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The cytochrome P450 (CYP450) enzyme system is responsi-
ble for the metabolism of more than two-thirds of xenobi-
otics. This review summarizes reports of a series of in silico
tools for CYP450 enzyme–drug interaction predictions,
including the prediction of sites of metabolism (SOM) of a
drug and the identification of inhibitor/substrates for CYP
subtypes. We also evaluated four prediction tools to identify
CYP inhibitors utilizing 52 of the most frequently pre-
scribed drugs. ADMET Predictor and CYPlebrity demon-
strated the best performance. We hope that this review
provides guidance for choosing appropriate enzyme predic-
tion tools from a variety of in silico platforms to meet
individual needs. Such predictions are useful for medicinal
chemists to prioritize their designed compounds for further
drug discovery.
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Drug fate after administration
Drugs, most of which are xenobiotics, can cause changes in
human physiological or psychological conditions after consump-
tion. To date, there are over 20 000 prescription drug products
approved by the US Food and Drug Administration (FDA),1

aimed at a range of common and rare diseases. After a drug is
administered, it can be absorbed, distributed, metabolized and
excreted (ADME) via different mechanisms according to its com-
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pound properties, which are important factors for determining
its pharmacokinetics (PK).
Phase I and II metabolism
Drug metabolism in the human body involves enzymatic and
endobiotic compound-mediated structural modifications of
drugs. It occurs in two phases: phase I and phase II (Figure 1).2

Phase I encompasses functionalization reactions, such as hydrol-
ysis, reduction, and oxidation, and primarily occurs in the
www.drugdiscoverytoday.com 1

mailto:jun�mei.wang@pitt.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2023.103728&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2023.103728&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.drudis.2023.103728&domain=pdf
https://doi.org/10.1016/j.drudis.2023.103728


Drug Discovery Today

FIGURE 1
Schematic of drug disposition and in silico prediction of drug metabolism.
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liver,2–5 where cytochrome P450 (CYP450) contributes to over
two-thirds of xenobiotic metabolism.6,7 Prodrugs can be con-
verted to active metabolites or can deactivate active parent drugs,
altering their bioavailability and toxicity.3

Phase II metabolism, known as conjugation reactions,
involves further biotransformation of phase I drug metabolites
to reduce their toxicity and increase their hydrophilicity.7 Drugs
increase in molecular weight and polarity, making them less
likely to diffuse across membranes, facilitating excretion.7,8 This
phase occurs primary in the liver, followed by the kidney, gut,
and lung.8
Importance of, and barriers to, drug metabolism
prediction
The metabolic properties of a drug have a crucial role in PK
research. The expression levels of various drug metabolic
enzymes can vary significantly among individuals. For instance,
genetic variations in CYP2C9 and CYP2C8 can result in distinct
concentration–time profiles of oral antidiabetic drugs, leading to
potential hypoglycemia in individuals with poor metabolism
resulting from over-regulation.9 Additionally, drug metabolic
enzymes can be influenced by various factors in clinical settings,
such as drug–drug interactions (DDIs),10,11 drug–disease interac-
tions,12–14 drug–food interactions,15–17 and scenarios involving
multiple treatments, especially in older patients.18 All these fac-
tors collectively contribute to determining drug susceptibility
during the metabolic phase, as reflected by the kinetic constants
of metabolic enzymes for specific drugs. Therefore, achieving
optimal dosing based on drug metabolic levels is crucial for pre-
cision medicine. This approach allows for maximum drug effi-
cacy while mitigating potential adverse effects. However,
acquiring experimental data or predicting in silico drug metabo-
lism parameters, including the identification of inhibitors/sub
strates/inducers and the prediction of metabolic enzyme kinetic
constants, is challenging because of the complex interplay of fac-
tors involved in drug biotransformation once they enter the
body. Relevant in vitro and in vivo experiments are costly and usu-
ally take weeks to months to conduct19; moreover, in vivo/in vitro
2 www.drugdiscoverytoday.com
extrapolation (IVIVE) knowledge requires further develop-
ment.20,21 For computational prediction tools, cases always need
to be flawless for the construction of prediction models and even
then, discrepancies can occur.22
In silico prediction for drug metabolism
With the development of computational technology, computer-
aided drug design (CADD) and development is having an increas-
ing role.23 The elevation of calculation accuracy has contributed
to more reliability of in silico prediction for drug metabolism.24

The prediction techniques used this field started to emerge
around the start of the century,25,26 and cover the drug interac-
tion with both phase I and phase II enzymes, potential SOM,
whether a compound is a potential substrate, inhibitor or indu-
cer, and possible compound metabolites.27,28 The prediction
quality of such approaches has been improved by using
advanced algorithms and enlarged data sets as more drug meta-
bolism information has been acquired and summarized.
Ligand-based metabolism prediction, structure-based metabo-
lism prediction, and machine learning are the main computa-
tional techniques used.29–31 Although the prediction
performance among different studies is not precisely comparable
given their different data sizes and evaluation matrixes, the over-
all prediction quality is still increased.31–49 Computational pre-
diction technologies of drug metabolism properties have also
been applied to hit/lead optimization and dosing development/
optimization.50,51

To date, only a few publications have reviewed drug metabo-
lism prediction.52,53 Most studies only provide a general over-
view of the metabolism prediction of CYP450 enzymes, but
lack detailed information on specific CYP enzyme subtypes. A
few review articles included metabolism predictions for CYP sub-
types,54,55 but some important tools were missing and more tools
have been developed since. Furthermore, these reviews solely
focused on the performance reports of the tools provided by
the developers. The actual performance of these tools by users
has not yet been compared and neither have their user-
friendliness and the level of prediction flexibility (such as the
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ability to manually adjust prediction criteria according to user
preference) been thoroughly examined. Consequently, users face
difficulties in selecting the most suitable metabolism prediction
tool from a multitude of prediction servers.

This review briefly summarizes and compares the role of a ser-
ies of in silico tools in terms of their prediction capabilities for
CYP-related drug metabolism. Moreover, the predictions of com-
pounds serving as inhibitors of specific enzymes are also com-
pared to literature relating to several currently available
prediction tools/webservers. Specifically, the accuracy, speci-
ficity, and sensitivity of the prediction for each CYP enzyme sub-
type are assessed across several prediction platforms. The results
provide a comprehensive insight into the predictive capabilities
of various prediction tools. When researchers are looking for pre-
diction tools related to CYP-mediated activities, these findings
could be used to select the most appropriate tools to meet their
needs. In cases where the tools offer probability values instead
of binary outcomes, users can also customize the thresholds for
metrics, such as sensitivity and specificity, to better align with
their research needs.
Recently developed CYP-mediated drug metabolism
tools and platforms
SMARTCyp
The non-commercial webserver SMARTCyp is continuously
developing and has been reported by a series of publications. It
is a fragment-based prediction tool that can provide SOM predic-
tions of CYP450 during drug metabolism. The first generation of
this web server predicted SOM of CYP3A4 from the 2D structure
of a molecule.32 The prediction is made by combining reactivity
and accessibility calculations of the enzyme to different sites of
an input. For reactivity descriptions, pattern matching is con-
ducted between the query compounds and the calculation rules
(SMARTS Rules) summarized by the developers to calculate acti-
vation energies for different atoms in the query compounds.
The higher probability of a SOM, the lower the activation energy.
The action site accessibility is evaluated by computed results of
the topological bond path distances, which indicate how atoms
are connected with each other in 3D space. The first version of
SMARTCyp algorithm was tested with 394 compounds using
experimental SOM information. The prediction results included
the predicted SOM with ranking, and 42% out of these com-
pounds generated top-ranked positions matching the metabo-
lites. The fast prediction speed is also one of its advantages,
reporting the computation of three compounds per second.

The following generation of the SMARTCyp web server
adopted a refined SMARTS rule system and the accuracy of pre-
diction was validated with 361 drug-like CYP3A4 substrates,
demonstrating an improved accuracy of 2%.33 As for other CYP
isoforms, preliminary validation was also performed and the
result exhibited similar performance for CYP1A2, 2A6, 2B6,
2C8, 2C19, and 2E1.

The latest version of SMARTCyp is based on more new
SMARTS rules, enabling predictions for not only 3A4 metabo-
lism, but also 2C9 and 2D6 metabolism.34,35 The top 1% ranking
models for CYP3A4, 2C9, and 2D6 report an accuracy of 65.4%,
58.8%, and 49.3%, respectively, but the total number of com-
pounds is unknown.35

PreMetabo
PreMetabo is an in silico phase I and phase II drug metabolism
prediction platform, with the phase I prediction of SOM for
CYP1A2, CYP2C9, CYP2D6 and CYP3A4, inhibitor identification
for CYP2C9, 2C19, 2D6, and 3A4, as well as substrate recognition
for CYP2D6 and 3A4, utilizing the structure-based method.36 The
predictions are conducted according to the calculated activation
energy, combining the activation energy of Metabolism reaction
and the Effective Atomic Descriptor (EaMEAD) model as well as
the binding free energy calculated from the docking algorithm.
The Fujitsu ADME database, which contains 200 substrates with
different levels of fragments and structural diversity, was used for
the validation. After comparing with the experimental results of
these substrates, the prediction performance of PreMetabo gave
better prediction accuracy compared with that using the
EaMEAD model alone. The top SOM prediction accuracies
achieved by PreMetabo for each CYP subenzyme were 52.5%,
59.5%, 51.5%, and 48.5% for CYP3A4, CYP1A2, CYP2C9, and
CYP2D6, respectively.

RS-predictor
RegioSelectivity-Predictor (RS-Predictor) is a non-commercial tool
developed to predict SOM for CYP3A4.37 It was designed to com-
bine topological and quantum chemical descriptors to represent
the potentiality of metabolic reaction sites. The descriptors were
originally defined and summarized by the developers in their pub-
lication, which includes the meaning of each descriptor as well as
the range of values. Through these descriptors, the atom 3D con-
nection and molecular chemical properties were detailed. Multiple
instance ranking (MIRank), a ranking method similar to support
vector machine (SVM), was utilized to generate descriptor weight.
The training set database comprised 394 CYP3A4 substrates col-
lected from the literature. The prediction models were calibrated
with 322 compounds from a Merck data set. The validation of pre-
diction performance was conducted using an external test set of 72
additional substrates, showing equal or better results than those of
previously published prediction methods. The predicted top-one
ranked positions could identify at least one action site for 60.3%
of substrates. This tool has also been further developed as a web
tool named RS-WebPredictor and the prediction of SOM has been
applied to more CYP isoforms, including 2C9, 2D6, 1A2, 2A6, 2B6,
2C8, 2C19, and 2E1.38,39 Specifically, RS-WebPredictor is the first
web server to predict the regioselectivity of the latter six isozymes.

SOMP
SOMP is a web server that can predict SOM for drug-like com-
pounds. The prediction model was constructed based on a
Bayesian-like algorithm named PASS (prediction of activity spec-
tra for substances), utilizing LMNA (labeled multilevel neighbor-
hoods of atom) descriptors.40,41 Based on the structural formula
of chemicals, SOM can be predicted for five major phase I CYP
enzymes (CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2)
when the enzymes interact with compounds. During construc-
tion of the prediction model, databases with in vitro and in vivo
experimental results were used for positive training, whereas
www.drugdiscoverytoday.com 3
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structures with non-SOM atoms (i.e., atoms not involved in
chemical structural changes) were used as negative training
examples. The prediction performance was validated by external
evaluation sets comprising 68 cardiovascular drugs and the preci-
sion was compared with that of two other web servers, SMART-
Cyp and RS-WebPredictor. As a result, the prediction
performance of this tool is comparable or superior to that of
the other two web servers in SOM prediction for CYP enzymes,
with the first-ranked model for CYP3A4, 2D6, 2C9, 2C19 and
1A2 reporting an accuracy of 69%, 43%, 58%, 46%, and 47%,
respectively.

Xenosite
Xenosite is prediction module designed as a web server to predict
CYP-mediated SOM for compounds using neural networks algo-
rithm; the model calibration was conducted through leave-one-
out cross-validation.42,43 The prediction involves nine enzymes
(CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) and
not only outputs rankings of possible SOM, but also provides pre-
diction confidence. The training set included over 680 com-
pounds with SOM information, and multiple descriptor
systems were utilized, including topological and quantum chem-
ical descriptors, a SMAERCyp reactivity descriptors, and finger-
print similarity descriptors. It exhibited very close or better
performance for the prediction of different CYP isoforms com-
pared with RS-Predictor. A comparison of performance was also
conducted with other web servers, software tools, and models,
including SMARTCyp, StarDrop, and Schrodinger. Xenosite
showed the best accuracy among these methods for predicting
SOM of CYP substrates, reporting an accuracy of 87.0%.

SOME
The accessible program SOME aims to predict the SOM of six bio-
transformations mediated by CYP450. Different from other pre-
diction tools, this platform predicts six transformation types:
aliphatic C-hydroxylation, aromatic C-hydroxylation, N-
dealkylation, O-dealkylation, N-oxidation, and S-oxidation. The
training data came from the MDL Metabolite database44 and
SVM classifiers were developed. The six classes of biotransforma-
tion are described by SMARTS pattern and 23 quantum chemical
(QC) features were also considered, with feature selection con-
ducted. The trained models were validated by external data,
including 24 compounds with SOM information. The final pre-
diction performance of the model was not compared with other
prediction tools, but both internal and external validations indi-
cated a successful performance. The overall accuracy for six reac-
tion predictions was over 81%.

ADMETlab
ADMETlab is a machine-learning-based non-commercial online
web tool that enables the prediction of a series of physical prop-
erties of a compound.46 The metabolism prediction for inputs
from this platform includes evaluating whether an input can
serve as a substrate or inhibitor of CYP1A2, 2C9, 2C19, 2D6,
and 3A4, with corresponding prediction confidence. The data
were collected from ChEMBL,56 EPA,57 and DrugBank Database,
comprising 288 967 entries.58 Six model algorithms were
involved: random forest (RF), SVM, recursive partitioning regres-
4 www.drugdiscoverytoday.com
sion (RP), partial least square (PLS), naïve Bayes (NB), and deci-
sion tree (DT). In addition, 403 descriptors belonging to 11
descriptor types (constitution, topology, connectivity, E-state,
Kappa, basak, burden, autocorrelation, charge, property, and
MOE-type descriptors) were utilized for regression model genera-
tion. Fingerprints were utilized to construct classification models.
The final generated best performance models for five enzymes all
achieved accuracy above 70.2%, and the best model was for the
prediction of CYP1A2 inhibitors, reporting an accuracy of 86.7%.

SuperCYPsPred
Different from those web tools that predict SOMs, Super-
CYPsPred, a non-commercial webserver, was developed to pre-
dict drug inhibition specificity on CYP isoforms,45 focusing on
five main isoenzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6,
and CYP3A4. The likelihood for the input medication acting as
an active or inactive inhibitor of each enzyme can be estimated.
RDKit descriptors were utilized and the prediction model was
built under the random forest (RF) algorithm based on a data
set of 177 143 substances with in vitro data against the five iso-
forms of CYPs. Tenfold cross-validation was conducted for model
optimization, and external validation sets also reported satisfac-
tory results. Most of the enzyme prediction models reported an
accuracy >90%, except for the CYP2D6 cross-validation model
and external validation models for CYP2D6 and 3A4. Addition-
ally, SuperCYPsPred also contains a knowledge database with
information on 1170 drugs, including more than 3800 known
DDIs. Users can also gain recommended alternative drugs when
predicting DDI between drugs from this web server.

CYPlebrity
CYPlebrity is also a free online tool that mainly aims to predict
inhibitors of CYP450 enzymes.31 It also focuses on five main
CYP enzymes: 1A2, 2C9, 2C19, 2D6, and 3A4. The input training
set was from several databases, including PubChem, ChEMBL,
and ADME, involving 134 250 molecules, also with RKDit
descriptors utilized for model training. RF classifiers were devel-
oped for prediction within a tenfold cross-validation framework,
and the final performance was comparable to that of Super-
CYPsPred (see above). In terms of model specificity, CYPlebrity
outperforms SuperCYPsPred, but the latter delivers more accept-
able results in terms of prediction sensitivity. The overall accu-
racy of CYPlebrity is 4% lower than that of SuperCYPsPred,
according to the report from the developer of CYPlebrity. The
webserver claims a sensitivity of 0.75 and a specificity of 0.89.

CypReact
CypReact is a software tool to determine whether an input arbi-
trary compound can interact with nine CYP isoforms, including
CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. In total,
1632 compounds with known metabolism information and
1053 nonreactants were used for model training.47 In addition,
36 physicochemical properties and over 3000 structure-based
features were utilized as descriptors, including MACCS, Pub-
Chem, and ClassyFire fingerprints. Base learners were combined
with a cost matrix for model training to decrease the bias from
unbalanced training data between reactants and nonreactants.
Fivefold cross-validation was conducted for model generation.
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The report of the developer claims that this tool performs better
compared with ADMET Predictor (see below) and SMARTCyp
(see above) based on comparing their area under the receiver
operating characteristic curves (AUROCs). CypReact is also
embedded in another web tool for metabolism prediction,
BioTransformer, which provides a platform for input drugs to
generate prediction results from multiple metabolism aspects.48

ADMET Predictor
ADMET Predictor is a software tool from SimulationPlus that can
predict drug properties from multiple perspectives, including
metabolism, and is constructed based on machine learning
tools.49 The metabolism prediction includes identifying the pos-
sibility of a drug serving as a substrate and the SOM for CYP1A2,
2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. This platform can
also make predictions for metabolism kinetics constants for
CYP1A2, 2C9, 2C19, 2D6, and 3A4 and predict whether a small
molecule can inhibit the activity of these five enzymes. In total,
403 features belonging to 11 different categories were utilized for
model training.

The above-mentioned tools are summarized in Table 1.

Comparison of metabolism prediction tools and
platforms
Information collected for prediction comparison of different
tools
Here, we compare four prediction tools: SuperCYPsPred, CYPleb-
rity, ADMETlab, and ADMET Predictor. ADMET Predictor is a
commercially available tool, whereas the other three can be
freely accessed online. The prediction performance of identifying
inhibitors for five main CYP450 subtypes (1A2, 2C9, 2C19, 2D6,
and 3A4) was investigated. Other platforms were not included
because they lack the ability to identify enzyme inhibitors. The
input drugs for testing the prediction performance were collected
from the top 200 prescribed drugs in 2019 (https://clincalc.com/
DrugStats/Top200Drugs.aspx) and we took the top 50 prescrip-
tion drugs for testing. Some of the prescriptions contain two
drugs and we predicted each drug applying different prediction
tools separately. In total, 52 drug compounds were collected
from the top 50 prescriptions. Whether each drug serves as an
inhibitor of the five enzymes was summarized from literature
and is detailed in Table A1 in the supplemental information
online.

Ability of CYPlebrity to identify CYP inhibitors, and user
comments
The possibility of a given compound/drug (input structure) serv-
ing as an inhibitor of different CYP enzymes can be provided by
the web server. We defined a possibility �0.5 as a positive predic-
tion, indicating that the compound was identified as an inhibi-
tor. The prediction results are summarized in Figure 2. The
prediction performance is analyzed by different color markers
in the table, with comparing to literature references (Table A1
in the supplemental information online). The true positive, true
negative, false positive and false negative predictions were calcu-
lated in Figure 2.

Out of 36 inhibitors, 23 were successfully identified by
CYPlebrity, which is slightly less than two-thirds (Table 2). By
contrast, 171 out of 214 non-inhibitors had true predictions,
exhibiting a specificity of 0.8 (Table 2). The total prediction accu-
racy was 0.78.

A drug or a compound can be input as SMILE strings or an SDF
structure. Multiple inputs are allowed through a file with a list of
SMILE strings. Drawing a molecule on the website interface
directly is also applicable with the embedded JavaScript Molecu-
lar Editor (JSME) tool. When one or more molecules are input for
prediction, the result is reported simultaneously on the webpage.
The 2D structures are exhibited according to the input SMILE
strings, with the prediction of inhibition possibilities against dif-
ferent CYP enzymes. The prediction results can be saved as one
table file in.csv for one or multiple inputs. The prediction out-
comes for potassium and insulin are ‘null’ under separate input
of SMILE strings directly in the interface. When they are input
from a file containing multiple SMILE strings, these molecules
are not shown in the downloaded output file. Figure A1 in the
supplemental information online shows the interface after the
prediction of the sample molecule provided by the web server.
In the downloaded file of the prediction results, the compound
name is shown as numbers (Figure A2 in the supplemental infor-
mation online), although the input file contains the name of
each molecule. Nevertheless, the order of the molecules in the
output file is the same as that in the input file. In addition, each
enzyme is not represented by their name in the exported file
(e.g., CYP1A2, CYP2C9) but shown as ‘Prediction Model 1’, ‘Pre-
diction Model 2’, and so on, which then needs to be manually
matched with the enzyme name (Figure A3 in the supplemental
information online). The prediction results from this server are
outputted in numerical format that indicates with a certain prob-
ability whether the input structures serve as inhibitors for each
CYP enzyme subtype. Thus, users can flexibly define the thresh-
old to discriminate inhibitors according to their specific needs.

Ability of SuperCYPsPred to identify CYP inhibitors, and user
comments
The prediction results, which show whether an input drug/com-
pound is an activate CYP subtype inhibitor, are also reported
with prediction confidence but are different from the type of
report from CYPlebrity. CYPlebrity reports the possibility of an
input structure serving as an inhibitor, with a user-defined cutoff
to distinguish inhibitors from non-inhibitors. By contrast, Super-
CYPsPred first identifies whether an input could be an inhibitor,
and then provides a measure of that possibility (Figure A4 in the
supplemental information online). The prediction results of all
52 compounds collected here are summarized in Figure 3. Given
that the prediction results can differ between the two prediction
methods (through MACCS fingerprint and Morgan fingerprint),
such results are not marked in color in Figure 3. Separate colored
markers for both prediction methods can be found in Tables A2
and A3 in the supplemental information online. The prediction
measurement information from the different prediction meth-
ods is summarized in Table 2.

According to Table 2, 32 out of 255 predictions have contra-
dictory results from the MACCS and Morgan methods. Thus,
we not only analyzed the prediction performance of both meth-
ods separately, but also summarized the prediction performance
by taking the result with higher confidence for those instances
www.drugdiscoverytoday.com 5
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TABLE 1

Summary and comparison of drug interaction prediction tools.

Tool Prediction method Prediction type Prediction
subtype

Availability Year
published

Database used

Structure-based prediction tools
SMARTCyp Accessibility and

reactivity assessment
SOM 2D6, 2C9, 3A4 Non-

commercial
webserver

2019 Unspecified

PreMetabo Activation energy
based on EaMEAD
model and molecular
docking

SOM 1A2, 2C9, 2D6, 3A4 Not available 2020 Fujitsu ADME database
Inhibitor 2C9, 2C19, 2D6,

3A4
Substrate 2D6, 3A4

Machine learning-based prediction tools
Tool Prediction algorithm Descriptor Prediction

type
Prediction
subtype

Availability Year
published

Database used

RS-predictor MIRank (SVM-like
algorithm)

148 topological descriptors; 392 quantum chemical
descriptors; SMARTCyp reactivity descriptors

SOM 1A2, 2A6, 2B6, 2C8,
2C9, 2C19, 2D6,
2E1, 3A4

Non-
commercial
webserver

2013 Merck data set; Molecular Design
limited (MDL) database; human
drug-metabolizing enzyme
database from Fujitsu database

SOMP PASS (Bayesian-like
algorithm)

LMNA descriptors SOM 1A2, 2C9, 2C19,
2D6, 3A4

Non-
commercial
webserver

2015 Biovia (Accelrys) Metabolite
database

Xenosite Standard neural
network

Topological and quantum chemical descriptors;
SMARTCyp reactivity descriptors; fingerprint
similarity descriptors

SOM CYP1A2, 2A6, 2B6,
2C8, 2C9, 2C19,
2D6, 2E1, 3A4

Non-
commercially
available
license

2014 The same with RS-predictor
involved database (same first
author)

SOME SVM Quantum chemical descriptors SOM Six
biotransformations

Non-
commercial
webserver

2009 MDL Metabolite

ADMETlab RF; SVM; recursive
partitioning regression;
partial least squares;
naïve Bayes; decision
tree

11 types of descriptor containing 403 descriptors,
including constitution, topology, connectivity, E-
state, Kappa, basak, burden, autocorrelation, charge,
property, MOE-type descriptors (regression model);
fingerprint descriptors (classification model)

Substrate 1A2, 2C9, 2C19,
2D6, 3A4

Non-
commercial
webserver

2018 Unspecified

Inhibitor 1A2, 2C9, 2C19,
2D6, 3A4

SuperCYPsPred RF RDKit descriptors Inhibitor 1A2, 2C9, 2C19,
2D6, 3A4

Non-
commercial
webserver

2020 PubChem Bioassay

CYPlebrity RF RDKit descriptors Inhibitor 1A2, 2C9, 2C19,
2D6, 3A4

Non-
commercial
webserver

2021 PubChem; ChEMBL; FujitSu
ADME

CypReact Learning-based model 36 physicochemical properties and >3000 structure-
based descriptors

Substrate 1A2, 2A6, 2B6, 2C8,
2C9, 2C19, 2D6,
2E1, 3A4

Non-
commercial
java package

2019 DrugBank; PharmGKB); XMetDB;
SuperCYP

ADMET
Predictor

Machine learning N/A SOM 1A2, 2A6, 2B6, 2C8,
2C9, 2C19, 2D6,
2E1, 3A4

Commercially
available

2000 Not specified

Substrate 1A2, 2A6, 2B6, 2C8,
2C9, 2C19, 2D6,
2E1, 3A4

Inhibitor 1A2, 2C9, 2C19,
2D6, 3A4
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Drug name\CYP 1A2 2C9 2C19 2D6 3A4 Drug name\CYP 1A2 2C9 2C19 2D6 3A4

Atorvastatin 0.14 0.54 0.23 0.42 0.6 Trazodone 0.25 0.21 0.24 0.64 0.41

Levothyroxine 0.63 0.22 0.08 0.1 0.11 Duloxetine 0.87 0.4 0.87 0.89 0.76

Lisinopril 0.08 0.13 0.12 0.17 0.12 Prednisone 0.03 0.08 0.07 0.08 0.12

Metformin 0.11 0.05 0.06 0.15 0.05 Tamsulosin 0.4 0.46 0.52 0.48 0.46

Metoprolol 0.28 0.2 0.15 0.69 0.12 Ibuprofen 0.11 0.2 0.1 0.14 0.11

Amlodipine 0.55 0.71 0.71 0.27 0.56 Citalopram 0.7 0.68 0.67 0.66 0.41

Albuterol 0.14 0.12 0.09 0.34 0.22 Meloxicam 0.43 0.47 0.16 0.11 0.17

Omeprazole 0.73 0.34 0.8 0.49 0.56 Pravastatin 0.09 0.23 0.1 0.41 0.42

Losartan 0.15 0.91 0.19 0.13 0.5 Carvedilol 0.21 0.19 0.17 0.35 0.44

Gabapentin 0.04 0.05 0.05 0.05 0.05 Potassium Null Null Null Null Null

Hydrochlorothiazide 0.1 0.13 0.1 0.12 0.07 Tramadol 0.15 0.16 0.17 0.27 0.21

Sertraline 0.58 0.44 0.71 0.83 0.52 Clopidogrel 0.53 0.57 0.7 0.52 0.53

Simvastatin 0.15 0.28 0.07 0.19 0.67 Insulin Null Null Null Null Null

Montelukast 0.45 0.83 0.6 0.37 0.54 Aspirin 0.27 0.24 0.11 0.05 0.05

Acetaminophen 0.3 0.17 0.21 0.1 0.24 Atenolol 0.23 0.18 0.09 0.38 0.08

Hydrocodone 0.34 0.2 0.31 0.39 0.36 Venlafaxine 0.52 0.38 0.42 0.62 0.45

Pantoprazole 0.57 0.34 0.63 0.39 0.52 Alprazolam 0.17 0.18 0.23 0.19 0.23

Furosemide 0.1 0.2 0.16 0.09 0.13 Ethinyl Estradiol 0.12 0.18 0.18 0.1 0.31

Fluticasone 0.05 0.09 0.07 0.1 0.45 Norethindrone 0.23 0.28 0.54 0.08 0.43

Escitalopram 0.7 0.68 0.67 0.66 0.41 Allopurinol 0.28 0.1 0.08 0.08 0.08

Fluoxetine 0.69 0.61 0.68 0.93 0.57 Cyclobenzaprine 0.73 0.11 0.11 0.87 0.13

Rosuvastatin 0.3 0.41 0.44 0.21 0.36 Clonazepam 0.18 0.23 0.24 0.13 0.14

Bupropion 0.29 0.55 0.81 0.46 0.17 Zolpidem 0.76 0.81 0.52 0.72 0.71

Amoxicillin 0.07 0.08 0.05 0.1 0.08 Azithromycin 0.05 0.05 0.04 0.09 0.78

Dextroamphetamine 0.38 0.23 0.27 0.79 0.15 Oxycodone 0.23 0.17 0.24 0.56 0.32

Amphetamine 0.38 0.23 0.27 0.79 0.15 Warfarin 0.16 0.94 0.25 0.1 0.11
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FIGURE 2
Prediction possibilities of CYPlebrity for 52 compounds serving as inhibitors of CYP1A2, 2C9, 2C19, 2D6, and 3A4. The number represents the predicted
possibility of a compound serving as an inhibitor of CYP enzymes. Dark orange, true positive; light orange, false negative; dark green, true negative; light
green, false positive.
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where the two methods differ. Predictions with consistent results
from both methods were also separately analyzed.

The MACCS method showed the highest sensitivity (0.50) in
terms of identifying CYP inhibitors, but combining prediction
results and taking the prediction with higher confidence con-
tributed to better specificity (0.83) and accuracy (0.77) to
decrease false negative prediction. Those prediction results with
an agreement between both prediction methods had the higher
prediction accuracy (0.79), with a sensitivity (0.44) slightly lower
than that of the MACCS method (0.50) and the best specificity
performance (0.85) (Table 2). To summarize, the prediction was
most reliable when the results were consistent from both meth-
ods. If two methods differed, taking the results from the one with
higher prediction confidence led to better overall accuracy, with
decreased sensitivity as compensation. The final prediction sensi-
tivity, specificity, and accuracy were comparable with the perfor-
mance measurement summarized from results when the
prediction results were consistent from both methods.

SuperCYPsPred can accept only single inputs. The input mole-
cules can be a PubChem drug name, SMILE string, or informa-
tion from the website interface through ChemDoodle toolkit.
The CYP subenzyme to be predicted can be manually selected
on the website interface. The two prediction patterns, MACCS
and Morgan fingerprint, can be selected either separately or
together. The input of potassium was reported as an invalid
input structure by the website, whereas prediction of the macro-
molecule, insulin, was successfully generated. The interface of
prediction results to identify a CYP inhibitor with prediction
confidence is shown in Figure A4 in the supplemental informa-
tion online. Some simple structural information is also analyzed
www.drugdiscoverytoday.com 7
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TABLE 2

Comparison of performance measurements between different subenzymes and tools.
a

Performance measurement Subenzyme All

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

CYPlebrity
TP 2 3 6 6 5 22
TN 37 35 32 32 35 171
FN 0 4 4 4 2 14
FP 11 8 8 8 8 43
Sum 50 50 50 50 50 250
SEN 1.00 0.43 0.60 0.60 0.71 0.61
SPE 0.77 0.81 0.80 0.80 0.81 0.80
ACCU 0.78 0.76 0.76 0.76 0.80 0.77
SuperCYPsPred: MACCS fingerprint
TP 1 3 5 7 2 18
TN 45 29 35 26 36 171
FN 1 4 5 3 5 18
FP 3 14 5 14 7 43
Sum 50 50 50 50 50 250
SEN 0.50 0.43 0.50 0.70 0.29 0.50
SPE 0.94 0.67 0.88 0.65 0.84 0.80
ACCU 0.92 0.64 0.80 0.66 0.76 0.76
SuperCYPsPred: Morgan fingerprint
TP 1 0 4 7 2 14
TN 39 37 36 24 35 171
FN 1 7 6 3 5 22
FP 9 6 4 16 8 43
Sum 50 50 50 50 50 250
SEN 0.50 0.00 0.40 0.70 0.29 0.39
SPE 0.81 0.86 0.90 0.60 0.81 0.80
ACCU 0.80 0.74 0.80 0.62 0.74 0.74
SuperCYPsPred: consistent results only
TP 1 0 4 7 2 14
TN 39 29 34 20 35 157
FN 1 4 5 3 5 18
FP 3 6 3 10 7 29
Sum 44 39 46 40 49 218
SEN 0.50 0.00 0.44 0.70 0.29 0.44
SPE 0.93 0.83 0.92 0.67 0.83 0.84
ACCU 0.91 0.74 0.83 0.68 0.76 0.78
SuperCYPsPred: higher confidence
TP 1 1 4 7 2 15
TN 43 35 36 27 36 177
FN 2 6 6 3 5 22
FP 4 8 4 13 7 36
Sum 50 50 50 50 50 250
SEN 0.33 0.14 0.40 0.70 0.29 0.41
SPE 0.91 0.81 0.90 0.68 0.84 0.83
ACCU 0.88 0.72 0.80 0.68 0.76 0.77
ADMET Predictor
TP 1 6 6 10 6 29
TN 38 28 30 28 28 152
FN 1 1 4 0 1 7
FP 10 15 10 12 15 62
Sum 50 50 50 50 50 250
SEN 0.50 0.86 0.60 1.00 0.86 0.81
SPE 0.79 0.65 0.75 0.70 0.65 0.71
ACCU 0.78 0.68 0.72 0.76 0.68 0.72
ADMET Lab
TP 2 2 8 7 3 22
TN 34 37 33 29 29 162
FN 0 5 2 3 4 14
FP 14 6 7 11 14 52
Sum 50 50 50 50 50 250
SEN 1.00 0.29 0.80 0.70 0.43 0.61
SPE 0.71 0.86 0.83 0.73 0.67 0.76
ACCU 0.72 0.78 0.82 0.72 0.64 0.73

a Abbreviations: ACCU, accuracy; FN, false negative; FP, false positive; SEN, sensitivity; SPE, specificity; Sum, sum of all engaged individual predictions; TN, true negative; TP, true positive.
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Drug Discovery Today

FIGURE 3
Prediction possibilities of SuperCYPsPred for 52 compounds serving as inhibitors of CYP1A2, 2C9, 2C19, 2D6, and 3A4. Inactive, predicted as an inactive
inhibitor from both MACCS and Morgan fingerprints; active, predicted as an active inhibitor from both MACCS and Morgan fingerprints; i/a, predicted as an
inactive inhibitor through MACCS fingerprint method but an active inhibitor through Morgan fingerprint method; a/i, predicted as an active inhibitor through
MACCS fingerprint method but an inactive inhibitor through Morgan fingerprint method. Dark orange, true positive; light orange, false negative; dark green,
true negative; light green, false positive.
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according to the input information, including molecular weight,
number of hydrogen bond acceptors/donors, number of rotat-
able bonds, total charge, and molecular polar surface area.

SuperCYPsPred also has a DDI index function (Figure A5 in
the supplemental information online). Users can input multiple
drug names to search for the interaction information between
target drugs through specific CYP pathways, and alternative
drugs are also provided. The output includes referable knowledge
by directly clicking on results in the cells with relevant links, and
the predicted results from the webserver. More detailed informa-
tion can be found elsewhere.31
Ability of ADMET Predictor to identify CYP inhibitors, and user
comments
The prediction results of the 52 drugs with inhibition potential-
ity for the five CYP enzymes are summarized in Figure 4. Predic-
tion confidence values of cells are also listed with the prediction
result in Figure 4, which is similar to the prediction possibility
from SuperCYPsPred. The total sensitivity, specificity, and accu-
racy of ADMET Predictor were 0.81, 0.71, and 0.72, respectively.

The input file can be prepared in a variety of formats, includ-
ing smile strings, SDF files, and mol files, and multiple structures
are allowed in one input file. The user can select part of or all the
compounds to export the predicted properties (also partially or
all selections) in a single file through .xlsx files, .sdf files, and
other file types. Potassium came out with prediction results but
lacked prediction confidence. The inhibitor prediction by
ADMET Predictor is a yes/no judgement with prediction confi-
dences, indicating that the threshold is not adjustable. Insulin
was not reported with prediction results. Furthermore, the pre-
diction of input drugs/structures is not limited to the inhibition
of enzyme subtypes. For metabolism-related prediction, other
www.drugdiscoverytoday.com 9
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Drug name\CYP 1A2 2C9 2C19 2D6 3A4 Drug name\CYP 1A2 2C9 2C19 2D6 3A4

Atorvastatin N - 79% Y - 77% N - 98% Y - 40% Y - 80% Trazodone N - 97% N - 99% Y - 23% N - 95% N - 76%

Levothyroxine N - 97% N - 72% N - 98% N - 95% N - 74% Duloxetine Y - 79% Y - 41% N - 89% Y - 70% Y - 33%

Lisinopril N - 97% N - 92% N - 99% N - 95% Y - 80% Prednisone N - 97% N - 99% N - 98% N - 95% Y - 46%

Metformin N - 82% N - 99% N - 94% N - 70% N - 76% Tamsulosin Y - 51% N - 67% N - 18% N - 60% Y - 55%

Metoprolol N - 70% N - 99% N - 96% Y - 70% N - 78% Ibuprofen N - 97% Y - 77% N - 99% N - 95% N - 90%

Amlodipine N - 61% Y - 63% N - 97% Y - 70% Y - 80% Citalopram N - 90% Y - 41% Y - 77% Y - 49% Y - 34%

Albuterol N - 90% N - 99% N - 99% Y - 49% N - 78% Meloxicam Y - 62% Y - 77% N - 99% N - 95% N - 71%

Omeprazole Y - 75% Y - 45% Y - 36% Y - 49% Y - 65% Pravastatin N - 97% Y - 49% N - 99% N - 72% Y - 41%

Losartan Y - 95% Y - 41% Y - 23% N - 64% Y - 51% Carvedilol Y - 72% N - 95% N - 87% Y - 70% Y - 65%

Gabapentin N - 97% N - 92% N - 99% N - 95% N - 66% Potassium Y N Y N N

Hydrochlorothiazide N - 97% N - 99% N - 99% N - 95% N - 81% Tramadol N - 97% N - 99% N - 96% Y - 70% N - 90%

Sertraline Y - 95% Y - 49% Y - 47% Y - 70% N - 76% Clopidogrel N - 97% Y - 77% N - 99% Y - 51% Y - 41%

Simvastatin N - 63% Y - 62% N - 99% N - 95% Y - 65% Insulin
Montelukast Y - 62% Y - 43% N - 99% Y - 43% Y - 65% Aspirin N - 97% Y - 47% N - 99% N - 95% N - 90%

Acetaminophen N - 97% N - 99% N - 96% N - 95% N - 90% Atenolol N - 63% N - 95% N - 99% Y - 46% N - 78%

Hydrocodone N - 97% N - 99% N - 99% N - 56% N - 81% Venlafaxine N - 97% N - 99% N - 96% Y - 70% N - 90%

Pantoprazole Y - 69% Y - 38% Y - 36% Y - 40% Y - 65% Alprazolam Y - 95% N - 72% Y - 47% N - 84% N - 78%

Furosemide N - 90% Y - 77% N - 99% N - 95% Y - 34% Ethinyl Estradiol N - 97% N - 99% Y - 29% N - 95% N - 75%

Fluticasone N - 90% N - 99% N - 94% N - 95% Y - 38% Norethindrone N - 97% N - 99% Y - 31% N - 95% N - 75%

Escitalopram N - 90% Y - 41% Y - 77% Y - 49% Y - 34% Allopurinol N - 86% N - 99% N - 99% N - 95% N - 74%

Fluoxetine Y - 95% Y - 35% Y - 21% Y - 55% Y - 46% Cyclobenzaprine N - 97% N - 85% Y - 31% Y - 70% N - 90%

Rosuvastatin N - 97% Y - 63% N - 99% N - 95% Y - 46% Clonazepam Y - 95% N - 85% Y - 23% N - 95% N - 81%

Bupropion N - 79% N - 99% Y - 18% Y - 56% N - 90% Zolpidem N - 97% Y - 57% N - 88% N - 60% N - 65%

Amoxicillin N - 97% N - 99% N - 99% N - 95% N - 69% Azithromycin N N - 99% N - 99% N - 84% Y - 80%

Dextroamphetamine N - 68% N - 95% Y - 21% Y - 47% N - 90% Oxycodone N - 97% N - 99% N - 99% Y - 40% N - 76%

Amphetamine N - 68% N - 95% Y - 21% Y - 47% N - 90% Warfarin Y - 53% Y - 77% N - 99% N - 84% N - 69%

Drug Discovery Today

FIGURE 4
Prediction possibilities of ADMET Predictor for 52 compounds serving as inhibitors of CYP1A2, 2C9, 2C19, 2D6, and 3A4. No, predicted as an inactive inhibitor.
Yes, predicted as an active inhibitor. The percentage in each cell is the prediction confidence of the prediction. Dark orange, true positive; light orange, false
negative; dark green, true negative; light green, false positive.
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properties can also be generated, including whether the input
structure is a potential substrate of different CYP enzymes, the
site of metabolism, and possible structures of metabolites.
Physicochemical properties, absorption, distribution, and trans-
porter parameters can also be calculated from input structures.

Ability of ADMETlab to identify CYP inhibitors, and user
comments
As summarized in Figure 5 and Table 2 for 52 drugs, the ADME-
Tlab web tool can also generate prediction results for whether the
input compound can serve as an inhibitor of the five CYP
enzymes. The prediction probabilities are also provided, divided
into six groups: 0–0.1, 0.1–0.3, 0.3–0.5, 0.5–0.7, 0.7–0.9, and 0.9–
1.0. Here, we define compounds with a probability <0.5 as non-
inhibitors, and those with a probability �0.05 as inhibitors. The
total sensitivity, specificity, and accuracy of ADMETlab were
0.61, 0.76, and 0.74, respectively.

The application and evaluation of ADMETlab were conducted
using an upgraded version of the original web tool, ADMETlab
2.0 (https://admetmesh.scbdd.com). Users are recommended to
input a single compound structure with no more than 128 atoms
for more reliable prediction results. Either SMILE strings or draw-
ing a compound structure on the embedded JSME editing tool on
10 www.drugdiscoverytoday.com
the webpage is used for input formats, with only one input
allowed for each submission. Whether an input structure can
be identified as a substrate for each CYP enzyme is also reported
with a similar pattern as inhibitor prediction (Figure A6 in the
supplemental information online). The prediction results are pre-
sented as probabilities, indicating the likelihood of a compound
serving as a substrate or an inhibitor. This also allows users to
adjust the discrimination threshold according to their prefer-
ences, similar to the functionality offered by CYPlebrity. Other
ADMET properties can also be predicted for input compounds.
In particular, the prediction as reported as an ‘error’ for potas-
sium and that for insulin was unable to generate metabolism-
related information. The prediction result of an entry structure
can be saved as.csv file or.pdf format, including all predicted
properties of the compound, rather than being limited to meta-
bolism prediction.
Comparison of prediction performance for CYP subtypes
among different tools
For a fair comparison between different prediction tools, the pre-
diction results of potassium and insulin were not considered. The
prediction results for the 50 drugs are analyzed below (Table 2).

https://admetmesh.scbdd.com
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Drug name\CYP 1A2 2C9 2C19 2D6 3A4 Drug name\CYP 1A2 2C9 2C19 2D6 3A4

Atorvastatin i a a i i Trazodone i i i a i

Levothyroxine i i i i i Duloxetine a i a a a

Lisinopril i i i i i Prednisone i i i i a

Metformin i i i i i Tamsulosin i i i a a

Metoprolol i i i i i Ibuprofen i i i i i

Amlodipine i i a i a Citalopram i i i a i

Albuterol i i i i i Meloxicam i a a i a

Omeprazole a i i i a Pravastatin i i i i i

Losartan a a a a a Carvedilol a i a a a

Gabapentin i i i i i Potassium Error

Hydrochlorothiazide i i i i i Tramadol i i i a i

Sertraline i i a a a Clopidogrel a a a a a

Simvastatin i i i i a Insulin NO report for metabolism-related data

Montelukast a i a a i Aspirin i i i i i

Acetaminophen i i i i i Atenolol i i i i i

Hydrocodone i i i a i Venlafaxine i i i a i

Pantoprazole a i i i a Alprazolam a i i i i

Furosemide i i i i i Ethinyl Estradiol a a a a a

Fluticasone i i i i a Norethindrone a i a i a

Escitalopram i i i a i Allopurinol i i i i i

Fluoxetine a i a a a Cyclobenzaprine i i i a i

Rosuvastatin i i i i i Clonazepam a a a i a

Bupropion i i i a i Zolpidem a a a i i

Amoxicillin i i i i i Azithromycin i i i i i

Dextroamphetamine a i i a i Oxycodone i i i i i

Amphetamine a i i a i Warfarin i a a i i

Drug Discovery Today

FIGURE 5
Prediction results from ADMETlab webtool for 52 compounds serving as inhibitors of CYP1A2, 2C9, 2C19, 2D6, and 3A4. Inactive, predicted as a non-inhibitor.
Active, predicted as an inhibitor. Dark orange: true positive; light orange, false negative; dark green, true negative; light green, false positive.
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In terms of the overall prediction performance to identify CYP
inhibitors, ADMET Predictor had the highest sensitivity (0.81),
followed by CYPlebrity and ADMETlab (SPE = 0.61). This means
that ADMET Predictor was the most successful tool for identify-
ing true inhibitors for the five CYP enzyme subtypes. Comparing
the overall specificity, consistent prediction results from the
SuperCYPsPred web tool showed the highest performance
(0.84), followed by prediction results if the user always uses the
results with higher confidence when the two prediction methods
contradict each other (SPE = 0.83). The specificity of individual
MACCS/Morgan models is also equal to or better than that of
other tools (0.80). This indicates that the SuperCYPsPred web ser-
ver should have the optimal specificity. Thus, it is not surprising
that ADMET Predictor has the poorest performance in specificity
and SuperCYPsPred has the poorest performance in sensitivity
prediction.
In terms of prediction accuracy, SuperCYPsPred had the high-
est performance quality (ACCU = 0.78) when the prediction
results were consistent from both models. When the model
results differed, if the user always used the result from the predic-
tion with the higher confidence, the overall accuracy of Super-
CYPsPred was 0.77, as was that of CYPlebrity, ranking these as
the top2 prediction tools.

For identifying inhibitors of CYP1A2, both CYPlebrity and
ADMETlab had the highest sensitivity (1.00). For recognizing
CYP2C9 and CYP2D6 inhibitors, ADMET Predictor had the high-
est sensitivity (CYP2C9: 0.86; CYP2D6: 1.00), whereas, for
CYP2C19, ADMETlab had the highest sensitivity (0.8), with
CYPlebrity and ADMET Predictor being the second with their
sensitivity of 0.6. For CYP3A4 inhibitor identification, ADMET
Predictor had the top-ranking sensitivity among the four tools
(0.86). Interestingly, for identifying CYP2C9 inhibitors, ADMET
www.drugdiscoverytoday.com 11
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TABLE 3

Comparison of adjusted performance measurement between subenzymes and tools.

Performance measurement Subenzyme

CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 All

CYPlebrity
Cohen's j 0.21 0.20 0.35 0.35 0.39 0.31
MCC 0.34 0.20 0.36 0.36 0.42 0.33
SuperCYPsPred: MACCS fingerprint
Cohen's j 0.30 0.06 0.38 0.25 0.11 0.23
MCC 0.32 0.08 0.38 0.28 0.11 0.24
SuperCYPsPred: Morgan fingerprint
Cohen's j 0.11 �0.15 0.32 0.20 0.08 0.15
MCC 0.15 �0.15 0.33 0.24 0.09 0.16
SuperCYPsPred: consistent result only
Cohen's j 0.29 �0.14 0.40 0.30 0.11 0.25
MCC 0.31 �0.14 0.40 0.32 0.11 0.25
SuperCYPsPred: higher confidence
Cohen's j 0.19 �0.04 0.32 0.27 0.11 0.20
MCC 0.20 �0.04 0.33 0.31 0.11 0.21
ADMET Predictor
Cohen's j 0.09 0.28 0.29 0.48 0.28 0.32
MCC 0.14 0.36 0.30 0.56 0.36 0.38
ADMET lab
Cohen's j 0.16 0.14 0.53 0.33 0.06 0.26
MCC 0.30 0.14 0.55 0.35 0.08 0.28

KEYNOTE (GREEN) Drug Discovery Today d Volume 28, Number 10 d October 2023
Predictor showed an outstanding performance (SEN = 0.86),
whereas other tools all had poor results, with reported sensitivity
<0.5. For CYP2D6, all prediction methods had sensitivity values
>0.5.

Given the limited size of our molecular set for objectively
evaluating the metabolism prediction tools, we incorporated
Cohen's j coefficient and Matthew's correlation coefficient
(MCC) as additional measures, because these metrics take the
sample size into account in model performance evaluation,
whereas most other performance metrics rely solely on the direct
calculations of accuracy, sensitivity, and specificity.

Table 3 summarizes the overall prediction performance and
individual CYP subtype prediction performance of the models.
These coefficients ranged from �1 to 1, with higher values indi-
cating better prediction performance. It is encouraging that the
assessment with the two additional metrics, Cohen's j coefficient
and MCC, demonstrated a significant alignment with the assess-
ment using the traditional performance metrics. Based on both
coefficients, CYPlebrity and ADMET Predictor emerge as the
most accurate tools for identifying CYP inhibitors across differ-
ent subtypes. When considering individual subtype predictions,
the two assessment coefficients also align well with previous
findings. ADMETlab for CYP2C19, ADMET Predictor for
CYP2D6, and CYPlebrity for CYP3A4 are still recognized as the
top prediction tools for those enzymes. Interestingly, using the
MACCS fingerprint prediction model and the two aforemen-
tioned performance metrics, the preferred tools for CYP1A2
and CYP2C9 prediction were SuperCYPsPred and CYPlebrity,
respectively. This differs from the assessment using traditional
performance metrics.
12 www.drugdiscoverytoday.com
Discussion
Significance
The continual development of computational tools is mirrored
by that of servers and platforms, the quality of which varies
widely. Among those most-recognized tools, their prediction
function have different advantages and disadvantages. Com-
monly, the prediction focus differs among tools. A tool that is
able to identify more true positive items will tend toward a
higher false positive rate. Such tools have better sensitivity but
poor specificity, and are preferred by researchers who need to
screen out as many true inhibitors as possible to decrease omis-
sion. By contrast, those tools with higher reliability against rec-
ognized inhibitors tend to omit more likely inhibitors. These
tools are represented by better specificity, but with more frequent
false negative reports. The current study provides a selection of
references for researchers to choose among the webservers and
tools with different prediction performances. We not only com-
pared the prediction quality between different platforms, but
also reveal the prediction tendency of each tool to facilitate user
selection.
Bias of tool performance evaluation
Although this study used the most prescribed drugs for testing
the prediction performance of several tools or platforms, some
bias remained. Given that all the evaluated prediction tools have
implemented machine learning methods for prediction model
training, the compounds used for testing their performance
should not contain the drugs from all the training libraries of
these tools. However, the training sets of these tools are not avail-
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able. Thus, the compounds used in this study for evaluating the
tool prediction performance might also be in one or more of the
original training sets. This inevitably introduces bias for perfor-
mance evaluation, which might account for the discrepancy
between our conclusion and the original report from the devel-
opers. To make ‘fair’ comparisons, we used the most frequently
prescribed drugs during clinical practice, which belong to various
drug categories and have diverse molecular structures and indica-
tions. This strategy enabled us to evaluate the performance of
each tool more objectively. The performance of an individual
tool might differ from the reported one because the test set mole-
cules might differ structurally from those used in model training.

In addition, the structural diversity of the drugs used to eval-
uate the prediction performance of different tools can impact the
fairness of comparison. This study evaluated the performance of
three tools with a testing library mainly comprising small mole-
cules. Only one macromolecule (insulin) and an ion (potassium)
were included. In addition, to enable a fair comparison, the pre-
diction results of these two drugs were not considered during the
performance assessment. CYPlebrity and ADMETlab cannot pre-
dict either potassium or insulin, whereas SuperCYPsPred can
only make a prediction for insulin. ADMET Predictor can only
provide prediction results for potassium without providing pre-
diction confidence. Thus, if researchers need the prediction per-
formance for macromolecules and ions, more detailed research
aiming at these two types of compounds is required.

Assessment of single CYP enzymes
This investigation used 50 drugs for comparison of different
tools, but this might not enough for evaluating the prediction
comparison for single CYP subenzymes. Thus, the summarized
sensitivity and specificity for separate enzymes in each tool
require more testing with a larger sample size for a more accurate
assessment. We introduced Cohen’s j coefficient and MCC as
additional indicators to reflect the performance from another
perspective. However, our conclusion that identification of
CYP2C9 inhibitors is the most challenging, whereas that of
CYP2D6 inhibitors is the most successful, was not changed even
after using these additional metrics.

User flexibility in defining identification thresholds in different
web servers
CYPlebrity and ADMETlab directly provide the possibility of an
input as the inhibitor of each CYP enzyme. This research uni-
formly set 0.5 as the threshold to separate inhibitors from non-
inhibitors. However, users can freely define different thresholds
for identifying inhibitors according to their research needs for
higher sensitivity or specificity. By contrast, SuperCYPsPred
and ADMET Predictor report the classification results of inhibi-
tors and non-inhibitors with prediction confidence, which pro-
vides less user flexibility.

Summary of databases used in this study
The following databases provided data sources for the develop-
ment of the prediction tools:

� Publically accessible databases: PubChem,59 ChEMBL,60

DrugBank.61
� Commercially available databases: Fujitsu,62 MDL,63,64

Biovia.65

� Additionally, the developers of SuperCYPsPred incorporated
an index tool into their webserver, allowing users to search
for information on DDIs and drug–CYP interactions.

� Some tools involved in this study were developed using exist-
ing data sets, including Merck,66 PharmGKB,67 XMetDB,68

and SuperCYP.69

Future perspectives in drug CYP prediction
Current predictions regarding drug CYP potentiality mainly
focus on the identification of SOM and inhibitors/substates.
More sophisticated predictions, including the calculation of
enzyme kinetic constants/metabolism rate, are only available
from ADMET Predictor software among the tools/software we
evaluated; thus, more development is required in this direction.
Both the machine learning method and the fragment-based cal-
culation method for drug CYP property prediction require input
knowledge for data training or calculation rules set-up. However,
the preparation of a database is one of the most difficult parts in
this research field because of scarcity of metabolism data.
Researchers have been trying to overcome this obstacle for years,
with one recently published study regarding deep-learning algo-
rithm development reporting some insights when only small
data sets are used for model generation.70 With the enlargement
of the data library and the improvement of the prediction
method, the prediction of drug CYP properties will become
increasingly more reliable.

Concluding remarks
This research summarizes nine of the most recent and most pop-
ular platform tools in terms of their CYP subenzyme prediction
functions. Both fragment-based prediction tools and machine
learning tools are included, with their respective prediction
methods and accuracy reports compared. We also assessed the
prediction performance of CYPlebrity, SuperCYPsPred, ADMET
Predictor, and ADMETlab in terms of the identification of inhibi-
tors for CYP1A2, 2C9, 2C19, 2D6, and 3A4, revealing the advan-
tages and disadvantages of these tools. Overall, ADMET
Predictor, a commercially available software platform, had the
highest sensitivity (0.81) for identifying inhibitors, although
the poorest specificity (0.71). For remaining four free webservers,
CYPlebrity had the highest sensitivity (0.64), with a specificity of
0.80. The highest specificity (0.83) was achieved with Super-
CYPsPred, by combining MACCS and Morgan fingerprint predic-
tion methods and using the prediction result with the higher
prediction confidence when the prediction results from the two
methods were inconsistent. CYPlebrity also had the highest pre-
diction accuracy, based on this research. Researchers can make
appropriate choices more easily among these tools based on this
report.
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