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Figure 1: An Overview of SQLucid: ○A Given a model-generated SQL query, SQLucid helps the user understand the query 
behavior by generating a step-by-step explanation in natural language. When the user hovers over an entity (e.g., a column 
name) in the natural language explanation, SQLucid will highlight the corresponding elements in the database and query 
result to help the user grasp the visual correspondence between the explanation and the database. ○B For each step in the 
natural language explanation, the user can inspect the intermediate query result of the step to validate query behavior and 
diagnose query errors. ○C Once the user identifes the erroneous step, they can directly edit the explanation of that step to 
specify the correct behavior and guide the model to refne the query. 

ABSTRACT 

Though recent advances in machine learning have led to signifcant 
improvements in natural language interfaces for databases, the ac-
curacy and reliability of these systems remain limited, especially 
in high-stakes domains. This paper introduces SQLucid, a novel 
user interface that bridges the gap between non-expert users and 
complex database querying processes. SQLucid addresses exist-
ing limitations by integrating visual correspondence, intermediate 
query results, and editable step-by-step SQL explanations in natural 
language to facilitate user understanding and engagement. This 
unique blend of features empowers users to understand and re-
fne SQL queries easily and precisely. Two user studies and one 
quantitative experiment were conducted to validate SQLucid’s ef-
fectiveness, showing signifcant improvement in task completion 
accuracy and user confdence compared to existing interfaces. Our 
code is available at https://github.com/magic-YuanTian/SQLucid. 
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1 INTRODUCTION 

The rise of big data has led to a growing demand for querying 
databases for data analysis and decision-making. To fully unleash 
the analytical power of databases, many natural language (NL) in-
terfaces [18, 24, 54, 76] have been developed, enabling non-experts 
to express and fulfll their goals through NL queries. The backbone 
of these interfaces is a computational approach that translates an 
NL query to a database query in a formal language such as SQL. 
Early work in this domain applied rule-based or grammar-based 
approaches [34, 85]. Recent advances in deep learning have led to 
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Figure 2: The iterative SQL refnement pipeline of SQLucid 

a variety of text-to-SQL models [59, 72, 78, 86], achieving unprece-
dented performance on NL querying tasks. 

Despite these great strides, text-to-SQL models cannot always re-
liably generate correct queries aligned with user intent. As a result, 
users run the risk of receiving wrong query results and henceforth 
making incorrect or suboptimal decisions. This is critical in high-
stakes domains such as fnance and healthcare. The leaderboard 
of a popular evaluation text-to-SQL benchmark, Spider1, indicates 
that even with the best system [59] built on GPT-4 still sufers from 
an error rate of 10%. It is crucial to help users identify and fx the po-
tential errors in the database queries generated by these models to 
avoid incorrect or suboptimal decisions. To bridge the gap, several 
approaches have been developed to enable users to provide feedback 
to SQL generation in an interactive manner [29, 42, 46, 54, 81]. 

However, most approaches only support feedback in constrained 
forms, e.g., answering multiple-choice questions [24, 46, 81], or 
changing keywords using a drop-down menu [54]. Such constrained 
feedback is insufcient to fx complex errors in real-world tasks. 
Ning et al. [55] conducted a user study to evaluate three represen-
tative approaches for SQL generation and refnement, including 
MISP [81], DIY [54], and SQLVis [52]. They found no statistically 
signifcant diference in user performance compared to manually 
writing SQL queries. Particularly, participants found it hard to un-
derstand the generated query and provide feedback. 

To address this challenge, we draw inspiration from the ground-
ing theory in communication [12]. The theory suggests that efec-
tive communication requires a common ground, where speakers 
design utterances for listeners to understand and listeners pro-
vide feedback to resolve ambiguity and demonstrate understanding. 
However, recent studies in code generation have highlighted chal-
lenges due to insufcient communication between systems and 
developers [5, 7, 70]. Systems often misinterpret the developer’s 
intent, while developers often struggle to comprehend the gener-
ated code. This communication gap, which arises from a lack of 
common ground, results in code that does not align with user intent 
and hinders efective feedback [5]. 

Based on this insight, we develop an interactive system, SQLu-
cid, that leverages step-by-step SQL explanations as the common 
ground between SQL generation models and users. Figure 2 pro-
vides an overview of the interaction pipeline. In each iteration, 
SQLucid generates an explanation in NL to describe the individual 

1https://yale-lily.github.io/spider 

steps in the generated SQL query. Through the rich interaction 
mechanisms provided by SQLucid, users can quickly navigate the 
explanation to understand the query and verify its behavior. If users 
recognize any erroneous steps, they can directly edit the explana-
tion to inform the model which part of the SQL query should be 
regenerated and what the expected behavior is. 

Compared with existing techniques, SQLucid has two key fea-
tures, visual correspondence and intermediate query results. First, 
without an efcient way to navigate the database, users could eas-
ily become overwhelmed by the volume of data and complexity 
in the schema. Visual correspondence helps users instantly locate 
the related data by interacting with the entities mentioned in the 
explanation. They can also mentally connect elements mentioned 
in the explanation with elements in the database, which is helpful 
for sense-making. Second, the complex database schema makes 
certain query operations difcult to intuitively explain in NL. This 
is due to a logic gap between human understanding and database 
operations [66]. For instance, explaining a JOIN operation to users 
based on primary and foreign keys can be challenging. Render-
ing intermediate results provides a convenient way for users to 
understand and verify the function of each step. 

Finally, we conducted a comprehensive evaluation of the usabil-
ity of SQLucid. This included two user studies with 38 participants 
in total and a quantitative experiment with 100 tasks. The frst user 
study compared SQLucid with MISP [81] and DIY [54], demonstrat-
ing the efectiveness of our design choices over alternative designs. 
The second user study measured the contribution of each key fea-
ture in SQLucid, showing that each feature signifcantly improves 
usability. The quantitative experiment shows the generalizability to 
a broad range of querying tasks. The results indicate that accuracy 
improves from 49% when no interaction is possible, to 89% when 
using SQLucid and the user is familiar with it. 

2 RELATED WORK 

2.1 Interactive Support for Text-to-SQL 

There is a large body of literature on converting natural language 
(NL) questions to SQL queries, ranging from logic-based [22, 74], 
rule-based [3, 42, 58, 62, 80] to neural-based methods [28, 60, 63, 
72, 86]. However, these techniques only focus on improving the 
accuracy of text-to-SQL methods, instead of designing interactions 
to help non-experts understand and improve the query. 

We summarize existing interactive support for text-to-SQL gen-
eration into two categoriesÐ(1) explaining generated queries back to 
users and (2) soliciting user feedback to refne queries. QueryVis [41] 
and SQLVis [52] explain SQL queries by visualizing them as graphs. 
However, graphical representations can become unintuitive and 
overly complex for end-users [55]. Many existing systems resort to 
explanations in NL instead [36, 37, 43, 54, 77]. For instance, Xu et 
al. [77] frst convert an SQL query into a directed graph and then use 
a graph-to-sequence model to generate an NL summary of the query. 
DIY [54] uses pre-defned templates to translate an SQL query into 
a step-by-step explanation in NL. Similar to DIY [54], SQLucid 
also leverages step-by-step explanations in NL but uses a diferent 
grammar-based method. The beneft is that such a grammar-based 
method can handle arbitrarily complex queries without being re-
stricted to pre-defned templates. Furthermore, existing systems 
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generally present explanations as static text, ofering limited in-
teractive capabilities for users to understand, validate, and refne 
queries. DIY [54] attempts to improve clarity by rendering interme-
diate results on a łsmall-but-relevantž sample database, but both 
their study [54] and the study by Ning et al. [55] indicate that this 
approach can lead to user confusion. Specifcally, users may fnd 
inconsistency between query results on the sampled database with 
the full database, as some relevant data may be missing. To address 
this issue, SQLucid renders intermediate query results by executing 
on the entire database to make users fully comprehend the function-
ality of each step. Additionally, we propose further incorporating 
rich interactions in SQLucid such as visual correspondence and 
direct query editing to augment the utility of explanations, thereby 
enhancing user engagement and understanding. 

A common way to solicit user feedback is through conversa-
tions [19, 24, 46, 81]. For instance, MISP [81], DialSQL [24], and 
PIIA [46] detect a set of tokens with high uncertainty during the 
decoding process and ask multiple-choice clarifcation questions to 
users. In these systems, users can only passively clarify their intent 
by selecting from a limited set of options in the multiple-choice 
questions. NL-EDIT [19] allows users to proactively suggest SQL 
query edits via free-form text. Then, it uses an encoder-decoder 
model to convert the free-form text to a sequence of edits to refne 
the query. Despite the fexibility, incorporating such open-ended 
feedback is challenging. It requires the model to precisely infer 
which parts of the query to edit and which edits to apply. 

Direct manipulation [65] is an efective mechanism for rapid and 
accurate user feedback. Several text-to-SQL systems support direct 
manipulation and allow users to directly refne a query without 
knowing SQL syntax [20, 43, 54, 64, 68]. DIY [54], DataTone [20], 
and NaLIR [43] allow users to directly change table names, col-
umn names, and values used in a query via a drop-down menu. 
In Eviza [64] and Orko [68], users can adjust a numeric value in a 
query using a slider. However, these systems only support a lim-
ited set of simple edits to SQL. They do not allow users to specify 
complex feedback, e.g., selecting data from two tables (i.e., JOIN), 
grouping a set of data records (i.e., GROUP BY), etc. 

Our idea of grounding database queries with explanations re-
sembles a recent work by Liu et al. [49]. Liu et al. propose to use 
step-by-step explanations as a grounded abstraction to generate 
and refne Python code for spreadsheet data analysis. Despite the 
similarity in spirit, our work has several key diferences in system 
design. First, like other text-to-SQL systems that explains SQL in 
NL, Liu et al. also only render the explanations as static, plain text. 
Compared with spreadsheet data analysis, database querying often 
involves complex data schema, multiple tables, and complex op-
erations. Thus, our work presents richer interaction mechanisms 
to facilitate query comprehension and validation. Second, given 
user edits to a step-by-step explanation in NL, SQLucid performs 
fne-grained query refnement at the clause or entity level, without 
the need to regenerate the entire query from scratch. By contrast, 
their system concatenates the explanations of individual steps as 
a new prompt and invokes CodeX [10] to regenerate the entire 
Python code. This limits the utility of user feedback on step-by-step 
explanations and does not aford precise code refnement. 

2.2 Human-AI Collaboration 

Promoting efcient collaboration between intelligent systems and 
humans has been a long-standing research topic in HCI. This con-
cept was frst introduced in the seminal work on man-computer 
symbiosis [48]. In that work, Licklider proposed that computers 
could perform routine tasks to pave the way for human insights, 
while human users could utilize their domain knowledge to make 
decisions that computers are not capable of making. Nowadays, 
the inaccuracy of AI models in high-stake domains further neces-
sitates collaboration between humans and AI. However, the lack 
of interpretability and communication convenience presents a sig-
nifcant challenge to efective human-AI collaboration [61]. Even 
though humans have the potential to complement AI, they often 
struggle to understand AI’s states and efectively express their 
thoughts [4, 17, 35, 47, 49, 50]. Specifcally, if a user does not under-
stand where the error is and what causes the error, they may fnd 
it difcult to provide efective instructions on fxing the error [66]. 

Research from various domains has focused on explaining sys-
tem behavior [14, 16, 21, 26, 51]. For example, Head et al.’s work on 
Tutorons [26] automatically generates context-relevant, on-demand 
in-situ explanations for code snippets, such as regular expressions, 
on web pages. While Tutorons aims to bridge the gap between 
programmers and complex syntax, SQLucid is designed for non-
programmers to iteratively refne SQL queries in NL. Furthermore, 
SQLucid makes these explanations editable in free-form NL, en-
abling intuitive user feedback. SQLucid also incorporates visual 
correspondence and intermediate results to deepen user engage-
ment compared to the static explanations provided by Tutorons. 

3 USER NEEDS AND DESIGN RATIONALE 

3.1 User Needs in SQL Generation 

To understand the needs of non-experts when querying databases, 
we conducted a literature review of previous papers that have done 
a formative study of text-to-SQL systems [52, 54], have done a user 
study of existing tools [54, 55], or have discussed the challenges 
and opportunities of text-to-SQL systems [1, 8, 13, 30, 53, 66]. Based 
on this review, we summarize three major user needs. 

N1: Users need efective methods to understand and validate 
a generated SQL query, so they can trust the result. Text-to-
SQL systems are primarily designed for non-experts who are not 
familiar with SQL. Without additional support, the only way for 
them to validate the correctness of a generated query is to carefully 
examine if the query result looks reasonable. However, if a query 
involves too many rows, columns, and tables, it is cognitively-
demanding and time-consuming to manually examine the query 
result. Kim et al. [66] point out that for queries that return a large 
amount of data, it is useful for users to understand how the resulting 
data is retrieved from the database. So users can reason about 
the correctness of the query steps, rather than a large amount of 
resulting data. Jagadish et al. [30] argue that database systems can 
frustrate users if there is no explanation for some unexpected query 
results. In a user study with 12 participants, Narechania et al. [54] 
found that participants appreciated explanations and wished to 
have multi-modal explanations to help them understand complex 
query operations, such as table joining and compound SQL clauses. 
Therefore, it is critical to help users validate the query behavior. 
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Figure 3: The user interface of SQLucid. (A) The Database panel allows users to switch databases and tables in a database. It also 
allows users to manually inspect, search, and flter data. (B) The Question panel allows users to ask a question to the database 
in natural language. (C) The Query Result panel shows the query result as well as the intermediate result of individual steps 
when the user clicks each step. (D) The Query Explanation panel renders the step-by-step SQL explanation in natural language. 
Users can directly edit the explanation to fx the incorrect behavior in a step, add new steps, or delete existing steps. 

N2: Users prefer SQL explanations that are concise, well-
organized, and intuitive. Ning et al. [55] compared SQL explana-
tions generated by three interactive systems in a user study. They 
found that the majority of participants preferred the shorter ex-
planations provided by DIY [54], since they are easier to read and 
understand. Leventidis et al. [41] argued that the explanation in 
NL can become very lengthy and verbose for complex SQL queries, 
limiting their readability and utility in practice. This is supported 
by a controlled lab study with 112 CS undergraduate students [8]. 
The study found that students can easily get lost when dealing 
with long and complex queries. When presenting a query in a more 
structured and succinct manner, students experienced signifcantly 
less cognitive load and performed much better in data query tasks. 
Therefore, we need to fnd the right level of abstraction that can 
concisely summarize the behavior of a SQL query in a clear and 
well-organized manner while matching user expertise. 

N3: Users need more flexible and expressive ways to provide 
feedback. Most existing systems only support feedback in con-
strained forms, e.g., answering multiple-choice questions [24, 46, 
81], changing incorrect keywords in a drop-down menu [54]. This 
hinders users’ ability to handle various SQL errors, especially for 
those requiring a completely new clause or subquery. As shown by a 
recent study [55], such interactive mechanisms did not signifcantly 
improve the task completion rate or reduce the task completion 
time in complex text-to-SQL tasks compared with manually fxing 

a SQL query. Participants expressed frustration when they found 
they could not fx an error using the assigned feedback mechanism. 
Thus, non-expert users need a more expressive and fexible way to 
guide the model to fx various SQL generation errors. 

3.2 Design Rationale 

To support N1, we choose natural language as the communication 
vehicle, since it is understandable for non-experts and it is also 
fexible to express any kind of feedback. An alternative design is to 
explain a query in a graphical representation [41, 52]. While graphs 
can be visually appealing, they can also become overly complex 
and counter-intuitive for non-experts [55]. 

To support N2, we adopt step-by-step explanations and augment 
them with visual correspondence and intermediate query results. 
Users can utilize the visual correspondence to quickly locate rele-
vant data and navigate a large database. This is particularly helpful 
when users are not familiar with the database schema or when 
there are many tables and columns. Displaying intermediate results 
helps users further validate the query behavior on concrete data 
and understand how each step contributes to the fnal result. 

To support N3, SQLucid enables users to specify the correct 
behavior of a query step by directly editing the description of that 
step. There are several alternative designs for this feature. First, al-
ternatively, we could ask users to rephrase the original NL question 
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(i.e., prompt engineering) or provide NL feedback in a conversa-
tion [19]. However, recent studies show that prompt engineering is 
challenging and accurately interpreting NL feedback is as hard as in-
terpreting the initial NL query [18, 55, 84]. Some systems [20, 43, 54] 
also enable users to provide feedback via direct manipulation. As 
discussed in Section 2.1, these methods can only support limited ed-
its. Another design option is to allow users to pinpoint errors in the 
intermediate or fnal query results. This design is efective for cer-
tain errors such as including extra columns and when the dataset is 
small. However, when the query results include many data records, 
it can be cumbersome and time-consuming to inspect all data and 
annotate which data records are wrong. Furthermore, regenerating 
the query based on input and output data may lead to overftting, a 
known issue in programming-by-example techniques [39, 56]. 

4 SYSTEM IMPLEMENTATION 

In this section, we frst describe the base text-to-SQL generation 
model used in SQLucid and a pilot study to understand the usability 
issues of the base model. We then detail the SQL generation process 
in SQLucid and highlight three key features that facilitate efcient 
SQL query comprehension, validation, and repair. 

4.1 Base Model and Pilot Study 

The design of SQLucid is model-agnostic. SQLucid is built upon 
a SQL generation system called STEPS [69], which provides algo-
rithms and technical components to generate SQL explanations but 
only provides limited interaction support. We choose STEPS since 
it generates reliable grammar-based SQL explanation and provides 
a pre-trained text-to-clause model for SQL regeneration. However, 
one can replace STEPS with other models, e.g., using GPT-4 to 
generate SQL and step-by-step explanations. 

STEPS provides a limited primitive UI without careful consider-
ation of the usability challenges. It only supports add or removing 
explanation steps. To better understand the usability challenges in 
STEPS, we conducted a pilot study with three participants. Each 
participant completed fve data query tasks randomly selected from 
Spider [83], with an average task completion time of 4 minutes. We 
subsequently interviewed participants about their experiences. 

The study revealed challenges in comprehending SQL through 
natural language descriptions alone. Participants found it time-
consuming and cumbersome to manually navigate the database 
content, especially when explanations referenced multiple tables 
and columns. Participants often had to switch between tables and 
manually locate mentioned columns, making it difcult to validate 
query behavior. Participants also struggled to understand complex 
operations like JOINs and the concepts of primary and foreign keys, 
particularly in queries involving multiple tables. These fndings 
highlighted the need for more intuitive ways to connect explana-
tions with database entities and visualize query operations. It is 
important to ground the SQL explanations on the data to help users 
better comprehend and validate the entities and operations men-
tioned in the explanation. To address the usability issues, SQLucid 
proposes rendering visual correspondence, as detailed in Section 4.3, 
and displaying intermediate query results, as detailed in Section 4.4. 

4.2 SQL Query and Explanation Generation 

Given a SQL query generated by the underlying model, SQLucid 
generates a step-by-step explanation in NL for the query. Following 
STEPS, we use the same text-to-SQL generation model, SmBoP [60]. 
Yet users can plug in any model they prefer to use. Furthermore, we 
adopt the same grammar-based explanation generation algorithm 
of STEPS [69]. The SQL query is decomposed into SQL clauses and 
each clause is then translated into NL descriptions based on SQL 
grammar. This algorithm guarantees a deterministic and accurate 
translation from the SQL query to the NL description. Please refer 
to the STEPS paper [69] for technical details. 

For users who know SQL, we still provide the option to view the 
generated SQL by clicking a toggle button below the explanation 
(Figure 6 ○d ). This feature was requested by pilot study users who 
knew SQL and wished to double-check SQL code in our iterative 
design process. It is not designed for non-experts, since they are 
not familiar with SQL syntax and semantics. SQLucid. Reading NL 
descriptions and checking intermediate results is the main way for 
non-experts to validate SQL. 

4.3 Visual Correspondence via Highlighting 

As illustrated in Figure 4, SQLucid highlights the noun phrase 
of each database entity in blue in the SQL explanation. We chose 
blue as it is the standard color for hyperlinks, which implies the 
highlighted entity can be interacted with. When users hover over 
a highlighted entity, SQLucid will automatically navigate to the 
corresponding data in the database panel and highlight the corre-
sponding data. Specifcally, if the entity is a table, the drop-down 
menu turns green to indicate that the table is in focus (Figure 4 
○A ). If the entity is a column, SQLucid automatically centers and 
highlights the column in yellow (Figure 4 ○B ). 

A special case is nested SQL queries. The explanation generator 
of STEPS [69] splits a nested query into subqueries and generates 
an explanation for each of them separately. When Subquery A uses 
the result of Subquery B, the explanation of Subquery A will refer 
to the query result of Subquery B in natural language. To help 
users easily recognize which subquery’s result is used by another 
subquery, SQLucid highlights the NL references with underscored 
hyperlinks. Section 5 illustrates this scenario. 

We leverage the explanation generation method to establish the 
initial entity mappings. In particular, we instrument the explanation 
generator to log the translations between database entities and 
noun phrases in the explanation. SQLucid bufers these mappings 
in memory and dynamically highlights the database content when 
users hover over a noun phrase that maps to a database entity. 
Additionally, for nested SQL queries where one query may refer to 
the result of another, SQLucid uses natural language description 
(e.g., łresult of the frst queryž) to reference the result generated by 
a previous query. SQLucid also establishes a mapping and visually 
shows the correspondence between the reference and the previous 
result. Since SQLucid allows for free editing of the explanation 
in NL, users may rephrase some names, introduce new names, or 
even make typos. Whenever the explanation is edited, SQLucid 
re-calculates the mappings based on text similarity. 

We explored various approaches to calculate text similarity be-
tween database entities and SQL explanations. Initially, we con-
sidered using cosine similarity with word embeddings to better 
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Figure 4: (A) Hover over a table name and SQLucid automatically switches to the corresponding table and highlights it. (B) 
Hover over a column name and SQLucid automatically highlights the entire column. 

capture semantic relationships. However, we found that leveraging 
semantic information was often inaccurate when dealing with ab-
breviated or similar database entity names. Consequently, we opted 
for Levenshtein distance due to its optimal balance of precision 
and computational efciency. Levenshtein distance can efectively 
capture nuances in spelling variations and similar names, while its 
lightweight nature ensures quick responsiveness in SQLucid. 

4.4 Intermediate Query Results 

In order to help users understand the purpose of each step, SQLucid 
allows users to view the intermediate results corresponding to each 
step. To compute the intermediate result, SQLucid synthesizes 
a temporary SQL query by combining the current step with all 
preceding steps. However, simply concatenating SQL clauses from 
these steps may result in syntax errors or incomplete queries. For 
instance, missing the SELECT clause leads to an invalid SQL. To 
address this issue, we developed a synthesis algorithm inspired by 
the grammar-based explanation generation algorithm in STEPS [69]. 
This algorithm converts a sequence of explanation steps back into a 
SQL query while following the grammar rules. Any missing clauses 
are automatically populated with dummy placeholders (e.g., SELECT 
*). The resulting temporary SQL query is then executed on the 
database to compute the intermediate result. 

When the user clicks on the circled number of each step, the 
background of the corresponding step will turn blue, indicating 
this step is selected. The Query Result view (Figure 3 ○C ) is then 
updated to show the intermediate query result. 

Figure 5 demonstrates an example.When the user selects the frst 
step, the database returns all the records in table fight, with an ini-
tial temporary SQL query of łSELECT * FROM flightž. When the 
user selects the second step, the database flters out all the records 
in the frst step that do not satisfy this condition (i.e., fight from Los 
Angeles to Honolulu). The temporary SQL query becomes łSELECT 
* FROM flight WHERE flight.origin = "Los Angeles" AND 

flight.destination = "Honolulu"ž. When the user selects the 
third step, the database returns the minimal price from the re-
maining records. The temporary SQL query becomes łSELECT MIN 
(flight.price) FROM flight WHERE flight.origin = "Los 
Angeles" AND flight.destination = "Honolulu"ž. 

4.5 Query Refnement by Explanation Editing 

While inspecting the explanation in NL and the intermediate query 
results, if a user fnds an erroneous step, they can directly edit the 
description of that step to specify the correct behavior (Figure 6 
○c ). Users can type in any description in free-form text, without 
being confned to a certain format. Users can also add a new step 
at any position or delete any existing step by clicking on the łAddž 
or łDeletež button next to an existing step (Figure 6 ○b ). Once the 
user has fnished modifying the explanation, they can click the 
łGeneratež button to request SQLucid to regenerate the SQL based 
on the edited explanation (Figure 6 ○e ). A complex SQL query can 
sometimes consist of multiple subqueries (a SQL statement with 
only 1 SELECT keyword) concatenated together with set operations 
(e.g. UNION). Within a single subquery, the position of a newly 
added step is not important in our design, as SQLucid can reorder 
and rectify all steps based on clause types to form a valid subquery. 
However, for a complex query involving multiple subqueries, users 
should ensure that new steps are added to the explanation of the 
corresponding subquery. Finally, SQLucid allows users to check 
their edit history and undo/redo some edits by clicking on the 
stepper buttons at the bottom (Figure 6 ○f ). 

To interpret the edited explanation and correct the error, we 
adopt the same text-to-clause model used in STEPS [69]. It achieves 
an exact match accuracy of 90.6%. Like the text-to-SQL model, this 
model is independent of our system and can easily be replaced by 
other models. After regenerating a clause, SQLucid merges it with 
the original query and automatically rectifes any syntax errors or 
conficts. Please refer to the STEPS paper for more technical details. 
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Figure 5: When clicking on the step number, the Query Result view will visualize the intermediate result after the selected step. 

Figure 6: Interacting with the step-by-step explanation 

5 USAGE SCENARIO 

Suppose Alice is a social scientist and she wants to investigate the 
correlation between people’s mobility behavior patterns and fight 
prices since the pandemic. She needs to analyze a large database 
with millions of fight records distributed in many diferent tables. 
As the frst step, she wants to know the airport with the most fights 
to the most popular destination in the frst quarter of 2022. Alice 
fnds it time-consuming to manually flter the database and fnd 
the desired data record. Furthermore, since the information spans 
across multiple tables, Alice does not know how to flter the data 
based on multiple conditions on multiple tables simultaneously. 

Therefore, Alice decides to try SQLucid. She asks, łShow me the 
airport which has the most fights to the most popular destination 
in the frst quarter of 2022.ž in the Question panel. Then, based on 
Alice’s question, SQLucid automatically generates a SQL query 
and executes it in the database. Alice looks at the query result but 

she is not sure whether it is correct. Therefore, Alice chooses to 
read the step-by-step explanation of the SQL query in the Query 
Explanation panel. Since the generated query is a nested query, 
SQLucid explains the inner query as the frst and the outer query 
as the second query below: 

Start the frst query 

(1) Merge data in table fight and table travel. 
(2) Keep the records where month is January. 
(3) Split the data into groups based on the destination. 
(4) Sort the groups based on the number of records in descending 

order, and return the frst record. 
(5) Return the destination. 

Start the second query 

(1) In table travel. 
(2) Keep the records where the destination is the result of the 

frst query. 

(3) Split the data into groups based on the airport code. 
(4) Sort the groups based on the number of records in descending 

order, and return the frst record. 
(5) Return the airport name. 

The step-by-step SQL explanation gives Alice a high-level under-
standing of the generated SQL query. She roughly understands the 
purpose of the frst query is to fnd the most popular destination, 
and the purpose of the second query is to fnd the airport with the 
most fights to this destination (hyperlinked blue text in Step 2). 

However, Alice is unsure about what kind of code is associated 
with łairport codež in Step 3 of the second query. Thus, she wants 
to see some actual data in the database. However, when she tries 
to locate the related data in the database, she notices there are 
many tables and some tables even include hundreds of columns. 
She does not want to do this manually. Instead, Alice hovers her 
mouse over the highlighted text łairport codež in this step. The 
database panel automatically switches to the table that includes 
łairport codež, centering and highlighting data in this column in 
yellow. After reviewing the data in the database, Alice confrms 
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that the airport code is a unique identifer used when booking a 
fight. She is confdent this step has no issue. 

Alice is curious about the diference between Table łfightž and 
Table łtravelž in Step 1 of the frst query, so she hovers the mouse 
over these two entities respectively. By moving the mouse between 
them, the corresponding tables are being switched accordingly. 
Alice clearly notices why these two tables need to be merged. This 
is because łmonthž is stored in the Table łfightž, while łdestinationž 
is stored in Table łtravelž. 

Since Alice is not familiar with SQL, she still does not understand 
how these two tables are merged in this step. Therefore, she clicks 
on this step to view the intermediate result. The intermediate result 
shows a combined table with columns from the łfightž table and 
the łtravelž table. Alice checked a few data records in the merged 
table and compared them with the original records in these two 
tables to confrm that they were indeed consistent. 

As Alice reads individual steps in the SQL explanation, she no-
tices that Step 2 of the frst query is wrong. It seems SQLucid 
misinterpreted the meaning of łthe frst quarterž as łJanuaryž, and 
it also ignored the year constraint. Instead of rephrasing her original 
question, Alice modifes the description of Step 2 in the frst query 
by explicitly specifying the beginning and ending months. She then 
adds a new step below to instruct the system to only consider data 
in Year 2022. Below is the modifed SQL explanation. 

Start the frst query 

(1) Merge data in table fight and table travel. 
(2) Keep the records where month is 

[January] → [between January and March]. (Updated) 

+ (3) Make sure the year in 2022. (Added) 

(4) Split the data into groups based on the destination. 
(5) Sort the groups based on the number of records in descending 

order, and return the frst record. 
(6) Return the destination. 

Start the second query 

(1) In table travel. 
(2) Keep the records where the destination is the result of the 

frst query. 

(3) Split the data into groups based on the airport code. 
(4) Sort the groups based on the number of records in descending 

order, and return the frst record. 
(5) Return the airport name. 

Then Alice clicks on the Generate button to update the query. 
She receives a new airport name and a new SQL explanation. By 
checking the explanation and the intermediate results again, Alice 
is convinced that the result is correct and exactly what she needs. 

6 USER STUDY I: COMPARISON WITH OTHER 
INTERACTIVE APPROACHES 

To investigate the usability of the holistic system, we conducted 
a within-subjects user study with 30 participants in comparison 
to two representative interactive systems, MISP [81] and DIY [54]. 
To ensure a fair comparison, we have redesigned the front-end 
user interfaces of MISP and DIY following the same design style as 
SQLucid (detailed in Appendix C). Furthermore, we have replaced 

the original SQL generation model in MISP and DIY with the same 
SQL generation model used in SQLucid. In this way, we normalize 
the impact of the visual appearance and also the underlying models 
on user performance in the comparison. 

6.1 Participants 

We recruited participants through the mailing lists in an R1 uni-
versity. To investigate the impact of user expertise on SQLucid, 
we selected participants with three diferent levels of familiarity 
with SQL. In total, we recruited 30 participants. 15 of them had 
never heard about or used SQL before (end-user); 10 knew the basics 
of SQL but had to search online to recall syntax details (novice); 
5 could fuently write SQL queries (expert). 14 participants were 
undergraduate students, 4 were master’s students, and 12 were PhD 
students. We shared the consent form in the recruitment email and 
obtained their consent before each study. Each participant received 
a $25 gift card as compensation for their time. 

6.2 Comparison Baselines 

MISP [81] and DIY [54] are two state-of-the-art interactive ap-
proaches for SQL generation. They adopt two typical mechanisms, 
question-answering and direct manipulation. 

MISP uses a question-answering interaction mechanism, where 
users clarify ambiguities through multiple-choice questions. To 
enable fair comparison, we created a graphical interface for MISP 
similar to SQLucid, excluding the Query Explanation view (Figure 3 
○D ), and used the same text-to-SQL model [60] as SQLucid. 

DIY employs direct manipulation, allowing users to correct map-
pings between SQL tokens and natural language phrases using 
drop-down menus. We adapted the replication from Ning et al. [55] 
with a SQLucid-like interface and the same underlying model [60]. 

Appendix C provides details and screenshots of baseline UIs. 

6.3 Tasks 

We performed stratifed random sampling on a widely used text-to-
SQL benchmark, Spider [83], to create a pool of 48 tasks. This task 
pool includes 12 easy tasks, 12 medium tasks, 12 hard tasks, and 
12 extra hard tasks, according to the difculty classifcation from 
Spider. Table 6 in the Appendix show 12 representative tasks. 

6.4 Protocol 

Each study consisted of three sessions, one for each tool. We ran-
domized the order of assigned tools to mitigate learning efects. 
Each session starts with participants watching a tutorial video about 
the assigned tool. Then participants were given several minutes 
to practice and get familiar with the tool before working on real 
tasks. Once they were done practicing, participants were given 10 
minutes to complete 8 assigned SQL tasks using the designated tool. 
Specifcally, we selected 2 tasks per difculty level from the pool of 
48 tasks. We randomized the order of the 8 tasks in each session to 
counterbalance the impact of task difculty levels (e.g., doing easy 
tasks frst vs. doing difcult tasks frst). If a participant found a task 
too difcult to solve, they were allowed to skip it. For each task, 
participants were asked to frst read the task description and then 
ask an initial natural language question to the assigned tool. After 
receiving the generated query and the query result, the participant 
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could further validate and correct the generated query using the 
interaction mechanisms provided by the tool. 

At the end of each session, participants were asked to complete 
a post-task survey to share their experiences. The survey included 
the NASA Task Load Index (TLX) questions [25] and several 7-
point Likert-scale questions to rate their perception of the assigned 
tool. After all sessions, participants completed a fnal survey, in 
which they directly compared all the tools and shared their over-
all thoughts about the usefulness of the tools. We recorded each 
study with the permission of the participants. Participation took 79 
minutes overall on average. 

6.5 User Performance 

Figure 7: Distribution of correctly completed, incorrectly 
completed, skipped, remaining tasks (Study 1) 

Table 1: Task Completion Accuracy (Study 1). 

Task completion accuracy SD 

MISP [81] 56% 30% 
DIY [54] 67% 20% 
SQLucid 85% 13% 

Task Completion Rate. Figure 7 shows the distribution of com-
pleted, correct, skipped, and remaining (i.e., tasks that were not 
even tried due to the time limit) tasks when using diferent tools. An 
ANOVA test showed that the mean diferences among the number 
of completed tasks, correct completion, skipped tasks, and remain-
ing tasks when using diferent tools are all statistically signifcant 
(�-value = 1.75e-16, 7.99e-25, 7.62e-6, 1.21e-2 respectively). 

Specifcally, participants using SQLucid completed 6.6 out of 8 
tasks, while participants using MISP and DIY completed 3.0 and 5.4 
tasks respectively. This result suggests that SQLucid can accelerate 
the speed of task completion. Furthermore, when using SQLucid, 
participants skipped only 4% of the tasks, compared with 10% when 
using DIY and 19% when using MISP. This implies that SQLucid can 
provide more efective support to help participants make progress 
on challenging tasks, leading to fewer skipped tasks. 

To measure the correctness of completed tasks, we calculate the 
task completion accuracyÐthe number of correctly completed tasks 
divided by all completed tasks, excluding skipped tasks and remain-
ing tasks. Table 1 shows the result. Participants using SQLucid also 
achieved the highest task completion accuracy, 85%. In contrast, 
participants using MISP and DIY only achieved 56% and 67% accu-
racy, respectively. In other words, in 44% and 33% completed tasks, 
participants using MISP and DIY thought they had arrived at a 

correct query when in fact, the query was still wrong. These results 
imply that SQLucid can signifcantly improve user productivity 
when querying databases and help them efectively recognize query 
errors and generate correct queries with high accuracy. 

Utility Rates of Diferent Features. To better understand the 
utility of diferent features, we analyzed recordings and gathered 
utility rates of features. For each task, participants intentionally 
navigated data by checking the visual correspondence 10.2 times. 
Participants rendered the intermediate results 3.5 times. In 48% 
of assigned tasks, SQLucid generated the correct query in the 
frst iteration and participants did not edit the SQL explanation. In 
47% of assigned tasks, SQLucid generated a wrong query in the 
frst iteration, and it took 1.8 edits to fx. In 5% of assigned tasks, 
participants either rephrased the question or skipped the task. 

These values show that participants heavily rely on visual corre-
spondence and the intermediate results to understand the query. 
With these features, participants can quickly identify and success-
fully fx errors with only a few edits per task, improving the initial 
query generation accuracy from 48% to 85%. We also analyzed the 
recordings of participants using DIY and MISP. We found that DIY 
and MISP generated the initial query correctly in 48% and 51% of the 
assigned tasks. However, due to the limitation of their interaction 
methods, participants could not efectively understand the gener-
ated query and only fxed a limited number of queries, resulting in 
a 56% and 67% fnal accuracy, respectively. 

The Impact of User Expertise. Table 2 shows the number of 
correctly completed tasks for participants with diferent levels of 
expertise. Overall, compared with MISP and DIY, SQLucid con-
sistently improved the task completion correctness and efciency 
across all levels of SQL expertise. Specifcally, the performance gap 
between diferent expertise levels when using SQLucid is narrow. 
An ANOVA test showed that when using SQLucid, there is no sta-
tistically signifcant diference in the number of correctly completed 
tasks between diferent levels of SQL expertise (�-value=0.88). This 
implies that SQLucid can help bridge the expertise gap among 
users when querying databases. 

Table 2: Correctly completed tasks by expertise level 

MISP [81] DIY [54] SQLucid 
#Corr. SD #Corr. SD #Corr. SD 

End-User 1.6 0.91 3.3 1.13 5.4 0.91 
Novice 1.4 0.67 3.5 1.27 5.7 1.06 
Expert 2.2 1.10 3.8 1.30 5.9 1.22 

The Impact of Task Difculty Levels. Table 3 shows the number 
of correctly completed tasks at diferent levels of difculty when 
using diferent tools. Overall, compared with MISP and DIY, SQLu-
cid consistently improved the task completion correctness and 
efciency across all levels of task difculty. In particular, SQLucid 
signifcantly improves user performance on hard and extra-hard 
tasks. Compared with using MISP, participants using SQLucid com-
pleted almost 9X and 3X more extra-hard tasks correctly compared 
with using MISP and DIY. P10 wrote, łI really enjoyed [SQLucid] 
a lot better than the previous two. I can use it to answer complex 
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questions. Sometimes the system made a mistake at the frst step, but 
I can easily correct it or add more constraints.ž 

Table 3: Correctly completed tasks by difculty level 

MISP [81] DIY [54] SQLucid 
#Corr. SD #Corr. SD #Corr. SD 

Easy 0.81 0.74 1.40 0.69 1.62 0.50 
Medium 0.49 0.62 1.19 0.72 1.48 0.60 
Hard 0.21 0.51 0.54 0.61 1.39 0.58 
Extra hard 0.12 0.31 0.35 0.63 1.14 0.66 

6.6 User Confdence and Cognitive Load 

In the post-task survey, participants self-reported their confdence 
about generated queries when using diferent tools on a 7-point 
scale. Figure 8 shows the distribution of users’ confdence levels. 
The average confdence level is 6.42 when using SQLucid, com-
pared with 3.79 and 5.29 when using MISP and DIY. An ANOVA 
test showed that the mean diferences are statistically signifcant (�-
value = 1.53e-11). Based on a qualitative analysis of user responses, 
we believe this improvement was largely attributed to the visual 
correspondence and intermediate features provided by SQLucid. 
P23 wrote, łI felt most confdent using SQLucid because it provided 
the most information on how a natural language query was inter-
preted and carried out. For example, I could see intermediate results 
and explanations of steps in natural language, allowing me to easily 
gauge whether the process was correct or not.ž P9 reported, łWhen 
I was trying to explore the data for the other two tools, it was a bit 
challenging. But with related tables and data highlighted w.r.t. the 
explanations made it easier to navigate the data.ž 

Figure 9 shows participants’ ratings on the fve cognitive load 
factors from the NASA TLX questionnaire [25]. The ANOVA test 
demonstrates that the mean diferences are all statistically signif-
cant (�-value=8.26e-4, 7.83e-06, 6.04e-13, 2.57e-06, 8.10e-08 respec-
tively). The result confrms that SQLucid can reduce users’ cog-
nitive load by creating interactive SQL explanations with visual 
correspondence and intermediate results, which serves as a com-
mon ground between users and the database. P19 wrote a compre-
hensive comment to illustrate the convenience provided by SQLu-
cidÐłSQLucid helps me query the database and debug my query 
completely with natural language, which is good because I do not 
know SQL. The intermediate results help me locate bugs easily, so 
I don’t need to debug my entire query. The natural language inter-
preter is so fexible that I do not need to change my writing style to 
accommodate it. All inferences are performed on the database level, 
so I don’t need to specify which table I should look into. The highlight 
feature also helps me navigate the database.ž 

6.7 User Ratings of Individual Features 

In the post-task survey, we prepared six 7-point Likert scale ques-
tions for participants to rate the usefulness of key features in SQLu-
cid. The most appreciated features were being able to understand the 
SQL query via the step-by-step explanation and being able to directly 
edit the explanation in natural language to fx an error. Other features 
in SQLucid ere also appreciated by the majority of participants. 
More discussion is detailed in Appendix A. 

Figure 8: User Confdence Ratings (Study 1) 

Figure 9: NASA Task Load Index Ratings (Study 1) 

6.8 User Preference and Feedback 

When asked about the tool they preferred to use for their real-world 
data query needs, all 30 participants selected SQLucid. We coded 
participants’ responses in the post-study survey and identifed two 
main reasons why they liked SQLucid more. First, 27 participants 
mentioned that the explanations provided by SQLucid were more 
understandable and useful. Particularly, the visual correspondence 
and intermediate result features bring more interactivity in SQLu-
cid, and greatly enhance users’ ability to identify errors. 

Second, 21 participants pointed out that SQLucid is the most 
useful among all conditions because the direct editing of SQL expla-
nations in NL is more convenient and requires less efort. P23 wrote, 
łSQLucid was the most usable because I felt that it was very easy and 
fast to correct mistakes in interpretation using this tool. For example, 
I could directly use language to edit some of the intermediate steps to 
get the correct order of steps. I think this is fast and convenient. ž 

In the post-task survey, we also asked participants what addi-
tional features may help them better solve the task. Seven partici-
pants mentioned that it would be helpful to see confdence scores 
associated with each step, because they can pay more attention 
to those steps with lower confdence. P1 wrote, łI wish to see a 
confdence score that indicates if I need to check or debug something. ž 
Furthermore, three participants mentioned they would like to see 
some suggestions when editing the SQL explanation. P11 suggested 
that łproviding suggested expressions may diminish the chances for 
the normal language question to be misinterpreted.ž Finally, two par-
ticipants mentioned that it might be useful for SQLucid to generate 
multiple answers and let the user choose one. 

7 USER STUDY II: ABLATION STUDY OF KEY 
FEATURES IN SQLUCID 

To investigate the efectiveness of each feature in SQLucid, we 
conducted another within-subjects user study with 8 participants, 
comparing SQLucid with three of its variants. 
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7.1 Participants, Baselines, Tasks and Protocol 

We followed the same procedure as Study 1 to recruit 8 participants 
for this study. 4 of them had never heard about or used SQL before 
(end-user); 2 knew the basics of SQL but had to search online to 
recall details of the syntax when writing a SQL query (novice); 2 
could fuently write SQL queries (expert). 

We created three diferent variants of SQLucid as comparison 
baselines by ablating the two key features: (1) no visual correspon-
dence, (2) no intermediate results, (3) no visual correspondence & 
no intermediate results (i.e., Text SQL explanation only). 

In this study, we used the same tasks (Section 6.3) and followed 
the same protocol (Section 6.4) as the frst user study. On average, 
each study took about 61 minutes in total. 

Figure 10: Distribution of correctly completed, incorrectly 
completed, skipped, remaining tasks when using diferent 
versions of SQLucid (Study 2) 

7.2 User Performance 

Figure 10 shows the distribution of completed tasks, correct tasks, 
skipped tasks, and remaining tasks. Table 4 shows the task comple-
tion accuracy similar to user study 1. An ANOVA test showed that 
the mean diferences among these values are statistically signif-
cant, except for skipped tasks (�-value = 2.12e-02, 3.36e-02, 3.3e-01, 
1.03e-03, 1.21e-2 respectively). 

Specifcally, when the SQL explanation is plain text, participants 
completed 4.9 out of 8 tasks with a completion accuracy of 81.6%, 
and skipped 0.75 out of 8 tasks. When the visual correspondence fea-
ture is activated, participants completed 5.5 tasks with a completion 
accuracy of 83.1% and skipped 0.375 tasks. When the intermediate 
query result feature is activated, participants completed 5.9 tasks 
with a completion accuracy of 83.5% and skipped 0.375 tasks. When 
both features were activated, participants completed 6.4 tasks with 
a completion accuracy of 84.3% and skipped 0.25 tasks. The result 
implies both the two features can reduce task completion time and 
increase user performance. 

Table 4: Task Completion Accuracy (Study 2). 

Task completion accuracy SD 

Text Explanation Only 81.6% 7.9% 
+Visual 83.1% 16.3% 
+Intermediate 83.5% 11.9% 
+Visual+Intermediate 84.3% 8% 

Figure 11: User Confdence Ratings (Study 2) 

Figure 12: NASA Task Load Index Ratings (Study 2) 

7.3 User Confdence and Cognitive Load 

Figure 11 shows the participants’ confdence with diferent tools. 
An ANOVA test shows that the mean diferences across diferent 
conditions are statistically signifcant (�-value=1.32e-12). Figure 12 
shows user ratings on the fve cognitive load factors from the NASA 
TLX questionnaire. An ANOVA test shows that the mean diferences 
in all fve dimensions are statistically signifcant (�-value=1.65e-05, 
2.71e-06, 1.14e-16, 7.34e-07, 2.53e-09 respectively). Participants us-
ing SQLucid with all features activated have the lowest cognitive 
load and highest confdence. The result shows both the visual cor-
respondence feature and the intermediate query result feature serve 
as great supplements to the plain SQL explanations. 

We analyzed the post-study survey responses and found that 
these two features contributed to diferent aspects of user perfor-
mance. Specifcally, the visual correspondence feature aids in data 
navigation, thereby saving more time. P1 wrote, ł[Without visual 
correspondence,] I need to use the scrolling bar a lot. That is annoying 
and tedious.ž On the other hand, the intermediate query result fea-
ture focuses on improving user comprehension of the explanation, 
which brings more confdence. P4 wrote, łIntermediate results give 
me confdence about the fnal outcome.ž Additionally, this feature 
provides information that users may not have asked for, but can 
ofer additional context, thereby reducing their cognitive load. P1 
commented, łIntermediate steps can help me check back and forth 
based on my needs. Without this feature, I only get a piece of infor-
mation. If I want to know more, I need to ask multiple times.ž 

Overall, features in SQLucid complement each other and collab-
oratively enhance the interactivity of SQL explanations. P2 made a 
comprehensive comment about the variant with only plain textual 
explanation, łWithout these features, my interest in using this system 
decreases a lot, because I need to fnd the data by my eyes and the 
mouse. Although it explains the procedure in English and provides 
the fnal result, I can’t see the relationship between the sentences and 
the real data. Without seeing the relationship, it might be correct, but 
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I question my understanding and do not trust it. Besides, sometimes 
when my request is too complex for the system to handle, I don’t know 
which step is wrong.ž 

8 QUANTITATIVE EVALUATION 

To evaluate the generalizability of SQLucid , we further conducted 
a quantitative experiment where the frst author completed 100 
database query tasks. The results of this study can be interpreted 
as the upper bound of user performance of SQLucid. 

We followed the same sampling strategy in the user studies, 
including 25 easy tasks, 25 medium tasks, 25 hard tasks, and 25 extra 
hard tasks from Spider [83]. For each task, the frst author examined 
the database, read the natural language description, and tried to 
solve the task using SQLucid. The task was considered completed 
when a correct query result was obtained. This simulates an ideal 
condition where a user is familiar with the tool and has sufcient 
knowledge of database queries. This case study is to investigate 
to what extent SQLucid can solve query tasks, regardless of its 
learnability or usability. 

The experimenter completed all 100 tasks with an accuracy of 
89%, in an average of 1.9 minutes (median=0.9, SD=0.6) for each 
task. Table 5 shows the task completion accuracy at diferent lev-
els of task difculty. 5 out of 100 tasks were failed due to user 
misunderstanding. For example, while the correct SQL for "French 
citizens" should be “Citizenship = France” according to the 
data in the database, the query produced by the experimenter had 
“Citizenship = French”. It is possible that additional afordances 
that proactively provide information about matches with content 
in the database could address these issues. 4 out of 100 tasks failed 
to be completed due to the complex query structure, e.g., a query 
with multiple subqueries. The experimenter decided to skip them 
because they were time-consuming to solve. 

Table 5: Task completion at diferent levels of task difculty 

Easy Medium Hard Extra hard Overall 

Accuracy 96% 96% 76% 88% 89% 

9 DISCUSSION 

9.1 Design Implications 

Based on the evaluation results, we found that the primary enabler 
for SQLucid lies in the bi-directional, natural language (NL) com-
munication channel it establishes between human users and SQL 
generation models. Compared to directly editing and refning the 
original question (i.e., prompt engineering), editing the step-by-step 
explanations provides a more structured way to give feedback and 
allows users to pinpoint the error. Furthermore, by breaking down 
a lengthy explanation into shorter descriptions of individual steps, 
SQLucid can clearly and systematically explain the behavior of a 
query. The editability of these explanations allows human users to 
identify the specifc step where an error occurs and directly pro-
pose a correction by altering the NL description of the erroneous 
step. This design enables users to ofer more precise feedback and 
incrementally build a complex query than they could by providing 

high-level suggestions in a multi-turn dialogue (e.g., MISP [81], 
ChatGPT), thereby streamlining the SQL regeneration process. 

The success of SQLucid also echoes the grounding theory in 
communication [12]. Grounding theory states that conversation 
is a collaborative efort aimed at establishing common ground or 
shared knowledge. In interactions with intelligent systems, such 
as SQL generation models, the system should ofer evidence of 
understanding in response to a user’s input, enabling the user to 
assess progress toward their goal. In our work, the editable step-by-
step explanation serves as the common ground for communication 
between an SQL generation model and a human userÐthe model 
explains a generated query step by step, while the human user corrects 
the model’s misinterpretation by directly editing the explanation. 
Furthermore, both the visual correspondence and the intermediate 
query result features further enhance the grounding. 

Our work further illustrates that comprehending system behav-
ior and repairing system breakdowns are highly interdependent 
activities. This is in line with previous studies of conversational 
agents [2, 6], which argue that users must frst understand the cur-
rent state of the system and the cause of a breakdown to choose an 
efective repair strategy. By providing a detailed explanation with 
intermediate results, SQLucid enables users to rapidly grasp the 
query’s behavior and identify the root cause of an incorrect query 
result. This helps users to efciently pinpoint the erroneous part 
of the query and give accurate and efective suggestions to fx it. 
Additionally, this design ofers users greater fexibility in express-
ing their intent and feedback compared to relying on constrained 
mechanisms to gather feedback [29, 42, 46, 54, 81]. 

9.2 Using Interactive Explanation for Task 
Decomposition 

Task decomposition is a long-standing challenge in program syn-
thesis and code generation [23, 31, 39, 71]. Several approaches 
support task decomposition by asking users to specify intermedi-
ate steps [27, 33, 82]. For instance, Wranger [33] recommends a 
ranked list of operators at each synthesis step and asks users to 
select which operator to use and fll in the parameters. Using such 
systems requires users to be familiar with the underlying program-
ming language and also actively think about intermediate steps to 
arrive at the fnal solution. Prior work shows that non-experts often 
fnd it difcult to decompose a complex task into sub-tasks [39]. 

The editable step-by-step explanation can serve as a scafold to 
guide non-experts to decompose a complex task. Compared with 
prior work, SQLucid does not require users to actively make a 
task decomposition plan. Instead, the step-by-step explanation can 
be viewed as an initial decomposition plan proposed by SQLucid. 
Users only need to read and correct it. In particular, the step-by-step 
structure of the explanation will spontaneously inspire users to 
think about the intermediate steps and make it easier to recognize 
incorrect or missing steps. Since the explanation is communicated 
in natural language, users also do not need to know the semantics 
of the underlying programming language. 

As we were developing this system, the rise of Large Language 
Models (LLMs) has brought another possibility for task decom-
position. Recent studies have shown that LLMs are capable of 



SQLucid: Grounding Natural Language Database Qeries with Interactive Explanations UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

breaking down a large task into smaller subtasks with proper in-
structions [32, 57, 67, 73, 75]. For instance, Chain-of-Thought (CoT) 
Prompting [75] allows users to provide several examples of how 
to solve a problem analytically step by step and leverages the in-
context learning capability of LLMs to decompose similar problems. 
Given a natural language query, one can use CoT to decompose 
it and generate a step-by-step plan with basic query operations. 
However, one caveat is that LLMs may hallucinate and generate an 
incoherent plan with non-sensical steps, as shown by many stud-
ies [38, 79]. In contrast, our grammar-based explanation method is 
strictly grounded in the SQL components and provides a faithful 
representation of computation steps in a query. We also provide 
a dedicated method to incorporate user refnement on individual 
steps to fx query generation errors. 

9.3 Application to Other Domains 

We believe that our interface design can be generalized to adja-
cent domains, such as enabling user validation and repair in code 
generation [11, 27], data transformation synthesis [15, 51], web 
automation [9, 40], smartphone app automation [44, 45], and reg-
ular expression synthesis [87]. Programs in these domains can be 
naturally decomposed into smaller components (e.g., program state-
ments, API calls) and then explained in natural language in a similar 
step-by-step fashion. However, for certain domains such as tensor 
transformation synthesis [88], step-by-step explanations may not 
be the most suitable approach, as code in these areas often involves 
complex concepts and computation steps, such as linear algebra, 
which are challenging to clearly explain in natural language. 

9.4 SQL Experts vs. Non-Expert Users 

SQLucid is specifcally designed for non-experts who need to inter-
act with databases but lack SQL expertise. Reading NL descriptions 
and checking intermediate results is the main way for non-experts 
to validate SQL queries. Our analysis of user performance across 
varying SQL expertise levels reveals that the performance gap be-
tween end-users, novices, and experts has been substantially re-
duced when utilizing SQLucid. Our user study results show adding 
and removing NL steps are intuitive for non-experts. Users can 
freely edit the NL description of a query step and SQLucid up-
dating the corresponding SQL component accordingly based on a 
text-to-clause model. If one step (e.g., group students into clusters 
by years) is missing in a query (e.g., compute the average GPA 
of students for each year), it is easy to recognize it from the NL 
description and the results. 

While our focus was on non-experts, we discovered that SQLu-
cid can also enhance the productivity of SQL experts. For complex 
tasks that necessitate joining multiple tables or creating compound 
queries, SQLucid ofers a solid starting point from which SQL 
experts can iteratively and incrementally refne the query. For ex-
ample, users can build two simple subqueries respectively and 
reference one within the other to form a more complex query. 

Another unintended beneft was that participants in our study 
found SQLucid to be valuable for learning SQL. Five participants 
who were unfamiliar with SQL actively reported that their ability 
to read basic SQL queries improved as a result of using SQLucid, 
and they expressed a desire to continue using it for practical SQL 

learning. Participant P12 commented, łIt was nice to see the generated 
SQL code with human language. I believe I could learn SQL using this 
tool.ž Similarly, P24 stated, łI wish SQLucid can be made available 
as a website. It can be used to teach beginners SQL knowledge and I 
believe they are willing to pay for it.ž 

9.5 Limitation and Future Directions 

There are several limitations in the design of our user study. First, 
although our participants represented a wide range of expertise lev-
els in SQL, they were all university students. In the future, we plan 
to recruit industrial practitioners to study the real-world adoption 
and ecological validity of SQLucid. We will also conduct semi-
structured interviews and surveys to gather feedback from indus-
trial practitioners. Second, we did not explicitly measure user per-
ception of accuracy, but user confdence is a useful proxy for it. 
Figure 8 shows a signifcant improvement in the confdence of 
SQLucid compared to DIY and MISP. Figure 11 shows each key 
feature in SQLucid contributes to increase user confdence. 

The current design of SQLucid ofers room for further improve-
ment. First, to further enhance its educational potential, SQLucid 
can establish a triple-linkage among the SQL statement, SQL expla-
nation, and corresponding database content. Combined with the 
intermediate query results, this can serve as a promising learning 
tool for SQL beginners to understand both the syntax and semantics 
of SQL queries. Furthermore, as suggested by several participants, 
SQLucid can beneft from displaying more information about the 
SQL generation process, such as model confdence scores. This 
additional information could direct users’ attention and help them 
determine which steps of the query they should prioritize. Another 
future direction could focus on automatically reordering edited 
steps. SQLucid currently assumes users know exactly where to add 
new steps. Supporting automatic step reordering can eliminate this 
assumption. 

10 CONCLUSION 

This paper presented SQLucid, a novel interactive SQL refnement 
interface that enables users to efectively query data from relational 
databases using natural language. SQLucid integrates editable ex-
planation, visual correspondence, intermediate query results, and 
other auxiliary features. These features echoed with each other, cre-
ating a grounded natural language interface with rich interactions 
for users to understand the generated queries, identify errors, and 
correct any errors. A user study with 30 participants shows that 
SQLucid can help users query data more quickly and accurately, 
with increased confdence and reduced cognitive load. A user study 
with 8 participants demonstrates the efectiveness of key features in 
SQLucid. A quantitative experiment with 100 query tasks indicates 
that SQLucid can be generalized to various tasks. 
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A USER RATINGS OF INDIVIDUAL FEATURES 

In the post-task survey, participants rated the usefulness of key 
features of SQLucid in 7-point Likert scale questions. Figure 13 
summarizes the distribution of user ratings. 

We found that the majority of participants were satisfed with 
each feature in SQLucid. The most appreciated features were being 
able to understand the SQL query via the step-by-step explanation 
and being able to directly edit the explanation in natural language 
to fx an error. P10 wrote, łI really enjoyed this tool [SQLucid] a lot 
better than the previous two. Doing everything in natural language 
is way more direct. I don’t have to answer strange questions or click 

confusing options [in drop-down menus]...By editing the steps, I was 
able to get more answers than previous tools.ž 

Furthermore, 30 participants agreed or strongly agreed that łsee-
ing the intermediate execution results helps me understand the SQL 
query and validate its correctness.ž P23 commented, łI liked how 
intermediate steps and results were shown so users could see how the 
system interpreted the query.ž 29 participants agreed or strongly 
agreed that łseeing the highlighted tables/columns helps me under-
stand the NL description.ž P5 wrote, łthe highlighting feature is useful 
for users to locate the corresponding elements quickly.ž Even the least 
appreciated featureÐthe edit history of SQL explanationsÐwas still 
considered convenient by the majority of participants (25/30). P14 
wrote, łI also liked how easy it was to go in and edit the query as well 
as go back if I made a mistake.ž 

B USER STUDY TASKS 

Table 6 present examples of tasks with diferent difculty levels from 
the 48 tasks used in our study. Table 6 also render the databases 
these tasks were operated on, as well as the ground-truth SQL 
queries for these tasks. These tasks were selected from the Spider 
benchmark [83]. Spider is a large-scale, complex, and cross-domain 
benchmark, consisting of databases with multiple tables. It has 
become the de facto standard for measuring text-to-SQL models 
these days. Spider categorizes these tasks into four difculty levelsÐ 
easy, medium, hard, and extra hard. We performed a stratifed 
random sampling on the tasks from Spider [83]. Specifcally, we 
selected 12 easy tasks, 12 medium tasks, 12 hard tasks, and 12 extra 
hard tasks, according to the difculty classifcation from Spider. For 
each participant and each tool/variant assignment during the study, 
we randomly selected 2 tasks per difculty level from the pool of 
48 tasks, resulting in 8 tasks per condition. We randomized the 
order of the 8 tasks to counterbalance the impact of task difculty 
levels (e.g., doing easy tasks frst vs. doing difcult tasks frst). If a 
participant found a task too difcult to solve, they were allowed to 
skip it. 

C USER INTERFACES OF SQLUCID AND 
BASELINES 

This section demonstrates the user interface (UI) of baseline tools 
used in our user study I. 

MISP. Given a natural language question, MISP may ask users 
multiple-choice questions to clarify which column should be con-
sidered. If none of the listed choices are correct, users are allowed 
to provide their own answers. The user’s answer is used to con-
strain the decoding process by adjusting the probability of code 
tokens induced by the answer. However, MISP directly renders the 
generated SQL to users without explanation. Therefore, users need 
to be familiar with SQL syntax to identify errors. The ofcial imple-
mentation of MISP on GitHub only had a command-line interface, 
and the original text-to-SQL model [86] had much lower accuracy 
than newer models. To enable a fair comparison, we frst created an 
interface for MISP, which includes everything from the SQLucid 
interface except the Query Explanation view (Figure 3 ○D ). Then, 
we replaced their text-to-SQL model [86] with the one [60] used in 
SQLucid. Thus, the only diference between the two systems is the 
interaction mechanism. 
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Figure 13: User ratings on individual features (1—strong disagreement, 7—strong agreement) 

As shown in Figure 14, MISP shares a similar UI as SQLucid 
(Figure 3). For each query task, MISP allows users to select a data-
base, inspect data in a table, and view the query result. The main 
diference from SQLucid is that MISP will render a generated query 
in the dialog and ask users to confrm whether the generated SQL 
is correct or not. If the user says the generated query is not correct, 
MISP will proactively predict the erroneous part and ask users to 
select alternative generations to fx the error. However, MISP does 
not provide a natural language explanation of the generated SQL. 
Users have to read and inspect the generated SQL in the dialog on 
their own, which is difcult for end-users who do not understand 
the syntax and semantics of SQL. 

DIY. Given a natural language question, DIY creates a small 
sampled database and computes intermediate results on the sam-
ples. Furthermore, DIY maps tokens in a generated SQL query to 
words and phrases in the user-provided question. If the user fnds 
an incorrect mapping (e.g., a wrong column name), they can fx 
it by selecting an alternative name and value from a drop-down 
menu. However, users cannot give further feedback in addition to 

selecting alternatives at certain locations. Since the original imple-
mentation of DIY is not publicly available, we reused the replication 
of DIY from Ning et al. [55] and designed a user interface similar to 
SQLucid. We also changed the original text-to-SQL model in Ning 
et al.’s implementation to the same model [60] of SQLucid for a 
fair comparison. 

Figure 15 shows the UI of DIY. DIY only samples a small amount 
of data from a user-selected database to reduce the information 
overload of inspecting a large database. Users can type in a natural 
language question and then DIY generates a SQL query by invoking 
the base SQL generation model. DIY automatically matches tokens 
in the natural language question with tokens in the generated SQL. 
Each matched natural language token is augmented with a drop-
down menu with alternative SQL tokens predicted by the base 
model. If the prediction of a token is wrong, users can click on the 
drop-down menu and select an alternative token to fx it. Users 
can examine the query result, as well as the execution steps, in the 
bottom right view. 
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Table 6: Some example tasks in the user study 

Task Ground truth SQL query 

Easy 

List the name of teachers whose hometown 
is not łLittle Lever Urban District. 
(course_teach) 

SELECT name FROM teacher 
WHERE hometown != łlittle lever urban districtž 

What is the abbreviation 
for airline łJetBlue Airwaysž ? 
(fight_2) 

SELECT Abbreviation FROM AIRLINES 
WHERE Airline = łJetBlue Airwaysž 

List all the student details in 
reversed lexicographical order. 
(student_transcripts_tracking) 

SELECT other_student_details FROM Students 
ORDER BY other_student_details DESC 

Medium 

Which airlines have less than 200 fights? 
(fights_2) 

SELECT T1.Airline FROM AIRLINES AS T1 
JOIN FLIGHTS AS T2 ON T1.uid = T2.Airline 
GROUP BY T1.Airline HAVING COUNT(*) 200 

Who is the earliest graduate of the school? 
List the frst name, middle name, and last name. 
(fights_2) 

SELECT frst_name , middle_name , last_name 
FROM Students ORDER BY date_left ASC LIMIT 1 

What are the countries having 
at least one car maker? 
List name and id. 
(car_1) 

SELECT T1.CountryName , T1.CountryId 
FROM COUNTRIES 
AS T1 JOIN CAR_MAKERS AS T2 
ON T1.CountryId = T2.Country 
GROUP BY T1.CountryId HAVING COUNT(*) = 1 

Hard 

What are the ids and names of the 
battles that led to more than 10 
people killed in total? 
(battle_death) 

SELECT T1.id , T1.name FROM battle AS T1 
JOIN ship AS T2 ON T1.id = T2.lost_in_battle 
JOIN death AS T3 ON T2.id = T3.caused_by_ship_id 
GROUP BY T1.id HAVING SUM(T3.killed) 10 

What is the maximum number of times that 
a course shows up in diferent transcripts 
and what is that course’s enrollment id? 
(student_transcripts_tracking) 

SELECT COUNT(*) , student_course_id 
FROM Transcript_Contents 
GROUP BY student_course_id 
ORDER BY COUNT(*) DESC LIMIT 1 

What are the frst names of the students who 
live in Haiti permanently or have the cell 
phone number 09700166582? 
(student_transcripts_tracking) 

SELECT T1.frst_name FROM students AS T1 
JOIN addresses AS t2 
ON T1.permanent_address_id = T2.address_id 
WHERE T2.country = ’haiti’ 
OR T1.cell_mobile_number = ’09700166582’ 

Extra 
hard 

Which owner has paid the largest 
amount of money in total for their dogs? 
Show the owner id and zip code. 
(dog_kennels) 

SELECT T1.owner_id , T1.zip_code FROM Owners AS T1 JOIN Dogs 
AS T2 ON T1.owner_id = T2.owner_id JOIN Treatments AS T3 
ON T2.dog_id = T3.dog_id 
GROUP BY T1.owner_id 
ORDER BY sum(T3.cost_of_treatment) DESC LIMIT 1 

What is the area code in which the most 
voters voted? 
(voter_1) 

SELECT T1.area_code FROM area_code_state AS T1 
JOIN votes AS T2 ON T1.state = T2.state 
GROUP BY T1.area_code 
ORDER BY COUNT(*) DESC LIMIT 1 

What is the maximum horsepower and the 
make of the car models with 3 cylinders? 
(car_1) 

SELECT T2.horsepower , T1.Make FROM CAR_NAMES AS T1 
JOIN CARS_DATA AS T2 ON T1.MakeId = T2.Id WHERE T2.cylinders = 3 
ORDER BY T2.horsepower DESC LIMIT 1 
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Figure 14: The UI of MISP 
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Figure 15: The UI of DIY 
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