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A B S T R A C T   

To accelerate the discovery of novel drug candidates for Coronavirus Disease 2019 (COVID-19) therapeutics, we 
reported a series of machine learning (ML)-based models to accurately predict the anti-SARS-CoV-2 activities of 
screening compounds. We explored 6 popular ML algorithms in combination with 15 molecular descriptors for 
molecular structures from 9 screening assays in the COVID-19 OpenData Portal hosted by NCATS. As a result, the 
models constructed by k-nearest neighbors (KNN) using the molecular descriptor GAFF+RDKit achieved the best 
overall performance with the highest average accuracy of 0.68 and relatively high average area under the 
receiver operating characteristic curve of 0.74, better than other ML algorithms. Meanwhile, The KNN model for 
all assays using GAFF+RDKit descriptor outperformed using other descriptors. The overall performance of our 
developed models was better than REDIAL-2020 (R). A web server (https://clickff.org/amberweb/covid-19-cp) 
was developed to enable users to predict anti-SARS-CoV-2 activities of arbitrary compounds using the COVID-19- 
CP (P) models. Besides the descriptor-based machine learning models, we also developed graph-based Attentive 
FP (A) models for the 9 assays. We found that the Attentive FP models achieved a comparable performance to 
that of COVID-19-CP and outperformed the REDIAL-2020 models. The consensus prediction utilizing both 
COVID-19-CP and Attentive FP can significantly boost the prediction accuracy as assessed by comparing its 
performance with other three individual models (R, P, A) utilizing the Wilcoxon signed-rank test, thus can ul
timately improve the success rate of COVID-19 drug discovery.   

1. Introduction 

Since 2019, the Coronavirus Disease 2019 (COVID-19) pandemic has 
hit and put global health systems at risk [1]. So far, this novel corona
virus disease, caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), has led to more than 757 million people infected with 
mortality reaching over 6.8 million as of 19 February 2023 [2]. 
Although the mortality and spread of COVID-19 has been suppressed 
due to rapidly increasing vaccination rates, there is still an urgent need 
for effective drug treatment for the large-scaling infection of this coro
navirus. To speed up the identification of novel candidates for COVID-19 
treatment in the drug discovery process, machine learning (ML) has 
stood out as a powerful tool for its efficiency and reliability in drug 
screenings [3–5]. 

In 2020, KC et al. [6] proposed a suite of ML-based models to predict 
activities of small molecules for SARS-CoV-2 from molecular structures 
related to several SARS-CoV-2 assays. The models they developed, 

coined “REDIAL-2020”, offered a convenient and efficient way to screen 
novel molecules for anti-SARS-CoV-2 activities. In this work, we further 
improved the performance of the prediction models by exploring 
different ML-based models and molecular descriptors regarding to mo
lecular structures. Moreover, we created prediction models for three 
more screening assays. In totaFl six popular ML algorithms which 
include support vector machine (SVM) [7], logistic regression (LR) [8], 
decision tree (DT) [9], Random Forest (RF) [10], k-nearest neighbors 
(KNN) [11], and complement Naïve Bayes (CNB) [12,13], were applied 
to construct prediction models. A variety of molecular descriptors, 
including fingerprint (FP2, FP3, FP4 and MACCS), atom type counts 
(General AMBER Force Field (GAFF)), molecular properties (RDKit), 
were first applied to construct models. Four fingerprints translate 
various structural features into binary bits which are organized in a bit 
string with fixed length. RDKit collects 208 molecular properties while 
GAFF applies 47 atom types to describe subtle chemical environment. By 
combining different types of molecular descriptors, the hybrid ones 
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which contain versatile structural information at different levels can 
enable us to construct high-quality models. We utilized 5 classification 
metrics as detailed in the supplemental text, to select combination of 
descriptors. In total, 9 pairs of sets of descriptors were exploited, 
including RDKit+FP2, RDKit+FP3, RDKit+FP4, RDKit+MACCS, 
GAFF+FP2, GAFF+FP3, GAFF+FP4, GAFF+MACCS, and GAFF+RDKit. 
We only consider the combination of molecular descriptors that are 
made of two-type descriptors to avoid redundant structural information 
and model complexity which decrease the model performance. All the 
15 molecular descriptors were applied to train experimental screening 
data collected in the COVID-19 OpenData Portal (https://ncats.nih.gov/ 
expertise/covid19-open-data-portal) hosted by National Center for 
Advancing Translational Sciences (NCATS). The 9 screening assays in 
this study can be classified into four categories, which are (1) viral 
replication, (2) live virus infectability, (3) viral entry, and (4) 
counter-screen. Both KC et al. and we studied the first six screening 
assays: 3CL enzymatic activity (3CL) in Category 1, SARS-CoV-2 cyto
pathic effect CPE in Category 2, Spike-ACE2 protein-protein interaction 
AlphaLISA assay and ACE2 enzymatic activity in Category 3, 
SARS-CoV-2 cytopathic effect counter-screen and Spike-ACE2 protein-
protein interaction TruHit counter-screen in Category 4. Besides the 
above six assays, we also studied other three screening assays: TMPRSS2 
enzymatic activity in Category 3, HEK 293 cell line toxicity and human 
fibroblast toxicity in Category 4. 

For the only assay in Category 1, the papain-like proteinase 3CL 
cleaves SARS-CoV-2 polyprotein into individual proteins, which is a key 
process in the viral life cycle [14]. Inhibiting polyprotein cleavage can 
interrupt viral replication, making 3CL an attractive target in drug dis
covery and development. For assays in Category 2, the SARS-CoV-2 
cytopathic effect (CPE) assay serves to measure the potential of com
pounds to reverse the cytopathic effect of the virus in Vero E6 host cells 
[15]. Thus, this assay can identify compounds with the potential to 
protect host cells from the CPE of the virus. Three assays belong to 
Category 3, measuring the ability of a compound inhibiting viral entry. 
The surface angiotensin-converting enzyme type 2 (ACE2) has been 
known as the primary host factor identified and targeted by SARS-CoV-2 
virions [16,17]. The attachment of viral capsid to the host cell is facil
itated by the SARS-CoV-2 Spike protein binding to the host ACE2, which 
trigger a multistep process of viral entry resulting in delivery of the viral 
genome to the cytosol, the site of replication. As a result, the disruption 
of the Spike-ACE2 interaction can cripple SARS-CoV-2 virions to infect 
host cells. The Spike-ACE2 protein-protein interaction AlphaLISA assay 
is used to measure the ability of therapeutics (small molecules, etc.) to 
disrupt the interaction between the Spike protein and ACE2. On the 
other hand, ACE2 plays a role in cleaving angiotensin I hormone into the 
vasoconstricting angiotensin II and acts as a counter-balance to ACE. 
Although inhibition of the Spike-ACE2 interaction can stop viral entry, 
off-target effects on endogenous ACE2 function may lead to disruption of 
critical vasodilation pathways. After the ACE2 binding, transmembrane 
protease serine 2 (TMPRSS2), a host protease which is essential for Spike 
protein priming, has been shown playing important a role in virus-host 
cell membrane fusion and further infection [18]. Therefore, the ACE2 
and TMPRSS2 enzymatic assays can be applied to screen compounds 
with the ability to interrupt endogenous enzyme functions. 

There are four assays in the counter-screen category. The counter- 
screen of the CPE assay is host cell tox counter-screen (Cytotox) and is 
used to measure cell cytotoxicity. Another counter-screen is the Spike- 
ACE2 protein-protein interaction TruHit assay that serves to identify 
false positives. The function of this assay is to investigate whether the 
activity found in a AlphaLISA assay is caused by the interference with 
the assay system itself or not. Two extra HEK293 cell line toxicity and 
human fibroblast toxicity assays are used as cell viability assays which 
evaluate the general human cell toxicity of compounds. 

In Fig. 1, we illustrate the preferred response for each assay. For the 
assays in the first three categories, active response is preferred, while for 
the assays in the counter-screen category, we expect negative response 

which means no interference in the companion assays. 
Next, we constructed a series of models by ML methods that can 

screen and identify compounds with anti-SARS-CoV-2 activities. The 
impacts of ML algorithms and molecular descriptors on the model per
formance regarding to different coronavirus-related assays were 
explored in this study. The model with the best performance was 
interpreted by the Shapley additive explanations (SHAP) values, from 
which the importance of descriptors and molecular features can be 
evaluated. In addition, the final satisfactory models were deployed in a 
web server with multiple molecular input formats, allowing a user to 
predict the activities of arbitrary small molecules against viral replica
tion, viral entry and live virus infectivity. We believe the web server may 
provide users a convenient way to prioritize virtual screening drugs 
prior to in vitro or in vivo assays in rational drug discovery for pre
venting and treating COVID-19. 

Nevertheless, other than using the traditional descriptor-based 
models, we adopted a novel graph-based modeling algorithm, Atten
tive FP [19], for the prediction of anti-SARS-CoV-2 activities of a com
pound. This graph neural network was proposed by Xiong, Z. et al. for 
molecular representation. It can not only characterize atomic local 
properties of a given chemical structure but also describe nonlocal 
intramolecular interactions. Attentive FP has been verified to achieve 
state-of-the-art predictive performances in the recent studies [19,20]. In 
this work, we are interested in finding out whether our descriptor-based 
models can achieve comparable or better accuracy to the more 
complicated graph-based neural networks models. 

2. Methods 

2.1. Data preparation and molecular representations 

The compounds used for model training and testing for all assays 
were collected from the NCATS COVID-19 OpenData portal (https://op 
endata.ncats.nih.gov/covid19/). After removing duplicated compounds 
in each assay, we separated the compounds into active and inactive sets, 
based on whether the assay had half-maximal activity concentration 
(AC50) data. For some assays, the numbers of active and inactive are 
significantly unbalanced (for example, Ninactive/Nactive > 10), so we 

Fig. 1. The desirable profile for the predicted anti-SARS-CoV-2 activities of the 
promising compound among 9 assays. Green color indicates “active” is 
preferred, while red color indicates “inactive” is preferred. 
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randomly divided inactive compounds into several subsets, and all 
subsets have similar numbers of inactives. We only used one subset of 
the inactive to construct models, and used the others as external test sets 
to evaluate the model performance. Specifically, 3CL has four subsets of 
inactives (s1, s2, s3, and s4), ACE2 has two, CPE has two, TMPRSS2 has 
three subsets of inactives. The distribution of active and inactive com
pounds in all assays is shown in Fig. 2. For the above assays, only the first 
subset (s1), was applied in the model construction. 

To construct a machine learning model of an assay, we constructed a 
test dataset by randomly selecting 20% compounds in active set, and the 
same number of molecules from the inactive set. Note that numbers of 
actives and inactives in the training sets are unbalanced, therefore, we 
applied the RandomOverSampler (for 3CL assay) and SMOTE algorithms 
(for all other assays) [21] to overcome the data imbalance issue. Counts 
of active and inactive molecules in training (mean counts), validation 
(mean counts) sets and test sets for nine assays were summarized in  
Table 1. 

As shown in the table, for most assays, the total compounds in the 
active and inactive sets are imbalanced. For the 3CL, CPE and Cytotox 
assays, the total inactive compounds are approximately five times 
greater than the actives. To resolve the issue of data imbalance, there are 
typically two resampling methods: under-sampling and oversampling 
[22]. Under-sampling refers to randomly removing some subjects from 
the majority class to match the counts of samples in the minority class. In 
the oversampling process, a sample of synthetic data for minority class 
was generated to match the number of samples in majority. Considering 
the dramatic difference of numbers of active and inactive compounds in 
some assays, we performed oversampling to resample the imbalanced 
data. We first applied class weight to balance the data, i.e., the 
under-sampled class had larger weight and the total weight of each class 
was roughly same. However, in that case, the calculated F1 scores of the 
models for most assays were unsatisfactory. For example, for the CPE 
assay, the average F1 score of all SVM models for test sets was only 0.42. 
Thus, we adopted another commonly used technique, Synthetic 

Minority Over-sampling Technique (SMOTE) implemented in a python 
program. SMOTE works by looking at examples that are close in the 
feature space for the minority class and draws a new sample at points 
along the line between the examples in the feature space [21]. By 
applying SMOTE technique, the average F1 score for the CPE assay 
under the same condition was improved to 0.55. We employed SMOTE 
package for almost all assays except for 3CL assay. Considering the 
complexity of the data in 3CL assay, we adopted a simpler Random
OverSampler [23] method to balance the data set. 

Generally, the collected molecules were converted into three types of 
descriptors: i) fingerprint-based, ii) Physicochemical, iii) atom type- 
based. Class i) includes FP2 (1024 bits), FP3 (55 bits), FP4 (307 bits) 
and MACCS (166 bits). Among them, FP2 is a path-based fingerprint that 
indexes small molecule fragments based on linear segments of up to 7 
atoms, while FP3, FP4 and MACCS are substructure-based fingerprints 
based on sets of SMILES arbitrary target specification (SMARTS) pat
terns. All fingerprint-based descriptors were obtained using Open Babel 
program version 2.3.1 (http://openbabel.org) [24]. RDKit molecular 
descriptor has 208 bits of vectors, belongs to class ii), and was obtained 
using RDKit program [25]. GAFF is an atom type-based molecular 
descriptor. It has 47 bits of vectors and GAFF contains molecular me
chanics force field parameters for a wide breadth of molecules 
comprised of H, C, N, O, S, P and the halogens. In addition to the above 
six single descriptors, we also combined them to generate nine extra 
molecular descriptors: RDKit+FP2, RDKit+FP3, RDKit+FP4, 
RDKit+MACCS. GAFF+FP2, GAFF+FP3, GAFF+FP4, GAFF+MACCS, 
and GAFF+RDKit. Specifically, before the feature matrix served as the 
input data for ML-based models, its molecular descriptors containing 
RDKit features were standardized into matrix with values ranging from 
zero to one. This conversion was implemented utilizing MinMaxScaler in 
scikit-learn module. 

Fig. 2. The counts of compounds in active sets (green) and inactive sets (red) for each assay. s refers to sample of inactive compounds (s1: sample 1, s2: sample 2, s3: 
sample 3, s4: sample 4). A-I are different assays. A. 3CL, B. HEK293, C. Fibroblast, D. CPE, E. Cytotox, F. ACE2, G. AlphaLISA, H. TruHit, I. TMPRSS2. 
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2.2. Descriptor-based models 

Several ML classifiers were constructed for each assay using 15 
molecular descriptors and 6 ML algorithms. ML algorithms applied in 
the study include support vector machine (SVM), logistic regression 
(LR), decision tree (DT), Random Forest (RF), k-nearest neighbors 
(KNN) and complement Naïve Bayes (NB). The description and hyper
parameters of those ML algorithms are shown in supplemental infor
mation. For each assay, all models were trained and validated using 
partitioned data sets through the built classifiers in scikit-learn package 
of Python. The data in the separated test sets for each assay is then used 
for further model evaluation after the training. 

2.3. Attentive FP model 

Attentive FP (A) is a state-of-art graph-based neural network pro
posed by Xiong et al. [19] for the prediction of molecular characteristics. 
In their work, they introduced a graph attention mechanism which al
lows a method to focus on the relevant parts of the graph input to reach 
good prediction results. We fully implemented the code downloaded 
from GitHub (https://github.com/OpenDrugAI/AttentiveFP) and con
structed A models. To objectively compare the performance of devel
oped descriptor-based and A models, the same datasets used in the 
training and evaluation of descriptor-based models were adopted in the 
construction of graph-based models. The development of the A models 
was performed using the PyTorch package. 

2.4. Model evaluation and performance metrics 

The descriptor-based models were evaluated using stratified 10-fold 
cross-validation of the compounds excluded the test dataset and addi
tionally tested by four external datasets. The cross validation was con
ducted by leveraging StratifiedKFold, a scikit-learn module built in 
python [26]. For a graph-based A model, we first conducted the same 
procedures we did for the descriptor-based models. For each assay, 20% 
compounds in active set and the same number of molecules from the 
inactive set were randomly extracted to comprise the test set. Next, to 
make sure that we completely integrated the built model, instead of 
using the python package to overcome the data imbalance and con
ducting cross-validation method for evaluation, we divided inactives 
into several sample sets in some assays to balance the ratio between the 
amounts of actives and inactives. For 3CL, CPE, Cytotox assays, the in
actives were divided into 5 sample sets to match the amounts of actives. 
For ACE2, Fibroblast, TMPRSS2 assays, the inactives were divided into 
10 sets. As such, the inactives in AlphaLISA and Truhit were divided into 
2 sets. For HEK293 assay, the inactive compounds were not divided 
because the ratio of counts of actives and inactives was close to 1:1. Then 
for each assay, every divided inactive set and active set were combined 
to form a balanced dataset, thus, there were 5 balanced datasets 

compiled for 3CL, CPE, Cytotox assays, 10 balanced datasets for ACE2, 
Fibroblast, and TMPRSS2 assays, 2 balanced datasets for AlphaLISA and 
Truhit assays and 1 balanced dataset for HEK293 assay. Within each 
balanced set, the training and validation sets were randomly divided at a 
ratio of 9:1. The following-up model performance evaluation was per
formed by averaging the prediction results of all balanced sets in each 
assay. 

The performance of all constructed models was evaluated by using 
five metrics: area under the curve (AUC) of receiver operating charac
teristic (ROC) curve, accuracy (ACC), F1-score, precision (PRE), and 
recall (REC). All of the metrics are ranged in [0,1], in which 0 indicates 
the worst and 1 indicates the best scenarios. Theoretically for AUC of 
ROC, a random model will have an AUC of 0.5. ACC measures the 
proportion of all correct cases among total evaluated cases. PRE is the 
measurement of the correct positive predictions from all predicted 
positive cases, while REC measures the correct positive predictions from 
all actual positive cases. F1-score is the harmonic mean of PRE and REC. 
The above five metrics were utilized to evaluate the performance of 
validation and test sets. Additionally, for the evaluation of external 
datasets, we employed sensitivity and specificity metrics to measure the 
model performance. Sensitivity, with the same meaning as recall, mea
sures the percentage of compounds which received a positive prediction 
on this test out of the percentage of those which have the condition, 
whereas specificity measures the fraction of compounds which had a 
negative result on the test out of those which have no condition. For
mulas of all metrics in the study are described in the supplemental 
information. 

3. Results and discussion 

3.1. Data set preparation 

For the ACE2, Fibroblast and TMPRSS2 screening assays, the severity 
of data imbalance is very high, since for each assay the number of 
inactive compounds is even 10-fold larger than that of actives. Thus, we 
randomly divided inactive compounds for each of the four assays into 
2–4 subsets based on the actual number of inactives. One inactive subset 
was randomly selected to participate in ML-based model construction, 
while the rest of sample sets were taken as external datasets for further 
model validation. Of note, the dataset consisted of all actives and in
actives in the selected subset of inactives was still unbalanced. 

3.2. ML-based model performance 

For each screening assay collected in the COVID-19 open-data-por
tal, we constructed binary classification models with 15 different mo
lecular descriptors using six different ML algorithms. The model 
performance measured by the validation and test sets under all condi
tions is presented in Table 2 and Figs. S1 and S2. Overall, the model 

Table 1 
Summary of counts for datasets.  

Assay Total [ (Training (90%) & Validation (10%)] (80%) Test (20%) 

Assay Abbr.a Category Actives Inactives Actives Inactives Actives Inactives 

3CL 1 431 2916 343 2826 86 86 
CPE 2 841 4808 648 4623 168 168 
ACE2 3 203 1574 162 1533 41 41 
AlphaLISA 3 1018 2269 812 2060 204 204 
TMPRSS2 3 194 1597 155 1558 39 39 
Cytotox 4 1685 7844 1325 7494 337 337 
TruHit 4 1030 2257 819 2045 206 206 
HEK293 4 4307 5303 3376 4395 861 861 
Fibroblast 4 590 4004 467 3868 118 118  

a 3CL: 3CL enzymatic activity; CPE: SARS-CoV-2 cytopathic effect CPE; ACE2: ACE2 enzymatic activity assay; AlphaLisa: Spike-ACE2 protein-protein interaction 
AlphaLISA assay; TMPRSS2: TMPRSS2 enzymatic activity assay; Cytotox: SARS-CoV-2 cytopathic effect counter-screen assay; TruHit: Spike-ACE2 protein-protein 
interaction TruHit conunterscreen assay; HEK293: HEK 293 cell line toxicity assay; Fibroblast: human fibroblast toxicity assay. 
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performance measured by the validation sets was comparable for all 
assays (Table 2). Specifically, the KNN model stood out as it has higher 
scores of AUC (0.91) and REC (0.94), as well as comparable scores of 
ACC (0.80), F1(0.82) and PRE (0.73) compared to other ML methods. 
Meanwhile, the model performance measured by the test sets was 
slightly lower than that of the validation sets. The overall ranking for 
test sets of different machine learning models was the same, with the 
KNN method outperforming other ML models. The performance of KNN 
was generally satisfactory, which achieved the highest scores of ACC 
(0.68), F1 (0.69) and REC (0.71), and relatively high scores of AUC 
(0.74) and PRE (0.67) among all ML algorithms. 

We then evaluated the performance of the KNN models constructed 
for all screening assays. Table 3 listed the average scores of metrics for 
all KNN models constructed using different molecular descriptors for 
individual assays. Essentially, there was no dramatic difference of those 
measured metrics among all the screening assays, indicating KNN was a 
promising ML algorithm to be applied to construct prediction models for 
screening data. Notably, for validation sets, even average scores of some 
metrics of the KNN models for most common assays were higher than the 
best scores reported in KC et al.’s study. For test sets, the average scores 
of some metrics, such as AUC for CPE, Cytotox and TruHit assays, were 
still higher than the best scores in KC et al.’s study. The scores of metrics 
for model evaluation that are better than those by KC et al. were high
lighted with blue and bold font in Table 3. For example, the average 
AUC, ACC, F1, PRE and REC scores for test set for CPE assay is 0.75, 
0.69, 0.71, 0.68, 0.74 respectively, which are much higher than the 
values in KC et al.’s model (0.651, 0.643, 0.661, 0.651, and 0.626 
correspondingly). 

In addition to the above evaluation metrics, sum of ranking differ
ences (SRD) [27], a commonly used technique to resolve multicriteria 
optimization issues in many fields, was also considered as an additional 
measurement to compare the various ML algorithms. According to the 
previous publications [28],SRD is calculated using the actual data and 
serves as performance metric, similar to AUC or accuracy. In this work, 
SRD was utilized to compare the binary prediction results of six 
ML-based models across various assays. It was performed using the 
Python package on Github (https://github.com/davidbajusz/srdpy) 

[29]. According to Table 4, although KNN ranks in the middle of all six 
algorithms for the validation set, it ranks the best with the smallest SRD 
value for the test set. And if we compared the average SRD performance 
of six algorithms, KNN ranks second, and is only 0.16% smaller than RF. 
However, it has been reported that the performance metrics have 
different degrees of disagreement with SRD values for the classification 
problem, particularly for 2-class classification and imbalanced data sets 
[30]. Thus, SRD was not considered as the main metrics in this study, 
and instead, AUC and accuracy are more important performance metrics 
to evaluate the model performance. 

3.3. Impact of molecular descriptor on model performance 

We compared the impact of different molecular descriptors on the 
model performance. For the sake of comparison, heatmaps which 
illustrate the values of a performance metric with colors were generated 
(Fig. 3). In these heatmaps, we used red to blue colors to indicate the 
large or small value of a performance metric, the higher the value, the 
more reddish color it is, and the lower the value, the more bluish color it 
is. The purpose of these visualizations is to provide a comprehensive 
overview of how well each descriptor performs across all assays and 
metrics. The heatmaps illustrate the overall performance of fifteen 
molecular descriptors applied for the construction of KNN models for 9 
screening assays. All the 5 metrics should be considered to identify the 
best descriptor for all screening assays. By combining the results in both 
Fig. 3 and Fig. S3, overall, the GAFF+RDKit descriptor outperformed 
others since there were the least number of blue grids for it cross all the 
metrics and assays. Table 5 lists the average metrics scores of KNN 
models for each molecular descriptor in all assays. According to this 
table, GAFF+RDKit has comparable performance with other descriptors 
on the validation sets, albeit it has the highest AUC and PRE values. 
However, for the test sets, this descriptor achieves the best performance 
among all the descriptors as measured by all the performance metrics. 
Thus, GAFF+RDKit was selected as the default descriptor. GAFF, the 
abbreviation of General AMBER Force Field, is designed to describe 
subtle chemical environments using atom types [31]. GAFF was 
parametrized to be consistent with AMBER biomolecular force fields for 
studying protein-ligand and nucleic acid-ligand interactions. It can 
describe a wide range of organic or pharmaceutical molecules that are 
constituted of H, C, N, O, S, P, F, Cl, Br and I. Utilizing the companion 
software tool, Antechamber, GAFF atom type-based descriptor can be 
automatically generated for arbitrary organic molecules that can be 

Table 2 
Average scores of metrics for models with six ML algorithms of all molecular 
descriptors in nine assays.  

Datasets Metrics SVM LR DT RF KNN CNB 

Validation AUC  0.88  0.88  0.81  0.87  0.91  0.77 
ACC  0.82  0.82  0.75  0.79  0.80  0.71 
F1  0.82  0.83  0.76  0.79  0.82  0.72 
PRE  0.81  0.83  0.74  0.77  0.73  0.69 
REC  0.84  0.83  0.80  0.82  0.94  0.76 

Test AUC  0.73  0.75  0.67  0.74  0.74  0.69 
ACC  0.66  0.66  0.63  0.67  0.68  0.64 
F1  0.59  0.58  0.62  0.65  0.69  0.64 
PRE  0.74  0.76  0.64  0.69  0.67  0.64 
REC  0.52  0.51  0.63  0.63  0.71  0.65  

Table 3 
Average scores of metrics for KNN models using all 15 molecular descriptors for each assay. The values highlighted in blue and bold font indicating the reported values 
are higher than those for the best models predicted by KC et al. Noted that TMPRSS2, HEK293 and Fibroblast were not studied by KC et al.  

Datasets Metrics 3CL CPE ACE2 AlphaLISA TMPRSS2 Cytotox TruHit HEK293 Fibroblast 

Validation AUC  0.93  0.93  0.93  0.87  0.94  0.93  0.89  0.81  0.93 
ACC  0.84  0.82  0.80  0.78  0.80  0.83  0.80  0.74  0.82 
F1  0.86  0.84  0.83  0.80  0.83  0.85  0.82  0.75  0.84 
PRE  0.77  0.74  0.73  0.73  0.71  0.76  0.75  0.72  0.74 
REC  0.97  0.98  0.98  0.89  0.99  0.97  0.90  0.79  0.97 

Test AUC  0.66  0.75  0.67  0.76  0.71  0.81  0.81  0.78  0.70 
ACC  0.62  0.69  0.62  0.69  0.65  0.74  0.74  0.71  0.66 
F1  0.59  0.71  0.62  0.70  0.67  0.75  0.74  0.72  0.66 
PRE  0.65  0.68  0.63  0.68  0.64  0.72  0.72  0.70  0.65 
REC  0.54  0.74  0.62  0.73  0.70  0.79  0.77  0.74  0.67  

Table 4 
The average SRD results (%) for six ML algorithms across all assays and 
descriptors.   

SVM LR DT RF KNN CNB 

Validation  5.44  5.50  9.09  5.04  6.50  15.15 
Test  36.25  36.03  38.92  35.75  34.61  38.83 
Average  20.85  20.77  24.01  20.40  20.56  26.99  
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modelled by GAFF [32]. Unlike fingerprint-based descriptors which only 
indicate the existing or non-existing of a certain substructure or struc
tural pattern, GAFF descriptor encodes the total occurrences of subtle 
chemical environment in a molecule. On the other hand, RDKit is a 
popular open-source cheminformatics tool kit which can describe and 
collect molecule-level properties. GAFF+RDKit, combined by the fea
tures of both GAFF and RDKit, can better discriminate the actives from 
the inactives for all the screening assays than either of single type of 
descriptor. Fig. 4 illustrates the ROC curves of KNN models using 

GAFF+RDKIT descriptor for each assay. The ROC curves represent the 
performance of the KNN models in 10-fold cross-validation. It is notable 
that the AUC values of ROC curves for all 10 folds exhibit consistency, 
suggesting that our models have been effectively trained without over
fitting. Together with four other performance metrics (ACC, F1, PRE, 
REC) listed in Table 6, the performance for KNN models of GAFF+RDKit 
molecular descriptor for all assays can be comprehensively evaluated. As 
shown in Table 6, for validation set, the metrics scores of most metrics 
for the six assays are better than the scores in KC et al.’s study. As for the 

Fig. 3. Heatmaps of metrics AUC, ACC, F1, PRE and REC for KNN models using different molecular descriptors.  

Table 5 
Average scores of metrics for KNN models with 15 molecular descriptors in nine assays.  

Datasets Validation Test 

Metrics AUC ACC F1 PRE REC AUC ACC F1 PRE REC 

FP2  0.89  0.78  0.81  0.71  0.94  0.73  0.68  0.70  0.65  0.75 
FP3  0.77  0.70  0.72  0.68  0.77  0.66  0.62  0.60  0.62  0.59 
FP4  0.89  0.78  0.81  0.72  0.94  0.75  0.68  0.70  0.66  0.74 
MACCS  0.92  0.82  0.84  0.76  0.94  0.75  0.69  0.68  0.70  0.67 
RDKit  0.93  0.83  0.85  0.76  0.96  0.76  0.70  0.71  0.69  0.73 
GAFF  0.92  0.82  0.84  0.76  0.94  0.74  0.68  0.68  0.69  0.66 
RDKit+FP2  0.91  0.81  0.83  0.74  0.95  0.76  0.69  0.71  0.67  0.77 
RDKit+FP3  0.92  0.84  0.84  0.76  0.94  0.74  0.68  0.68  0.67  0.69 
RDKit+FP4  0.92  0.83  0.84  0.75  0.95  0.76  0.70  0.71  0.68  0.74 
RDKit+MACCS  0.92  0.80  0.83  0.73  0.96  0.76  0.69  0.71  0.67  0.77 
GAFF+FP2  0.91  0.79  0.81  0.70  0.96  0.74  0.68  0.72  0.65  0.81 
GAFF+FP3  0.92  0.82  0.84  0.75  0.95  0.73  0.67  0.66  0.67  0.66 
GAFF+FP4  0.92  0.81  0.84  0.75  0.95  0.73  0.67  0.67  0.67  0.68 
GAFF+MACCS  0.93  0.83  0.85  0.76  0.96  0.75  0.70  0.68  0.71  0.67 
GAFF+RDKit  0.93  0.83  0.84  0.76  0.95  0.79  0.72  0.73  0.71  0.75  
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test set, overall, our models achieved better scores than KC et al.’s in 
performance metrics for four assays. 

3.4. Evaluation of model predictivity using external test sets 

To confirm the reliability of the constructed models, we additionally 
evaluated the performance of the models (COVID-19-CP, P in brief) in 
best scenarios (KNN algorithm and GAFF+RDKit fingerprint) on 4 

Fig. 4. ROC curves of KNN models using GAFF+RDKIT as inputs. A-I are different assays. A. 3CL, B. HEK293, C. Fibroblast, D. CPE, E. Cytotox, F. ACE2, G. 
AlphaLISA, H. TruHit, I. TMPRSS2. 

Table 6 
Scores of metrics for KNN model using GAFF+RDKit molecular descriptor for each assay. The values highlighted in blue and bold font indicating the reported values are 
higher than those for the best models predicted by KC et al. Noted that TMPRSS2, HEK293 and Fibroblast were not studied by KC et al.  

Datasets Metrics 3CL CPE ACE2 AlphaLISA TMPRSS2 Cytotox TruHit HEK293 Fibroblast 

Validation AUC  0.94  0.95  0.95  0.90  0.95  0.95  0.92  0.84  0.94 
ACC  0.86  0.84  0.83  0.81  0.82  0.85  0.83  0.76  0.83 
F1  0.88  0.86  0.85  0.82  0.85  0.87  0.84  0.77  0.85 
PRE  0.80  0.76  0.75  0.76  0.74  0.78  0.78  0.74  0.75 
REC  0.98  0.99  0.99  0.90  1.00  0.99  0.93  0.80  0.99 

Test AUC  0.75  0.82  0.75  0.80  0.74  0.83  0.84  0.82  0.72 
ACC  0.68  0.76  0.68  0.74  0.67  0.76  0.76  0.75  0.69 
F1  0.63  0.77  0.70  0.74  0.68  0.77  0.78  0.76  0.69 
PRE  0.77  0.74  0.67  0.75  0.66  0.75  0.72  0.72  0.68 
REC  0.53  0.80  0.72  0.73  0.70  0.80  0.84  0.80  0.71  
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different categories of external test sets compiled from different sources, 
which are: (1) the NCATS compounds not participating model con
struction, (2) the reported drugs/compounds that have been used or 
tested in COVID-19 treatment, (3) the reported compounds which are 
active in SARS-CoV-2-related bioassays, and (4) the screening com
pounds from ZINC database [33] (https://zinc.docking.org/) serving the 
negative control, i.e., those compounds are assumed as inactives. The 
model performance can be critically evaluated by using the five metrics 
(AUC, ACC, F1, PRE and REC) for the four external test sets. 

3.4.1. Test Set 1 – NCATS screening compounds 
As described in the Data Set Preparation session, we have randomly 

divided inactive compounds for each of the four assays (3CL, CPE, ACE2 
and TMPRSS2) into 2–4 subsets based on the actual number of inactives. 
While one inactive subset (s1) was randomly selected to participate ML- 
based model construction, we used inactive compounds from other 
sample sets (s2, s3, s4) to conduct external prediction. For the sake of 
computing the five metrics, we included the actives of each assay in the 
test sets. The predicted results of external datasets are displayed in  
Fig. 5. A striking feature of this figure was that the sensitivity scores of 
most assays were very high (>0.90), likely due to the participation of 
actives in model construction as well. The specificity scores of those 
external test sets, ranged from 0.60 to 0.86, were comparable to those 
reported for the test sets in model construction (Table 3). The similar 
specificity scores suggest that our models were not overfitted. Note that 
sensitivity measures the percentage of compounds predicted to be active 
out of the compounds which are active confirmed in bioassay, while 
specificity measures the percentage of the compounds predicted to be 
inactive out of the compounds which are inactives confirmed in bioassay 
[34]. Encouragingly, the specificity scores of external test sets were 
relatively high and comparable to the sensitivity scores, indicating that 
our models have the ability to rule out both the false positives and false 
negatives at the same time. 

3.4.2. Test Set 2: known anti-SARS-CoV-2 drugs in multiple assays 
To validate the applicability of our models, we collected 28 com

pounds [35,36] that have been used or tested in COVID-19 treatment. 22 
out of 28 compounds are approved drugs. We predicted their activities 
in different assays using both “REDIAL-2020” by KC et al. and our 
models. Table S1 lists the prediction results for each assay by utilizing 
REDIAL-2020 (R) and our model, COVID-19-CP (P), as detailed below. 
For all 28 compounds, the screening activities reported by NCATS 
Covid-19 OpenData Portal served as references. For a compound, if the 
predicted activity, active or inactive, is the same as the measured one, 
the number of correct predictions increases one, otherwise zero. If the 
predictions for the six assays (3CL, CPE, Cytotox, ACE2, AlphaLISA, 

TruHit) are all correct, the number of correct predictions is 6. We 
calculated the number of correct predictions for each compound by 
using REDIAL-2020 (R) and our predictor COVID-19-CP (P). Overall, the 
prediction results of P were better than R in term of the number of 
correct predictions. 13 compounds obtained correct predictions by P 
that are more than those by R, while 8 compounds with fewer correct 
predictions, and the rest of 7 compounds had equal correct predictions. 
When the performance of a specific assay was concerned, the percentage 
of correct prediction differs between R and P from one assay to another. 
The percentages of correct prediction were similar for Cytotox (~60%) 
and TruHit (~40%); P had larger percentages of correction prediction 
for 3CL (75% vs 68%), CPE (82% vs 68%) and ACE2 (61% vs 50%), 
while R achieved a better performance for AlphaLISA (71% vs 61%). 

Two interesting compounds are Chloroquine and Hydroxy
chloroquine, which were hypothesized to be ACE2 blockers, however, 
the ACE2 assay suggest both two compounds are inactive. As shown in 
Table S1, for those two compounds, P made correct prediction, in 
contrast, R made the opposite prediction. 

A set of 9 drug molecules predicted to have potential to be repur
posed to treat for COVID-19 are shown in Fig. 6. Those drug molecules 
meet the following two criteria: 1. The predicted accuracy of P is higher 
than that of R; 2. The number of correct predictions by P is larger than 3, 
in other words, the overall prediction accuracy is higher than 50%. The 
assays correctly predicted by P were colored in green. It is shown that 
our predictor can correctly predict the activities of these drugs for most 
of assays. In addition, the developed models can predict activities of 
extra assays. For example, Nafamostat is the TMPRSS2 inhibitor [37], 
and its activity on TMPRSS2 assays was correctly predicted by our 
model. 

3.4.3. Test set 3: additional active compounds in individual bioassays 
We further evaluated the performance of P using an external CPE 

dataset which was also adopted by KC et al. in their model evaluation 
process. Table S2 lists the names and SMILES of the 24 drugs which are 
actives in CPE assay. Among the 24 compounds, 19 of them were 
correctly predicted as active by our model, while only 5 of them were 
predicted as inactive. Thus, our model achieved a prediction accuracy of 
79.2% for the external data set. In contrast, the percentage of correct 
prediction by R was 66.7%, obviously lower than our model. The pre
diction results by R and P for 21 3CL inhibitors collected from Kuzikov, 
et al. [38] were also compared. As shown in Table S3, the percentages of 
correct predictions by P (38.1%) are lower than R (61.9%). Thus, P 
achieved a comparable performance to R for the CPE external test set 
rather than the 3CL test set. To improve the prediction performance of P 
for the 3CL test set, we reconstructed the model using the screen data 
reported in Kuzikov, et al.’s study. The detail for the model 

Fig. 5. Sensitivity and specificity of test sets and sample sets in 3CL, CPE, ACE2, TMPRSS2 assays.  
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reconstruction is described in the next section. 

3.4.4. Test set 4: screening compounds serving as negative control 
The above three test sets mainly evaluated the models’ ability to 

identify true actives, while this test set can be applied to assess the 
models’ ability to reduce false positives. To this aim, we randomly 
collected 100 screening compounds from the ZINC database and 
assuming those compounds are inactive in the screenings. Table S4a-b 
lists the activities predicted by R and P for three assays (3CL, CPE, 
AlphaLISA) which directly measure a compound’s antiviral activities. 
The prediction results of 3CL, CPE and AlphaLISA assays by R and P 
were compared. According to Table S4, 33 out of 100 compounds had 
fewer positive predictions by P than R, while 31 compounds had fewer 
positive predictions by R than P. The results indicated that P performed 
slightly better than R. In hence, our developed model performs better 
than R, not only for the known inhibitors (positive control), but also for 
the screening compounds (negative control). Among the 100 screening 
compounds, 37 and 10 were predicted to be active for AlphaLISA assay 
and 3CL assay by P, respectively. It is of noted that the proportion of 
inactives in the screening set was close to the proportion of actives in the 
total dataset for both assays. Specifically, the active rate is 1018/ 
(2269 +1018)= 31.0% for the AlphaLISA assay, while the value is 431/ 
(431 +2916)= 12.9% for the 3CL assay. The similar positive rates of 
both assays demonstrated the high reliability of our models. 

3.5. New 3CL model construction 

Specially, to further enhance the model performance for 3CL assay, 
we constructed a second model for the 3CL protease using the screen 
data reported by Kuzikov, et al. to further improve the performance of P. 
The structures in SMILES and the inhibition data of screening com
pounds were first collected and 7662 compounds left after data cleaning. 
Then the compounds were ranked based on their percent inhibition 
values, and those with percent inhibition values larger than 25% were 
allocated into the active set, while the rest of compounds were randomly 

allocated into two inactive subsets. In detail, there are 342 compounds 
in active set, 3665 in s1 inactive subset, and 3655 compounds in s2 
inactive subset. As we did for the NCATS 3CL assay, s1 subset was 
selected to construct and test the ML-based models, while s2 served as an 
external dataset for further model validation. 

The treatment of data imbalance and model construction were the 
same as we did for the NCATS 3CL assay. Again, the KNN algorithm and 
RDKit+GAFF molecular descriptor was employed for model construc
tion. Table 7 shows the scores of performance metrics for the new 3CL 
model. According to the table, for both validation and test sets, every 
metric has better predicted score for the new 3CL model than that 
constructed using the NCATS data. The sensitivity and specificity scores 
of s1 were 0.62 and 0.89, which were better than the corresponding 
scores of NCATS 3CL s1 subset predicted by the old 3CL model (0.57 and 
0.83). As for the external sets, the sensitivity and specificity scores of s2 
by the new 3CL model were 0.93 and 0.89, respectively, both higher 
than the corresponding values achieved by the old 3CL model for the 
NCATS 3CL s2 (0.89 and 0.86) and s3 (0.89 and 0.86) subsets. 

In addition to the evaluation of inactive subsets, we evaluated the 
new 3CL model for 3 test sets as we did for the 3CL model constructed 
using the NCATS 3CL assay. After the old 3CL model was replaced with 
the new 3CL model, a new set of models was formed. For the known anti- 
SARS-CoV-2 drugs test set, the overall performance did not change using 
the new P. There were still 13 compounds with correct predictions by P 
higher than those by REDAIL-2020, while 8 compounds were lower, and 
the rest of 7 compounds were equal. The prediction results by the new P 
for the drug molecules in 3CL assay were summarized in Table S5. The 

Fig. 6. the structures of 9 potential candidates and the predictions of assays by P.  

Table 7 
Score of metrics for KNN model using GAFF+RDKit molecular descriptor for the 
second 3CL model.  

Datasets AUC ACC F1 PRE REC 

Validation  0.98  0.95  0.95  0.91  1.00 
Test  0.77  0.76  0.72  0.85  0.62  
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third test set is the active compounds in single 3CL assay. Since the 
compounds are originally from Kuzikov, et al.’s study, the performance 
of the new model for this set was expectedly better than the old model, 
with 16 out of 21 compounds predicted active against only 8 compounds 
predicted active by the old model (Table S6). The fourth test set is the 
100 screening compounds which serve as the negative control. 
Compared to the positive effect brought by the new 3CL model, the 
overall performance of new P on the prediction of screening compounds 
slightly decreased. As shown in Table S7, 30 out of 100 compounds have 
fewer predictions as “active” by new P than R, which is less than the 
number of compounds (37) with fewer predictions as “active” by R than 
P. Overall, the second 3CL model can improve the performance of P on 
the positive control but negatively affect the performance of P on the 
negative control. Therefore, we may adopt the old or new 3CL models 
according to our research aims. 

3.6. Importance of input features 

We applied SHAP analysis to identify key structural features which 
make the largest contributions to the best KNN models using 
GAFF+RDKit descriptor. Considering we utilized an external CPE 
dataset for model evaluation and obtained a satisfying prediction result, 
CPE assay was used an example for interpreting the SHAP analysis 
result. The GAFF+RDKit descriptor is consisted of 47 GAFF features and 
208 RDKit features. Specifically, GAFF atom types precisely depict 
chemical environments and those key features identified by Shapley 
analysis indicate those structural features are potential pharmacophores 
for a compound to manifest a certain bioactivity. The description of 
GAFF and RDKit features was listed in Tables S8 and S9. We analyzed the 
contribution of each feature for the external CPE test set using the KNN 
model. 

In SHAP analysis, a positive SHAP value improves the prediction 
output and thus, the probability of a compound being active in the CPE 
assay, on the contrary, the negative value decreases the probability. To 

Fig. 7. Importance of top input molecular descriptors. A. Importance of top 20 molecular descriptors and their SHAP values. B. Frequency distribution plots of RDKit 
features and GAFF features. C. An example of one important GAFF feature (GAFF 26: na). 
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analyze the contribution of input features to the output of the prediction 
model, we made a summary plot for the top 20 input features and their 
SHAP values. In addition, top 9 most important features and their SHAP 
values for each compound with their chemical structures was depicted in 
waterfall plots (Figs. S4A-B). Fig. 7 generally shows the importance of 
top input molecular descriptors. Specifically, important features for each 
compound were summarized in Fig. 7A. In the plot, the actual value of 
each feature is represented by a color bar with all features in the GAFF 
and RDKit formats. The color transits from red to blue as the feature 
values decrease from high to low. Along the x-axis, we depicted the 
SHAP value, where a positive SHAP value increases the prediction 
output and therefore and therefore enhancing the probability that a 
compound aligns with the expected prediction (inactive for compounds 
in the counter-screen category and active in the other three categories). 
On the contrary, a negative SHAP value indicates a decrease in the 
probability. Each feature’s contribution to each molecule is visualized as 
a point on the graph. To be noted, when a feature exhibits a higher value 
(red) and a positive SHAP value, it increases the prediction output, 
making it favorable for achieving the anticipated activity in the assay. 
On the other hand, to improve the comprehensive assessment of the 
feature importance, we generated separate frequency distribution plots 
for GAFF and RDKit features, as depicted in Fig. 7B. These plots provide 
a clearer understanding of the relative importance and occurrence of 
those features in the relevant molecules. 

Fig. 7A illustrated that FractionCSP3 was the most important RDKit 
feature for CPE compounds. FractionCSP3 is the fraction of C atoms that 
are sp3 hybridized. This finding was further validated in the frequency 
distribution plot in Fig. 7B, as this RDKit feature was important for 10 
out 24 of compounds. By analyzing the structures of the testing com
pounds (Fig. S4), the presence of sp3 C atom was likely beneficial to 
increase the probability of a compound being active for CPE assay, since 
most of compounds contain this structural feature. The second impor
tant feature was RDKit feature SlogP_VSA7, which was related to the 
contribution of hydrophobic and lipophilic interactions to the overall 
solubility of a molecule in solvents. The importance of this feature 
indicated the high hydrophobicity on the molecular surface might have 
impact on the compound activity in CPE assay. The atom type of n in 
GAFF, which stands for the amide functional group, is recognized as an 
important feature. The GAFF feature nb was another important feature 
(Fig. 7A) and it represents aromatic nitrogen. The presence of this 
structural feature was considered to be beneficial to the CPE activity and 
9 out of 24 compounds have aromatic nitrogen group. Furthermore, the 
histogram in Fig. 7B illustrated that GAFF feature na was also highly 
correlated to the CPE activity of a compound. na means the sp2 N with 3 
substitutes. This feature has been considered to be very significant to 5 
compounds according to the individual waterfall plots (Fig. S3) and has 
shown up in 4 of those compounds (Fig. 7C). 

3.7. Dissemination of prediction models via COVID-19-CP web portal 

To facilitate the dissemination of the prediction models, we devel
oped a Web portal (https://clickff.org/amberweb/covid-19-cp). Users 
can access the web server that is integrated with the optimal KNN 
models and GAFF+RDKit molecular features for fast screening com
pounds that have potential treatment for COVID-19. Specifically, a user 
can open the webpage from a web browser, then input a molecular 
structure via different methods, and then submit the job to obtain the 
predicted activities of all 9 assays. Users can not only upload a mol2 or 
sdf file, but also draw 2-dimentional structures of compounds with a 
molecular Editor. Once the web portal receives the molecular structure 
(mol2/sdf/smi format), it will automatically generate GAFF+RDKit 
descriptors and feed the input data to the trained KNN models. After 
processing for a short time, the built-in models will provide the pre
dicted activities of the input compound in 9 screening assays, which are 
3 CL, HEK293, Fibroblast, CPE, Cytotox, ACE2, AlphaLISA, TruHit, 
TMPRSS2. Fig. S5 shows a sample submission page and the output page 

of the web portal. To summarize, an ideal anti-SARS-CoV-2 compound 
candidate meets the following criteria: (i) active in 3CL assay, (ii) 
inactive in HEK293 assay, (iii) inactive in Fibroblast assay, (iv) active in 
CPE assay, (v) inactive in Cytotox assay, (vi) active in ACE2 assay, (vii) 
active in AlphaLISA assay, (viii) inactive in TruHit assay, (ix) active in 
TMPRSS2 assay. 

As shown in Fig. S4, in the output page, a structure similarity search 
section is provided immediate after the table summarizing the predic
tion result for users to search similar compounds in three databases, 
Drugbank [39,40], ChEMBL [41] and ZINC [33]. The defaulted cutoff 
value for similarity search is 0.8, indicating compounds with similarity 
equal to or higher than 0.8 compared to the query molecule found in the 
database will be outputted. However, if the applied cutoff does not lead 
to any hit, the most similar compound will be outputted. Users then can 
adjust the cutoff based on the Tanimoto coefficient of the most similar 
compound. 

3.8. Attentive FP 

The same data for the development of descriptor-based P models was 
adopted for the construction of Attentive FP (A) models. To completely 
integrate the published A models, instead of using SMOTE package to 
balance the data, we randomly divided compounds in inactive set into 
several subsets to make the number of inactives in each subset close to 
that of actives in the active set. The numbers of subsamples varied from 
one assay to another, depending on the ratio of actives and inactives in a 
specific assay. Accordingly, the same numbers of models were devel
oped for each assay, and the average prediction results of validation and 
test sets were calculated and shown in Table 8. The values of evaluation 
metrics for each set were shown in Table S10. 

Overall, the performance of A models on test sets was comparable to 
P models, and the average metrics values for 9 assays of A models, 
AUC= 0.77, ACC= 0.70, F1 = 0.70, PRE= 0.72, REC= 0.69, are close to 
the corresponding values of the P models, which are 0.79, 0.72, 0.72, 
0.72, 0.74, respectively. For example, AUC, ACC, F1, PRE values on A 
model for 3CL assay were slightly lower than those on P model, but AUC, 
ACC, F1, PRE, REC values for AlphaLISA assay were higher than ones of 
the descriptor-based model. 

Furthermore, the constructed A models were evaluated utilizing the 
same external test sets 2–4: known anti-SARS-CoV-2 drugs, compounds 
from 3CL and 3PE individual assays, screening compounds. The pre
dicted activities were shown in Tables S1-S4. For the drug test set, again, 
we calculated the number of predictions that were consistent with 
experimental measurements for each compound. Among 28 drugs, 17 
compounds had more correct activities predicted than R, the KC et al. 
models, while 5 compounds were lower. Compared to P, four more 
compounds had more correct predictions, indicating the prediction ac
curacy of test set 2 by A was slightly higher than P. For additional in
dividual bioassays, Attentive FP achieved performance comparable to P 
and R. The same number of compounds was predicted to be active for 
3CL assay by A compared to R (Table S3), while 14 compounds were 
predicted to be active for CPE assay (Table S2). As for the test set 4, A has 
slightly better performance than P and much better performance than R, 
as 30 out of 100 compounds had fewer positive predictions than R and 
only 15 out of 100 compounds had more positive predictions than R. 

3.9. Consensus Prediction 

To achieve the better performance, we analyzed the consensus scores 
by combining the prediction results from P and A. For any compound, 
the predicted activity using the consensus method (P þ A) follows the 
rules below: (1) if it is predicted to be active by both P and A for an 
assay, it is considered to be active (2) if it is predicted to be active by 
either P or A, it is considered to be inactive (3) if it is predicted to be 
inactive by P and A, it is considered to be inactive. The performance of 
consensus model was evaluated using test sets 2 and 4. For the drug test 
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set, comparing to R, there were 20 compounds having more correct 
predictions than R, while only 2 compounds have fewer correct pre
dictions than R, and the numbers of correct prediction are equal for 
P þ A and R for the rest of 6 compounds (Table S1). Among 28 drugs in 
the dataset, there were 9 of them were predicted exactly consistent with 
the experimental activities in all 6 assays (3CL, CPE, ACE2, AlphaLISA, 
TruHit, Cytotox) using the consensus method, and their chemical 
structures were shown in Figs. 8 and 9. As for the screening test set, as 
shown in Table S4, half of the compounds were predicted to have fewer 
positive activities using the P þ A and among rest of them. Only 10% of 
compounds were predicted to have more positive predictions. Addi
tionally, we performed Wilcoxon signed-rank test [42], to compare the 
prediction accuracy between two models for external test set 2 
(Table S1) and external test 4 (Table S4). The overall comparison results 
as well as the statistical p values were shown in Fig. 8. It is obvious that 
the consensus model, P + A, significantly outperformed other three in
dividual models for both external test sets. Therefore, the consensus 
method which mixes the prediction results from both descriptor-based 
and graph-based models indeed effectively improved the prediction 
performance and outperformed all other developed models in this work. 

4. Conclusions 

We introduced a series of predictive models to accurately predict the 
anti-SARS-CoV-2 activities of screening compounds. The impact of 6 
different ML algorithms in combination with 15 molecular descriptors 
for 9 screening assays belonging to four categories on the models was 
deeply explored. We found that the developed predictive models uti
lizing the KNN method using the molecular descriptor, GAFF+RDKit, 
achieved the best overall performance for all nine assays. Among the 4 
common performance metrics (AUC, ACC, F1, PRE), our optimal pre
diction models achieved much better predicted scores for 6 assays than 

those proposed in KC et al.’s study. We have extensively evaluated the 
predictive models using four external test sets including a negative 
control test set consisting of 100 druglike screening compounds from 
ZINC database. The second 3CL model utilizing the screen data from 
Kuzikov, et al.’s study has improved the performance of positive pre
diction, but decreased the performance of negative prediction as well, 
suggesting there is a trade-off on different performance metrics for a 
given model. SHAP analysis results indicated that sp3 C atom, sp2 N atom 
and aromatic N were important to a compound being active in CPE 
assay. In addition, the hydrophobicity may also have an impact on the 
compound activity in CPE assay. We have developed a webtool, COVID- 
19-CP, allowing users to predict a compound’s anti-SARS-CoV-2 activ
ities using virtual input formats, and searching similar compounds from 
three mainstream databases. P is available on GitHub (https://github. 
com/Mayjig/COVID-19-CP_batch_screen) as well for the batch 
screening of potential anti-SARS-CoV-2 compounds. Furthermore, 
Attentive FP (A) was used in this study as an example of graph-based 
model to be compared with the traditional descriptor-based model (P). 
We used the same external test sets to evaluate the performance of A. As 
a result, the performance of A was comparable to P, and both of them 
outperformed R. The consensus model was derived by combining the A 
and P, and its performance was way much better than all A, P and R. As 
such, the consensus scores of multiple models, especially those were 
constructed using different descriptors and machine learning algo
rithms, can effectively improve the prediction accuracy. 

Supplementary Information 

The SI text describes the methods for data preparation, machine 
learning model construction, and model performance evaluation. 
Figs. S1A-C show the model performance of validation sets for nine as
says. Figs. S2A-C show the model performance of test sets for nine 

Table 8 
Scores of metrics for Attentive FP models for each assay.  

Datasets Metrics 3CL CPE ACE2 AlphaLISA TMPRSS2 Cytotox TruHit HEK293 Fibroblast 

Validation AUC  0.77  0.77  0.78  0.80  0.74  0.83  0.90  0.84  0.82 
ACC  0.68  0.70  0.66  0.71  0.68  0.74  0.80  0.76  0.75 
F1  0.62  0.67  0.71  0.71  0.71  0.71  0.75  0.71  0.79 
PRE  0.58  0.69  0.84  0.68  0.65  0.77  0.76  0.73  0.79 
REC  0.68  0.67  0.65  0.76  0.79  0.67  0.76  0.69  0.80 

Test AUC  0.65  0.78  0.65  0.86  0.70  0.82  0.88  0.82  0.73 
ACC  0.62  0.72  0.62  0.77  0.63  0.73  0.77  0.75  0.68 
F1  0.62  0.71  0.59  0.78  0.67  0.71  0.76  0.73  0.69 
PRE  0.63  0.74  0.68  0.76  0.61  0.78  0.82  0.78  0.67 
REC  0.62  0.70  0.58  0.82  0.74  0.66  0.72  0.68  0.72  

Fig. 8. The prediction results among R, P, A, P + A models summarized from Tables S1 and S4. A. Table S1. B. Table S4.  
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assays. Fig. S3 shows the metrics for KNN models of validation set and 
test sets using different molecular descriptors. Figs. S4A-B show the 
SHAP waterfall plots of top features of compounds in the additional CPE 
assay. Fig. S5 displays the web page of our developed COVID-19-CP 
predictor. Table S1 lists the prediction results for 28 promising anti- 
SARS-CoV2 drugs using P and R, A and consensus model; Tables S2 
and S3 list the prediction results for the CPE and 3CL datasets using P, R 
and A; Table S4 lists the prediction results for the randomly-selected 
ZINC compounds using P and R, A and consensus model; Table S5-S7 
are similar to Table S1, S3 and S4 except that the NCATS-based 3CL 
model was replaced with the new 3CL model constructed using Kuzikov 
et al.’s assay. Tables S8 and S9 show the description of GAFF and RDKit 
features. Table S10 presents the scores of evaluation metrics for A 
models in 9 assays. An abbreviation-full name form is shown at the end 
of Supplementary Information. 

Data and software availability 

The datasets were collected from the following links for each assay. 
3CL: https://opendata.ncats.nih.gov/covid19/assay?aid=9. 
CPE: https://opendata.ncats.nih.gov/covid19/assay?aid=14. 
ACE2: https://opendata.ncats.nih.gov/covid19/assay?aid=6. 
AlphaLISA: https://opendata.ncats.nih.gov/covid19/assay?aid=1. 
TMPRSS2: https://opendata.ncats.nih.gov/covid19/assay?aid=8. 
Cytotox: https://opendata.ncats.nih.gov/covid19/assay?aid=15. 
TruHit: https://opendata.ncats.nih.gov/covid19/assay?aid=2. 
HEK293: https://opendata.ncats.nih.gov/covid19/assay?aid=20. 
Fibroblast: https://opendata.ncats.nih.gov/covid19/assay?aid=21. 
All code was implemented in Python using Keras as the primary 

machine learning package. The data, code and scripts are available at htt 
ps://github.com/Mayjig/COVID-19-CP_batch_screen. 
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