
Data Science in Science

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/udss20

Rewiring Dynamics of Functional Connectomes
during Motor-Skill Learning

Saber Meamardoost, Mahasweta Bhattacharya, Eun Jung Hwang, Chi Ren,
Linbing Wang, Claudia Mewes, Ying Zhang, Takaki Komiyama & Rudiyanto
Gunawan

To cite this article: Saber Meamardoost, Mahasweta Bhattacharya, Eun Jung Hwang, Chi Ren,
Linbing Wang, Claudia Mewes, Ying Zhang, Takaki Komiyama & Rudiyanto Gunawan (2023)
Rewiring Dynamics of Functional Connectomes during Motor-Skill Learning, Data Science in
Science, 2:1, 2260431, DOI: 10.1080/26941899.2023.2260431

To link to this article:  https://doi.org/10.1080/26941899.2023.2260431

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 05 Oct 2023.

Submit your article to this journal 

Article views: 1133

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=udss20



Rewiring Dynamics of Functional Connectomes during Motor-Skill Learning

Saber Meamardoosta , Mahasweta Bhattacharyab , Eun Jung Hwangc,d , Chi Renc , Linbing Wange , 
Claudia Mewesf, Ying Zhangg , Takaki Komiyamac , and Rudiyanto Gunawana 

aDepartment of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA; bDepartment of Biomedical Engineering, 
University at Buffalo, Buffalo, NY, USA; cNeurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, 
University of California San Diego, La Jolla, CA, USA; dCell Biology and Anatomy Discipline, Center for Brain Function and Repair, Chicago 
Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA; eDepartment of Civil and Environmental 
Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; fDepartment of Physics and Astronomy, University of 
Alabama, Tuscaloosa, AL, USA; gDepartment of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA 

ABSTRACT 

The brain’s functional connectome continually rewires throughout an organism’s life. In this study, 
we sought to elucidate the operational principles of such rewiring in mouse primary motor cortex 
(M1) by analyzing calcium imaging of layer 2/3 (L2/3) and layer 5 (L5) neuronal activity in M1 of 
awake mice during a lever-press task learning. Our results show that L2/3 and L5 functional con-
nectomes follow a similar learning-induced rewiring trajectory. More specifically, the connectomes 
rewire in a biphasic manner, where functional connectivity increases over the first few learning 
sessions, and then, it is gradually pruned to return to a homeostatic level of network density. 
We demonstrated that the increase of network connectivity in L2/3 connectomes, but not in L5, 
generates neuronal co-firing activity that correlates with improved motor performance 
(shorter cue-to-reward time), while motor performance remains relatively stable throughout the 
pruning phase. The results show a biphasic rewiring principle that involves the maximization of 
reward/performance and maintenance of network density. Finally, we demonstrated that the 
connectome rewiring in L2/3 is clustered around a core set of movement-associated neurons that 
form a highly interconnected hub in the connectomes, and that the activity of these core neurons 
stably encodes movement throughout learning.
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1. Introduction

The brain’s functional connectome—the functional connect-

ivity of neurons—is the foundation of its myriad functions. 

This connectome is not static; quite the opposite, it continues 

to rewire throughout an organism’s life (Citri and Malenka 

2008; Bassett et al. 2011; Caroni et al. 2012; Bennett et al. 

2018; Papale and Hooks 2018; Kao et al. 2020). Such plasti-

city is critical in enabling organisms to learn new skills, store 

new memory, and adapt and respond appropriately to novel 

environment (Bassett et al. 2011; Caroni et al. 2012; Papale 

and Hooks 2018; Kao et al. 2020). By unraveling the underly-

ing principles governing the rewiring of the brain’s func-

tional connectome, we will be able to not only enhance our 

understanding of neurological disorders but also pave the 

way for developing innovative data storage paradigms and 

computing architectures (Bathe et al. 2021).
The primary motor cortex M1 is a hub for motor-skill 

learning and movement executions (Lee et al. 2022). M1 

comprises multiple neuronal subtypes that are organized in 

layers (L1, L2/3, L4, L5 and L6), each with distinct 

molecular markers, projections, and functions (Mu~noz- 

Casta~neda et al. 2021; Lee et al. 2022). It is generally thought 

that L2/3 is primarily involved in local processing, integrat-

ing sensory information with motor commands, and coordi-

nating motor outputs, while L5 is responsible for generating 

motor commands and transmitting them to subcortical 

structures including the spinal cord, playing a direct role in 

the execution of motor movements. Connectome plasticity 

in M1 related to motor skill learning have been reported in 

both L2/3 and L5 (Greenough et al. 1985; Withers and 

Greenough 1989; Wang et al. 2011). However, the pattern of 

neuronal ensemble activity that evolves during motor learn-

ing differs between L2/3 and L5, suggesting that the two 

layers might exhibit distinct connectome plasticity (Peters 

et al. 2014; Peters et al. 2017).
Connectome plasticity occurs through the formation and 

degradation of synaptic connectivity between pre- and post- 

synaptic neurons, and the associated appearance and dis-

appearance of dendritic spines (Fu et al. 2012; Peters et al. 

2014; Huang et al. 2020; Albarran et al. 2021). Spine 
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formation has been observed across a variety of motor 

learning tasks (Papale and Hooks 2018) such as reaching 

and grasping (Xu et al. 2009), lever-pressing (Peters et al. 

2014), and running on an accelerated motorized rod (Yang 

et al. 2009), across M1 layers, including L2/3 (Peters et al. 

2014) and L5 (Xu et al. 2009; Yang et al. 2009).
Progress has been made in understanding how the func-

tional circuitry of brain regions reconfigures during learning 

(e.g. using functional MRI (fMRI) data (Bassett et al. 2011; 

Kao et al. 2020)). Still, the principles behind functional rewir-

ing among neurons are much less understood. Recent advances 

in neural activity recordings, such as two-photon (2 P) calcium 

imaging (Stosiek et al. 2003), have produced large-scale activity 

data of single neurons in awake animals while learning various 

tasks (Peters et al. 2014, 2017), opening the avenue to study 

brain’s functional connectome at neuronal population level.
This work leverages large datasets of neuronal activities 

from L2/3 and L5 of M1 of mice during a lever-press task 

learning (Peters et al. 2014, 2017) for elucidating how func-

tional connectomes in these regions are rewired during a 

motor-task learning and what operational objective(s) drives 

the connectome rewiring. To this end, we used the partial 

correlations of spiking activities, inferred from 2 P calcium 

imaging, between any pair of neurons as a measure of their 

functional connectivity. We analyzed how functional connec-

tomes in L2/3 and L5 of M1 rewire during learning and how 

this rewiring is associated with motor performance. We then 

studied the rewiring of functional connectivity among neu-

rons that are most impacted by learning and identified 

groups of neurons that have different learning-induced rewir-

ing patterns. Our results show that the functional connec-

tomes in both layers continually rewire throughout the 

learning period following a common trajectory where connec-

tomes transiently increase their functional connections before 

returning to a homeostatic level of connectivity. Further, we 

observed the existence of an interconnected hub of move-

ment-associated neurons in the connectomes that are heavily 

rewired and stably encode movement during learning.

2. Materials and Methods

2.1. Animals

Two groups of mice were used in this work from two separ-

ate studies previously published where neuronal activity in 

L2/3 (Peters et al. 2014) and L5 (Peters et al. 2017) was 

recorded during learning a lever-press task. These animals 

are referred to as L2/3 (n¼ 7) and L5 (n¼ 8) mice corre-

sponding to the cortical layer of neurons from each mouse. 

The number of neurons N recorded from each animal and 

layer is provided in Table S1. Note that one animal (Mouse 

L2/3-6) was removed from the analyses due to multiple 

missing sessions of training.

2.2. Experiments: Lever-Press Task

Details on experimental procedure and data collection are 

available in the original publication (Peters et al. 2014, 

2017). Briefly, genetically encoded calcium indicator 
(GCaMP5G or GCaMP6f) was virally expressed in the motor 

cortex of mice (C57BL/6). In the experiments, water 
deprived head-fixed mice performed a lever-press task learn-

ing. In the task, the mice learned to press a lever beyond a 

set threshold (� 3 mm) using their left forelimb within 10– 
30 s after an auditory tone was presented to receive a water 

droplet as reward (see Figure 2a). Calcium fluorescence 
images of L2/3 and L5 neuronal activity were recorded at 

�28 Hz using 2 P microscopy, from the same field of view— 
for L2/3, an area of 472 μm� 508 μm of the right forelimb 

of the motor cortex (Peters et al. 2014) and for L5, an area 
of 340 μm� 340 μm of the apical corticospinal dendrites of 

the motor cortex (Peters et al. 2017)—across 14 learning ses-
sions (1 session/day; 20–30 min/session). Meanwhile, lever 

displacement trace was recorded at 10 kHz. Regions of inter-
est (ROIs) in the calcium images were manually drawn to 

demarcate the somas or dendritic shafts of individual single 
neurons and then, aligned across sessions. Pixels within each 

ROI were averaged, and background fluorescence fluctua-
tions were subtracted from the average before calculating a 

calcium fluorescence time series (dF/F) for each neuron.

2.3. Functional connectome inference

Functional connectomes were inferred from 2p calcium 

fluorescence imaging data using FARCI, a recently devel-
oped connectome inference pipeline (Meamardoost et al. 

2021). Briefly, the input to FARCI is calcium time-series 
dF/F data. FARCI uses Online Active Set method to Infer 

Spikes (OASIS) algorithm (Friedrich et al. 2017) from the 
Suite2p package (Pachitariu et al. 2018), to deconvolve neur-

onal spiking activity from 2p calcium imaging data. 
Subsequently, the deconvolved spikes are thresholded to 

keep only significant calcium spikes (larger than μ þ 2r) 
and then, smoothened using a moving window weighted 

average (5 frames) (Meamardoost et al. 2021). As described 
in the original FARCI publication, the preprocessing steps 

above were tuned to give robust and accurate functional 
connectivity. Finally, an N � N partial correlation matrix is 

generated where N represents the number of neurons. To 
produce the adjacency matrix of the functional connectome, 

we thresholded the partial correlations, keeping only those 
that are larger than l þ 2r in each session. Each element in 

this N � N adjacency matrix represents the functional con-
nectivity between two corresponding neurons, and each pair 

of neurons forms an edge in the connectome.

2.4. Functional connectome rewiring

To study the dynamics of connectome rewiring over mul-

tiple sessions of motor skill learning, the functional connec-
tome inference as described above was applied to the 

neuronal activity data collected from different sessions sep-
arately. This step generated an ðN � NÞ adjacency matrix. 

Note that the number of neurons N differs across mice (see 
Table S1). The upper triangular part of this matrix was 

extracted and stored as a single-row adjacency vector 
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containing N N − 1ð Þ
2 

elements. The adjacency vectors from dif-

ferent sessions were then stacked to give a matrix with 
N N − 1ð Þ

2 
columns and s rows, where s is the number of 

learning sessions. Finally, Principal Component Analysis 

(PCA) was applied to this matrix—each row vector from a 

session represents an observation, while each column vector 

(partial correlation between two neurons) is a feature. The 

PC scores were used to visualize the connectome rewiring 

dynamics during motor skill learning. To check whether our 

results are consistent across different dimensionality reduc-

tion methods, we also applied Multidimensional Scaling 

(MDS) (Anon 1987) and Uniform Manifold Approximation 

and Projection (UMAP) (McInnes et al. 2020) to the func-

tional connectome matrix above.

2.5. Trial-Based Functional Connectome Activity

To evaluate the activity of functional connectome on a sin-

gle trial basis, we first extracted smoothened calcium spikes 

from movement-related frames in the respective session, as 

illustrated in Figure 1a. We applied FARCI to generate 

movement-related functional connectome for the learning 

session. The adjacency matrix of this connectome was then 

binarized—partial coefficients that are larger than l þ 2r 

are set to 1, and otherwise 0. Separately, we extracted 

smoothened calcium spikes for each rewarded trial and eval-

uated pairwise Pearson’s correlations for all neuron pairs to 

produce a correlation matrix (see Figure 1b). Finally, we 

computed the Hadamard product of the Pearson correlation 

matrix of a trial and the binarized adjacency matrix of 

movement-related functional connectome of the session, to 

give trial-based activity of the connectome (see Figure 1c). 

Following the visualization of functional connectome rewir-

ing above, we extracted the upper triangular part of the 

resulting connectome activity matrices and applied PCA to 

obtain a reduced dimensional visualization.

2.6. Time-Series PCA

Time-series PCA was applied to project neuronal population 

activity during rewarded trials to a lower dimensional space 

(Sauerbrei et al. 2020). To do so, for each rewarded trial, we 

identified the frame corresponding to movement onset (see 

Figure 1b) and extracted smoothened calcium spikes from a 

98-frame time window that was defined such that the move-

ment onset is the 15-th frame in this window. Then, we 

converted the smoothened calcium spikes of each neuron to 

z-scores by using their trial-based average and variance. 

These z-scores were then averaged across the trials in a ses-

sion, to which PCA was applied—each time point was an 

observation and the average z-score of a neuron was a fea-

ture. The resulting principal components were then used to 

visualize the time-series neuronal activity as 3D trajectory in 

PC1-3 space. We applied the above procedure to calcium 

data from each session separately.

2.7. Network connectivity Analysis

We employed four different metrics: mean degree, network 

density, transitivity, and clustering coefficient, to character-

ize the interconnectedness of the functional connectomes. 

Mean degree is the average number of connections for a 

neuron. Meanwhile, network density gives the ratio of the 

number of connections (i.e. the number of non-zero ele-

ments in the adjacency matrix) and the total possible con-

nections (i.e. N2). Transitivity is computed as the ratio 

between the number of existing closed triplets in the con-

nectome graph and the total possible number of triplets in a 

neuronal population. Finally, clustering coefficient is defined 

for each node (neuron) i as the ratio between the number of 

triangles connected to neuron i and the number of triplets 

centered on i: For a functional connectome, we evaluated 

the mean (average) clustering coefficient across all neurons. 

Both transitivity and clustering coefficients give a measure 

for the tendency of neurons to form clusters in the connec-

tome. For all of the above metrics, a higher value indicates a 

more interconnected network.

2.8. Pseudotime analysis of Trial-Based Functional 

Connectome Activity

Trial-based functional connectome activities were computed 

and PCA was applied to the connectome activity matrices, as 

described above. Pseudotime analysis was performed using 

the method Diffusion PseudoTime (DPT) that was originally 

developed for reconstructing gene expression dynamics from 

static snapshot single-cell transcriptome data of cell differen-

tiation (Haghverdi et al. 2016). DPT employs the diffusion 

map to organize data points into a nearest neighbor graph 

with weighted edges, based on which a transition matrix is 

generated. This transition matrix approximates the dynamic 

transitions across the data points, starting from a user- 

prescribed root, mimicking a random walk. We applied the 

DPT function in the Python package scanpy (Wolf et al. 

2018), specifically using the ‘umap’ kernel function for neigh-

borhood graph, with the default parameters (number of 

neighbors, n_neighbors ¼ 15 and number of diffusion com-

ponent, n_dcs ¼ 10). Each trial was represented by its PC 

scores, the number of which was determined so that the 

cumulative explained variance reached 95% of the total vari-

ance. The first trial from the first session was assigned to be 

the root node that corresponds to the pseudotime of 0. 

Finally, Pearson correlations between the cue-to-reward time 

and pseudotime were computed for Sessions 1–4 (first phase) 

and Sessions 5–14 (second phase) of learning. To establish 

the statistical significance, Fisher z-transformation was first 

applied to the correlations (Fisher 1921) and then, a two- 

sided two-sample t-test was applied to their difference.

2.9. Classification and Analysis of Movement-Related 

Neurons

We followed the procedure outlined in the original publication 

to classify neurons as ‘movement-related’ (Peters et al. 2014). 

DATA SCIENCE IN SCIENCE 3



The classification was performed based on the level of neur-
onal activity during movement epochs. Briefly, binarized lever 

traces were used to label the calcium fluorescence imaging 

frames into movement and quiescent epochs. The mean activ-

ity of each neuron was computed over the movement epochs 

in a session. Subsequently, the movement and quiescent 

epochs were shuffled, thereby randomizing the relative pos-

ition of these epochs with each other. The mean activity of 

neurons for the shuffled epochs was computed in each shuffle, 

and this shuffling was repeated 10,000 times. A neuron was 

classified as movement related if its mean activity during the 

movement epochs was higher than the 0.5th percentile of the 

10,000 mean activities computed for the randomly shuffled 

epochs.
To evaluate the fraction of movement related neurons in 

the edges that account for the largest connectome changes 

over learning, we first sorted edges based on their loadings to 
PC1 in the above PCA of functional connectome rewiring in 

descending order. Subsequently, we identified two groups: the 

highest 100 edges (top positive PC1 loadings) and the lowest 

100 edges (top negative PC1 loading). For each group, we 

compiled neurons that are incident to these edges—two for 

every edge–resulting in a set of 200 non-unique neurons for 

each group. For each neuron in these groups, we calculated 

the number of times that it was classified as movement- 

related across different periods of learning: sessions 1–2, 3–5, 

6–9, and 10–14. The fraction of movement-related neurons 

was computed by dividing the total number of times that the 

top PC1 neurons are classified as movement-related with the 

total number of neurons multiplied by the number of 

sessions in the learning period (i.e. 200 x m, where m is the 

number of sessions in a learning period. For example, for ses-

sions 6-–9, m is 4). To establish the significance level, we 

repeated the above procedure using 100 edges that are ran-

domly sampled from the union of edges in the connectomes 

across all sessions, for a total of 1000 times. To establish stat-

istical significance, we evaluated the kth upper percentile 

associated with the fraction of movement-related neurons for 

each learning period with respect to the distribution of the 

fraction from the random sampling of edges.

2.10. Evaluation of Session-to-Session Changes in 

Functional Connectivity

To assess the degree to which neurons change their connect-

ivity during motor learning, we first computed functional 

connectome in each session and evaluated the number of 

connections that change between two consecutive sessions 

for each neuron. Next, for a given group of neurons, we 

computed the average session-to-session change in connect-

ivity as the ratio of total number of altered connections 

across all the neurons to n � ðs − 1Þ where n and s are the 

number of neurons and sessions, respectively.

2.11. Identification of Core, Naive Phase, Expert Phase, 

and Other Neurons

We classified neurons based on their connectivity changes 

into four types: Core, Naïve Phase (NP), Expert Phase (EP), 

Figure 1.  Data processing for the inference of functional connectome and trial connectome activity. a. Functional connectome inference pipeline. For each ses-
sion, FARCI is applied to produce the functional connectome. b-c. Trial-based connectome activity. Pairwise Pearson’s correlations are computed using the activities 
of neuron pairs for a rewarded trial (cue-to-reward), which are then filtered using a binary adjacency matrix obtained from functional connectome, to give the con-
nectome activity of the trial.
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and Other (O). The classification used the PCA of the func-
tional connectomes described above. For each mouse, we 
determined the set of edges in the functional connectome 

that are associated with highly positive and negative PC1 
loadings using a threshold determined by the knee detection 
algorithm (Satopaa et al. 2011). Then, we identified two sets 

Figure 2.  Neuronal population activity of L2/3 and L5 regions of primary motor cortex M1 in lever-press task learning. a. Lever-press task schematic. b. Mean 
duration between cue and reward, averaged across all rewarded trials from each session. c, d. Scores of the first three principal components (PCs) of neuronal popu-
lation activity across sessions in L2/3 (Mouse L2/3-1) and L5 (Mouse L5-1) regions, respectively. Dark lines show the average values among trials. The neuronal 
population activities were extracted from a 98-frame window of every rewarded trial. The window was anchored by the movement onset time, which was set to be 
the 15th frame in this window. The green dot marks the starting time point.

DATA SCIENCE IN SCIENCE 5



of neurons, one set that is incident to connectivity from the 

top positive PC1 loading and another to the top negative 

PC1 loadings. Neurons belonging to both sets are labelled as 

Core neurons. Those that are associated with only the top 

positive PC1 loadings are labeled as EP, while those associ-

ated with only the top negative PC1 loadings as NP. 

Neurons that are not in the three sets above are called 

Other (O) neurons.

2.12. Correlations with Expert (Learned) Activity and 

Movement Pattern

To examine the similarity of neural population activity in an 

individual trial to the learned expert activity or the similarity 

of movement to the learned movement pattern, we per-

formed correlation analysis. Neuronal spiking activity data 

were preprocessed as above. The expert activity and move-

ment patterns refer to the average activity and movement in 

84-frame windows of rewarded trials over sessions 10-14. 

The first frame in this 84-frame window corresponds to the 

movement onset.

2.13. Linear Decoders of Neuronal Activity to Lever 

Position

To map neuronal activity to movement for each group of 

neurons, we used pre-processed neuronal spiking activity 

data as above. Rewarded trials in each session were then 

split randomly into train and test sets at 80% and 20% ratio, 

respectively. For a given session, a decoder was trained using 

linear regression (ordinary least square) to predict lever pos-

ition (i.e. lever voltages) from the spike data of a specific set 

of neurons (Core, EP, NP, and O neurons). The perform-

ance of the trained linear decoder was then assessed by 

computing the correlations between the predicted and actual 

lever positions (measured in voltages) using data from the 

test set. In addition, an expert decoder was trained using the 

combined data from sessions 10–14, and its performance 

was tested on the data from sessions 1–3.

3. Results

3.1. Motor Skill Learning Reconfigures Functional 

Connectome in the Motor Cortex

Lever-press task learning experiments were previously car-

ried out where water-deprived head-fixed mice (n¼ 7) 

learned to press a lever in response to an auditory cue in 

order to receive a water droplet reward. Neuronal activity 

from L2/3 or L5 of mouse primary motor cortex (M1) were 

recorded using 2p calcium imaging (see illustration in 

Figure 2a) (Peters et al. 2014, 2017). The average times 

between the cue and the corresponding reward decreased 

with learning (see Figure 2b), indicating that these mice 

were able to acquire reward increasingly more efficiently.
Lever-press task learning reshaped the neuronal activity 

in M1 L2/3 generating reproducible neuronal activity pattern 

and more consistent relationship between neuronal activity 

and movements (Peters et al. 2014). Time-series PCA of 

L2/3 neuronal activity in Figure 2c confirms the emergence 

of more consistent temporal activity pattern with learning 

(see Supplementary Figure S1–6 for the complete results) 

with increased synchronization of activity at or around the 

movement onset. In contrast, the activity of L5 corticospinal 

neurons did not become more consistent with learning. 

Rather, learning led to more dissimilar neuronal activity for 

dissimilar movements (Peters et al. 2017). In congruence 

with these observations, time-series PCA of L5 neuronal 

activity as shown in Figure 2d shows a lack of trial-to-trial 

coherence across the learning sessions (see Supplementary 

Figure S7–14 for the complete results). Thus, lever-press 

task learning induces distinct reorganizations of neuronal 

population activities and thus the functional connectome in 

different layers of M1.
To study functional connectome rewiring dynamics asso-

ciated with lever-press task learning, we used partial correla-

tions of neuronal spikes, computed using a recent 

connectome inference method FARCI, to establish func-

tional connectivity among excitatory neurons in L2/3 and in 

L5. Figure 3a displays L2/3 functional connectome rewiring, 

projected to the first two PC axes (see Methods), portraying 

homogeneous common trajectories for different animals (see 

Supplementary Figure S15 for individual mice using PCA). 

The similarities in the rewiring trajectories are not depend-

ent on the thresholding of the partial correlations (see 

Supplementary Figure S16 for results without thresholding), 

nor on the dimensionality reduction technique since MDS 

(Anon 1987) and UMAP (McInnes et al. 2020) also generate 

rewiring trajectories that are similar among mice (see 

Supplementary Figure S17-18). The rewiring trajectories 

show that the strongest contributor to the functional con-

nectome variation across sessions is associated with learning. 

The first two PCs together explain between 52% to 62% of 

the total variance (Supplementary Figure S15). Figure 3b–c

illustrate the dynamics of the average partial correlations 

associated with the 100 most positive and most negative 

loadings from the first and second PCs (i.e. PC1 and PC2). 

The dynamics indicates the continuous (monotonous) gain 

or loss of functional connections along the PC1 axis, and 

transitory gain or loss of connections along the PC2 axis. 

Finally, Figure 3d illustrates the connectivity changes in the 

functional connectomes (mean degree, network density, 

transitivity, mean clustering coefficients) over the animals in 

the study, showing a sharp increase in the functional inter-

connectedness among neurons during the first 3–4 sessions, 

followed by a more gradual decrease in connectivity during 

the remaining sessions. The increase (decrease) in functional 

connectivity reflects the overall strengthening (weakening) of 

partial correlations of the neuronal firing activity. The 

results above suggest a common rewiring dynamics of L2/3 

functional connectomes among the mice subjected to lever- 

press task learning, where the functional connectome quickly 

increases its degree of connectivity (increased co-firing 

among neurons) during the initial stages of learning and is 

then pruned to bring network interconnectedness toward 

the same level as that before learning.
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Figure 4a–c gives the functional connectome rewiring 

dynamics for L5 (see Supplementary Figure S19–21 for individ-

ual mice using PCA, MDS, and UMAP projection). 

Interestingly, despite the differences between L2/3 and L5 in 

how lever-press task learning alters neuronal activities, similar 

rewiring trajectories are observed across all mice in these layers. 

The first PC axis is again associated with the stable monoton-

ous gain or loss of functional connections related to learning, 

while the second PC axis captures the transitory gain or loss of 

functional connections. The top two PCs cumulatively explain 

between 61% to 77% of the total variance among the connec-

tomes from different sessions (Supplementary Figure S19). 

Figure 4d gives the dynamic changes in network interconnect-

edness for the functional connectomes in L5, showing similar 

dynamics, albeit more subdued and delayed when compared 

with those in L2/3. The similarities in the functional 

Figure 3.  Functional connectome rewiring in L2/3 during lever-press task learning. The shaded areas indicate s.e.m., computed over the mice in the study. a. 
Connectome rewiring trajectories. Functional connectomes are projected onto PC1 and PC2 axes (see Methods). b–c. Average partial correlation coefficients of top 
100 edges based on positive and negative magnitudes of PC1 and PC2 loadings. d. Network connectivity metrics of the functional connectomes. To aid comparison, 
normalized metrics are shown, using the highest value of each metric across sessions and animals as a scaling factor (see Supplementary Figure S24 for full results).
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connectome rewiring dynamics between L2/3 and L5 suggest 

the existence of a common operating principle in M1.

3.2. Connectome Rewiring in Motor Cortex is a Biphasic 

Process

Next, we studied how functional connectome activity is related 
to motor task performance on a trial-by-trial basis. To this 

end, we evaluated functional connectome activities using gated 

pairwise Pearson correlations of neuronal calcium spike activ-

ities in rewarded trials (see Methods), providing a measure for 

the co-firing activity of connected neurons. Figure 5 depicts 

the L2/3 functional connectome activities from rewarded trials 

in individual mice, and their associated cue-to-reward times. 

Expectedly, the functional connectome activities across ses-

sions follow a similar trajectory in the PC1-PC2 projection 

Figure 4.  Functional connectome rewiring in L5 during lever-press task learning. The shaded areas indicate s.e.m., computed over the mice in the study. a. 
Connectome rewiring trajectories. Functional connectomes are projected onto PC1 and PC2 axes (see Methods). b–c. Average partial correlation coefficients of top 
100 edges based on positive and negative magnitudes of PC1 and PC2 loadings. d. Network connectivity measures of the functional connectomes. To aid compari-
son, normalized metrics are shown, using the highest value of each metric across sessions and animals as a scaling factor (see Supplementary Figure S25 for full 
results).
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(x-y axes) to the rewiring dynamics shown above. We noted 
that the relationship between L2/3 functional connectome 
activity and task performance can be divided into two phases: 
in the first phase (up to session 3–4), alterations in the func-
tional connectome activities are associated with a rapid 
improvement in motor performance leading to a sharp drop 
in the cue-to-reward time. In the subsequent phase, functional 
connectome activities continue to change while motor per-
formance remains stable. Interestingly, as shown in Figure 3a 
& d, the first phase is marked by a sharp increase in the con-
nectivity of the functional connectomes, while the second 
phase corresponds to a period of gradual pruning of the con-
nectome. Figure 6 shows the L5 functional connectome activ-
ity and the motor performance for every rewarded trial from 
individual mice. Consistent with the key findings of the ori-
ginal study (Peters et al. 2017), the activity of L5 functional 

connectomes has a weaker relationship with the motor per-
formance in comparison with L2/3.

To establish the observed biphasic process more firmly, we 
evaluated the correlations between the cue-to-reward times 
and the learning-related trajectory of the functional connec-
tome activities. For this purpose, we applied an analysis com-
monly used in single-cell studies, called pseudotime analysis, 
to the functional connectome activities (see Methods). Here, 
the pseudotimes reflected the progression of motor-skill learn-
ing, where the first trial of the first session was set to be the 
“root cell.” The DPT method (see Methods) generated the 
pseudotime for each trial activity based on a random walk 
(diffusion), starting from the root (pseudotime ¼ 0) and end-
ing at the trial activity furthest away from the root (pseudo-
time ¼ 1). The results of the pseudotime analysis for L2/3 and 
L5 are provided in Supplementary Figure S22.

Figure 5. L2/3 connectome activity versus cue-to-reward time for rewarded trials. Each circle represents a rewarded trial and its color denotes the session number. 
The surface interpolation was done using MATLAB function cftool. The cue-to-reward time of each trial is projected onto the surface for visualization purposes.

Figure 6.  L5 connectome activity versus cue-to-reward time for rewarded trials. Each circle represents a rewarded trial and its color denotes the session num-
ber. The surface interpolation was done using MATLAB function cftool. The cue-to-reward time of each trial is projected onto the surface for visualization 
purposes.
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Figure 7 compares the correlations for the first (Sessions 

1–4) and the second phase (Sessions 5–14) for L2/3 and L5. 

The pseudotimes of L2/3 in the first phase of learning are 

negatively correlated with the cue-to-reward times (Figure 

7a), suggesting that the learning-related trajectory here is 

associated with an improvement in motor performance. In 

comparison, the second phase of learning has markedly 

lower correlation (i.e. less negative). This trend agrees with 

the biphasic learning mentioned earlier. In contrast to L2/3, 

the pseudotimes of L5 show a mixture of positive and nega-

tive correlations (Figure 7b). That is, the association between 

the learning-related trajectory of L5 connectome activities 

and motor performance is weaker or less consistent than 

L2/3, in general agreement with the previous study (Peters 

et al. 2017).

3.3. Connectome Rewiring Revolves around a Core Set 

of Movement-Associated Neurons

The PCA findings above revealed insights related to altera-

tions in the functional connectivity associated with learning. 

In the following, we focused on neurons in L2/3 that are 

most significantly impacted by motor learning. For this pur-

pose, we identified functional connectivity edges that have 

the most highly positive and negative PC1 loadings of the 

connectome, as these reflect connectivity that is stably and 

significantly strengthened and weakened with learning, 

respectively (see Methods). From these edges, we obtained 

two groups of neurons: one group of neurons that are inci-

dent to the top positive PC1 connectivity edges and another 

incident to the top negative PC1 edges. Note that these 

groups are not mutually exclusive (i.e. there are neurons 

that belong to both groups). We analyzed the association of 

these neurons with lever movement by quantifying the frac-

tion of movement-related neurons—defined as neurons that 

have significantly higher activity during movement epochs 

than during non-movement epochs (see Methods)—in each 

group. Specifically, we evaluated the fractions of neurons in 

each group that are movement-related in different learning 

phases: session 1–2 (naïve), 3–5 (early), 6–9 (mid), and 10– 
14 (expert). As shown in Figure 8a, neurons from the top 
positive PC1 loading become more associated with move-
ment with learning, while those from highly negative PC1 
loadings do not exhibit a clear trend. As expected, L5 neu-
rons associated with their respective top positive and nega-
tive PC1 loadings have weaker connection with movement 
than L2/3 neurons, as indicated by lower fractions of move-
ment-related neurons (see Supplementary Figure 23).

In the following, we further subcategorized the two 
groups of neurons into three classes: Core, Naïve Phase 
(NP), and Expert Phase (EP). Core neurons are those associ-
ated with functional connectivity belonging to both top posi-
tive and negative PC1 loadings, and as such, they represent 
neurons that undergo the most extensive rewiring during 
motor learning (see Figure 8b and Supplementary Figure 
26). EP (NP) neurons are associated exclusively with the top 
positive (negative) PC1 loadings, and they gain (lose) func-
tional connectivity with learning. Neurons whose edges are 
not associated with top PC1 loadings are called other (O) 
neurons. Core neurons make up 35.68 ± 3.30% (mean-
± s.e.m.) of L2/3 neurons. On the other hand, NP and EP 
neurons comprise 18.64 ± 1.50% and 24.67 ± 1.65% (mean-
± s.e.m.) of the L2/3 neuronal population, respectively (see 
Figure 8c). Core neurons are more frequently movement 
related than all other groups of neurons over the learning 
period, as shown Figure 8d. Table 1 confirms that move-
ment-related neurons are significantly overrepresented 
among Core neurons, but not the other classes of neurons. 
Meanwhile, NP (EP) neurons become less (more) move-
ment-related with learning. Therefore, the neurons that are 
most extensively rewired during learning are strongly associ-
ated with movement.

Looking at the connectivity more closely, Core neurons 
maintain a relatively stable mean degree of connectivity 
across the learning sessions, as shown in Figure 9a, despite 
the fact that they are extensively rewired. This stability sug-
gests that connectivity loss with learning is balanced by con-
nectivity gain. Meanwhile, NP (EP) neurons show a 
decreasing (increasing) degree of connectivity with learning 

Figure 7.  Correlations between the cue-to-reward time and pseudotime. Statistical significance was performed using two-sided two-sample t-test of Fisher z- 
transformed correlations (�: p-value < 0.05, ��: p-value < 0.01).
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(see Figure 9a). Figure 9b further shows that Core neurons 
have a higher intragroup than intergroup connectivity, i.e. 
Core neurons are connected mostly among themselves. In 
addition, Core neurons start with a higher connectivity with 
NP than EP neurons, but this is reversed over the course of 
learning where the loss of Core-NP connectivity is coun-
tered by the gain of Core-EP connectivity. This balancing 
between the strengthening and weakening of connectivity 
agrees with the observation that learning-induced rewiring 
in L2/3 maintains a homeostatic number of connectivity, 
and further reveal that the connectome rewiring concen-
trates on a core group of neurons that form highly con-
nected sub-connectome with each other.

Next, we analyzed how motor-skill learning affects the 
activity of the different neuronal groups and its relationship 
with movements in rewarded trials. As shown in Figure 10a, 
Core neurons maintain a stable mean activity over the entire 
learning period that is relatively higher than the other 
groups of neurons (Figure 10a). NP and EP neurons follow 
an opposite trend in mean activity: a decrease for NP and 
an increase for EP (Figure 10a). The activity of Core and EP 

neurons become more reproducible with learning, while NP 
and O neurons do not (Figure 10b). As described in the ori-
ginal study (Peters et al. 2014), learning leads to an emer-
gence of reproducible neuronal activity in L2/3 and 
stereotyped movement, such that movements that are more 
similar to the stereotyped pattern are associated with neur-
onal activities that are also more similar to the learned activ-
ity pattern (Figure 3b in Peters et al. (Peters et al. 2014) and 
Figure 10c). Figure 10d–g shows that such learning-associ-
ated activity-movement relationship also emerges for the 
above groups of neurons, but it is the most prominent for 
Core neurons, followed by, in decreasing degree, EP, NP, 
and O neurons. Interestingly, even during the initial (naïve) 
phase of learning, the activity of Core neurons already 
resembles the learned activity pattern more closely when 
movements are highly correlated with the stereotyped expert 
pattern (movement correlation > 0.5), when compared with 
the other groups of neurons (see Figure 10h). The analysis 
above shows that Core neurons and their rewiring play a 
significant role in the emergence of stereotyped activity and 
movement patterns with motor-skill learning.

Finally, we investigated the differences across the groups 
of neurons in terms of encoding movement in their neur-
onal activity. To do so, for individual groups of neurons, we 
trained linear decoders that predict lever positions (lever 
voltages) from their neuronal activity (thresholded and 
smoothened spikes) for every session—called session 
decoders (see Methods). Figure 11a shows example test data 
of actual and predicted lever positions, while Figure 11b 

Figure 8.  Analysis of top PC1 neurons in L2/3. a. Fractions of neurons from the top positive and the top negative PC1 loadings that are classified as movement 
related (� 5th upper percentile, ����0.01th upper percentile). b. Session-to-session connectivity change among core and non-core neurons. ���� p-value < 10-4 

(two-sided two sample t-test). c. Fractions of core, NP, EP and O neurons (n ¼ 6 mice). d. Fractions of movement-related neurons among core, NP, and EP groups. 
In all figures, shaded regions and error bars represent s.e.m. (a and d) across all animals or (b) across neurons for each animal.

Table 1. Over-representation of movement-related neurons in Core, NP, EP, 
and Other neurons in L2/3.

Session 1–2 Session 3–4 Session 6–9 Session 10–14

Core Neurons 4.569� 5.876� 5.773� 5.446�

NP Neurons 1.494 0.938 0.531 0.217
EP Neurons 0.221 0.461 0.715 1.314
O Neurons 0.129 0.102 0.105 0.077

The values indicate odds ratio. �p-value < 0.0001 (Fisher exact test).
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gives their correlations for the test data that were not used 
in the training of the decoders. Session decoders for Core 
neurons have the highest correlations, implying that Core 
neurons encode movements in their activity more strongly 
than the other groups of neurons. Besides, learning generally 
improves the accuracy of session decoders, indicating that 
there is an increase of movement-encoding within the neur-
onal activity of all groups of neurons in L2/3. The most sig-
nificant learning-induced improvement is for EP neurons, 
followed by Core neurons, with only a small increase for NP 
and O neurons. We also tested the ability of linear decoders 
trained using data from the expert phase (session 10–14)— 
called expert decoders—to predict movements (lever posi-
tions) in the naïve phase (session 1–3). The correlations 
from these expert decoders are expectedly lower than using 
the respective session decoders (comparing Figure 11b and 
11c). Still, expert decoders of Core neurons predict move-
ments in the naïve phase significantly better than expert 
decoders of the other groups (p-value < 10−10), and com-
parable to the session decoders from each respective group. 
This result points to the stability of movement encoding by 
Core neurons over the course of learning, suggesting that 
learning-related rewiring might be centered around produc-
ing a stable activity pattern in a core set of neurons that 
maintain reliable relationship with movements.

4. Discussion

The motor cortex plays a critical role in motor skill learning 
for integrating sensory information, establishing a motor 
plan, and executing movements (Li and Waters 1991; 
Pronichev and Lenkov 1998; Ferezou et al. 2007; Tennant 
et al. 2011; Guo et al. 2015; Li et al. 2016; Makino et al. 
2016; Hwang et al. 2019a, 2019b; Sauerbrei et al. 2020). In 
previous studies, lever-press task learning has been associ-
ated with the reorganization of neuronal population activity 
in L2/3 and L5 of the mouse M1, as measured by in vivo 
two-photon calcium imaging. In L2/3 neurons, consistent 
spatiotemporal population activity emerges accompanying 
learned movements (see Figure 2c), leading to a stronger 
correlation between movement similarity and neuronal activ-
ity similarity (Peters et al. 2014). In L5, despite the same 
motor learning as L2/3, no consistent neuronal population 

activity was observed (see Figure 2d), but instead dissimilar 
movements became further decorrelated (Peters et al. 2017). 

The contrasting learning-induced reorganizations of neuronal 
activity across different layers in the primary motor cortex 
suggest differences in their roles and functional objectives 
during motor learning (Peters et al. 2014, 2017).

Interestingly, despite the overt differences in how lever- 
press task learning affects the neuronal population activities 
in L2/3 and L5, their functional connectomes—as measured 

by partial correlations of calcium spikes—show similar 
rewiring trajectories (see Figure 3 & 4). Specifically, our ana-
lysis shows that the functional connectomes in both layers 
rewire to become more interconnected during the first few 

learning sessions (Sessions 1–4), whereby the statistical 
dependencies of neuronal activities strengthen. In the later 
sessions, functional connections are gradually pruned, 
reflecting weakening correlations of neuronal activities. This 
result agrees well with a transient increase of L2/3 spine 

density measured in mice undergoing the same motor task 
learning, suggesting that changes of the functional connect-
ivity in L2/3 are connected, at least partly, to learning- 
related plasticity of dendritic spines (Peters et al. 2014).

Meanwhile, the rewiring in L5 functional connectomes is 
associated with more subdued and delayed changes in net-
work interconnectedness when compared to L2/3 functional 

connectomes: L5 peaking at around the 7th learning session 
vs. L2/3 peaking at roughly the 3rd learning session (see 
Figures 3d and 4d). While it is known that L2/3 neurons 
project to L5, the lack of coherence in learning-induced 

changes of neuronal activity patterns and the differences in 
magnitude and speed of rewiring dynamics between the two 
layers suggest a weak inter-layer coordination of neuronal 
communications. That is, while the functional connectome 
rewiring in L2/3 and L5 occurs relatively independently of 

each other, both appear to engage the same rewiring 
principle.

Our analysis further strengthens the overt connection 
between spatiotemporal neuronal population activity in L2/3 
and lever movement. By quantifying the functional connec-
tome activity on a trial-to-trial basis, we demonstrated a 
strong correlation between functional connectome activity 

changes across trials with improved motor performance, as 
measured by the cue-to-reward time, in the early learning 

Figure 9.  Connectivity of top PC1 neurons. a. Mean degree of connectivity. b. Mean degree connectivity of Core neurons with Core, NP, EP, and Other neurons. 
The shaded area denotes s.e.m. computed across all animals.
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sessions (Sessions 1–4, see Figures 5 and 7). This period 

coincides with a sharp increase in the interconnectedness of 

the functional connectome. Thus, L2/3 functional connec-

tomes appear to initially adopt higher interconnectivity 

when optimizing for motor performance. In the second half 

of the experiments (session 8–14), functional connectomes 

and their activities continue to rewire, where functional con-

nectivity is gradually pruned, even after the cue-to-reward 

Figure 10.  Neuronal activity and movement encoding. a. Mean neuronal activity of different groups in learning trials. b. Trial-to-trial activity correlation for differ-
ent groups of neurons. (c–g) Correlations of activity vs. movement with respective expert patterns in cued trials (84-frame window) for all (c), Core (d), NP (e), EP 
neurons (f), and Other neurons (g). Naïve refers to session 1-3 and expert to session 10-14. h. Neuronal activity correlation with learned pattern for expert-like 
movements (corr. > 0.5) in naïve sessions. ���� p-value < 0.0001 (one-sided paired t-test). Error bars indicate s.e.m computed across all L2/3 animals.
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time reaches a plateau. On the other hand, the correlation 
between the changes in the functional connectome activity 
and motor performance is visibly less prominent in L5 when 
compared with L2/3 (Figures. 6 and 7).

The results of these analyses suggest that a common 
rewiring dynamics underpin learning-induced changes in 
L2/3 and L5 in the mouse primary motor cortex. The over-
lap of time periods when L2/3 functional connectomes 
sharply increase their degrees of connectivity and when the 
cue-to-reward times markedly improve, suggests that higher 
interconnectedness has a functional relevance in terms of 
motor performance. The overt higher level of connectivity 
in the functional connectomes is consistent with an explor-
ation of network state space—the space of network struc-
tures—to optimize a learning-related functional objective. 
Once the learning-related objective reaches an optimal 
(desirable) level, the functional connectome rewiring dynam-
ics engages a different trajectory to return to homeostatic 
level of network connectivity and presumably a network 
state with high energetic efficiency. Thus, functional connec-
tome rewiring appears to be driven by multiple objectives, 
where the dominant objective switches from one to another 
across learning and/or these objectives have large time-scale 
separation.

Further analyses focused on L2/3 neurons whose func-
tional connectivity are most significantly altered by learn-
ing—i.e. neurons associated with the shift along the PC1 
scores between naïve and expert sessions in Figure 3. The 
analyses showed how learning-induced rewiring clusters 
around a core set of movement-associated neurons (Core 
neurons). Core neurons form a highly interconnected hub 
in the connectome where these neurons are highly intercon-
nected among each other. Learning heavily adds and 
removes connectivity among these neurons, but in a manner 
that maintains the overall degree of connectivity, i.e. losses 
of connectivity are balanced by gains. Further, Core neurons 
reliably encode movements in response to cues even in the 

naïve phase, and learning-associated rewiring further 
improves their movement encoding. Beside the aforesaid 
Core neurons, there are also neurons that steadily gain and 
lose connectivity with learning, i.e. EP and NP neurons, 
respectively. While the gain of connectivity among EP neu-
rons is associated with increased association of their activity 
with movement, the loss of connectivity among NP neurons 
does not significantly affect their activity-movement rela-
tionship. These distinct patterns of connectivity changes 
among the three different neuronal groups and their rela-
tionship to movements suggest that motor learning is 
accompanied by neuronal rewiring that reinforces the activ-
ity pattern of Core neurons that reliably encode the learned 
movement.

There are important limitations to the present study. 
First and foremost, this study adopted a fully data-driven 
approach using statistical dependencies of neuronal activities 
to inform on the reorganizations of functional connectivity 
among neurons in L2/3 and L5 of the M1 during motor skill 
learning. While such learning-related changes may arise 
from the physical formation and loss of synaptic connec-
tions among these neurons—as indicated by the previously 
reported rise-then-fall dynamics of synaptic bouton density 
in L2/3 during the same motor learning (Peters et al. 
2014)—they may also come from other sources, for example 
alterations in the input signals to the M1 from other brain 
regions such as parietal, premotor, and frontal cortices, as 
well as the somatosensory cortex (Mateer and Sira 2003). 
Also, because partial correlations are symmetric, the identity 
of the pre- and post-synaptic neurons is missing. The lack 
of such information prevents more detailed insights into the 
organizational principles of motor learning (e.g. changes in 
the proportion of pre- and post-synaptic neurons). Lastly, 
the study focused on a 14-session (2-week) learning period. 
Long term studies of motor learning (1–2 months) have 
shown the disengagement of M1 from movement control 
while animals maintain the learned movements (Hwang 

Figure 11.  Encoding of movement in neuronal activity via linear decoders. a. Correlations between actual and predicted movement based on linear decoders 
built for each session and used to predict movements of the unseen trials of the same session. b. Correlations between actual and predicted movement for naïve 
sessions (session 1-3) using a linear decoder trained using data from expert sessions (session 10–14). ���� p-value < 0.0001 (two-sided two-sample t-test). Error 
bars indicate s.e.m computed across animals.
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et al. 2019a, 2021). This observation suggests that connec-

tome reorganization in motor learning continues beyond the 

period of this study and involves other brain region(s) 

besides the M1.

5. Conclusion

In lever-press task learning, distinct reorganizations of neur-

onal activity occur in the L2/3 and L5 of M1, reflecting dif-

ferent roles and functional objectives across layers during 

motor learning. However, the analysis of functional connec-

tomes over the learning sessions, reconstructed from neur-

onal activities using partial correlations, reveals similar 

rewiring trajectories in L2/3 and L5. Specifically, increased 

functional interconnectivity (stronger coordination of neur-

onal firing) during the early phase of learning, followed by 

connectivity pruning in the later sessions, highlights the 

shared principle of rewiring between L2/3 and L5 of M1. 

Further, the reorganization of connectome activity in L2/3, 

but not L5, during the early learning phase overlaps with 

marked improvement of the motor performance, suggesting 

the functional relevance of higher interconnectivity in L2/3 

for motor optimization. In the later phase, the rewiring 

dynamics appear to favor a return to a homeostatic level of 

network connectivity, indicating a shift in the rewiring 

objective. Lastly, learning-induced rewiring particularly 

impacts a core set of movement-associated neurons in L2/3, 

and this reinforces the activity patterns that encode the 

learned movement. Overall, this study significantly enhances 

our understanding of the functional connectome rewiring 

dynamics during motor learning.
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