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Abstract: Structure-based virtual screening utilizes molecular docking to explore and analyze ligand-
macromolecule interactions, crucial for identifying and developing potential drug candidates. Al-
though there is availability of several widely used docking programs, the accurate prediction of
binding affinity and binding mode still presents challenges. In this study, we introduced a novel
protocol that combines our in-house geometry optimization algorithm, the conjugate gradient with
backtracking line search (CG-BS), which is capable of restraining and constraining rotatable torsional
angles and other geometric parameters with a highly accurate machine learning potential, ANI-2x,
renowned for its precise molecular energy predictions reassembling the wB97X/6-31G(d) model.
By integrating this protocol with binding pose prediction using the Glide, we conducted additional
structural optimization and potential energy prediction on 11 small molecule-macromolecule and
12 peptide-macromolecule systems. We observed that ANI-2x/CG-BS greatly improved the docking
power, not only optimizing binding poses more effectively, particularly when the RMSD of the
predicted binding pose by Glide exceeded around 5 A, but also achieving a 26% higher success rate
in identifying those native-like binding poses at the top rank compared to Glide docking. As for the
scoring and ranking powers, ANI-2x/CG-BS demonstrated an enhanced performance in predicting
and ranking hundreds or thousands of ligands over Glide docking. For example, Pearson’s and
Spearman’s correlation coefficients remarkedly increased from 0.24 and 0.14 with Glide docking to
0.85 and 0.69, respectively, with the addition of ANI-2x/CG-BS for optimizing and ranking small
molecules binding to the bacterial ribosomal aminoacyl-tRNA receptor. These results suggest that
ANI-2x/CG-BS holds considerable potential for being integrated into virtual screening pipelines due
to its enhanced docking performance.

Keywords: docking protocol; ANI-2x potential; virtual screening

1. Introduction

Molecular docking is a vital pipeline for computer-aided drug design (CADD), serving
purposes from hit identification to lead optimization. Docking relies on scoring functions
to quantitatively assess the chemical and steric compatibility between ligands and macro-
molecules, thus attempting to predict the experimental binding mode of the ligand at the
specified binding site and corresponding binding affinity [1,2]. The classic scoring functions
can be broadly grouped into three categories: empirical methods (e.g., Glide Score and
ChemScore), knowledge-based methods (such as IT-Score and Drugscore), and force field-
based methods (for example DOCK). These classifications are grounded on the essential
energetic components of protein-ligand binding, the statistical potential derived from
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known protein-ligand complexes, and molecular mechanical calculations that inform bind-
ing affinity predictions [3,4]. The evaluation of scoring functions in molecular docking is
critical, focusing on various key performance metrics, as the success of molecular docking is
intricately linked to the quality of these functions, driving continuous efforts for innovation
and improvement. These metrics include (1) docking power, which evaluates the scoring
function’s capability to accurately predict and detect the native binding mode of the ligand
among the decoys generated by the sampling algorithm; (2) ranking power, which refers
to the ability to correctly rank known entities based on their binding scores; (3) screening
power, which describes the proficiency of a scoring function in identifying genuine binders
from libraries of random molecules; and (4) scoring power, which indicates the degree to
which the binding affinity predictions made by a scoring function linearly correlate with the
experimental results [5,6]. As scoring functions continue to evolve, extensive comparative
studies reveal that their performance in docking power is generally acceptable. However,
there is still room for improvement in screening, ranking, and scoring powers [6-8]. At the
same time, molecular docking, unlike the rigorous prediction of binding affinity, does not
require extensive sampling of complex conformations or detailed treatment of the aqueous
solution environment. It primarily relies on the structure of a single ligand—-macromolecule
complex, which enables high efficiency when screening large molecular libraries for po-
tential drug candidates, a common practice in structure-based virtual screening (SBVS) [9].
However, this approach can lead to inaccurate binding affinity predictions due to limited
sampling space and an increased likelihood of identifying false-positive hits as the size of
the molecular library expands [10]. Therefore, in light of the above considerations and with
the aim of enhancing the docking, scoring, and ranking powers in molecular docking, we
proposed an innovative docking pipeline, which combines our unique geometry optimiza-
tion algorithm, the conjugate gradient with backtracking line search (CG-BS), alongside
the highly precise machine learning potential, ANI-2x, which emulates the accuracy of the
model chemistry at the wB97X/6-31G(d) level. We integrated this protocol in the binding
pose prediction process to improve the overall efficacy and accuracy of molecular docking
by a mainstream docking program: Glide implemented in the Schrodinger 2017 software
package (Schrodinger Inc. New York, NY, USA).

The initial version of the Accurate NeurAl networK engINe for Molecular Energies
(ANI) is the first truly transferable neural network-based atomistic potential for organic
molecules [11]. Drawing from a dataset enriched with varied molecular conformations
of molecules containing carbon (C), hydrogen (H), oxygen (O), and nitrogen (N), ANI
potential is capable of simulating the potential energy surface (PES) of an arbitrary molec-
ular system consisting of the aforementioned four elements. It achieved a result with a
fidelity comparable to quantum mechanical methods but at a substantially lower compu-
tational overhead. Building on this foundational work, ANI-2x further integrated sulfur
(S), fluorine (F), and chlorine (Cl) elements. This expansion allows ANI-2x to address
a more extensive range of organic chemical phenomena, rendering it an optimal choice
for comprehensive molecular dynamics studies and small-molecule drug design [11-13].
Given the accuracy and efficiency of ANI-2x in predicting energy and force, it becomes
an appealing choice for geometry minimization tasks. However, the PESs generated by
machine learning models like ANI-2x tend to be less smooth than those ab initio poten-
tials. Even if we integrated Gaussian16 with ANI potential for geometry optimization,
it led to issues like non-convergence or CPU inefficiencies. To counteract this, we have
innovated four optimization algorithms tailored for the ANI potential [14]. By harnessing
the energy and forces produced through the ANI, these algorithms successfully bolster
ANI’s capability in geometry minimization and yield more consistent PESs compared
with density functional theory results. Among the quartet of algorithms, the conjugate
gradient backtracking line search (CG-BS) especially stands out, which adeptly incorporates
previous movement directions and ensures efficient iteration pacing by adhering to Wolfe
conditions, demonstrating effective and robust results combined with both ANI-1x and
ANI-2x potentials [14,15].
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Geometry Optimization
Algorithms in Conjunction
with ANI-2x Potential:
ANI-2x/CG-BS

In this study, we integrated our newly proposed ANI-2x/CG-BS protocol with the
module Glide [16,17] implemented in the Schrodinger Suite (Maestro 11.2), where ANI-
2x/CG-BS employs the binding pose generated by the Glide as the initial structure for
further geometric optimization and binding energy prediction. Through testing on a total
of 11 small molecule-macromolecule systems and 12 peptide-macromolecule systems,
our novel protocol showed enhancements in the docking, scoring, and ranking stages.
Consequently, considering the observed improvements, it is conceivable to integrate our
approach into virtual screening workflows to enhance high-throughput virtual screening
(HTVS) and facilitate binding mode predictions. This integration holds promise for drug
lead identification and advancing drug discovery processes.

2. Methods
2.1. Workflow Ouverlook

In this work, we utilized a total of 11 small molecule-macromolecule systems and
12 peptide-macromolecule systems to assess the feasibility of our new pipeline and its
potential to enhance the performance of docking. For those 11 diverse small molecule-
macromolecule systems, we acquired the X-ray structures of receptors from the Protein
Data Bank (PDB) [18] and obtained experimental data on small molecules along with their
3D structure from the ChEMBL database [19]. This compilation was designated as Dataset
1 and used for virtual screening to assess the scoring and ranking powers. For Dataset 2,
we gathered the corresponding ligands with X-ray structures for the aforementioned 11 sys-
tems’ receptors and additionally incorporated 12 peptide—protein systems, with the X-ray
structures for both peptides and proteins sourced from the PDB. This dataset was designed
to evaluate the docking power. We subsequently harnessed Glide to undertake docking
on those systems, with the ensuing docking poses setting the preliminary conformations
for ANI-2x/CG-BS. These structures then underwent optimization and PES evaluations
through ANI-2x/CG-BS. In the final analysis, the predictions from both Glide and ANI-
2x/CG-BS were juxtaposed with empirical findings. The comprehensive workflow is
represented in Figure 1. In-depth methods will be expounded in subsequent sections.

Serotonin 5-HT2A receptor (5-HT2AR) ChEMBL Database
Adenosine A2A receptor (A2AR) .
6 top systems Cannabinoid receptor 1 (CB1) Protein Data Bank
from GPCR Muscarinic acetylcholine receptor M1 (M1R)
) Family A GPCR: Dopamine receptor D2 (D2R), __ Obtained structures of 23 receptors and
Virtual Ribosomal RNA 1 opioid receptor (WOR) corresponding compounds/ligands
Screening
Protease: Coagulation factor X (CFX) ALY l
4 top systems from Nuclear receptor: Estrogen receptor (ER) ) Jwg? ,Docking simulation
diverse categories Kinase: Extracellular sngnal-regulat_ed kinase 2 - \‘- A ]
(ERK2), Vascular endothelial growth factor L w l
&‘ receptor 2 (VEGFR?) Obtained poses from Glide docking
Binding Pose 11 systems used by virtual screening ANI-2xl/CG-BS
Prediction
12 systems for peptide-protein - l

Docking performance comparison
(Docking, Ranking, Scoring powers)

Figure 1. The comprehensive workflow.

2.2. Datasets Preparation

We used 11 small molecule-macromolecule systems collected from our previous
studies [20] in the ChEMBL database as our Dataset 1. All the receptor categories are
selected based on the ranking of member counts within diverse target categories and the
selection of specific targets was influenced by the number of compounds documented in
binding assays, resulting in 11 diverse receptors from varied categories such as GPCR,
kinase, protease, nuclear receptors, and RNA. The X-ray structures of all receptors were
obtained from PDB. Detailed information on these receptors can be found in Table 1.
Regarding the 3D structure of the small molecules, they were collected based on their Ki
values recorded from binding assays, except for the ribosomal RNA (rRNA) receptor, for



Biomolecules 2024, 14, 648

40f13

which we relied on Kd values due to the scarcity of Ki records. To ensure a representative
distribution of Ki values across receptors, we selected up to 300 compounds from each
of the four distinct Ki tiers: Ki<10nM, 10nM < Ki<1 uM, 1 uM < Ki < 100 uM, and
Ki > 100 uM. We excluded compounds that have very weak binding affinity (a binding
energy above —4 kcal/mol) to enhance our evaluation’s reliability. Given that the ANI-2x
potential is tailored for molecules with C, H, O, N, S, F, and Cl atoms, we further filtered
out compounds with other atomic constituents. Comprehensive details of the selected
small molecules are provided in Supporting Information Table S1.

Table 1. Detailed information on X-ray structures of receptors and ligands in 23 systems.

Receptor Name/Peptide

Residue Number PDB ID Resolution

5-HT2AR 6A93 3.00A
A2AR 3EML 2.60 A

CB1 5XRA /6KQI 2.80A/3.25 A
CFX INFU 2.05 A
D2R 6CM4 2.87 A
11 small molecule-macromolecule systems ERK2 6SLG 1.33 A
ER 30S8 2.03 A
MIR 5CXV 2.70 A
nOR 5C1M 210 A
rRNA 2F4S 2.80 A
VEGFR2 20H4 2.05 A
4 3VQG 1.35 A
3 3BS4 1.60 A
8 IN7F 1.80 A
6 3IDG 1.86 A
5 2HPL 1.80 A
6 4Q6H 1.90 A
12 peptide—protein systems 5 4V3l 150 A
8 3CHS 1.90 A
11 2XEX 1.90 A
9 4N7H 1.70 A
12 4]18S 1.55 A
11 4EIK 1.60 A

For Dataset 2, we collected the corresponding natural binding ligands with X-ray
structures for the 11 diverse receptors instead of gathering compounds with binding assay
records from the ChEMBL database. Specifically, in the context of the CB1 system, we
opted for a different PDB ID (6KQI) for the CB1 receptor due to the presence of a bromine
(Br) atom in the ligand associated with the initially selected CB1 receptor, which the ANI-
2x potential cannot effectively accommodate. Additionally, we also introduced 12 more
flexible peptide—protein systems of varying lengths randomly selected from the LEADS-
PEP Benchmark Dataset [21,22]. It is pointed out that we did not select peptide—protein
systems from different drug target families, given the fact that there are not many approved
peptide drugs. The X-ray crystal structures of all the ligands and receptors used in our



Biomolecules 2024, 14, 648

50f13

study for these 23 systems were sourced from the PDB and detailed information can be
found in Table 1.

2.3. Structure Preparation and Docking

We followed standard protocols to prepare structures, generate grid files, and conduct
flexible docking, as detailed below. For all systems under study, the water molecules,
cofactors, and ions were preliminarily removed. Ligands were prepared with AMBER's
LEaP [23] and Maestro’s Ligprep programs [24], adding necessary hydrogen atoms, com-
pleting atomic structures, and determining protonation and tautomeric states according to
the experimental pH. Receptor preparation was carried out via Maestro’s Protein Prepa-
ration Wizard module [25], where we added the missing atoms and conducted energy
minimization of the hydrogens. The docking grid box was centered on the coordinates of
the naturally bound ligand, with the size of the box chosen to accommodate the ligand
of a similar size to the natural binder. Flexible docking was executed with a standard
precision scoring function, where we manually rewarded intramolecular hydrogen bonds
and enhanced the planarity of conjugated pi groups while maintaining default settings for
all other parameters. Finally, the top 10 docking poses for each ligand were recorded.

2.4. ANI-2x/CG-BS Calculation

The new docking pipeline ANI-2x/CG-BS utilizes the precise molecular energy and
force predictions provided by the ANI-2x machine learning potential, which emulates the
wB97X/6-31G(d) level of theory, to assist the CG-BS algorithm in iteratively updating the
molecular coordinates until convergence is achieved. For ANI-2x/CG-BS application, initial
preprocessing of the receptor is crucial. We focused on residues within an 8-15 A radius
from the center of the naturally bound ligand to simplify the receptor while maintaining its
interaction potential. Building on this, we defined a boundary at 2.5 A from any ligand
atoms: the exterior region becomes the “frozen part” with a temperature coefficient set
to —1 kcal/mol/ A2, indicating it remains static during the optimization, and the interior
region is the “active part” with a temperature coefficient of 5 kcal/mol/A2, allowing for
restrained movement. We combined the processed receptor with the ligand pose generated
from Glide docking to form the complex. The entire complex is then subjected to ANI-
2x/CG-BS optimization and PES evaluation. An ANI-2x/CG-BS optimization is converged
when it satisfies the same criteria used by Gaussian 16, i.e., maximum force and RMS force
are 0.00045 and 0.0003 atomic units, and maximum displacement and RMS displacement
are 0.0018 and 0.0012 atomic units. Upon obtaining the final predicted individual energies
of the ligand, receptor, and complex, we applied the following formula to calculate the
binding energy:

AEbind = Ecom — Erec — Elig

2.5. Evaluation Metrics
2.5.1. Root-Mean-Square Deviation (RMSD)

The RMSD functions as a key indicator for determining the average variation in
position between matching atoms, often with a focus on the backbone atoms, across two
molecular formations. It plays a crucial role in quantifying how similar two conformational
states of a molecule are. In the context of docking simulations, RMSD is commonly
employed to pinpoint the conformation that most accurately mirrors the native structure
amid a broad array of docked configurations [26,27]. In this study, considering assessing
both the position and orientation of a ligand within its active site, the fitting alignment
is anchored to the receptor. Ligands only undergo coordinate adjustments based on the
receptor alignment matrix, while avoiding direct fitting to their crystal structures: by doing
so in addition to conformational changes, the translational and rotational movement of
the ligand in the binding pocket were also counted. This metric was used for docking
power evaluation.
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2.5.2. Pearson’s Correlation Coefficient (R)

Pearson’s correlation coefficient is a statistical tool used to evaluate the degree of a
linear connection between two variables. The coefficient R-value fluctuates from —1 to 1. A
positive or negative sign of R signifies the nature of the relationship: positive or negative,
respectively. When the absolute value of the R approaches 1, it implies a strong correlation,
suggesting a high degree of similarity between the variables. Conversely, an absolute value
close to 0 indicates a lack of correlation, meaning there is little to no linear relationship
between the variables. This metric was used for scoring power evaluation.

2.5.3. Spearman’s Rank Correlation Coefficient (p)

Spearman’s rank correlation coefficient is a statistical method focusing on the rank
order of data across two variables. It ranks the data within each variable before computing
Pearson’s correlation coefficient for these ranks. This approach is less influenced by outliers
and is especially effective in determining the strength and direction of monotonic relation-
ships. In such relationships, the variables consistently move in the same direction, either
increasing or decreasing, but not necessarily at a steady rate. The values of this coefficient
span from —1 to 1. A p value near 1 in absolute terms suggests a complete rank association.
On the other hand, an absolute value nearing 0 implies a lack of any rank association [28].
This metric was used for ranking power evaluation.

3. Results
3.1. Docking Power Evaluation

Although many comparative studies have demonstrated that docking programs often
exhibit a better docking power compared to their screening and ranking powers, it remains
crucial to emphasize the significance of precise prediction of the native ligand binding
mode in docking simulation. It is understandable that the actual docking power is lower
when it is evaluated using ligands without forming crystallized complex structures. If
a docking program is unable to produce a pose that closely aligns with the natural pose
and to accurately prioritize such native-like binding poses at the forefront, the predicted
binding affinity will become less reliable, and the selection of the most accurate binding
pose based solely on its score will be less precise. As a result, the subsequent ranking and
screening processes, which rely on these affinity predictions, will be inherently flawed.
Hence, in our study, we applied ANI-2x/CG-BS to Dataset 2 with the hope of enhancing
docking power beyond the current capabilities of Glide. Dataset 2 includes receptors and
their corresponding naturally binding ligands across 11 small molecule-macromolecule
systems and 12 peptide—protein systems. Peptides differ from small molecules in that
they are considerably larger, and their numerous rotatable bonds confer a higher degree of
flexibility. Furthermore, the sites at which they bind are often superficial and exposed to
solvents [21]. Thus, we included these 12 peptide—protein systems to evaluate if our newly
developed protocol is capable of dealing with systems that are typically challenging for the
Glide docking program. We obtained the X-ray structures for all the receptors and ligands
from the PDB to directly perform docking and generated ten binding poses, which served
as the starting point for further optimization and energy prediction by ANI-2x/CG-BS.
Following the generation of poses through docking and their subsequent refinement with
our new docking pipeline, we ranked them according to their docking scores and predicted
energies, so that the Top 1 pose has the best docking score/predicted energy and so on.
We then calculated the RMSD of each pose compared to the ligand’s crystal structure. The
lowest RMSDs were evaluated within four ranking-based categories: Top 1, Top 3, Top 5,
and Top 10. If, across most systems, the lowest RMSD among the top 10 poses is frequently
found within the Top 1 or Top 3 categories post-ANI-2x/CG-BS optimization, and if this
RMSD is smaller than that of poses obtained through Glide docking, it would indicate an
improvement performance of the ANI-2x/CG-BS methods in predicting and identifying
native-like poses from decoys. Table 2 summarizes the lowest RMSD values belonging
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to the four ranking-based categories of docking poses obtained from Glide docking and
ANI-2x/CG-BS optimization conducted after Glide docking.

Table 2. Docking power evaluation with Glide docking and ANI-2x/CG-BS optimization methods:
lowest RMSD values across four ranking-based categories of docking poses.

RMSD (A)
Receptor Name ANI-2x/CG-BS Glide Docking
/PDB ID
Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10
5-HT2AR 2.96 0.92 0.92 0.92 2.98 225 1.56 1.10
A2AR 1.43 1.10 1.10 1.10 1.85 1.85 0.68 0.68
CB1 0.88 0.69 0.69 0.69 0.82 0.74 0.74 0.74
CFX 8.69 8.48 1.62 1.12 8.55 8.27 1.47 1.07
11 small molecule D2R 5.34 0.38 0.38 0.38 1.98 0.59 0.59 0.59
macromolecule systems ERK2 0.88 0.52 0.52 0.52 0.47 0.47 0.47 0.47
ER 1.46 1.15 1.13 0.81 1.12 1.12 1.12 0.72
MI1R 0.89 0.34 0.34 0.34 1.15 0.22 0.22 0.22
nOR 1.20 1.08 1.08 1.08 1.08 1.07 0.99 0.99
rRNA 592 5.83 5.82 5.82 6.11 5.96 5.96 5.93
VEGFR2 0.96 0.63 0.63 0.63 0.52 0.52 0.52 0.52
3VQG 1.21 1.12 1.12 1.12 1.14 1.13 1.13 1.13
3BS54 1.33 1.28 1.28 1.28 1.31 1.31 1.31 1.31
IN7F 2.29 2.29 229 2.29 2.15 2.15 2.15 2.15
3IDG 6.82 6.82 4.46 411 6.97 4.16 4.16 4.16
2HPL 4.30 423 423 423 427 421 421 421
12 peptide—protein 4Q6H 5.93 478 478 478 6.05 4.63 4.60 4.60
systems 4V3I 6.72 6.72 6.72 6.72 8.08 8.08 8.08 6.81
3CHS8 12.99 11.97 717 5.69 7.07 7.07 7.07 5.76
2XFX 14.52 7.44 7.44 7.44 10.38 10.38 7.63 7.63
4AN7H 11.02 7.77 7.77 7.77 9.99 9.64 7.82 7.82
4]8S 8.83 8.83 8.29 8.00 8.71 8.71 8.71 8.34
4EIK 12.50 8.47 8.47 8.47 8.53 8.53 8.53 8.53
Tenmbeolseme b ED s s s o s
Top rank identification success rate (%) 74% 48%

Figures 2 and 3 specifically compare the RMSD between the most native-like struc-
tures of ligands obtained through two different methods, namely Glide docking and the
newly proposed docking pipeline, for the 11 small molecule-macromolecule systems and
12 peptide—protein systems, respectively, against their corresponding crystal structures. In
Figure 2, which pertains to the 11 small molecule-macromolecule systems, the smallest
RMSD values from Glide docking almost consistently remain under 1.5 A except for the
rRNA system. After optimization, a slight reduction in RMSD is observed in the 5-HT2AR,
CB1, D2R, and rRNA systems. In the case of the remaining systems, even though there are
minor increases in RMSD post-optimization, the smallest RMSD values for these optimized
poses still typically fall below the 1.5 A threshold. In the case of the 12 peptide—protein
systems, as depicted in Figure 3, we observed a distinct advantage of ANI-2x/CG-BS opti-
mization when the overall accuracy of Glide docking decreased. Specifically, when the pose
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with the lowest RMSD generated by Glide docking exceeds around 5 A, ANI-2x/CG-BS
optimization tends to reduce the RMSD. For instance, in the system with PDB ID 4]J8S, the
RMSD of the pose closest to the true structure initially obtained from docking was 8.34 A,
which, after optimization, decreased to 8.00 A, showing a change of 0.34 A. Furthermore,
in systems where Glide docking already predicts poses accurately, optimization can still
lead to a reduction in RMSD or maintain comparable accuracy, like those with PDB IDs
3VQG and 3BS4.

VEGFR2 [
rRNA R —"
wor
MIR e
e
ERK2
—_—
.
I

D2R

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 4.5 5.0 5.5 6.0
RMSD
® Glide docking  m ANI-2x/CG-BS

Figure 2. Comparison of the lowest RMSD results among the top 10 docking poses obtained from Glide
docking and ANI-2x/CG-BS optimization methods for the 11 small molecule-macromolecule systems.

4EIK
4J8S
4N7H
2XFX
3CH8
4v3|
4Q6H
2HPL
3IDG
IN7F
3BS4

3vVQG

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 9.0
RMSD
m Glide docking = ANI-2x/CG-BS

Figure 3. Comparison of the lowest RMSD results among the top 10 docking poses obtained from
Glide docking and ANI-2x/CG-BS optimization methods for the 12 peptide—protein systems.

In assessing the proficiency of different docking methods to prioritize native-like
binding poses, our analysis focused on the frequency of these poses being ranked within
four predefined categories (Table 2). With Glide docking, the native-like pose was found
to be ranked at the top position in 11 of the systems studied, with half being accurately
identified based on the best docking score as Top 1, while the other half were identified at
the second or third ranks. However, in the remaining 12 systems, these native-like poses
were predominantly identified in lower-ranking categories. The ANI-2x/CG-BS method,
however, showed a stronger performance, identifying native-like poses within the top three
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poses in 17 systems. Only in six systems were the native-like poses primarily identified
in lower-ranking categories, highlighting the superior capability of ANI-2x/CG-BS in
pinpointing the pose that closely resembles the actual native binding configuration from
computational decoys.

A strong docking power refers to the ability to not only accurately predict binding
poses but also to discern native-like binding poses from computational decoys. Based on
our results, when the binding poses generated by Glide docking closely match the native
ligand conformation, the subsequent optimization by ANI-2x/CG-BS tends to offer limited
improvement, often maintaining similar RMSD levels. However, in instances where the
binding poses from Glide docking significantly deviate from the native ligand structure,
post-optimization with ANI-2x/CG-BS effectively refines these poses, bringing them closer
to the true binding pose, with RMSD reductions around 0.2 A. In terms of identifying native-
like binding poses, the ANI-2x/CG-BS method generally outperforms Glide docking. The
analysis reveals that ANI-2x/CG-BS can identify native-like poses within the top three
poses in 74% of the analyzed systems, whereas Glide docking achieves this in only 48%. It is
pointed out that in real practice of HTVS, ANI-2x/CG-BS has a more significant advantage
over Glide as most small molecular ligands do not have crystalized complex structures
at all. Therefore, integrating ANI-2x/CG-BS as a follow-up optimization step to Glide
docking can enhance the overall docking power, improving the accuracy and reliability of
the docking predictions.

3.2. Ranking and Scoring Power Evaluations

Dataset 1 was employed for assessing and contrasting the ranking and scoring powers
of the Glide method against our innovative ANI-2x/CG-BS approach. This dataset includes
a variety of 11 distinct small molecule-macromolecule systems, encompassing receptor
classes such as GPCR, kinase, RNA, protease, and nuclear receptors, together with their
respective, selected compounds sourced from the ChREMBL database. Standard precision
Glide docking was executed to determine the best docking poses, which subsequently
served as the reference for additional optimization via our newly formulated docking
pipeline. The comparative scoring and ranking powers of these two methods were quanti-
fied using Pearson’s correlation coefficient (R) and Spearman’s correlation coefficient (p) as
the evaluative metrics, respectively. The outcomes of these comparative assessments are
detailed in Tables 3 and 4.

Table 3. Scoring power evaluation with Glide docking and ANI-2x/CG-BS optimization methods.

5-HT2AR A2AR CB1 CFX D2R ERK2 ER MR pOR rRNA VEGFR2 Average
Docking 0.23 0.29 019 010 011 0.60 0.60 0.21 0.16 0.24 0.48 0.29
ANI-
2x/CG-BS 0.20 0.02 023 0.04 012 0.54 060 031 0.16 0.85 0.45 0.32
Table 4. Ranking power evaluation with Glide docking and ANI-2x/CG-BS optimization methods.
5-HT2AR  A2AR CB1 CFX D2R ERK2 ER MIR pOR rRNA VEGFR2 Average
Docking 0.21 0.30 021 029 0.10 057 065 0.30 0.14 0.14 0.47 0.30
ANI-
2x/CG-BS 0.19 0.07 025 0.06 0.14 0.36 0.61 047 0.16 0.69 0.46 0.31

Table 3 presents the Pearson’s correlation coefficients for those 11 small molecule—
macromolecule systems. It provides a measure of the correlation between the Glide docking
scores and binding energies derived for the ANI-2x/CG-BS optimized approach, as com-
pared to experimental binding affinity. Notably, among the 11 systems studied, four
systems (CB1, D2R, M1R, and rRNA) showed an improvement in their R-values after
optimization with ANI-2x/CG-BS. The most significant improvement was observed in the
rRNA system, where the scoring power, represented by R, increased markedly from 0.24 to
0.85. For the 5-HT2AR, ER, uOR, and VEGFR2 systems, the scoring power was found to be
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comparable between the two methods, with no significant changes observed. However, for
the A2AR, CFX, and ERK2 systems, the scoring power underperformed compared to Glide
docking. When averaging the R-values across all 11 systems, the overall performance of
our newly proposed ANI-2x/CG-BS docking pipeline showed an improvement over Glide
docking alone, with the average R-value increasing from 0.29 to 0.32. Table 4 summarizes
the ranking power of each system as characterized by Spearman’s correlation coefficient
(p). The trend in ranking power largely mirrors that of the scoring power observed pre-
viously. Following the optimization with the ANI-2x/CG-BS method, five of the systems
(CB1, D2R, M1R, uOR, and rRNA) exhibited an improvement in their p values, indicating
enhanced ranking power. Conversely, for the A2AR, CFX, and ERK2 systems, the ranking
power notably declined compared to Glide docking after implementing this new pipeline.
When averaging the results across all 11 systems, it can be generally stated that the newly
introduced docking pipeline did enhance the ranking power, albeit with a modest increase
in the p value of 0.01.

In summary, integrating the ANI-2x/CG-BS pipeline with Glide docking demonstrates
the promising potential to enhance ranking and scoring powers compared to using Glide
docking alone for HTVS. Among the 11 molecular systems analyzed, while maintaining
comparable results in 20% of cases, this integrated approach showed improvements in
ranking and scoring powers in nearly half of the systems. This indicates a slight advance-
ment in the method’s ability to accurately predict and rank molecular interactions despite
the performance being decreased for three systems. The most noteworthy improvement
was observed in the rRNA system, where both ranking and scoring powers significantly
increased post-optimization. This highlights the potential of the ANI-2x/CG-BS pipeline in
enhancing the predictive accuracy and efficiency of molecular docking in complex systems.

4. Discussion

This study introduces ANI-2x/CG-BS, a novel docking pipeline applied to post-
Glide docking for binding pose refinement and binding affinity re-ranking. The CG-BS
optimization algorithm utilizes the precise potential energies and forces provided by
the ANI-2x machine learning potential to iteratively optimize the poses generated by
Glide until convergence is achieved. By applying this additional optimization protocol
to 11 diverse small molecule-macromolecule systems and 12 flexible peptide—protein
systems, we observed an improvement in the docking power over Glide docking across
most scenarios. When Glide docking accurately predicts binding poses, the introduction of
ANI-2x/CG-BS results in minimal changes. However, in systems with greater flexibility
that are challenging for standard Glide docking, our proposed method optimizes binding
poses more reasonably. Furthermore, ANI-2x/CG-BS demonstrates remarkable capabilities
in accurately identifying “native-like” binding poses, surpassing Glide docking by 26%
in successful recognitions. Regarding scoring and ranking powers, the introduction of
this method enhances these aspects for nearly 50% of the systems, particularly showing
substantial improvements in the rRNA system.

After ANI-2x/CG-BS optimization and rescoring, 17 out of 23 docking systems have
their best RMSD poses among the top three poses, while there are only 11 systems for
Glide docking. In a prospective study, one may consider experimental evidence, especially
mutagenesis data, to identify the best poses. Alternatively, one may also apply more
advanced free energy-based methods, such as MM-PBSA [29,30], to determine the best
poses. As to how to choose compounds to test in a virtual docking screening study, we
recommend choosing ones with the best binding energy. Nevertheless, the ANI-2x/CG-BS
approach still fails to achieve a substantial enhancement in the overall docking performance
across all tested systems. This limitation stems from the foundation of our proposed
approach, which builds upon Glide docking and ANI-2x potential. Glide docking, with its
primary focus on optimizing individual ligands, inadvertently neglects the influence of
substantial conformational changes in the receptor during ligand binding. Furthermore,
the grid-based approach of Glide restricts the exploration of conformational space during
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docking, thereby failing to fully uncover the spectrum of possible ligand conformations.
Consequently, these factors contribute to modest improvements in binding mode prediction
with our proposed optimization. In the case of the ANI-2x potential, it is currently solely
grounded in the gas phase environment, omitting the incorporation of solvation effects
in the prediction of binding energy. Moreover, the current potential was trained using
the relatively small and simple molecules and the net charge information was not being
explicitly considered. Thus, it is understandable that ANI-2x energy may be less accurate
for druglike molecules, especially the charged ones. Indeed, we found that the mean errors
increased from 1.03 kcal/mol for the neutral PDB ligands to 1.56 kcal/mol for the charged
ones [15]. To overcome these limitations, the next generation of machine learning potentials,
which broaden the chemical space to cover more elements (such as Br and I), incorporate
the solvent effects in ab initio potential energy calculation, and explicitly consider the
charge states of the input molecule, is expected to significantly enhance the accuracy of
binding energy predictions and lead to significant advancements in our innovative SBVS
pipeline across diverse systems.

Although there is a great potential that the ANI-2x successors could significantly
improve the docking performance, we must not rule out that other docking protocols
outperform our docking protocol using ANI-2x. We have demonstrated that machine
learning-trained ligand-residue interaction profile scoring functions (IPSF) achieve a signif-
icantly better performance in docking screening [31]. However, the IPSF-based approach
requires existing ligand binding affinity data to train the model. Other successful docking
protocols include the ones applying Dock3.7 [32] and Autodock [33].

5. Conclusions

In our study, we introduced a novel docking pipeline by integrating our in-house
geometry optimization algorithm CG-BS with the highly accurate machine learning po-
tential, ANI-2x, known for its precision and efficiency in molecular energy and force
predictions. The application of Glide docking for predicting binding poses in 11 diverse
small molecule-macromolecule systems and 12 flexible peptide—protein systems, followed
by subsequent optimization using ANI-2x/CG-BS with these predictions as initial struc-
tures, has confirmed that incorporating ANI-2x/CG-BS as a subsequent step has resulted
in enhancements in docking, scoring, and ranking powers. Considering that CG-BS can
adopt most if not all the current and future machine learning potentials, our new docking
pipeline holds great promise for globally elevating overall docking performance, especially
when more accurate and advanced machine learning potentials come into being.

Supplementary Materials: The following supporting information can be downloaded at: https:
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