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Abstract

We revisit the noisy binary search model of [KK07], in which we have n coins with unknown
probabilities p; that we can flip. The coins are sorted by increasing p;, and we would like to
find where the probability crosses (to within ) of a target value 7. This generalized the fixed-
noise model of [BZ74], in which p; = % + €, to a setting where coins near the target may be
indistinguishable from it. It was shown in [KKO07] that ©(Z% logn) samples are necessary and
sufficient for this task.

We produce a practical algorithm by solving two theoretical challenges: high-probability
behavior and sharp constants. We give an algorithm that succeeds with probability 1 — ¢ from
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samples, where C; . is the optimal such constant achievable. For § > n~—°W this is within
1+ o(1) of optimal, and for § < 1 it is the first bound within constant factors of optimal.

*Work partially done while at UT Austin



1 Introduction

Binary search is one of the most fundamental algorithms in computer science, finding an index
i* € [n] from logy n queries asking if a given index i is larger than i*. But what if the queries are
noisy?

One model for noisy binary search has each query be incorrect independently with exactly the
same probability % —e. In this model, which we call FIXEDNOISENBS; a line of work [BZ74; BHOS;
DLU21; GX23] has found a sharp bound for the required expected sample complexity, with tight
constants. However, in many applications of noisy binary search the error probability is not fixed,
but varies with 4: comparing ¢ to * is much harder when 7 is close to 7*.

As one example, consider the problem of estimating the sample complexity of an algorithm such
as for distribution testing or noisy binary search itself. Proofs in this space are often sloppy with
constant factors, so the proven bound is not reflective of the true performance. If so, we would
like to empirically estimate the sample complexity ¢ at which the success probability p; is above a
given threshold 7 (say, 90%). (In some cases we even know the worst-case distribution [DGPP1§|
so the empirical estimate is of the worst-case performance, not just the distributional performance.)
We can run the algorithm at a given sample complexity ¢ and check correctness, getting SUCCESS
with probability p;. The success probability is monotonic in ¢, and we would like to estimate the
1* where p; crosses 7. Finding i* exactly may be very hard—the success probability at 10000 and
10001 samples are likely to be almost identical—so we would settle for some index with p; ~ 7.

For a non-computer science example, calculating the LD50 for a substance (the dose needed
to kill half of the members of a specific population) is a noisy binary search problem with error
probability that skyrockets close to the true answer.

Such considerations led to the noisy binary search model of [KK07], which we call MONOTONICNBS(T, ¢):
we have n coins whose unknown probabilities p; € [0,1] are sorted in nondecreasing order. We
can flip coin i to see heads with probability p;. The goal is to find any coin ¢ with nonempty
[pi, pi+1] N (T —&,7 + ). This model subsumes FIXEDNOISENBS (where p; = § — ¢ for i <i* and
% + ¢ otherwise) and of course regular binary search (where p; € {0,1}). Throughout this paper we
will suppose that 7 is a constant bounded away from {0,1}, n grows to oo, and ¢ and the desired
failure probability ¢ may be constant or may approach 0 as n — oc.

The naive solution to MONOTONICNBS is binary search with repetition: we do regular binary

é

search, but repeat each query enough times to have Togn failure probability if p; ¢ [T —e,7 + ¢].

This gives sample complexity O(Ei2 log nlog IOE"). In [KKO07] it was shown that this extra loglogn
term is unnecessary, giving two algorithms that each have sample complexity

1 1
O(E—2 log n log 5)

In this paper, we show how to improve this bound. We show upper and lower bounds that
achieve the tight constant on logn, and reduce the log % dependence from multiplicative to additive.
Figure 2 compares our result to existing methods for MONOTONICNBS.

On Studying Constants. When analyzing sublinear algorithms, and trying to remove loglogn
factors in query complexity, constant factors really matter. The proofs in [KK07] are not careful
with constants, but the algorithms themselves inherently lose constants. Our best estimate is that
one algorithm “improves” upon naive repetition by a factor of lnéfn, and the other by 11218%81 . Neither
is an improvement for any n that will ever be practical—the better algorithm is only an improvement

for n > 2¢°" ~ 100", By studying constants, we are forced to design an algorithm that (as we
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Figure 1: In FIXEDNOISENBS, every coin is e-far from the true ¢* that must be found. We
consider MONOTONICNBS, where many coins may be close to the threshold and the goal is to find
some good coin (the gray shaded region).

‘ Algorithm | Proven query complexity | Actual constant |
Binary Search w/ Repetition 2% Inn -In lng
[KKO07| Multiplicative Weights | 4000220 1,y 1y ~ 31
[KKO07] Backtracking 47690922017 1)y . 1 4 ~ 2000
BAYESIANSCREENINGSEARCH 27(1—7) Inn

Figure 2: Comparison of our result to prior algorithms for MONOTONICNBS in the regime of
e < min(7,1—7) and § = 1/n°M ignoring lower order terms. The analysis in [KK07] is not careful
with constants, so we also include our best estimate of the actual constant after tuning constant
factors in the algorithms.

shall see) gives improvements for practical values of n. We give further discussion of the value of
studying constants in Section 1.3.

Noisy binary search is intimately connected to the asymmetric binary channel, i.e., the binary
channel that can choose between sending 1 with probability 7 — ¢ or with probability 7 + e. If
each p; € {7 £ ¢}, then noisy binary search needs to reveal the lgn-bit i* through such a channel,
queries below ¢* are 1 with probability 7 — ¢ and those above i* are 1 with probability 7 + . The
natural target sample complexity is therefore i lgn, where C- . is the information capacity of the
asymmetric binary channel: ’

Cre=maxH((1-q)(r —€) +q(r+e)) — (1 —q)H(T —¢) — ¢H(T +¢) (1)

where H(p) is the binary entropy function. For 7 = %, the maximum is at ¢ = % and this is just
C 1= 1—-H (% — ¢), the capacity of the binary symmetric channel with error probability % —E.

For T # %, the information obtained from 7 — € and T + ¢ probability coins is not the same, so the
capacity is achieved by getting 7 + ¢ coins with some probability ¢ different from 1/2; it satisfies
Cre~ m for fixed 7 as € — 0.

Our results. Our main result is the following:



Theorem 1.1 (Upper bound). Let 0 < 7 < 1 be a constant. Consider any parameters 0 <
g,0 < 1/2 with 0 < ¢ < min(7,1 — 7)/2. On any MONOTONICNBS(7,¢) input, the algorithm
BAYESIANSCREENINGSEARCH uses at most

(Ign + O(log?® nlog'/? % + log 1))
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queries and succeeds with probability 1 — §.

Unlike [BZ74; BHO8; DLU21; WGZW22; GX23|, our results apply to MONOTONICNBS, not
just FIXEDNOISENBS, so they do not restrict the value of p; and handle 7 # % Unlike [KKO07],
we achieve good constant factors, high-probability results, and a better scaling with the target
7. In particular, [KKO07] scales multiplicatively rather than additively with O(log %); and it uses
a reduction that incurs a constant-factor loss for targets 7 # %, while Theorem 1.1 scales with
O(7(1 — 7)) so improves for T # 1.

Using Shannon’s strong converse theorem, we show that the dependence on n is tight: for
e > n~ /4 any algorithm must sometimes use (1 — 0(1))& lgn queries; in fact, it must use this
many queries with nearly 1 — § probability. N
Theorem 1.2 (Strong converse). Any MONOTONICNBS(T,¢) algorithm that succeeds with 1 — ¢
probability on inputs with all p; € {T £ e} must have at least a 1 — § — O(ﬁ) chance of using at
least

(1=7)=—lgn

1
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queries, for any v > 0.

For 7 = %, this is also a lower bound for FIXEDNOISENBS. Thus Theorem 1.2 gives a new
worst-case lower bound for FIXEDNOISENBS, which is a ﬁ factor larger than the lower bound
for expected query complexity achieved in prior work [BZ74; BH08; DLU21; GX23|.

For 7 # %, our results are the first ones connecting noisy binary search to C ¢, the information
capacity of the binary asymmetric channel.

Our results: expected queries. For constant d, one can get a better bound for the expected
number of queries in a simple way: only run the algorithm with probability 1 — (1 — @)5, and
otherwise output the wrong answer from zero queries. This saves essentially a 1— 9 factor in queries,

which for constant § is nontrivial:

Corollary 1.3 (Upper bound: expected queries). Under the same conditions as Theorem 1.1 and
for any MONOTONICNBS(1,¢) input, algorithm SILLYBAYESIANSCREENINGSEARCH uses

C,.-

logn 1

5 +log <))

(Ign + O(log*® nlog'/? 5

queries in expectation and succeeds with probability 1 — 6.

This 1 — § savings is essentially the best possible. Our strong converse (Theorem 1.2) already

implies this, if £ > n~Y4; but using Fano’s inequality, the optimality is true in general:

Theorem 1.4 (Weak converse). Any MONOTONICNBS(7,¢) algorithm that succeeds with 1 — ¢
probability on inputs with all p; € {T e} must use

(1— ) lg(n 5726) -1

B

queries in expectation.



Theorem 1.4 was essentially shown in [BZ74|, which proved the 7 = % case (by giving hardness

for FIXEDNOISENBS).

Our results: experiments. In Section 6 we compare our approach to naive repetition and
the [KKO07| algorithms. We find, for n > 10% and ¢ = .1, that our approach outperforms naive
repetition, which outperforms both [KK07| algorithms. For n = 10°, our approach uses 2.3x fewer
samples than naive repetition.

1.1 Algorithm Overview

We now describe our noisy binary search algorithm in the case of 7 = % and § > 1/ no).

Bayesian start. The natural choice for a “hard” instance is when p; € {7 + ¢}, so the algorithm
must find the transition location i*, and information theoretic arguments show Ci,s lgn queries are
necessary. To avoid losing a constant factor in sample complexity, the algorithm essentially must
spend most of its time running the Bayesian algorithm. This algorithm starts with a uniform prior
over which interval crosses 7, makes the maximally informative query, updates its posterior, and
repeats. When 7 = %, the maximally informative query is the median under the posterior, and the
Bayesian update is to multiply intervals on one side of the query by 1 + 2¢ and the other side by
1 — 2e. This algorithm, BAYESLEARN; is given in Algorithm 1; the algorithm for general 7 is given
in Section 3.

As a technical side note, the discrete nature of the problem introduces a bit of subtlety. Note
that MONOTONICNBS flips coins ¢ but returns an interval between coins that should be good:

Definition 1.5. We say that an interval [i,i+1] is (1, &)-good if [p;, pi+1]N(T—e, T+€) is nonempty.

Precisely, our version of the Bayesian algorithm is as follows: we start with a uniform prior
over intervals. The median of our posterior can be viewed as a fractional coin, and we flip the
nearest actual coin but update our posterior as if we flipped the fractional coin. So, for example,
suppose the median is 4.7 (.7 % w(5) + 25, w(i) = .5). We flip coin 5, and if it comes out 0, that
suggests the true threshold is probably above 5. We then scale up our posterior on all intervals
above 5 by 1+ 2¢; scale down intervals below 4 by 1 — 2¢; and scale the weight on interval [4, 5] by
3(1+42e) +.7(1 — 2¢). This new posterior is still a distribution that sums to 1.

Using the result. After running the Bayesian algorithm for most of our query budget, we need
to output an answer. The question becomes: how can we take the transcript of the Bayesian
algorithm and extract a useful worst-case frequentist guarantee? We need the algorithm to work
for all monotonic p, which can have values very different than 7 + €.

In the prior work achieving tight constants for FIXEDNOISENBS |BZ74; DLU21|, because the
p; are guaranteed to be % =+ ¢, the analysis can show that the weight of the single “good” interval
grows in expectation at each step. By a Hoeffding bound, after the desired number of iterations
the “good” interval has more weight than every other interval combined, so it can be easily selected.
But that property is not true for the more general p; of MONOTONICNBS: if many p; are % =+ 0.6¢,
the Bayesian algorithm will wander somewhat too slowly through these samples without growing
any single interval by the desired amount.

However, in such cases the Bayesian algorithm is spending a lot of time among good intervals.
This holds in general. Our key lemma shows that, if we run BAYESLEARN for 1 + O(vy) times the

information theoretic bound ﬁ lgn, a «y fraction of the intervals it visits are (7, ¢)-good:



Algorithm 1 Bayesian learner in 7 = % case. Flips M coins and returns M intervals.

Input A set of n queryable coins, update size e, number of steps M.

Output A list of M intervals queried.

1: procedure BAYESLEARN(coins, &, M)
2 n < |coins|

3 wy < uniform([n — 1]) > Prior distribution over intervals
4 L+ {}

5: for i € [M] do
6: ji + median interval of w;

7 x; < either j; or j; + 1, whichever is closer to the median
8 append j; to L

9

y; < flip coin z; > 1 with probability p,,
wi(x) - (1 —2e(—1)¥) if @ < j;
10: wit1(z) S wi(z) - (14 2e(—1)%) ite >y

remainder so w;y1 sums to 1 if x = j;

11: return L

Lemma 1.6 (Bayesian performance). Consider any 0 < e,7,0,7 < 1 with v < %, e < min(1,1 —
7)/2, and let L be the list of intervals returned by BAYESLEARN, when run for

1+ 0(y)
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iterations on an MONOTONICNBS instance. With probability 1 — &, at least a v fraction of the
intervals in L are (T, €)-good.

By considering the y-quantiles of the returned list, we reduce n to £. We can now run a less
efficient noisy binary search algorithm on this small subproblem. There are some complications, as
the solution to the new noisy binary search could correspond to a larger interval than two adjacent
coins. To deal with this, we run BAYESLEARN with ¢/ = (1—o0(1))e, which lets us test our candidate
answers.

Technical comparison of techniques. How we leverage the bayesian learner is the main techni-
cal difference between our upper bound and that of prior work [KKO07; BZ74; DLU21|. As described
above, the situation is rather simpler for FIXEDNOISENBS. For MONOTONICNBS, [KK07] instead
used conservative updates in their multiplicative weights algorithm: rather than the true Bayesian
update 1 & 2¢, it multiplies by about 1 + %5. This necessarily loses a constant factor, but ensures
that either the median interval queried or the last interval queried is good. This property is not
true for the true Bayesian algorithm with sharp constant.

1.2 Related Work

The FIXEDNOISENBS version of noisy binary search, where 7 = % and p; € {% + ¢}, was posed by
Burnashev and Zigangirov [BZ74|, who showed how to achieve

1
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expected queries (in Russian; see [WGZW22] for an English proof). Essentially the same [BZ74]
algorithm for FIXEDNOISENBS was rediscovered in [BH08|. Some bugs with the [BHO8| proof were
discovered and fixed in [DLU21]|, as well as an analysis of a variant of the algorithm for worst-case

sample complexity
L (1gn+0(/lognlog =) + Oflog 1)
c gn ognlog og%) |-

2

For 1 < log% < logn, Gu and Xu |GX23] showed black-box improvements for other ¢. If ¢§ is
constant, they output L with probability § — @, and otherwise run the [DLU21| algorithm with

8" = —L—. On the other hand, for § = n=*(), repeatedly running [DLU21] with ¢ = -~ and

logn* logn
checking the result gives improvements:

1-6 log%

1
2:€

For € <« 1, this is a factor 2 improvement on the constant factor on log %. Moreover, |GX23] shows
that this bound is sharp in both n and §.

Our version of noisy binary search, MONOTONICNBS, was first posed by Karp and Klein-
berg [KK07]. They gave two algorithms, based on recursive backtracking and multiplicative weights
respectively, that take O(E_%2 logn) queries for constant ¢, which they showed is within constant fac-
tors of optimal for constant 7,9. Unfortunately, the constant factors make both algorithms worse
than the naive repetition algorithm for any reasonable n (see Figure 2 and Section 6).

Other models. There are many different variations for noisy binary search (see [Pel02] for a
survey of older work on the subject). Emamjomeh-Zadeh, Kempe, and Singhal [EKS16| solve
an extension of FIXEDNOISENBS from the line to graphs. This result was improved and sim-
plied by Dereniowski, Tiegel, Uznariski and Wolleb-Graf [DGTU18|, which was in later improved
and simplified by Dereniowski, Lukasiewicz, and Uznanski [DLU21|. Nowak developed a different
generalization of FIXEDNOISENBS to general hypothesis classes [Now09|. Waeber, Frazier, and
Henderson [WFH13| investigates a continuous variant of FIXEDNOISENBS, where the target is a
point in the real interval [0, 1], and show that the Bayesian algorithm converges geometrically (the
ideal convergence up to constant factors).

To our knowledge, [KKO07] is the only previous work that handles a setting like MONOTONICNBS
where the “true” coin may be indistinguishable from nearby coins, and the goal is just to find a
sufficiently good answer.

Applications. Noisy binary search is also used as a subroutine in other algorithms. For instance
in [TS22] it is used for group testing, and in Crume [Cru20] as a replacement for git-bisect under
unreliable tests. Both implementations were based on the multiplicative weights algorithm of Karp
and Kleinberg [KKO07].

1.3 Why constants?

There is a tendency in theoretical computer science to regard constant factors as unimportant. But
theorists care about constants in many situations, such as approximation ratios or rates of codes,
and we believe that the query complexity of sublinear algorithms is another situation where they
should be considered.



In general, the arguments for ignoring constants in time complexity hold with much less force
for query complexity. The constant for time complexity is highly dependent on the machine archi-
tecture, which changes over time (e.g., the relative cost of addition and multiplication). Moreover,
these hardware improvements mitigate the cost of poor constants. But the number of queries is a
mathematical value, and the cost of queries (which may be, e.g., blood tests or running a giant test
suite) does not clearly decrease with time.

The question should be: does theoretical study of constant factors lead to algorithmic insights
necessary for more practical algorithms? Our paper shows that it does. By considering constants, we
are forced to find a more efficient way of translating the Bayesian algorithm into one with frequentist
guarantees (via Lemma 1.6). The constants lost in the previous attempt at this (in [KKO07]) mean
that it is worse than the naive method until n > 100",

It should not be surprising that a simple method that loses an O(loglogn) factor can beat an
algorithm that loses “only” constants, for all practical values of n. The study of leading constants is
a lens by which we found a new algorithm that actually outperforms the naive method for reasonable
values of n (namely n > 1000).

2 Detailed Proof Sketch for Upper Bound

2.1 Key Lemma on Bayesian Learner.

For this proof overview, we focus on the case of § > n=°1) and target 7 = %, where BAYESLEARN
queries the median of the posterior at each stage, and

2e2

1 1 1
CT,E—l—H(§+€)—(5+€)lg(1+28)+(§—€)lg(1—2€)~E.

We give an overview of the proof of our key lemma in this case:

Lemma 1.6 (Bayesian performance). Consider any 0 < &,7,0,7 < 1 with v < %, e < min(1,1 —
7)/2, and let L be the list of intervals returned by BAYESLEARN, when run for

1+0 1 1
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iterations on an MONOTONICNBS instance. With probability 1 — §, at least a v fraction of the
intervals in L are (T, €)-good.

Let a be the “best answer”, an interval that straddles the bias %

The algorithm keeps track of a distribution w on [n — 1]; at each step 4, it queries the median
of the current distribution w;, then multiplies the density on one side by 1 + 2¢ and the other by
1 — 2¢ to form w;+1. We analyze the algorithm by looking at lg w(a).

At each step, the interval j we choose is either good (a valid answer) or bad (invalid). If it is
bad, suppose the sampled coin x has probability p, > % + e. Then z is above a, so w(a) multiplies
by 1+ 2e with probability p,, and 1 — 2¢ with probability 1 — p,.. Hence:

Ellg wit1(a) — lgwi(a)] = polg(1 4 2¢) 4+ (1 — p2) 1g(1 — 2¢) > Cre.

The case of p, < % — € is symmetric, giving the same bound. So every bad interval we select

increases lgw(a) by Cr. in expectation.



On the other hand, if the interval we select is good, lgw(a) may decrease in expectation. For

example, if we query coin a and )7~ w(z) ;, we could have

1 1
Ellg wit1(a) — lgw;(a)] = 3 lg(1 —2¢) + §lg(1 +2¢e) ~ 3 —Cre

It turns out this is essentially the worst case, and in general the expected decrease in lgw(a) is no
more than 5C; . for any € < %min(r, 1 — 7). As a result, the potential function

lgwi(a) — yCrc - (# intervals chosen) + 6C . - (# good intervals chosen)

increases by at least (1 —)C; . in expectation in each step 4, regardless of Where the median is in
that step. This potential function starts at —1g(n — 1), so after M = (1 + 27) —lgn steps it is at
least ©()lgn in expectation. An Azuma-Hoeffding bound shows that the value concentrates about
this expectation, and in particular will be positive with 1 — § probability. If so, since lgw;(a) < 0
always, we have

6 - (# good intervals chosen) — ~v(# intervals chosen) > 0,

and hence a £ fractlon of chosen intervals are good
This proves the key lemma: after (1 4+ O(y )) o logn steps of BAYESLEARN, a v fraction of
coins flipped are good with decent probability. ’

Targets 7 # % When 7 # %, the maximum-information query is no longer the median coin,
but a slightly different quantile % + O(ﬁ), and the Bayesian updates use more complicated
factors. This choice is still capacity-achieving on bad intervals, i.e., the expected “information gain”
is E[lg wi(a) —lgw;y1(a)] > Cr ., and on good intervals the expected information loss is still at most
5C ¢, so the proof structure works unchanged.

2.2 Rest of Upper Bound

Recall that in this overview we assume log % < logn. By Lemma 1.6, if we take all {v,27,..., {%J'y}
quantiles of the list returned by BAYESLEARN, run with parameter &’ = (1 — «) (where « is
introduced so we can later test the bias of each coin), we get a size—% list containing at least one
¢’-good interval. This ¢’ has C. . = (1 — O(a))C;.. For any v, we can just flip all of these coins

0(0121€2 log %) times to find an e-good one. This would give sample complexity

(1+0())(1+Ola)) 5 (1gn+0(,/1ognlog§)> +0(= - g log ) )

Testing quantiles

BAvEsLEARN, Lemma 1.6

which, by setting v and « to ( i‘s )1/4, gives sample complexity

1+ 0( 3114

lgn.
logn

Crr

This is the desired sharp bound, within (1 4 o(1)) of optimal. One can do slightly better: the
second stage is itself a noisy binary search question on O(1/7) coins, so by applying the algorithm
recursively with 4/ = O(1) we can solve it on the size-O(1/7) list in O(m log % + ﬁ log %)
queries. As we recurse on a much smaller list, the samples used are all lower order and we do not



need to recurse more than once. However, the answer to the recursive call might not be a valid
answer to the original problem. Regardless, one of the endpoints of the return call must be a valid
answer, which we can test for. By optimizing the parameters, this improves the sample complexity
to

log% 1 1
14 0(8a s 1y
(14 02y ) e,

giving Theorem 1.1.

3 Proof of Lemma 1.6

3.1 Definitions

Let {l,...,r} be the set of good intervals. Let a be the maximum i € [n — 1] such that p; < 7.
Recall that we defined

Cre = méixH((l —q)(t—¢e)+q(t+¢e)—(1—qH(T—¢)—qH(T +¢) (3)

We also define the following functions:

W(z) = w(i) (4)

i€[z]

®(w, L) =lgw(a) + 6Cre([{z € Llx € [I,r]}| — ~|L]) (5)
C;¢ is the capacity of a (7,e)-BAC. We let ¢ satisfy the equation

g=argmaxH((1—z)(r—¢e)+ax(r+¢)) — (1 —z)H(T —¢) —xH(T + ¢),
x

which expresses the shared information between a sent and received message through a (7, ¢)-BAC.
(See 16, 17 for explicit formulas for C ., ¢) If our prior were true—so the coins really were 74+c—we
would like to flip a 7 + € coin with probability ¢q. This is achieved by selecting the g-quantile of our
posterior, which is above the true threshold with probability ¢. If 7 = %, q= % and we query the
median; in general, we query the g = % + O(ﬁ) quantile.

® is a potential function that we will be analyzing.

We also define:

do0 =7 —i:ZQ;i 1)e (6)
do1 = 7 —i:g;i 1)e ()
o= oy T ©
dig = #;il)& (9)

for brevity. In terms of BAYESLEARN we can think of d,, as “the multiplicative effect of a flip
resulting in « (1 = Heads, 0 = Tails) on the density of an interval on side y (1 = Right, 0 = Left) of
the flipped coin.” When 7 = %, dyy =1—2e(—1)"%Y.



Algorithm 2 Acts as a Bayesian learner for M iterations, returns a list of all the chosen intervals.
Expressions for the d , values are given in (6), (7), (8), (9)

1: procedure GETINTERVALFROMQUANTILE(w, q)

2: i< mini € [n] s.t. W(i) > ¢q

3: procedure ROUNDINTERVALTOCOIN(i, w, q)

4: return i if % <gqgelsei+1
5. procedure BAYESLEARN({¢;}7_,,n,T,e, M)
6 wy < uniform([n — 1])
7: Define ¢ as in (17) > The quantile we choose
8 L+ {}
9: for i € [M] do
10: Ji < GETINTERVALFROMQUANTILE(w;, q) > The chosen interval
11: x; < ROUNDINTERVALTOCOIN(j;, w;, q) > The index of the coin we are going to flip
12: append j; to L
13: Yi < FLIP(cyg,)
w;()dy, 0 ifee{l,...,j;—1}
14; Wit = § dy; 0(¢ = Wi(Gi = 1)) + dy, 1 (Wi(Gi) — @) if w = ji
w(z)dy, 1 ifexe{j+1,...,n—1}
return L

3.2 Analysis
Lemma 3.1. E[®; 1 — ®¢|ys, yi—1,.-.,91] = (1 — O(7))Cre.

Proof. ® is given by the sum of equations (10) and (11).

6Cr-({j € Llj € [l,r[}] —~[L]) (10)

lgw(a) (11)

Recall that in the tth round, j; is the interval chosen, and x; is index of the coin flipped. Let p
be the probability c,, lands heads.

Bad queries. Suppose j; ¢ [I,r]. If j; > r, then p > 7 + € and the expected change in (11) is
plgdio+ (1 —p)lgdoo

The first log is positive and the second log is negative, so this expression is minimized at p = 7 + ¢,
at which point some computation (Lemma A.1) shows that it equals C .. Similarly, if x; < [ then
p < 7 — ¢ and the expected change is

plgdii+ (1 —p)lgdo
which is also at least C; . by Lemma A.1.

As ji & [, 7], the change in (10) is —7 - 6C .
Therefore in this case the expected change in ® is at least (1 — 67)C- .

10



Good queries. Suppose j; € [[,r]. The change in (10) is now 6C;.(1 — ~). But how much
can (11) decrease in expectation?
Suppose that j; # a. Then the expected change is either

plgdio+ (1 —p)lgdop
with p > 7, or

plgdiy + (1 —p)lgdos

with p < 7.
.\ _ T+e l1-1—¢ _ _ T—€ 1-7+4€ _ .
As 6.1170 T T+(29—1)e z 1-7—(2¢—1)e — d0,0 and dl,l T 7+(2¢—-1)e < 1-7—(2¢—1)e — dovl’ both these
expressions are minimized when p = 7.

So the expected change in (11) is lower bounded by:

min (T lg d170 =+ (1 — 7') lg d()Vo, Tlg d171 =+ (1 — T) lg d071) . (12)
We note that

Tlgdio+ (1 —7)lgdoo = (T+e)lgdio+ (1 —7—¢)lgdoo —elgdip+elgdoo

= 0775 —elgdio+elgdoo
S g

> Cre—3e(—+ ) Lemma A.5
T 1—71
R
SNSRI
T(1—1)
>Cre— (6In2)C; Lemma A.2
2 _50‘/‘,6

a symmetric argument for lower bounding 71gd; ;1 + (1 — 7)lgdp; holds. Therefore, the change in
(11) is lower bounded by —5C% ..

Now suppose that j; = a.

Then the expected change in (11) is:

plg(diok +di1(1—k)) + (1 — p)lg(dook + doa (1 — k)
for some k € [0, 1].
If k < g then we flipasop < 7. dook+do1(1—k) > doog+doi(1—q) =1. Also diok+di1(1—
k) < di0qg+ di,1(1 —q) = 1. Therefore, this expression is minimized when p = 7. By symmetry,
when k > ¢ this expression is also minimized when p = 7.
So the expected change in (11) is lower bounded by

Tlg(dLoki + d1,1(1 — k)) + (1 — T) lg(dopk‘ + d(),l(l — k))

for some k € [0,1].
Taking the derivative with respect to k, we get

dip—di1

. do,o — do,1
dig+ (dip—diq)k

do1 + (doo — don)k

+(1-7)

11



di,0—d1,1 . do,0—do,1
As d171 < d170 and d071 > d070, Td1,1+(d1707d1,1)k >0 > (1 T)—d0,1+(d0,0*d0,1)k' We note that
dio—d11

. . . . - do,0—do,1
as k increases, T i+ (dro—dik decreases in magnitude, while (1 — 1)

do,1+(do,0—do,1)k
magnitude. Therefore, the minimum value of the above expression is achieved when k = 0 or k = 1.

So the expected change in (11) is lower bounded by

increases in

min(T lg dl,O + (1 — 7‘) lg dO’Q,TIg d1,1 + (1 — 7’) lg d(),l)

which is the same expression which we lower bounded for the j; # a case.

Combining these two cases, when the we are querying a good interval, the expected change is
lower bounded by 6C; (1 —v) —5C. = (1 — 67)C;

Therefore E[®¢ 11 — P¢|ys, ye—1,...,y1] > (1 — O(7))Cre.

Now we prove our key lemma.

1

Lemma 1.6 (Bayesian performance). Consider any 0 < e,7,d,7 < 1 with v < =,

7)/2, and let L be the list of intervals returned by BAYESLEARN, when run for

1+ 0(9) / 1 1
Cis lgn + O( lognlog(s +log5)

iterations on an MONOTONICNBS instance. With probability 1 — §, at least a v fraction of the
intervals in L are (7,€)-good.

€ < min(r,1 —

Proof. Recall that ® is given by the sum of equations (10) and (11).
6C-(I{j € Llj € [l,r]} —~IL]) (10)

lgw(a) (11)

Reduction to ® > 0. First note that ®; = —lg(n — 1), as initially L is empty so (10) is 0, and
we initialize w as uniform so w(a) = —L5. Next note that if (10) > 0, then

6Crc(|{a € Llx € [1,r]}| — 4|L]) > 0
o € Llz € [0} > 4L

So there are strictly more than «y|L| good intervals in L. Next note that (11) is < 0 always, so
® >0 = (10) > 0. So it suffices to show that with J failure probability ®;;1 > 0, where

t= %’(j)(lgn + O(y/lognlog § + log §))
Establishing a submartingale. Note by a stochastic domination argument, we can consider the
worst case where all coins sampled have bias in [ —e,7 + ¢].

Let 01‘2 be the variance of the difference random variables ®;1; — ®;, then we note that U?
is a Bernoulli random variable with parameter p € [r — &,7 + €], that is scaled by at most a
max(lgdi o —lgdoo,lgdoy —1lgdig) S ﬁ factor, therefore

25000 (75s) 5701 (5 ) = s 5 O

min(7,1—7)
—_—

Where we use the fact that € <
Therefore o2 < Cre.

7~
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Freedman’s inequality. For brevity let g = (1—0O(7))C7, the lower bound given in Lemma 3.1.

Pr[®;1 < 0] = Pr[®1 — &1 < — ]
= Pr[®;1 — gt — &1 < —gt — O]
2(—gt — ®1)?
<exp | ——; - (-9 _ 1)
Zz’:l o; + 0(7(177-))(9t + @)

o (gt - a0

)

0(1)

) Freedman’s when gt > —®;

< exp(—

(g3t + 29t + B?))

Bounding this expression by J, we get

o(1
exp <_tC(’ ). (g%* + 2gt®q + <I>%)> <94
T,

g7t + 29P1t + B3 > logor) (1/0)tCy
gt + (2901 — log(1)(1/0)Cre)t + @7 > 0 (13)

(13) is a quadratic with respect to ¢, and has a positive leading coefficient. Applying the
quadratic formula, if we set

—(29@1 — lOgo(l)(l/d)Cﬂg) + \/(29@1 — logo(l)(l/é)CTi)? — 492(1)%

>
t> 292
—(29%; — IOgO(l)(l/(S)C‘r,E) + \/(IOgO(l)(1/5)07,8)2 —49®, IOgO(l)(l/‘S)CT,E
= 27
—®,  Crclogo(1/6) \/(10g0(1)(1/5)0na)2 — 4g®110gp(1)(1/6)Crc
= + 5 + 5 (14)

g 29 29

then (13) holds.
As @) =—1g(n—1),9 = (1 —O(7))Crc we get that (14) is

1 1 / 1 1

As ﬁ(v) is 1 + O(7), our lemma holds. O

4 Algorithm and Analysis

Theorem 1.1 (Upper bound). Let 0 < 7 < 1 be a constant. Consider any parameters 0 <
g,0 < 1/2 with 0 < ¢ < min(7,1 — 7)/2. On any MONOTONICNBS(7,¢) input, the algorithm
BAYESIANSCREENINGSEARCH uses at most

(Ign + O(log?® nlog'/? % + log 1))

1
Cre 5

queries and succeeds with probability 1 — §.
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Algorithm 3 Noisy Binary Search. It recurses at most once.

1: procedure REDUCTIONTOGAMMA ({¢;}? ¢, n, T,€,9,7)

2: L <+ BAYESLEARN({¢;}}' {,n,T,¢, 1+O(7) (Ign 4 O(y/lognlog 5 +log 5)))
3: R+ {}
4: forie[t(‘wlﬁj] do
5: append Ly to R
return REMOVEDUPLICATES(R)
6: procedure BAYESIANSCREENINGSEARCH({¢;}",,n,T,€,8,7 = 71g1(n))
7: ¢’ =¢e-max(1 — {/log,(1/6), %)
8: R+ REDUCTIONTOGAMMA({CZ}Z Ln, 7, 8/3, 3lg ))
9: if |R| > 7 then
10: R« [1]4+ R+ [n] > Pad R with the extremes of the initial problem.
11: i< BAYESIANSCREENINGSEARCH({CR }Z IRl T, E,6/3,3)
12: PR;+1 < estimate pg, 41 up to £ 5= error with §/3 f.p.
13: if pr,41 > 7 — e+ 555 then
14: return R;
15: else
16: return R;;; — 1
17: else
18: for z € R do
19: Pp41 ¢ estimate p,+1 up to + 5_2‘3, error with /18 f.p.
20: if pp+1 > 7 —e+ 5= then
21: return x

Algorithm 4 Noisy Binary Search that gets the optimal expected queries.

1: procedure SILLYBAYESIANSCREENINGSEARCH({¢;}!' 1, n,T,¢€,0)

RAaNDOM([n — 1]) w.p. d —d0/lgn
2: return 5 .
BAYESIANSCREENINGSEARCH({¢; }1_ |, n, T, €, ln(n)) otherwise

14



Proof.

Correctness. Suppose that we run BAYESIANSCREENINGSEARCH on a MONOTONICNBS in-
stance with parameters {¢;}! ,,n,7,¢,0.

Assume that all probabilistic stages succeed, meaning that REDUCTIONTOGAMMA, BAYESIAN-
SCREENINGSEARCH, and our coin bias estimation all succeed. By a union bound, this occurs with
probability > 1 — 6.

As we pick every y|L|th coin from L and L contains at least [y|L|] £’-good intervals, R contains
at least one £’-good interval. Suppose that |R| < 7 and that R; is the first ¢’-good interval in R.

Then for all j € {1,...,i— 1}, either R; is an e-good interval or it is not. If it is, then we have
nothing to worry about outputting it. If it is not, then pg, 41 <7 —¢€ (as if PR;+1 = T + € then R;

is not e-good), 50 pr;41 <7 — €+ 555/. So we do not output any not e-good interval before R;.

~ ! !
Once we reach R;, pr,41 > T — €', 50 pp41 > 7 — ' — 555 =7 — e + 555 and we output R;.

Now suppose that |R| > 7. As we recursively run BAYESIANSCREENINGSEARCH with v = 1/7,

we note that for the R in the recursive call R, |R'| = LH|ILL|HJ < L%J =7,s0 |R'| <7. By our work

above, this means that the recursive call returns ¢ such that [pr,,pr,, )N (T —€&', 7+ ') # 0.
Either R; or Riy1 — 1 is €’-good, as if pr,y1 < 7 — ¢’ and pr,., —1 > 7 + €’ then R must
not contain any good intervals. The same logic as for the |R| < 7 case holds, and we have shown

correctness.

Number of samples. Next we analyze the sample budget.
Suppose that we run BAYESIANSCREENINGSEARCH with v = 1/7.
The REDUCTIONTOGAMMA call takes

1+0(y) / 1 1 1 1
— |1 1 log—-+log=) | = 1 log —
o gn—+ O(4y/logn 0g 5 + ogé) CmO(ogn%— oga)
samples.

As we have v =1/7, |R| < 7 and we go through the second branch.
1/3 1

. . . 7(1—=7)log % o 7(1=7)log & B log2/3 nlog
Then the bias estimation takes O((e_(l_ i/logn 2)5)2) = W) = O(Té) sam-
ples, for overall &’EO(logn + log %) samples.
Now consider the case v = ﬁ, and suppose that 1 — {/log,, (1/6) > 2/3.
REDUCTIONTOGAMMA takes, with v = O(1/log(n)),e’ = e * (1 — {/log, (1/9)):

1+ 0(y) 1 1
— 1 1 log — + log —
o gn+ O(4/logn 0g 5 + ogd)
= ——>=" .11 1 log = + log —
o gn+ O(y/logn 0g 5 + ogé)
1 1 1
— 11 I log — + log =
o (gn—l—O( ognlog + 0g5)>
! lgn + O(y/lognlog = + log ) (Lemma A.4)
= . n ognlog = + log = emma A.
(1— 0(/1og,,(1/0))Cre \ ° BIOEET8S
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samples, which is i . (lgn + O(log2/3 nlog1/3 % + log %))

log2/3 nlog1/3 1 .
If |[R| < 7 we take the second branch and take O(————") more samples, which meets our

bound.
If |R| > 7 we take the first branch and recurse with v = 1/7 and n’ = O(log n), for &O(log log n+
log 3) samples.

. . . . . logz/3 nlog1/3 1
As established previously, the bias estimation takes O(——7——=) samples.

For overall

1 2/3 131 1
o (Ign + O(log“° nlog 5 + log 6))

samples.

1
In the case 1—{/log,,(1/0) < 2/3, the O(Cl,%gj) term dominates the rest, and the bound holds. [J

Corollary 1.3 (Upper bound: expected queries). Under the same conditions as Theorem 1.1 and
for any MONOTONICNBS(1,¢) input, algorithm SILLYBAYESIANSCREENINGSEARCH uses

Cre

logn 1
37 —
5 + log 5))

(Ign + O(log?® nlog"/

queries in expectation and succeeds with probability 1 — §.

Proof. The failure probability of SILLYBAYESIANSCREENINGSEARCH is < 0 —d/lgn + (1 — ¢ +
§/1gn)s/lgn =6 — 62/1gn + 62/1g’n < 6.

We use 0 samples with probability d—4§/1gn, and the expression in Theorem 1.1 with &' = §/lgn,
with probability 1 —§ + 46/ 1gn. O]

5 Lower Bounds

Lemma 5.1. Given any algorithm A which solves NBS for parameters (1,e) with sample budget
m and failure probability &, there exists a protocol that communicates over a discrete memoryless
channel with capacity C; . with rate R = % with failure probability 6.

Proof. Let channel C be a (7,¢)-BAC with shared randomness and perfect feedback.

Binary asymmetric channels are discrete memoryless channels, and so neither feedback nor shared
randomness change its channel capacity. [Sha56] Therefore, the capacity of C is Cr .

Suppose we have agents A and B, and A wishes to communicate a message z* € [n — 1] to B over
C. Also assume without loss of generality A always flips a coin exactly m times.

Both A and B can run an identical copy of A, as we have shared randomness. When the
algorithm flips a coin x*, A sends B 1 if #* < z, and 0 otherwise. Then if z* < x, B receives 1 with
probability 7 + €, and 0 with probability 1 — 7 —e. If * > z, then B receives 1 with probability
7 — ¢ and 0 with probability 1 — 7 + &. With perfect feedback we can have A receive the same
value that B received. Note that to B this is just an NBS problem with parameters n, 7, z—:,la(nd 1s)o

g(n—

it successfully recovers z* with probability > 1 — 6. The rate of our simulated code is R = ==,

and so the lemma holds. O

Now we can use lower bounds from information theory.
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Lemma 5.2 (Shannon’s Strong Converse Theorem). Over any discrete memoryless channel, for

R>C
P.>1- _m exp(—Kaon(R — C))
- n(R—C)?
where P, s the probability of error, K1, Ko are positive constants which depend on the channel,
n is the input alphabet size, R is the rate of information, and C is the channel capacity [Gal68]

Theorem 1.2 (Strong converse). Any MONOTONICNBS(T,¢) algorithm that succeeds with 1 — ¢
probability on inputs with all p; € {T £ £} must have at least a 1 — 6 — O(=—) chance of using at

~ na4
least

(1-7)

1 1
gn
Cre
queries, for any v > 0.

Proof. Let o = 1%’ for constant K to be determined later. Suppose that A uses at most
Cr e/ B(n—1)
Q@ (g 1) samples with probability at least § + 3. Let A’ be the algorithm that runs A, but outputs

lg(n 1)
o

a random answer if A uses more than « samples. A’ fails only whenever A fails or uses more

1g(071) samples, so by a union bound A’ has a failure probability of at most 1 — f3.
By Lemma 5.1 we can construct a protocol over a discrete memoryless channel with capacity

Cr ¢ that communicates at rate R = algzn 11)) = 0;5 =< ¢ with a failure probability of at most 1 — §.

Cre

than «

By Lemma 5.2 we have that

K,
1-8>1-— — —Kon—1)(R-C
821~ 5 g — e Ka(n — (R = C)
1 < (~(n — DEa((1/a— 1)C)
=1- —exp(—(n — o —
(n=1)((1/a—1Cp P ’
K3 n—1
>1- g sufficiently large K and n
which is a contradiction. Therefore with probability at least 1—d— 5 A uses 1%,( Cl
VBO(Cre)
samples.

We can also lower bound the expected number of samples.

Theorem 1.4 (Weak converse). Any MONOTONICNBS(7,¢) algorithm that succeeds with 1 — ¢
probability on inputs with all p; € {T + e} must use

(1—6) lg(n 5726) -1

B

queries in expectation.

Proof. Suppose we have algorithm A which uses ¢ samples in expectation to solve NBS with §
failure probability. By Lemma 5.1 and Fano’s inequality lg(n — 1) — ¢C;. < 1+ dlg(n —2) =
(1-0)lgn—2)—1<q¢C,. = (1-6)802T < O

T,€
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6 Experiments

Applying NBS. To demonstrate the practicality of BAYESIANSCREENINGSEARCH we compare it
to standard binary search with repetition (NAIVENBS) and the two algorithms of [KK07] (KKBACKTRACKING
and KKMULTIPLICATIVEWEIGHTS).

To fairly compare between these algorithms, we can’t just use the descriptions given in [KKO07],
as the constants used in analysis are not optimized. We leverage BAYESIANSCREENINGSEARCH to
address this. We tweak the listed algorithms so they take a sample budget as input which they
allocate among all their stages. To estimate how large a budget is needed for algorithm A to perform
well on distribution D, we run BAYESIANSCREENINGSEARCH where when the ith coin is flipped we
run 4 on some input drawn from D, and return 1 if A succeeds and 0 if A fails. By setting 7 = .8,.9
and ¢ = .05, we get upper and lower bounds for how many samples is needed to get § = .15 failure
probability.

Experiments. We compare results on 4 different problem distributions: STANDARD, BIASED,
LopPsIDED, and WIDE.

STANDARD p; € {T —&,7 + ¢}, T = 5, = .1, the transition interval chosen uniformly at random..

1
29
BIASED p; € {1 —&, 7 +¢},7 = %, ¢ = .1, the transition interval chosen uniformly at random.

1

LOPSIDED p; € {T —.6e,7 + ¢}, T = 5,¢ = .1, the transition interval chosen uniformly at random..

WIDE we choose an interval (uniformly at random) of size 10Inn that linearly interpolates between
T —¢e and 7 + ¢, and set the rest to be p; € {1 —e, 7+ ¢}, 7 = %,5 =.1.

Results. We remark that KKBACKTRACKING performed markedly worse than the other algo-
rithms, and so is not included in the figures. For reference, for STANDARD, N = 1000 KKBACKTRACKING
required m > 2.9 x 10% samples, while the other algorithms need m < 6000 samples (see Figure 3).

We find that KKMULTIPLICATIVEWEIGHTS is outperformed by NAIVENBS on all of these
distributions. In contrast, BAYESIANSCREENINGSEARCH outperforms NAIVENBS for n > 103.

When 7 # 3 the difference between BAYESIANSCREENINGSEARCH, NAIVENBS and the [KK07]
algorithms increases. This is in line with our theory, as the first two perform better when 7 is
further from %, while the [KKO07] algorithms reduce to the case 7 = %, losing a constant factor.

BAYESIANSCREENINGSEARCH variant. Since BAYESIANSCREENINGSEARCH has a large set
of parameters to tune, we use a simpler variant. We run BAYESIANSCREENINGSEARCH as normal
but we use £ to update instead of & when running BAYESLEARN. This can be shown to satisfy
Theorem 1.1 as well.

To see that this gets the same constant, suppose we are trying to run BAYESLEARN with
parameters n, 7, (1 — a)e, but in the actual algorithm we use ¢ instead of (1 — a)e. Then the
expected gain in ® when the chosen interval is above the good range is

__Tte
T+(2¢—1)e
1-7—¢
T—7—(2¢-1)e

52

-
= (1 - O(a))CT,E

(T+(1—-a))lgdio+(1—7—(1—a))lgdyy=Cre—acx*lg

ZCT,E_CV*O(
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Figure 3: Performance of various MONOTONICNBS algorithms for listed distributions.
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The case when the chosen interval is below the good range of intervals is symmetric. When the
chosen interval is good, we can see that the loss is -©(C ) using the same work as in Lemma 1.6.

So setting o = \3/10gn % we get the same constant as BAYESIANSCREENINGSEARCH.

We set v = 1— and addition, when we recurse on 1/ elements we run NAIVENBS to find the
2 coins out of the possible 7 to test.

Implementation details. To run noisy binary search on each algorithm we need to modify each
algorithm to “solve NBS with a given sample budget,” instead of “given a NBS instance solve it with
as few samples as possible.” In this section we discuss implementation decisions made.

To efficiently implement BAYESIANSCREENINGSEARCH we use a lazily initialized segment tree,
to perform any operations on w in O(logn) time. When running the algorithm with a sample budget
b, égn was allocated to the REDUCTIONTOGAMMA call, O(m) was allocated to the Recursive
BAYESIANSCREENINGSEARCH call, and O( -) was allocated to the final bias estimation call, and
the remaining budget is split among the three stages evenly.

To efficiently implement KKMULTIPLICATIVEWEIGHTS we also use a lazily initialized segment
tree. When running the algorithm with a sample budget b, we determine the maximum number of
iterations of update step we can do with this budget and perform this many steps. (In terms of the
original paper, we noisy binary search on 7'(n)).

For NAIVENBS, for a sample budget b we allocate the number of flips evenly to each of the lgn
steps of the algorithm.

For KKBACKTRACKING we make no modifications, as the algorithm is structured to eventually
output an answer but we do not have limits on the number of samples for any stage. So when
running the algorithm with sample budget b we cause it to fail if the algorithm uses more than b
samples.

7 Future Work

One interesting topic of research is instance- dependent noisy binary search. If an instance is much
nicer than the worst case, say every coin has bias 3 £ a for a > ¢, we would hope to get a O(log")
dependence, which BAYESIANSCREENINGSEARCH does not get. One could use an adaptive coin
bias estimator to get some adaptivity, but the constants gotten from this will likely not be good.

Another open problem is attenuating the lower order terms in the upper bound for NBS. For
realistic n, lower order terms such as /logn, or even loglogn are not negligible compared to
logn, and influences the practical application of BAYESIANSCREENINGSEARCH, as seen in the
experimental results where we spent 28% of our samples on the “lower order” recursive calls.

One conjectural algorithm for noisy binary search would be: run BAYESLEARN for (1+O(v))OPT
steps, then output the median of the last yOPT intervals chosen. This interpolates between the
overall median (which loses a constant factor) and the final interval (which has a large probability
of failure), and avoids the inefficiency of recursive calls.
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A Computations

This section gives the proof of some approximations used in the body of the paper.
We give explicit formulas for some functions used in this paper

21



H(r—e)—H(1+¢)

z2=2 2 (15)
Cre=lg(s+ 1)+ - “H(r+— T _“H(r - ¢) (16)
(1_T+5)_1i
_ z 17
q 5 (17)
Lemma A.1.
T4e 1—7—c¢€
C.. = lo(— ¢ Vi (—7-0)]
and | N
T—¢€ —T+e€
Cro=(r—)lg(— L — 41— 1
o= (= () + (= T+ Ol )
Proof. T+(2q—1)5:7'+8—ﬁ1z+(1—7'—5):1—1+%andsimilarlyl—r—(Qq—l)az
1—T—6+1iz+(1—7—8):ﬁ. Then the first result is
T+e 1—7—¢€
7+ el )+ (-7 - g )
T 14z 142
z+1
:—H(T+6)+(T+€)lg(7)+(1—T—E)lg(2+1)

=—H(t+e¢)+1g(z+ 1)+ (7 +¢)lg(-)
H(r—e¢)—H(t +¢)

1
z

= —H(r+e)+lg(z+1) — (14 €¢)( 5 )
zlg(z—I—l)—l—gH(T—{—e)— TtEH(T—E)
_’Ckﬁ
and similarly,
(7= g ) + (1= 7+ ) lg(—— )
1+z 1+z
= —H(T—€)+(T—E)1g(z7—|—1)+(1—7'—|—6)1g(2+1)
=—H(t—¢)+lg(z+1)+ (7 —¢) lg(%)

H(tr—e€)— H(t+e¢)

— H(r - +1g(z 4+ 1) — (7~ e)( - )
zlg(z—i-l)—i-%H(T—i—e)— TtEH(T—G)
= C,.
O
Lemma A.2. Fore < 2min(r,1—7),
9 2
211127(15—7) S Cre < 111127(16—7)'
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Proof. Note that H?) (z) = m and HW (z) = —2 (ﬁ + ;13) < 0 for all x.
For the lower bound, by the definition of channel capacity, C . is at least the information gained

when choosing the median, i.e.,

Cre = m(?xH(T +(2¢—1)e)—(qH(T+e)+ (1 —q)H(T —¢))
> H(r) — % (H(r + )+ H(r —2)).

If we Taylor expand about 7, the odd powers of € cancel, leaving;:

2 4

%(H(T+€)+H(T+5)) ZH(T)+%H(2)(T)+ 26.41

(H(4) (t+a1) + HY(r — (12))

for some 0 < a; < . Since H® (x) <0 for all z, this gives

2

2
Cre> —g—H@)(T) S —
T2 2In27(1 —171)

For the upper bound, the condition on € implies that H?) () > —W forall x € [T—e, T+¢€].

Then Taylor’s theorem gives, for some values a,b, ¢ € [—¢, €], that
Cre=H(T+((2¢—1)e)— (¢H(T+¢e)+ (1 —q)H(T —¢))
1
= H(r) +(2¢ = DeH'(r) + 5(2¢ = 1)’ H) (7 + a)

- (H(T) +qeH' (1) — (1 — q)eH'(1) + qu@)(T +b) + (1 - q)iH@) (T + c)>

82

- ((Qq “12HO(r +a) — gHO(r +b) — (1 - ) HO(r + c))

E2

< —.
" In2-7(1-1)

O
Lemma A.3. For 0 <e < $min(r,1 —7),
1 2e
lg — §| < m
Proof. Recall that ¢ € [0, 1] is chosen to maximize the expected information gain:
H((1=q)(r —&) +q(r+¢)) = (1 = q)H(r —¢) = qH(7 +¢). (18)
Setting the derivative of this to zero, we get
0=2eH(t+(2¢—1)e)+ H(r —¢) — H(T +¢)
H'(r + (2g — 1)) = 2T TE) —HT=2) (19)

2e

As H' is strictly decreasing, m is the unique solution to (19).
Observe that

H(r+c)— H(r —¢) = 2eH'(7) + é53(H(3) (r+a)+ HO (r + b))
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for some a,b € [T —e,7 + €. Since

AO@) = o5 s — )

we have |[H®) (1 +a)| < 425 maX(T%, ( L ), and similarly for b. Hence

1-7)2
1
2—€(H(7‘—|—6)—H(7'—6)):H'(7')+A (20)
for |A| < %% max(ﬂ_%, ﬁ) Returning to (19),

H'(1+ (2q—1)e) = H'(7) + (2¢ — 1)eH (1 + )
for some |c| < |2¢g — 1|e. Combining with (20),

1 1

2¢ — 1)eH®? YN ).
|(2¢ = eHY (1t + )| = |A| < e Tza(l_T)Q)

4
3ing
2 1
3In2-7(1—-7)°
1

Since HO (1 +¢) = 1n2(7’+c)1(1—7'—c) >

|2g — 1| < 2e7(1 — 7) max(—

727 (

—_
|
3
S~—

[N}
BN
—_

|
3

Lemma A 4.
Cr(1-o(1))e = (1 —0(1))Crc
Proof. Let C'(a) := min((7 + ce) lg(#ﬁ;ﬁl)e)—i—(l—T—ae) lg(%), (T —ae) lg(ﬁ)—i—

(1—T+ae)lg(1_71:(%)) for0<a< 1.

Note that C'(a) < C; e as otherwise we can use the analysis of Lemma 1.6 to show that, we can

1
solve NBS when ¢/ = ae with 6 = 1/nvion | in (1 + 0(1))% samples, which contradicts
our lower bound. ’

Therefore

Cre —C'(a) <C'(1) = C'(a)

T+e¢ l—-7-¢

) max((1 — a)e(lg(m) - lg(ll: T:((QQQ:ll))E))y

(1 - @)ellg(—— =) ~lg(——— )

ma (1~ a)e(l5(-5) +1g(; =)

<

(1~ a)ellg(=5) +la(;— )
< (1 )eg(C 15 17— )
< (1= @)=(0(2) + O(;—)

62

<(1- Q)O(m)

S (1 - a)O(CT,€)
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So when av =1 — o(1)

Cre = Crae < (1= 2)O(Cre)
< 0(1)O(Cre)
C‘r,s - 0(1)0(0‘1’,5) < C‘r,as
(1 —0(1))Cre < Crae

Lemma A.5. Fore < min(r,1—7),

e lgdoo > —31=

1
[ J lgﬁ = _31i7_
° lgﬁ > -3¢
o lgd; > 3%

Proof. When z € [0,1/4],1g {52 > 4z - 1g {752 > —3x.

£
l-17—¢ l-17—¢

1-i=%
* lgdoo =g 15,1 2 181 T+a:lg1+1_% > =315

1 1—7—(2¢—1)e l—7—¢ __ <
e lgg =le— =z 2lg= =g = = 3=
1 q.7+(2¢—1) —e _1.1-%
e lgg,; =le— o 2ler =g > 37
1€
o lodiy =lg 55y 218 05 =gt 2 32
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