Anon 1987) and UMAP (Mclnnes et al. 2020) also generate
rewiring trajectories that are similar among mice (see
Supplementary Figure S17-18). The rewiring trajectories
show that the strongest contributor to the functional con-
nectome variation across sessions is associated with learning.
The first two PCs together explain between 52% to 62% of
the total variance (Supplementary Figure S15). Figure 3b-c
illustrate the dynamics of the average partial correlations
associated with the 100 most positive and most negative
loadings from the first and second PCs (i.e. PC1 and PC2).
The dynamics indicates the continuous (monotonous) gain
or loss of functional connections along the PCl1 axis, and
transitory gain or loss of connections along the PC2 axis.
Finally, Figure 3d illustrates the connectivity changes in the
functional connectomes (mean degree, network density,
transitivity, mean clustering coefficients) over the animals in
the study, showing a sharp increase in the functional inter-
connectedness among neurons during the first 3-4 sessions,
followed by a more gradual decrease in connectivity during
the remaining sessions. The increase (decrease) in functional
connectivity reflects the overall strengthening (weakening) of
partial correlations of the neuronal firing activity. The
results above suggest a common rewiring dynamics of L2/3
functional connectomes among the mice subjected to lever-
press task learning, where the functional connectome quickly
increases its degree of connectivity (increased co-firing
among neurons) during the initial stages of learning and is
then pruned to bring network interconnectedness toward
the same level as that before learning.
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Figure 3. Functional connectome rewiring in L2/3 during lever-press task learning. The shaded areas indicate s.e.m., computed over the mice in the study. a.
Connectome rewiring trajectories. Functional connectomes are projected onto PC1 and PC2 axes (see Methods). b-c. Average partial correlation coefficients of top
100 edges based on positive and negative magnitudes of PC1 and PC2 loadings. d. Network connectivity metrics of the functional connectomes. To aid comparison,
normalized metrics are shown, using the highest value of each metric across sessions and animals as a scaling factor (see Supplementary Figure S24 for full results).

Figure 4a-c gives the functional connectome rewiring
dynamics for L5 (see Supplementary Figure S19-21 for individ-
ual mice using PCA, MDS, and UMAP projection).
Interestingly, despite the differences between 12/3 and L5 in
how lever-press task learning alters neuronal activities, similar
rewiring trajectories are observed across all mice in these layers.
The first PC axis is again associated with the stable monoton-
ous gain or loss of functional connections related to learning,

while the second PC axis captures the transitory gain or loss of
functional connections. The top two PCs cumulatively explain
between 61% to 77% of the total variance among the connec-
tomes from different sessions (Supplementary Figure S19).
Figure 4d gives the dynamic changes in network interconnect-
edness for the functional connectomes in L5, showing similar
dynamics, albeit more subdued and delayed when compared
with those in L2/3. The similarities in the functional
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connectome rewiring dynamics between L2/3 and L5 suggest
the existence of a common operating principle in M1.

3.2. Connectome Rewiring in Motor Cortex is a Biphasic
Process

Next, we studied how functional connectome activity is related
to motor task performance on a trial-by-trial basis. To this

end, we evaluated functional connectome activities using gated
pairwise Pearson correlations of neuronal calcium spike activ-
ities in rewarded trials (see Methods), providing a measure for
the co-firing activity of connected neurons. Figure 5 depicts
the L2/3 functional connectome activities from rewarded trials
in individual mice, and their associated cue-to-reward times.
Expectedly, the functional connectome activities across ses-
sions follow a similar trajectory in the PC1-PC2 projection
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(x-y axes) to the rewiring dynamics shown above. We noted
that the relationship between L2/3 functional connectome
activity and task performance can be divided into two phases:
in the first phase (up to session 3-4), alterations in the func-
tional connectome activities are associated with a rapid
improvement in motor performance leading to a sharp drop
in the cue-to-reward time. In the subsequent phase, functional
connectome activities continue to change while motor per-
formance remains stable. Interestingly, as shown in Figure 3a
& d, the first phase is marked by a sharp increase in the con-
nectivity of the functional connectomes, while the second
phase corresponds to a period of gradual pruning of the con-
nectome. Figure 6 shows the L5 functional connectome activ-
ity and the motor performance for every rewarded trial from
individual mice. Consistent with the key findings of the ori-
ginal study (Peters et al. 2017), the activity of L5 functional
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connectomes has a weaker relationship with the motor per-
formance in comparison with L2/3.

To establish the observed biphasic process more firmly, we
evaluated the correlations between the cue-to-reward times
and the learning-related trajectory of the functional connec-
tome activities. For this purpose, we applied an analysis com-
monly used in single-cell studies, called pseudotime analysis,
to the functional connectome activities (see Methods). Here,
the pseudotimes reflected the progression of motor-skill learn-
ing, where the first trial of the first session was set to be the
“root cell.” The DPT method (see Methods) generated the
pseudotime for each trial activity based on a random walk
(diffusion), starting from the root (pseudotime = 0) and end-
ing at the trial activity furthest away from the root (pseudo-
time = 1). The results of the pseudotime analysis for 1L.2/3 and
L5 are provided in Supplementary Figure S22.
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Figure 5. L2/3 connectome activity versus cue-to-reward time for rewarded trials. Each circle represents a rewarded trial and its color denotes the session number.
The surface interpolation was done using MATLAB function cftool. The cue-to-reward time of each trial is projected onto the surface for visualization purposes.
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Figure 7 compares the correlations for the first (Sessions
1-4) and the second phase (Sessions 5-14) for L2/3 and L5.
The pseudotimes of L2/3 in the first phase of learning are
negatively correlated with the cue-to-reward times (Figure
7a), suggesting that the learning-related trajectory here is
associated with an improvement in motor performance. In
comparison, the second phase of learning has markedly
lower correlation (i.e. less negative). This trend agrees with
the biphasic learning mentioned earlier. In contrast to 1L2/3,
the pseudotimes of L5 show a mixture of positive and nega-
tive correlations (Figure 7b). That is, the association between
the learning-related trajectory of L5 connectome activities
and motor performance is weaker or less consistent than
L2/3, in general agreement with the previous study (Peters
et al. 2017).

3.3. Connectome Rewiring Revolves around a Core Set
of Movement-Associated Neurons

The PCA findings above revealed insights related to altera-
tions in the functional connectivity associated with learning.
In the following, we focused on neurons in L2/3 that are
most significantly impacted by motor learning. For this pur-
pose, we identified functional connectivity edges that have
the most highly positive and negative PC1 loadings of the
connectome, as these reflect connectivity that is stably and
significantly strengthened and weakened with learning,
respectively (see Methods). From these edges, we obtained
two groups of neurons: one group of neurons that are inci-
dent to the top positive PC1 connectivity edges and another
incident to the top negative PC1 edges. Note that these
groups are not mutually exclusive (i.e. there are neurons
that belong to both groups). We analyzed the association of
these neurons with lever movement by quantifying the frac-
tion of movement-related neurons—defined as neurons that
have significantly higher activity during movement epochs
than during non-movement epochs (see Methods)—in each
group. Specifically, we evaluated the fractions of neurons in
each group that are movement-related in different learning
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phases: session 1-2 (naive), 3-5 (early), 6-9 (mid), and 10-
14 (expert). As shown in Figure 8a, neurons from the top
positive PC1 loading become more associated with move-
ment with learning, while those from highly negative PCl
loadings do not exhibit a clear trend. As expected, L5 neu-
rons associated with their respective top positive and nega-
tive PC1 loadings have weaker connection with movement
than L2/3 neurons, as indicated by lower fractions of move-
ment-related neurons (see Supplementary Figure 23).

In the following, we further subcategorized the two
groups of neurons into three classes: Core, Naive Phase
(NP), and Expert Phase (EP). Core neurons are those associ-
ated with functional connectivity belonging to both top posi-
tive and negative PC1 loadings, and as such, they represent
neurons that undergo the most extensive rewiring during
motor learning (see Figure 8b and Supplementary Figure
26). EP (NP) neurons are associated exclusively with the top
positive (negative) PC1 loadings, and they gain (lose) func-
tional connectivity with learning. Neurons whose edges are
not associated with top PCI1 loadings are called other (O)
neurons. Core neurons make up 35.68+3.30% (mean-
+s.e.m.) of L2/3 neurons. On the other hand, NP and EP
neurons comprise 18.64+1.50% and 24.67 +1.65% (mean-
+s.e.m.) of the L2/3 neuronal population, respectively (see
Figure 8c). Core neurons are more frequently movement
related than all other groups of neurons over the learning
period, as shown Figure 8d. Table 1 confirms that move-
ment-related neurons are significantly overrepresented
among Core neurons, but not the other classes of neurons.
Meanwhile, NP (EP) neurons become less (more) move-
ment-related with learning. Therefore, the neurons that are
most extensively rewired during learning are strongly associ-
ated with movement.

Looking at the connectivity more closely, Core neurons
maintain a relatively stable mean degree of connectivity
across the learning sessions, as shown in Figure 9a, despite
the fact that they are extensively rewired. This stability sug-
gests that connectivity loss with learning is balanced by con-
nectivity gain. Meanwhile, NP (EP) neurons show a
decreasing (increasing) degree of connectivity with learning
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Figure 7. Correlations between the cue-to-reward time and pseudotime. Statistical significance was performed using two-sided two-sample t-test of Fisher z-

transformed correlations (*: p-value < 0.05, **: p-value < 0.01).
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Table 1. Over-representation of movement-related neurons in Core, NP, EP,
and Other neurons in L2/3.

Session 1-2 Session 3-4  Session 6-9 Session 10-14
Core Neurons 4.569%* 5.876* 5.773* 5.446*
NP Neurons 1.494 0.938 0.531 0.217
EP Neurons 0.221 0.461 0.715 1.314
O Neurons 0.129 0.102 0.105 0.077

The values indicate odds ratio. *p-value < 0.0001 (Fisher exact test).

(see Figure 9a). Figure 9b further shows that Core neurons
have a higher intragroup than intergroup connectivity, i.e.
Core neurons are connected mostly among themselves. In
addition, Core neurons start with a higher connectivity with
NP than EP neurons, but this is reversed over the course of
learning where the loss of Core-NP connectivity is coun-
tered by the gain of Core-EP connectivity. This balancing
between the strengthening and weakening of connectivity
agrees with the observation that learning-induced rewiring
in L2/3 maintains a homeostatic number of connectivity,
and further reveal that the connectome rewiring concen-
trates on a core group of neurons that form highly con-
nected sub-connectome with each other.

Next, we analyzed how motor-skill learning affects the
activity of the different neuronal groups and its relationship
with movements in rewarded trials. As shown in Figure 10a,
Core neurons maintain a stable mean activity over the entire
learning period that is relatively higher than the other
groups of neurons (Figure 10a). NP and EP neurons follow
an opposite trend in mean activity: a decrease for NP and
an increase for EP (Figure 10a). The activity of Core and EP

neurons become more reproducible with learning, while NP
and O neurons do not (Figure 10b). As described in the ori-
ginal study (Peters et al. 2014), learning leads to an emer-
gence of reproducible neuronal activity in L2/3 and
stereotyped movement, such that movements that are more
similar to the stereotyped pattern are associated with neur-
onal activities that are also more similar to the learned activ-
ity pattern (Figure 3b in Peters et al. (Peters et al. 2014) and
Figure 10c). Figure 10d-g shows that such learning-associ-
ated activity-movement relationship also emerges for the
above groups of neurons, but it is the most prominent for
Core neurons, followed by, in decreasing degree, EP, NP,
and O neurons. Interestingly, even during the initial (naive)
phase of learning, the activity of Core neurons already
resembles the learned activity pattern more closely when
movements are highly correlated with the stereotyped expert
pattern (movement correlation > 0.5), when compared with
the other groups of neurons (see Figure 10h). The analysis
above shows that Core neurons and their rewiring play a
significant role in the emergence of stereotyped activity and
movement patterns with motor-skill learning.

Finally, we investigated the differences across the groups
of neurons in terms of encoding movement in their neur-
onal activity. To do so, for individual groups of neurons, we
trained linear decoders that predict lever positions (lever
voltages) from their neuronal activity (thresholded and
smoothened spikes) for every session—called session
decoders (see Methods). Figure 11a shows example test data
of actual and predicted lever positions, while Figure 11b
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Figure 9. Connectivity of top PC1 neurons. a. Mean degree of connectivity. b. Mean degree connectivity of Core neurons with Core, NP, EP, and Other neurons.

The shaded area denotes s.e.m. computed across all animals.

gives their correlations for the test data that were not used
in the training of the decoders. Session decoders for Core
neurons have the highest correlations, implying that Core
neurons encode movements in their activity more strongly
than the other groups of neurons. Besides, learning generally
improves the accuracy of session decoders, indicating that
there is an increase of movement-encoding within the neur-
onal activity of all groups of neurons in L2/3. The most sig-
nificant learning-induced improvement is for EP neurons,
followed by Core neurons, with only a small increase for NP
and O neurons. We also tested the ability of linear decoders
trained using data from the expert phase (session 10-14)—
called expert decoders—to predict movements (lever posi-
tions) in the naive phase (session 1-3). The correlations
from these expert decoders are expectedly lower than using
the respective session decoders (comparing Figure 11b and
11c). Still, expert decoders of Core neurons predict move-
ments in the naive phase significantly better than expert
decoders of the other groups (p-value < 107'%), and com-
parable to the session decoders from each respective group.
This result points to the stability of movement encoding by
Core neurons over the course of learning, suggesting that
learning-related rewiring might be centered around produc-
ing a stable activity pattern in a core set of neurons that
maintain reliable relationship with movements.

4. Discussion

The motor cortex plays a critical role in motor skill learning
for integrating sensory information, establishing a motor
plan, and executing movements (Li and Waters 1991;
Pronichev and Lenkov 1998; Ferezou et al. 2007; Tennant
et al. 2011; Guo et al. 2015; Li et al. 2016; Makino et al.
2016; Hwang et al. 2019a, 2019b; Sauerbrei et al. 2020). In
previous studies, lever-press task learning has been associ-
ated with the reorganization of neuronal population activity
in L2/3 and L5 of the mouse M1, as measured by in vivo
two-photon calcium imaging. In L2/3 neurons, consistent
spatiotemporal population activity emerges accompanying
learned movements (see Figure 2c), leading to a stronger
correlation between movement similarity and neuronal activ-
ity similarity (Peters et al. 2014). In L5, despite the same
motor learning as L2/3, no consistent neuronal population

activity was observed (see Figure 2d), but instead dissimilar
movements became further decorrelated (Peters et al. 2017).
The contrasting learning-induced reorganizations of neuronal
activity across different layers in the primary motor cortex
suggest differences in their roles and functional objectives
during motor learning (Peters et al. 2014, 2017).

Interestingly, despite the overt differences in how lever-
press task learning affects the neuronal population activities
in L2/3 and L5, their functional connectomes—as measured
by partial correlations of calcium spikes—show similar
rewiring trajectories (see Figure 3 & 4). Specifically, our ana-
lysis shows that the functional connectomes in both layers
rewire to become more interconnected during the first few
learning sessions (Sessions 1-4), whereby the statistical
dependencies of neuronal activities strengthen. In the later
sessions, functional connections are gradually pruned,
reflecting weakening correlations of neuronal activities. This
result agrees well with a transient increase of L2/3 spine
density measured in mice undergoing the same motor task
learning, suggesting that changes of the functional connect-
ivity in L2/3 are connected, at least partly, to learning-
related plasticity of dendritic spines (Peters et al. 2014).

Meanwhile, the rewiring in L5 functional connectomes is
associated with more subdued and delayed changes in net-
work interconnectedness when compared to L2/3 functional
connectomes: L5 peaking at around the 7 learning session
vs. 12/3 peaking at roughly the 3™ learning session (see
Figures 3d and 4d). While it is known that L2/3 neurons
project to L5, the lack of coherence in learning-induced
changes of neuronal activity patterns and the differences in
magnitude and speed of rewiring dynamics between the two
layers suggest a weak inter-layer coordination of neuronal
communications. That is, while the functional connectome
rewiring in L2/3 and L5 occurs relatively independently of
each other, both appear to engage the same rewiring
principle.

Our analysis further strengthens the overt connection
between spatiotemporal neuronal population activity in L2/3
and lever movement. By quantifying the functional connec-
tome activity on a trial-to-trial basis, we demonstrated a
strong correlation between functional connectome activity
changes across trials with improved motor performance, as
measured by the cue-to-reward time, in the early learning
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Figure 10. Neuronal activity and movement encoding. a. Mean neuronal activity of different groups in learning trials. b. Trial-to-trial activity correlation for differ-
ent groups of neurons. (c—g) Correlations of activity vs. movement with respective expert patterns in cued trials (84-frame window) for all (c), Core (d), NP (e), EP
neurons (f), and Other neurons (g). Naive refers to session 1-3 and expert to session 10-14. h. Neuronal activity correlation with learned pattern for expert-like
movements (corr. > 0.5) in naive sessions. **** p-value < 0.0001 (one-sided paired t-test). Error bars indicate s.e.m computed across all L2/3 animals.

sessions (Sessions 1-4, see Figures 5 and 7). This period when optimizing for motor performance. In the second half
coincides with a sharp increase in the interconnectedness of of the experiments (session 8-14), functional connectomes
the functional connectome. Thus, L2/3 functional connec- and their activities continue to rewire, where functional con-
tomes appear to initially adopt higher interconnectivity nectivity is gradually pruned, even after the cue-to-reward
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built for each session and used to predict movements of the unseen trials of the same session. b. Correlations between actual and predicted movement for naive
sessions (session 1-3) using a linear decoder trained using data from expert sessions (session 10-14). **** p-value < 0.0001 (two-sided two-sample t-test). Error

bars indicate s.e.m computed across animals.

time reaches a plateau. On the other hand, the correlation
between the changes in the functional connectome activity
and motor performance is visibly less prominent in L5 when
compared with L2/3 (Figures. 6 and 7).

The results of these analyses suggest that a common
rewiring dynamics underpin learning-induced changes in
L2/3 and L5 in the mouse primary motor cortex. The over-
lap of time periods when L2/3 functional connectomes
sharply increase their degrees of connectivity and when the
cue-to-reward times markedly improve, suggests that higher
interconnectedness has a functional relevance in terms of
motor performance. The overt higher level of connectivity
in the functional connectomes is consistent with an explor-
ation of network state space—the space of network struc-
tures—to optimize a learning-related functional objective.
Once the learning-related objective reaches an optimal
(desirable) level, the functional connectome rewiring dynam-
ics engages a different trajectory to return to homeostatic
level of network connectivity and presumably a network
state with high energetic efficiency. Thus, functional connec-
tome rewiring appears to be driven by multiple objectives,
where the dominant objective switches from one to another
across learning and/or these objectives have large time-scale
separation.

Further analyses focused on L2/3 neurons whose func-
tional connectivity are most significantly altered by learn-
ing—i.e. neurons associated with the shift along the PCl
scores between naive and expert sessions in Figure 3. The
analyses showed how learning-induced rewiring clusters
around a core set of movement-associated neurons (Core
neurons). Core neurons form a highly interconnected hub
in the connectome where these neurons are highly intercon-
nected among each other. Learning heavily adds and
removes connectivity among these neurons, but in a manner
that maintains the overall degree of connectivity, i.e. losses
of connectivity are balanced by gains. Further, Core neurons
reliably encode movements in response to cues even in the

naive phase, and learning-associated rewiring further
improves their movement encoding. Beside the aforesaid
Core neurons, there are also neurons that steadily gain and
lose connectivity with learning, i.e. EP and NP neurons,
respectively. While the gain of connectivity among EP neu-
rons is associated with increased association of their activity
with movement, the loss of connectivity among NP neurons
does not significantly affect their activity-movement rela-
tionship. These distinct patterns of connectivity changes
among the three different neuronal groups and their rela-
tionship to movements suggest that motor learning is
accompanied by neuronal rewiring that reinforces the activ-
ity pattern of Core neurons that reliably encode the learned
movement.

There are important limitations to the present study.
First and foremost, this study adopted a fully data-driven
approach using statistical dependencies of neuronal activities
to inform on the reorganizations of functional connectivity
among neurons in L2/3 and L5 of the M1 during motor skill
learning. While such learning-related changes may arise
from the physical formation and loss of synaptic connec-
tions among these neurons—as indicated by the previously
reported rise-then-fall dynamics of synaptic bouton density
in L2/3 during the same motor learning (Peters et al.
2014)—they may also come from other sources, for example
alterations in the input signals to the M1 from other brain
regions such as parietal, premotor, and frontal cortices, as
well as the somatosensory cortex (Mateer and Sira 2003).
Also, because partial correlations are symmetric, the identity
of the pre- and post-synaptic neurons is missing. The lack
of such information prevents more detailed insights into the
organizational principles of motor learning (e.g. changes in
the proportion of pre- and post-synaptic neurons). Lastly,
the study focused on a 14-session (2-week) learning period.
Long term studies of motor learning (1-2months) have
shown the disengagement of M1 from movement control
while animals maintain the learned movements (Hwang



et al. 2019a, 2021). This observation suggests that connec-
tome reorganization in motor learning continues beyond the
period of this study and involves other brain region(s)
besides the M1.

5. Conclusion

In lever-press task learning, distinct reorganizations of neur-
onal activity occur in the L2/3 and L5 of M1, reflecting dif-
ferent roles and functional objectives across layers during
motor learning. However, the analysis of functional connec-
tomes over the learning sessions, reconstructed from neur-
onal activities using partial correlations, reveals similar
rewiring trajectories in L2/3 and L5. Specifically, increased
functional interconnectivity (stronger coordination of neur-
onal firing) during the early phase of learning, followed by
connectivity pruning in the later sessions, highlights the
shared principle of rewiring between L2/3 and L5 of M.
Further, the reorganization of connectome activity in L2/3,
but not L5, during the early learning phase overlaps with
marked improvement of the motor performance, suggesting
the functional relevance of higher interconnectivity in 12/3
for motor optimization. In the later phase, the rewiring
dynamics appear to favor a return to a homeostatic level of
network connectivity, indicating a shift in the rewiring
objective. Lastly, learning-induced rewiring particularly
impacts a core set of movement-associated neurons in L2/3,
and this reinforces the activity patterns that encode the
learned movement. Overall, this study significantly enhances
our understanding of the functional connectome rewiring
dynamics during motor learning.
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