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ABSTRACT: In this study, we investigate the coexistence of e [— &

short- and long-term memory effects owing to the program- 2
mable retention characteristics of a two-dimensional Au/MoS,/ ——

Au atomristor device and determine the impact of these effects Neurotransmitter Jg 7)
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on synaptic properties. ThlS device is constructed using bilayer Au relaxation decay in low G level Stable filament in high G level

MoS, in a crossbar structure. The presence of both short- and ¢ *° LN

long-term memory characteristics is proposed by using a 2 /
filament model within the bilayer transition-metal dichalcoge- 5 g 1

nide. Short- and long-term properties are validated based on 1/ T [:8 _— poentaton
programmable multilevel retention tests. Moreover, we confirm T o e
various synaptic characteristics of the device, demonstrating its

potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-
rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the
device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-
conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and
composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition
accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as
a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our
study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its
programmable retention properties.
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INTRODUCTION energy-efficient characteristics suitable for neuromorphic
L s—14
Present artificial intelligence and big data applications require computing. ) .
. . . Among them, RRAM is one of the most promising
substantial computational power, thus leading to the need for . e . . .
1—4 candidates for application in neuromorphic computing owing

high efficiencies and high-performance processing abilities. to its high scalability, low-power consumption, increased

switching speed, and high-switching versatility. Various
materials such as metal-oxide, organic, and two-dimensional
(2D) are being investigated for applications in neuromorphic
unit and the memory; further advances are required to improve systems to emulate synaptic functions.">™*" In particular, the
the fundamental computing structure to overcome this conductive bridge random access memory (CBRAM), a type
challenge. Neuromorphic computing, which emulates neuronal

The traditional complementary metal-oxide semiconductor
(CMOS)-based von Neumann architecture has reached the
limit of data-processing speed between the central processing

and synaptic functions in the brain, is currently gaining Received: January 9, 2024
attention owing to its efficient data-processing capabilities and Revised:  May 1, 2024
mechanisms. Resistive random access memory (RRAM) and Accepted: May 8, 2024
ferroelectric, phase-change, and spin-transfer torque magnetic Published: May 20, 2024
random access memories are examples of memristors with

resistive switching, high parallel-processing performance, and
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Table 1. Comparison between 2D Memristors as Synaptic Devices

operation  on/
electrode voltage off memory  degradation
2D layer pair ) ratio type issue®
h-BN Au/Au +3 107 LTM X
h-BN Ag/Ag +0.6 10" STM o
Bi,0,Se Au/Au 0.8—2 10° LTM X
MoSe, Ag/ITO 1-1.2§ 10°  LTM o
WS, Al/Pt 1.5-1.8 10° LTM X
GeS Ag/Pt +0.5 10 coexisted o
MoS, Ag/Ag 02-035 107 coexisted o
PdSeO,/  Ti/Au 0.7-0.92 10> LTM X
PdSe,
WSe, Ag/Ag +0.5 10> LTM (¢}
WSe, Ag/Ag 3.5-4 10*  LTM o
WSe,O, graphene/ 1-2 10? LTM X
graphene
PdSe, Ti/Au 0.75-1.5  10° LTM X
WS, Pd/Pt 0.3-0.8 10° coexisted X
MoS, Ag/Au 0.7-1 10°  LTM (¢}
WSe, Pt/Pt +2 103 LTM X
MoS, Pt/Ti +1.5 107 LTM X
MoS, Au/Au 0.8—1.2 10% coexisted X

synaptic property applicationb refs
potentiation neuromorphic with ANN 21
EPSC 21
49
flexible memristor 50
S1
potentiation and depression 24
potentiation and depression,  flexible memristor 31
PPF
potentiation and depression, neuromorphic with ANN 52
PPF, EPSC
1T-1R S3
potentiation and depression, 43
EPSC, PPE
SNDP, EPSC, SRDP flexible memristor 44
STDP, PPF, PPD, synaptic array memorization 52
potentiation and
depression, EPSC
STDP, PPE, SRDP, EPSC, flexible memristor 46
47
potentiation and depression, learning simulation/neuromorphic with 1
EPSC, PPF ANN
potentiation and depression  neuromorphic with CNN 48
potentiation and depression, learning simulation/neuromorphic with this
PPF, EPSC, SNDP, SRDP ANN/4-bit reservoir computing with work

CNN

“Degradation possibility: active metal can affect memory performance degradation to the device by electrode oxidation and metal diffusion because
of the active metal characteristics in the CBRAM. The inert metal can prevent the active metal degradation issue. Specifically, the term “High”
means a greater degradation possibility due to metal oxidation and diffusion when active metals are present. Conversely, the term “Low” signifies a
reduced degradation possibility observed in configurations without active metals, thus effectively preventing degradation possibility. b Application:
neuromorphic as MNIST pattern recognition simulation and the reservoir as a physical reservoir.

of RRAM with a Ag or Cu electrode, has attracted attention
owing to the capability of the CBRAM to implement synaptic
functions via short- and long-term memory mechanisms based
on active metal-ion transitions.”>”>> However, active metals
have high reactivity and atomic mobility, thus causing diffusion
through an insulator or oxidization. These problems result in
device performance degradation; consequently, the active
metal is not a fab-friendly material in the semiconductor
industry.

This study demonstrates the potential of using short- and
long-term memories (STM and LTM, respectively) by
applying the Au-atom-relaxation phenomenon in bilayer
transition-metal dichalcogenides (TMDs) using Au electrodes
and 2D layers. This approach offers a solution to the
degradation issues related to the CBRAM. In addition, 2D
material-based memristors have a high potential for several
applications owing to their high ON/OFF ratio, threshold
switching characteristics with a low-compliance current,
increased switching speed, ultralow power consumption (fJ
per switching), and gigahertz operation.”*™*' In terms of
scalability, the atomic-scale thickness of 2D materials enables
their applications in a variety of structures, such as three-
dimensional (3D) vertical or lateral channels, thus presenting
the possibility of increasing device density.”” " Specifically,
research using a 2D electrode edge contact selector has
demonstrated the capability to reduce off currents, thus
improving power consumption and highlighting the potential
for advances in energy-efficient neuromorphic computing
research.””*" Furthermore, recent 2D memristor studies

suggest the emulation of various synaptic properties and
their suitability for neuromorphic computing as well as
structural improvements. Table 1 lists the previous studies
related to STM and LTM characteristics and synaptic
properties of other 2D memristors."””"****7>% Here, we
demonstrate the coexistence of STM and LTM properties in
MoS,-based atomristors. Based on this combined capability,
we emulated various synaptic characteristics, performed
composite learning simulations, and presented application
methods for LTM and STM using neuromorphic and reservoir
computing. Except for the case of the active metal-based
CBRAM, which is associated with a degradation issue, the
coexistence of STM and LTM characteristics has rarely been
reported. Previous studies have proposed the atomristor as a
memory based on the formation of filaments in bilayer TMDs
and suggested optimization methods based on the deposition
rate and the TMDs. This study analyzes the STM and LTM
characteristics of the Au/MoS,/Au crossbar-structure atom-
ristor by investigating the programmable retention behaviors
and demonstrates the possibility of artificial synaptic
applications. The stable Au filaments demonstrate both STM
and LTM characteristics during the filament-formation process
involving dissociation, diffusion, and adsorption.”*>> The
coexistence of STM and LTM is demonstrated using multilevel
retention and decay analyses. Short-term synaptic plasticity
(STP) is verified by paired-pulse facilitation (PPF), excitatory
postsynaptic current (EPSC), spike-rate-dependent plasticity
(SRDP), and spike-number-dependent plasticity (SNDP).
Potentiation and depression synaptic function are used to
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realize long-term synaptic plasticity (LTP). By emulating both
LTP and STP synaptic properties, we simulate brain activity in
terms of long-term and short-term memory modulation based
on learning intensity. Finally, a 4-bit reservoir computing is
implemented using STM characteristics and an accuracy test
using the Modified National Institute of Standard and
Technology (MNIST) data set is executed based on the
measured results.

RESULTS AND DISCUSSION

The 3D schematic of the Au/MoS,/Au device stack is shown
in Figure la. The device features a metal—insulator—metal
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Figure 1. (a) 3D schematic of the Au/MoS,/Au device with a
crossbar structure. (b) Optical image of the device defininga 1 X 1
pm?® device area. (c) Raman spectrum analysis of the MoS, layer,
indicating ElZg and A, peaks. (d) I-V curve of the device between
the LRS and HRS.

sandwich structure with a crossbar structure. Figure 1b
presents an optical microscopy image of the device. Crossing
metal electrodes define the device area, which is confined to a
cell area of 1 X 1 um’ in the crossbar structure. The bilayer
MoS, film thickness (1.4 nm) was confirmed by atomic force
microscopy (Figure $1).°° Figure 1c depicts the Raman spectra
with two main characteristic peaks, E',, (380.8 cm™) and A,,
(401.5 cm™), and can be used for the quality analysis of the
MoS, layer. These Elzg and A, peaks correspond to those in
the Raman spectra reported in the literature.”’ Figure 1d
represents the typical I-V curve of the device in which the
resistive switching changes between the low-resistance state
(LRS) and high-resistance state (HRS). In the set process, a
compliance current of 10 mA was used to prevent excessive
breakdown owing to an overshoot phenomenon. Figure S2
showcases that when the set operation was continuously
performed with increasing compliance current, the states could
be clearly distinguished, and excessive breakdown was
prevented. During the reset process, multilevel states can be
achieved by increasing the voltage continuously (Figure S3).
The conductance distributions of the LRS and HRS are
presented in Figure S4 based on resistive switching from seven
devices over 20 cycles. Figure S5 shows the direct current
(DC) endurance over 150 cycles. Figure S6 illustrates the state
transition of the device by the set and reset pulse switching
processes. The current changes result from the formation and

rupture of the filaments while applying the programming
pulses, thus demonstrating the feasibility of the device pulse
control.

Figure 2a—c presents a switching mechanism at the atomic
level in which STM and LTM characteristics can be selected
based on the strength of the filament. Previous studies
suggested the formation mechanism of the dissociation—
diffusion—adsorption (DDA) filament in mono- to few-layer
MoS, films based on a monolayer-like switching model, which
is a metal-ion transition model within the TMD layer, similar
to the CBRAM.**>** When a voltage is applied to the top Au
electrode, metal atoms lose electrons to the electrode and
become positively charged ions during the metal-atom
dissociation process. The dissociation process is dominated
by the atomization enthalpy of the metal, and Au has a
relatively low-atomization enthalpy.”**”®° Subsequently, these
metal ions diffuse between the top electrode and the MoS,
surface, where they are adsorbed into the sulfur vacancies
within the MoS, film. While applying the bias, this Au
adsorption results in the formation of both stable and unstable
filaments in the MoS, layer, thus lowering the device resistance
(Figure 2a). Direct observations from previous studies using
scanning tunneling microscopy and transmission electron
microscopy experiments provided conclusive evidence for the
atomic-scale resistive switching mechanism in the MoS,
atomristor, thus confirming the presence of sulfur vacancies
and the movement of Au ions through the Au-filament
bridge.”*®" Figure 2b shows the Au relaxation decay at a low-
conductance level. The Au atoms in the unstable filaments
return to the Au electrode owing to relaxation, and only the
stable filaments remain after applying the voltage. In Figure S7,
weak filament formation was induced by setting a compliance
current of <10 mA for the set DC sweep process. This unstable
filament gradually faded owing to the relaxation phenomenon
in the back sweep process (2 V-0 V), thus resulting in a
decreasing current. Figure 2c demonstrates a strong set process
in which strong and stable filaments are formed in the MoS,
layer to yield LTM characteristics. In Figure S8, strong
filament formation was induced by setting a compliance
current above 10 mA during the DC set sweep process. The
relaxation phenomenon is minimized owing to the stable
filament even during the back sweep process (2 V—0 V) and
the current remains stable, thus demonstrating the LTM
properties. Even for a continuous set process with increasing
compliance current, Figure S2 shows the relationship between
the filament stability and relaxation phenomenon. In this study,
the DDA mechanism in bi- and trilayer TMD films cannot be
conclusively confirmed using fundamental mechanisms. Never-
theless, we evaluated the MoS, atomristor using mono-, bi-,
and trilayer configurations in previous studies, attributing their
memristive switching to a filamentary model.*® This model is
induced by defective grain boundaries within the TMD layers,
which we analyzed with several the fabrication condi-
tions.”***>"% This study suggests that short- and long-term
phenomena can coexist depending on the strength and stability
of the filament bridge during the switching process.

Figure 2d depicts the relaxation phenomenon that occurs in
the models shown in Figure 2a,b in the low-conduction range
observed during continuous pulse measurements. The inset
indicates continuous programming input pulses, the amplitude
of which increases by 0.025 V (from 1.5 to 2 V) with a pulse
width of 10 ps. When the amplitudes of the continuous
programming pulses increase, conductance increases through
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Figure 2. Schematic diagrams illustrating the movement of Au atoms in the MoS, layer: (a) programming process at the low-conductance
level with unstable filament formation, (b) Au relaxation effect owing to the presence of unstable filaments after the application of a voltage,
and (c) stable filament formation at a high-conductance level. (d) Short-term memory analysis: continuous programming pulses with decay
effects, (e) long-term memory analysis: multilevel states retention based on filament stability, and (f) correlation analysis depicting the
relationship between retention and LRS resistance as a function of compliance current.
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Figure 3. (a) Schematic of the imitation between a synaptic neural structure and device synaptic plasticity. Synaptic plasticity of the device:
(b) EPSC gain values in response to different programming pulse amplitudes between 1.9 and 2.8 V and a pulse width of 1 ps, (c) EPSC gain
values with different programming pulse widths of 1—50 us and a pulse amplitude of 2.8 V, (d) PPF weight change at various times intervals,
demonstrating STM synaptic characteristics, and (e) long-term potentiation and depression at a high-conductance level.

filament formation in the MoS, layer. The continuous
programming pulses can be used to implement multilevel
states. In addition, the decay phenomenon is observed during
each read interval between sequential pairs of continuous
programming pulses. Fitting analysis demonstrates the
relaxation time using the following relaxation function, which
can be used to validate the decay characteristics,

I(t) =1, + Ae™""

14330

where I(t) is the current at a given time ¢, I, is the current in
the stable state, A is the prefactor, and 7 is the relaxation time
(7).2>7%"" Relaxation behaviors are observed over a decay time
of 17 ms (Figure S9). During the transition from a low to a
high conductance, the relaxation effect becomes less frequent
at high-conductance levels (>10 mS) owing to the formation of
stable filaments (Figure S10). Figure 2e presents the results of
DC retention in multilevel states with compliance with current
control. The proportional retention capability in the range of
10*—~10* s appears between multilevel states based on the
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conductance levels. In addition, strengthening the filaments
improves retention capabilities up to 10* s, as represented by
the dark-green point in the figure. Figure 2f shows the trends of
programmable retention and LRS resistance based on the
compliance current. As compliance current increases, the size
and stability of conductive filaments improve, thus resulting in
a decrease in LRS resistance. Furthermore, a greater decrease
in LRS resistance leads to an improvement in retention
capabilities. This indicates the correlation between filament
stability and data-retention capability based on the MoS,
atomristor.

Figure 3a depicts the similarity between the learning process
based on the neurotransmitter intensity between synaptic
neurons and the resistance changes owing to the filament
stability between the memristor electrodes. Linear changes in
synaptic weight directly lead to learning and memory activities
in the neuromorphic system via synaptic plasticity.””~”” This
study confirms the availability of a synaptic device in the
neuromorphic system using STM and LTM properties. Figure
3b,c demonstrates linear conductance changes based on the
EPSC synaptic function using 10 programming pulses. Figure
3b depicts the EPSC gain values in response to five
programming pulse amplitudes in the range of 1.9-2.8 V
with 1 ps pulse widths. As the pulse amplitude increases, the
EPSC gain increases in response to the device conductance
change. This suggests the presence of spike amplitude-
dependent plasticity in which the memristor weight can be
controlled depending on the amplitude of the pulse stimulus.
Figure 3¢ shows the EPSC gain owing to different pulse widths
in the range of 1—50 ps with a 2.8 V pulse amplitude. As the
pulse width increases, the EPSC gain conductance increases
correspondingly. This behavior reveals that a high-pulse width
further activates the device, and this substantially modulates
synaptic weights. The results obtained using five consecutive
programming pulses with different pulse widths and
amplitudes confirm that the device exhibits a linear response
(Figure S11).

Figure 3d illustrates the PPF synaptic function, which
demonstrates the changes in the intensities of two synaptic
stimuli over time at different intervals (Figure $12).757%% As
the interval time increases, the magnitude of current decay
increases, which is analogous to the STM effect. Various
intervals ranging from 10 ps to 1 s are added between two
identical programming pulses with a pulse amplitude of 2.5 V
and pulse width of 7 us. Weight changes are calculated using
the following equation,

AW = (G, — G})/G, X 100(%)

where G; and G, are the conductance values of the device
measured after the first and second programming pulses,
respectively. The synaptic weight change of the memristor
increases as the interval between two programming pulses
decreases. Figure 3e displays long-term potentiation and
depression at a high conductance level. To improve linearity
and symmetrical properties, an incremental pulse configuration
was used as the programming pulse input (Figure S13).
Therefore, achieving an artificial synaptic function using
synaptic plasticity is feasible using this device with linear and
symmetrical properties.

The SRDP characteristic refers to the primary and
fundamental characteristics of biological synapses, where the
strengthening or weakening of the synapse is determined by
the frequency of the signal. In this study, the SRDP

characteristics are emulated using various programming pulse
amplitudes and frequencies in the device. Figure 4a illustrates
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Figure 4. (a) Pulse-frequency-dependent current response in trains
of 10 pulses at frequencies between 5 and 1000 Hz and amplitudes
between 1.9 and 2.65 V. (b) Magnification of current results at
frequencies between 50 and 500 Hz and amplitudes between 2.5
and 2.65 V. (c) Plot of the SRDP index as a function of spike
frequency. (d) Pulse-number-dependent conductance response at
the number of pulses between 1 and 70 and amplitudes between
1.75 and 2.65 V. (e) Plot of the SNDP index immediately after
applying programming pulses.

the current changes by the applied programming pulse (in the
range of 1.9—2.65 V) and frequency (in the range of 5—1000
Hz), indicating the response of the device at each
programming pulse amplitude. Despite the use of the same
programming pulse amplitude, the current responses increase
as a function of the spike rate, which corresponds to the
frequency. Figure 4b shows a magnified view of the current
results with frequencies ranging from 50 to 500 Hz, and
programming pulse amplitudes ranging from 2.5 to 2.65 V.
This figure shows the intensified response of the device at
increasing frequencies, focusing its dependence on the spike
rate. This aligns with biological synaptic characteristics, further
validating the emulation of SRDP using the device. Figure 4c
presents the SRDP index results for a 2.5 V programming pulse
amplitude at all tested frequencies. It was found that the
current gain consistently increased, thus indicating that higher
programming pulse frequencies induce a stronger device
response. SNDP behaviors can be an important feature of
neuromorphic systems that reflects the ability of synaptic
devices to mimic the adaptive learning ability of the human
brain. Figure 4d illustrates the SNDP characteristics with decay
properties. Each pulse was set to have amplitudes in the range
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Figure 5. (a) Conductance changes under various voltages (1.9 to 2.8 V), illustrating the mixed influence of STP and LTP on device
behavior. (b) STP learning response following programming, showing enhanced transmission with increased pulse width and amplitude. (c)
LTP learning index after the forgetting process, indicating memory retention capabilities of the device with stronger programming inputs.
(d) Learning simulation result controlling learning frequency to mimic STP and LTP. (e) The effect of learning intensity in terms of STP
and LTP learning. (f) The results of 10 cycles of STP and LTP learning intensity according to pulse frequency and amplitude.

of 1.75—2.65 V and a pulse width of 15 us, and the number of
applied pulses was in the range of 1—70 (generated at 1 s
intervals). As the number of pulses increases, the conductance
of the device increases linearly and is also proportional to the
programming pulse amplitude. Consequently, Figure 4e
depicts the device state outcome immediately after the
application of each programming pulse number according to
the different pulse amplitudes, thus illustrating that the device
can elicit stronger responses by increasing the pulse number
and amplitude. Figure S14 shows the conductance level
difference immediately after programming and after the 1 s
decay by considering the device with STP decay for 1 s
readings. As a result, the SNDP index values are proportional
to both the pulse number and amplitude immediately after
programming and after STP decays.

Synaptic plasticity, the ability of synapses to change their
strengths and connectivities in response to the intensity and
frequency of learning stimuli, is essential for the formation of
long-term and short-term memories in the brain. Figure 5
presents the characteristics of STP and LTP learning that
control the processes of learning and forgetting, to apply
programmable retention properties mimicking synaptic plasti-
city.> 7% Figure Sa shows the conductance changes of the
device at different voltages ranging from 1.9 to 2.8 V with a
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read interval of 0.1 s, thus demonstrating the mixed effects of
LTP and STP. The detailed pulse input schematics are shown
in Figure S1S. During the learning process, we applied
programming pulses with increasing amplitudes and observed
that the conductance increased linearly and proportionally. We
also varied the pulse width from 1 to 50 ps and found that the
conductance increased proportionally (between the green and
purple circles). This indicates that the device can be activated
in different manners based on the intensity of external
programming input (learning). After the application of 10
programming pulses, the device decreases its conductance with
a decay effect, thus emulating the forgetting process in synaptic
plasticity. Figure S16 illustrates the effects of STP and LTP
learning on the conductance of the device during the
programming and reading processes that simulate the learning
and forgetting mechanisms in synaptic plasticity. The blue
arrow indicates the decay effect after programming as an STP
characteristic (forgetting). Additionally, the red arrow exhibits
LTP characteristics after the decay effect (transition from
learning to long-term memory). This ratio of long-term and
short-term plasticity varies by adjusting the intensity and
frequency of the programming input (learning strength).
Figure Sb shows the amount of STP learning response
immediately after programming, thus revealing that a
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Figure 6. Image classification simulation using the MNIST handwritten digit data set: (a) schematic of neural network system framework for
pattern recognition and (b) accuracy results during 15 learning epochs, achieving a recognition accuracy of 86.73%.

programming pulse width of 50 ps results in a stronger
transmission than that elicited for a width of 1 us, with the
STP learning index linearly increasing according to pulse
amplitude. Figure 5c¢ shows the LTP learning index; findings
suggest that the device can memorize the state after the
forgetting process. In this learning simulation, it is found that
with programming pulses with widths <1 ps and amplitudes of
2.2V, the LTP index drops by <1 unit owing to the lack of
learning strength (i.e., no transition from learning to long-term
memory). Additionally, when using SO ys compared with 1 s,
the LTP learning index is significantly enhanced by a stronger
learning effect, thus indicating a stronger transition from
learning to memory effect. This demonstrates the capability of
the MoS, atomristor to implement long-term and short-term
memory simultaneously depending on the intensity of
learning."*’

Figure Sd illustrates the simulated learning results by
controlling the learning frequency to emulate STP and LTP
by fixing the programming pulse width and amplitude. After
the application of two programming pulses (with a 1.5 s
interval) during the 0—3 s period, the device was observed to
return to its initial state owing to its STP characteristics. For a
period in the range of 3—6.25 s, the frequency of programming
pulses was increased to 1.3 and 2.5 Hz; this enhanced the
repetition of learning, and a noticeable increase in device
conductance (purple arrow) was observed. Finally, for a period
in the range of 8.5—11 s, the learning frequency was reduced
and the forgetting effect was examined with the decay lasting
for more than 2 s. While STP characteristics were observed in
all learning phases (forgetting), the reinforcement LTP
characteristic after the decay effect was shown by intensifying
the training strength based on the training frequency
modulation. Ultimately, the transition from learning to long-
term memory is indicated by the orange arrow. Figure Se
demonstrates that varying the amplitude from 1.75 to 2.2 V
(using the same frequency setting) results in different STP and
LTP learning results, thus verifying the effects of both learning
frequency and intensity. The programming pulse at the
amplitude setting of 1.75 V did not induce stimulation
owing to the lack of learning strength, but under the same
frequency condition, the 2.2 V setting showed the learning
effect associated with the improvement of the LTP properties
from 4.6 to 4.9 mS. Based on the training intensity according
to amplitude, Figure Sf shows the results of 10 cycles of
learning simulations (as a boxplot) using programming pulse
amplitudes ranging from 1.75 to 2.65 V. The STP and LTP
learning indices both increase linearly as a function of the
programming pulse amplitude. Moreover, despite the same
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learning simulation conditions, an increase in intensity and
learning frequency leads to a higher probability of learning
transition to long-term memory. Ultimately, using MoS,
atomristors demonstrates the feasibility of both LTP and
STP properties based on learning intensity and frequency. This
conclusively applies programmable retention characteristics to
synaptic plasticity, perfectly emulating the brain’s phenomena
of learning, forgetting, and long- and short-term memory.

The human brain executes learning and memory functions
by adjusting the connection strength of synapses between
neurons. The pivotal roles of learning and memory in these
biological synapses are crucial for the realization of neuro-
morphic computing. Thus, conducting learning based on the
linear and symmetric synaptic characteristics of LTP and LTD,
as depicted in Figure 3e, indicates the potential of MoS,
devices as neuromorphic computing components. Figure 6a
shows a simulation schematic emphasizing the fact that the
linearity of LTP and LTD serves as a crucial indicator for
learning tasks using the MNIST handwritten digit data set. In
the artificial neural network (ANN) simulation environment
for on-chip learning using potentiation and depression curves,
three hidden layers responsible for learning consist of 128, 64,
and 32 neurons, respectively. The architecture involves fully
connected input, hidden, and output layers, thus showcasing
the characteristics of a multilayer perceptron, which is a type of
ANN. Moreover, the interconnected lines between each
neuron exhibit online learning characteristics with weights
being updated in real time reflecting the linearity of long-term
potentiation and depression. Additionally, linear and sym-
metrical synaptic characteristics (which are used as a weight)
of the device improve the learning ability of the ANN in this
process. Linearity affects the degree of directness between the
input and output, and symmetry distributes the learning
possibilities uniformly during the process of updating synaptic
weights.”* ™" Figure 6b illustrates the accuracy of digit
recognition using the potentiation and depression character-
istics shown in Figure 3e as weights for the ANN, based on a
data set of 60,000 training images. With each epoch, the
accuracy consistently increases and finally reaches 86.73%.
These results demonstrate that the synaptic properties of the
Au/MoS,/Au device can be applied in a hardware-based
neuromorphic system.

Reservoir computing is a system that processes temporal and
sequential inputs using STM properties.”' ™ In a reservoir
computing system, the memristor serves as a reservoir layer
based on high-dimensional mapping, enabling applications
such as image recognition, image generation, and time series
analysis. The 4-bit reservoir computing data obtained in this
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study demonstrate the potential of reservoir computing for
tasks like image generation and recognition. Figure 7a depicts a
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Figure 7. Reservoir computing system: (a) schematic of reservoir
computing consisting with input, reservoir and readout layer, (b)
process schematics from input pulse train to output nodes to
implement digits in § X 4 pixels with five rows, (c) results of 16
different states using Au/MoS,/Au, four bits as physical reservoir,
and (d) convolutional neural network-based artificial neural
network in image recognition using reservoir computing, achieving
an accuracy of 96.4% with MNIST database images.

schematic of a reservoir computing system consisting of input,
reservoir, and readout layers. In the input layer, the temporal
input is connected to the reservoir layer. In the reservoir layer,
which operates as a nonlinear system, the input signal is
mapped onto a higher-dimensional space based on the
property according to which the signal returns to its original
state over time. The readout layer generates the desired output
based on the output of the reservoir layer. A computing system
based on a nonlinear dynamic system can efficiently process
various input signals. Implementing the physical reservoir
suggests the possibility of using this system in image
generation, as shown in Figure 7b. One pulse train can
implement four bits, and five rows can be parallelized to
implement 0—9 digits using a 5 X 4 pixel array. Figure 7c

reveals the potential for system expansion by implementing all
states from 0000 to 1111 using an Au/MoS,/Au device
(Figures S17 and S18). To implement four bits of data within
the physical reservoir, four consecutive pulse streams can be
applied with the same programming pulse (pulse amplitude of
1.6 V and pulse width of 100 ps). The conductance interval
within the range of 2.99—3.24 mS can be used to distinguish
values between zero and one. Additionally, an ANN based on a
convolutional neural network (CNN) was devised utilizing the
MNIST database to validate the efficiency of reservoir
computing in image recognition (as depicted in the reservoir
computing schematic in Figure 7a). Table S1 summarizes the
previous studies related to reservoir computing and application
based on a neural network using memristors. Rarely has
simulations using CNN integrated with physical reservoir been
reported. To integrate MNIST images into a 4-bit reservoir
computing system, preprocessing is essential to adapt the
images for the input layer. Specifically, each MNIST image,
consisting of 28 X 28 pixels with values ranging from 0 to 255
(0 for darkness, and 255 for brightness), is binarized to either
zero or one and then grouped into sets of four pixels, forming
one group. In total, 196 groups were created, each representing
one of the 16 states from [0000] to [1111]. These states were
then arranged into 196 virtual arrays and aligned with the
normalized current values derived from the physical reservoir
layer in our memristor. The readout layer of the reservoir
computing system was constructed based on CNN, a type of
ANN specialized in recognizing and interpreting local patterns
in images. The CNN network used in this device comprised
two convolution layers, an average pooling layer, and fully
connected layers. The parameters for the first convolution layer
include a kernel width of 3, kernel height of 3, one input
channel, 32 output channels, and a stride of 1. The second
convolution layer was configured similarly, except for the input
channel, which was set to 32, and the output channel, which
was 64. All convolution layers utilized zero padding to prevent
the reduction of image data and applied a rectified linear unit
activation function. The image of size 7 X 28 X 64 passed
through the two convolution layers and through the average
pooling layer to reduce noise. The input size entering the fully
connected layer was 6 X 27 X 64 and corresponded to the final
output image size of the average pooling layer. A hidden layer
with 100 neurons was present between this input and the
output layer; ultimately, the output layer determined the label
of the image. Figure 7e demonstrates an accuracy of 96.4%
achieved after five epochs using 50,000 training images in off-
chip training using the described configuration. These findings
suggest promising capabilities for image generation and
recognition in our MoS, atomristor.

CONCLUSIONS

The coexistence of STM and LTM characteristics was
demonstrated in a Au/MoS,/Au device using programmable
retention characteristics. The device shows promising synaptic
properties and can be potentially applied in neuromorphic
computing. This study presented complex applicable character-
istics regarding the coexistence of short- and long-term effects
using an Au-filament model within a MoS, layer. At low-
conductance levels, the STM properties showed linear weight
changes based on the EPSC, PPF, SRDP, and SNDP synaptic
functions. Programmable retention, symmetric potentiation,
and depression demonstrate the LTM characteristics at high-
conductance levels. In learning simulations, programmable
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retention and STP and LTP complex synaptic plasticity
perfectly emulated the synaptic functions of learning,
forgetting, LTM, and STM phenomena. Handwritten digits
were recognized with 86.73% accuracy, and pattern recognition
simulations using synaptic characteristics highlighted that the
devices improved the learning of ANNs. Furthermore, we
implemented 16 states as physical reservoirs using 4-bit
reservoir computing by utilizing the STM characteristics of
the device. Finally, to confirm the efficiency of the
implemented reservoir computing, we performed CNN-based
off-chip training using a physical reservoir and obtained a
recognition rate of 96.4%. The results of this study can be
applied to the integration of MoS, devices into neuromorphic
systems, thus providing the opportunities for implementing
STM and LTM effects with advanced synaptic plasticity.

METHODS

A bilayer MoS, film was synthesized by sulfurizing a metallic Mo film
deposited on sapphire using an e-beam evaporator. The sulfurization
process was conducted in a three-zone tube furnace at 550 °C for 15
min with the middle zone containing the sapphire/Mo stack. The first
zone contained a crucible of sulfur powder heated to 220 °C. All
electrodes were patterned with crossbar structures using e-beam
lithography. Additionally, 2 nm Cr/100 nm Au bottom electrodes
were deposited on a 285 nm SiO,/Si substrate using an e-beam
evaporator. The MoS, film was coated with a polystyrene (PS) film
and subsequently separated from the sapphire substrate using a water-
assisted transfer method. Following the transfer of the MoS, film onto
the bottom electrodes, the film was dissolved using toluene. The top
electrodes were patterned using the same method as that used for
patterning the bottom electrodes. Consequently, a crossbar structure
with a 1 X 1 um? cell size was defined. The top electrodes were
fabricated using an e-beam evaporator from CHA Industries (SE-
1000-RAP) under a chamber pressure of approximately 5 X 107°
Torr.
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