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Abstract—Federated learning (FL) has been widely adopted
in IoT-enabled health monitoring on biosignals thanks to its
advantages in data privacy preservation. However, the global
model trained from FL generally performs unevenly across
subjects since biosignal data is inherent with complex tempo-
ral dynamics. The morphological characteristics of biosignals
with the same label can vary significantly among different
subjects (i.e., intersubject variability) while biosignals with varied
temporal patterns can be collected on the same subject (i.e.,
intrasubject variability). To address the challenges, we present
the personalized meta-federated learning (PMFed) framework
for personalized IoT-enabled health monitoring. Specifically, in
the FL stage, a novel momentum-based model aggregating
strategy is introduced to aggregate clients’ models based on
domain similarity in the meta-FL paradigm to obtain a well-
generalized global model while speeding up the convergence. In
the model personalizing stage, an adaptive model personalization
mechanism is devised to adaptively tailor the global model based
on the subject-specific biosignal features while preserving the
learned cross-subject representations. We develop an IoT-enabled
computing framework to evaluate the effectiveness of PMFed
over three real-world health monitoring tasks. Experimental
results show that the PMFed excels at detection performances in
terms of F1 and accuracy by up to 9.4% and 8.7%, and reduces
training overhead and throughput by up to 56.3% and 63.4%
when compared with the SOTA FL algorithms.

Index Terms—Embedded system, federated learning (FL),
personal.

I. INTRODUCTION

OT-ENABLED health monitoring, the health monitoring

system with the capability of IoT [1], has been consid-
ered to be a promising solution to out-of-hospital healthcare
applications, such as arrhythmias detection [2] and activities
monitoring [3]. Recently, deep learning (DL) has gained
growing attention in IoT-enabled health monitoring thanks
to its advantages in feature extraction automation. DL-based
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Fig. 1. Inter- and intra-subject variability reflected on IEGMs of two subjects.

methods have been applied in various applications, including
arrhythmias detection [4], human activity recognition [5], etc.
In the healthcare field, however, the data privacy constraint
restricts data from being aggregated online because uploading
personal health data to a cloud server is prohibitive in certain
application scenarios [6]. To address this issue, federated
learning (FL) is proposed and its key idea is to collaboratively
train a global model without uploading personal health data
by aggregating clients’ models with a weighted average on the
server. While FL has shown great promise in healthcare appli-
cations, inter- and intra-subject variability of biosignals makes
it challenging to ensure the optimal detection performances
across health monitor recipients [7].

Intersubject variability caused by individual differences can
lead to slight or significant variation over biosignals (with
the same label) in terms of morphological characteristics
among subjects [7]. As shown in Fig. 1, the intracardiac
electrograms (IEGMs) segments on the same row are with the
same arrhythmia label [e.g., ventricular tachycardia (VT)] but
from two subjects. The morphological characteristics of these
segments on the same row demonstrate intersubject variable
patterns. Another variability, which is intrasubject variability,
can lead to a nonstationarity of biosignals on the same
subject. As shown by IEGMs segments on the same column
of Fig. 1, segments with different types of arrhythmias can
be collected from one subject. Different types of arrhythmias
present significantly different morphological characteristics on
the same subject. Therefore, the biosignal data patterns of each
individual subject are highly personalized and heterogeneous.

To tackle this heterogeneity problem in FL, FedProx [8] is
proposed to extend FedAvg [9] by adding a proximal point
update for local optimization. Local fine-tuning using local
data is another key solution to adapt the global model to the
individual [10], [11]. To further improve the generalization
of the global model, meta-learning is embedded into FL to
obtain a well-generalized global model [12], [13]. To avoid
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domain shifting in local model personalization via fine-tuning,
FedBN [14], and SiloBN [15] are proposed to keep local
batchnorm (BN) statistics from aggregation.

However, almost all previous methods are proposed only for
image data. The morphological characteristics heterogeneity
problem is more severe for biosignal data, which gives rise
to the challenges as follows: 1) the global model could be
easily skewed by the subjects with unique morphological char-
acteristics of biosignal data due to intersubject variability. The
global model with poor generalization could result in a highly
biased classification across testing subjects; 2) fine-tuning the
global model with local data could lead to overfitting or
domain shifting, and therefore result in a poor adaptation to
the individual. It is because the testing subject’s data collected
for local fine-tuning can be very different from the future
sensed data due to intrasubject variability; and 3) existing
FL methods generally focus on boosting performances for
clients (subjects) participating in federated training, without
considering the model generalization where the deep model
would be applied on the unseen testing subjects.

To address the aforementioned challenges, in this article,
we propose personalized meta-federated learning (PMFed)
framework for IoT-enabled health monitoring. PMFed is con-
ducted in a manner of 1) meta-federated training to obtain a
well-generalized global model and 2) subject-specific model
personalization to properly personalize the global model to
fit the unseen testing subject. Specifically, in the feder-
ated training stage, the clients would apply the meta-FL
paradigm with the client’s data to train the local model.
Once the clients’ models are uploaded on the server, a novel
momentum-based model aggregating strategy based on clients’
domain similarity is proposed. In this way, the global model
could unbiasedly learn the representations of the biosignal
data across subjects and finish with well-generalized model
parameters while facilitating faster model convergence. In
the subject-specific model personalization stage, an adaptive
model personalization mechanism is proposed to adaptively
select personalized nontrainable parameters and learning rate
of fine-tuning based on domain similarity. The mechanism
could prevent the well-generalized model from overfitting
in local fine-tuning for unseen testing subjects. We further
implement an IoT computing platform to evaluate the detection
and practical performances of PMFed. Experimental results
show that PMFed outperforms SOTA FL algorithms in terms
of detection and practical performances over three real-world
health monitoring tasks. The main contributions of this article
are as follows:

1) We propose PMFed framework that conducts subject-

specific health monitoring in IoT.

2) We introduce a novel momentum-based model aggrega-
tion strategy based on training subjects’ biosignal data
domain similarity to obtain a well-generalized global
model while facilitating faster model convergence in
federated training.

3) We devise an adaptive model personalization mechanism
that effectively personalizes the global model for unseen
testing subjects by adaptively setting parameters.

4) Experimental results demonstrate that PMFed out-
performs SOTA FL algorithms in terms of F1 and
accuracy by up to 9.4% and 8.7%, respectively. PMFed
also reduces training overhead and communication
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throughput by up to 56.3% and 63.4% when compared
to existing FL algorithms.

II. BACKGROUND

In this section, we introduce the background information
about IoT-enabled health monitoring, DL-based health moni-
toring, and FL designs for health monitoring, respectively.

A. loT-Enabled Health Monitoring

IoT-enabled health monitoring has gained growing attention
in recent years with the rapid development of biomedical
sensors and wireless transmitters. When compared with con-
ventional monitoring, connectivity is the main advantage in
IoT-enabled health monitoring, especially for out-of-hospital
health conditions surveillance and treatment [16]. There
are various loT-enabled health monitoring applications. For
example, implantable cardioverter-defibrillators (ICDs) are
manufactured to provide in-time defibrillation on the detected
ventricular arrhythmias (VAs) [17]. The remote monitoring
function in modern ICDs is established with the integration
of IoT capability. Atrial fibrillation (AF) detection on mon-
itors, such as an insertable cardiac monitor (ICM) [2] and
cardiac patch [18], have been greatly integrated with the
capability of IoT. While providing the AF detection function
on the device, those IoT-enabled monitors could upload the
sensed rhythm data to the server for further diagnosis and
provide professional medical recommendations by doctors.
Furthermore, IoT-enabled health monitors are widely adopted
in the general health monitoring field. Smartwatches (e.g.,
Fitbit watch [19] and Apple watch [20]) provide a wide range
of health monitoring functions.

B. Deep Learning-Based Health Monitoring

In current computer-aided methods design, essential features
and detection criteria are first derived from clinical trials
and then transformed into a program that is runnable on
the IoT monitors [17]. Considerable expertise is required
to optimize the extracted feature set, detection criteria, and
programmable parameters. DL provides an alternative solution
to address the shortage of expertise. DL could automatically
learn to extract essential features and perform classification
via self-training. These distinctive advantages are driving the
utilization of DL in health monitoring on biosignals. DL-based
methods have achieved outstanding performance in a variety
of health monitoring tasks. For example, DL-based arrhythmia
detection on 12-lead electrocardiogram (ECG) has achieved
cardiologist-level performance in terms of accuracy on twelve-
class arrhythmia classification [21]. An automated detection
system for Parkinson’s disease (PD) is proposed to detect PD
using a convolutional neural network (CNN) based on sensed
electroencephalogram (EEG) signal [22].

C. Federated Learning in Health Monitoring

FL enables user-end devices to collaborate with a server
to train a global model without data sharing. Specifically, the
training paradigm of FL is to aggregate local model updates
without accessing the personal data on the user end. The
classic FL algorithm, FedAvg [9], distributes the global model
to all clients at the beginning of each training round. Once the
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Fig. 2.
sensitivity.

server aggregates the updated neural networks updated with
the local data of each client, it averages the parameters of all
models with weights to obtain a new global model for the next
training round. The global model would be finally distributed
to the user for accurate detection.

To address the privacy concerns of the conventional DL
training paradigm (i.e., data aggregation in a server), FL has
been actively explored in health monitoring. Chen et al. [23]
devised an FL scheme for wearable health monitoring where
a group of smartphones collaborates to train a shared CNN
model with a cloud server for human activity recognition.
Warnat-Herresthal et al. [24] proposed a FL paradigm that
units edge computing and blockchain techniques to conduct
accurate disease classifications while maintaining high confi-
dentiality. Additionally, Tan et al. [25] proposed a tree-based
FL approach for personalized treatment with electronic health
records from different hospitals.

IIT. MOTIVATIONS

In this section, we demonstrate the intrinsic characteristics
of inter- and intra-subject variability, and present preliminary
experimental results to illustrate their effects on conventional
FL algorithms. The biosignal data used in the experiments is
with the type of IEGMs and ECG. The detailed experimental
setup is introduced in Section V-A.

A. Intersubject Variability and the Effects on FL

It is challenging to accurately detect events or diseases on
biosignal due to its complex temporal dynamics. The complex
patterns of biosignal are generally caused by intersubject
variability. Such variability, reflected on biosignal, is the varied
temporal patterns of the signal with the same label over
different individuals. As shown in Fig. 2(a), there are IEGM
segments with the same arrhythmia label (i.e., VT) retrieved
from six different subjects from Ann Arbor Electrogram
Libraries (AAEL) [26]. In the same manner, Fig. 2(b) presents
six ECG segments with the same arrhythmia label (i.e., AF)
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Biosignal segments with the same label and the corresponding sensitivity performances over six subjects. (a) IEGMs and sensitivity. (b) ECG and

from long-term AF dataset (LTAFDB) [27], [28]. The detailed
description of the dataset is introduced in Section V-A.

As demonstrated by the figures, the biosignal segments
with the same type of arrhythmia or action can show slightly
or even significantly different temporal patterns (i.e., mor-
phological characteristics) of various subjects. For example,
in Fig. 2(b), subject 122 experiences a much lower QRS
amplitude and longer QRS interval when compared with the
ECG segment of other subjects. Meanwhile, the other subjects’
ECG segments demonstrate a slight variation in morphological
characteristics in terms of QRS-peak and QRS intervals. The
same phenomenon also appears in IEGM segments shown
in Fig. 2(a). As a result, there is a group of subjects with
major morphological characteristics while there is also a
portion of subjects with unique characteristics. It indicates that
the biosignal patterns of subjects are not always uniformly
distributed but naturally personalized with feature distribution
skew.

In the FL paradigm, intersubject variability is even more
severe since the data cannot be aggregated and each client
is treated equally in the learning process. A global model
in a conventional FL algorithm may not effectively learn
cross-subject representations and could only adapt well to the
subject with major features. Fig. 2 demonstrates the detection
performance of CNNs trained with FedAvg [9] for VA and
AF detection. The performances are reported in terms of
sensitivity on each selected subject’s biosignal segments with
VA or AF labels. As shown in Fig. 2, the global model
performs poorly on some individuals (e.g., subject 329 in
VA detection and subject 122 in AF detection) due to the
unique morphological characteristics caused by intersubject
variability.

Though there are methods, such as FedProx [8] and Per-
FedAvg [12], to obtain a better global model, these methods
are proposed only for image data and cannot fully address
the negative effect of intersubject variability to the global
model. Therefore, to perform subject-specific detection in
health monitoring on biosignals, it is demanding to devise a
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Fig. 3. Biosignal segments with different labels over the same subject. (a) IEGMs segments with different labels of subject 326. (b) ECG segments with

different labels of subject 07.

FL algorithm that effectively learns cross-subject data repre-
sentations by considering the subjects with either major or
unique biosignals’ morphological characteristics.

B. Intrasubject Variability and the Effects on FL

Intrasubject variability, reflected on biosignals, is the varied
temporal patterns of the time-series data over the same subject.
As shown in Fig. 3, there are three segments with three
different types of arrhythmia of IEGMs and ECG, respectively.
Fig. 3 indicates that different types of arrhythmia lead to sig-
nificantly different biosignals’ morphological characteristics
on the same subject. Additionally, it is hard for the subject
to experience each specific type of arrhythmia, and gather
the corresponding signal segments. In health monitoring tasks,
multiple types of arrhythmia may be concluded as one label
for classification purposes. As a result, intrasubject variability
would lead to label and quantity distribution skew in model
personalization.

To address the performance degradation caused by intra-
subject variability, a practical way in FL is to perform
local fine-tuning on the global model with the targeting
subject’s data [10], [11]. However, intrasubject variability hin-
ders performance improvement through the simple fine-tuning
strategy. Fig. 4 presents the detection performances of the fine-
tuned models in terms of accuracy over six subjects in VA
detection and AF detection, respectively. The data utilized in
fine-tuning is a small group of the targeting subject’s biosignal
segments that are extracted randomly (The data extraction pro-
cess is introduced in Section V-A1). These subjects are defined
as unseen testing subjects, who choose not to participate in
federated training to avoid data breaches. As shown in Fig. 4,
most of the models fine-tuned with the targeting subjects’
biosignal data gain a performance improvement in terms of
accuracy. However, the models of subject 326 in Fig. 4(a)
and subject 074 in Fig. 4(b) experience performance degrada-
tion after being fine-tuned with the subject-specific biosignal
data.

The performances shown in Fig. 4 indicate that intrasubject
variability poses a challenge to the model personalization
in health monitoring. Though there are methods, such as
FedBN [14] and SiloBN [15], proposed to utilize local
BN statistics during fine-tuning, these methods cannot fully
address the impact of intrasubject variability coming from
unseen subjects. It is therefore expected to propose a model
personalization method that properly personalizes the model
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Fig. 4. Individual detection accuracy over FedAvg and FedAvg with simple
fine-tuning strategy. (a) Individual accuracy in VA detection. (b) Individual
accuracy in AF detection.

with limited but skewed labeled biosignal data of unseen
subjects.

IV. PERSONALIZED META-FEDERATED
LEARNING FRAMEWORK

In this section, we first present the system overview of
the proposed PMFed framework and then introduce two
essential processes (i.e., federated training and local per-
sonalization). The methodologies, including momentum-based
model aggregation strategy and adaptive model personalization
mechanism, are presented along with the introduction of these
processes.

A. System Overview

Fig. 5 shows the system overview of the PMFed framework.
We first develop a computing framework consisting of a
server and a line of IoT health monitors as clients. There are
two essential processes of PMFed: 1) meta-federated training
conducted on participant clients and the server to obtain a
well-generalized global model and 2) subject-specific model
personalization conducted on the local client to generate a
personalized model.

In meta-federated training, as shown in Fig. 5, each client
who participated in training would perform meta-learning
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on the received model and upload it to the server. Once
the uploaded models are received, the server would conduct
momentum-based model aggregation based on the domain
similarity between clients and distribute the updated global
model to clients. The process would be executed iteratively
until the model parameters converge. Once the meta-federated
training is completed, we would obtain a global model that
unbiasedly learns cross-subject representations.

Subject-specific model personalization, as shown in Fig. 5,
is conducted on the IoT monitor of the testing (unseen) subject.
The process aims to personalize the global model downloaded
from the server by fine-tuning the model with a limited amount
of local biosignal data from the testing subject. The proposed
adaptive model personalization mechanism would adaptively
set the hyperparameters of the fine-tuning process and model
parameters.

B. Meta-Federated Training

To improve model generalization, we propose local meta-
learning and momentum-based model aggregation strategy to
enable the global model to unbiasedly learn cross-subject
representations.

1) Local Meta-Learning on Client: We first introduce the
corresponding definitions and notations. The meta-federated
training starts with the initial meta-model ¢ initialized on
the server. The purpose of the model is to classify the
biosignal segments into different classes cls. In each round, the
participated clients (denoted as C) would start the FL process
with the server.

As shown in Fig. 5, the meta-model (global model) ¢ would
be distributed to each client in C. Once the meta-model ¢ is
received by the client ¢; € C, the client starts to formulate
a taskset T, for meta-learning. The taskset 7, contains a
support set T, and a query set thl.. The support set 7/, contains
p number of data points of each targeting class while the
support set 7. contains ¢ number of data points of each
targeting class. Therefore, the support set 7. is

rf,l, = {(Xj,yj)}jeM;pl forj=1,...,cls-p (D

where (x;,y;) is the data-label pairs and Mgf.)t is the set
containing the indices of data-label pairs of ¢; for the support
set. The query set 7 is defined as follows:

rq—{( )} i forj=1,..,

where (¥ yJ) is the data-label pairs, and M?lry is the set
contalmng the indices of ¢; in Mq Y. Note that the indices in
MP' and MEY are mutually exclusive.

With the preparation of 7 and thl., the local meta-learning
process is conducted on the client ¢;. The first step is inner
update [29], where the received meta-model ¢ is updated over
the support set 7. The loss of model 6, (i.e., 6, < ¢ at the
initial step as shown in Fig. 5) on 7, is calculated as follows:

Lo (0) = |1 > cf,.5) 3

(y)erg,

cls-q 2)

where fp_(x) represents the model inference conducted on the
input x with the model parameters 6. The loss function £ can
be cross-entropy loss for the clasmﬁcatlon task and other types
of loss functions targeting different tasks. Next, the meta-
model is updated by calculating the gradient on the support
set for one step

90,- = Gci - aVeci L‘in (ec,-) @

where « is the inner-update learning rate. The distribution
statistics {u, a}f;f)t of each BN layer over the support set is
recorded as well.

The second step is outer update [29], where the support set-
specific model 6,, is evaluated on the query set s The purpose
of this step is to evaluate the generalization and training ability
of 6, and provide the updating direction for the meta-model.
The loss of 6; over the query set td is calculated as follows:

1
ﬁr:ii (Qc,-) = ‘[_q| Z E(fGCi (x)’y)- o)
“ayerd

Next, the gradient of the loss in (5) over the meta-model ¢ is
defined as follows:

VoL (0o) = (1- V3L @) Vo, L (6,)  ©
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where the second-derivative is based on the acquisition of
0., derived from the meta-model ¢ using the support set
7o, [29]. Since the second-derivative part [ — (xvg)ﬁrg (@) is
generally small in terms of value but with high-computtational
complexity, the gradient in (6) can be further calculated with
first-order approximation [29] as follows:

Vo Lot (6,) ~ Vo, Ly (6,,)- 7)

Based on the approximated gradient, the meta-model on the
client c¢; is updated as follows:

Qe =& — lgvﬂcicrfi (90,') ®

where B is the outer-update learning rate. The distribution
statistics {u, a}?{y on query set is calculated as well.

The intuition of local meta-learning is to enable the local
model to learn to generalize to subject-specific data. Local
meta-learning involves a two-level training process based on
the support set and query set. The support set and query set
serve two distinct roles in local meta-learning [29]. The main
benefit of having a support set is that it allows the model to
adapt quickly to subject-specific data with very few examples.
This is crucial in situations where we do not have a large
amount of data available for each subject, a common scenario
in real-world healthcare applications. The query set, on the
other hand, is used to evaluate how well the model has adapted
to the subject-specific data based on the fine-tuned model on
the support set. By having a separate query set of the same
subject, we can obtain an unbiased estimate of the model’s
performance on the subject with intrasubject variability, as it
has not seen these examples during the fine-tuning phase on
the support set.

2) Momentum-Based Model Aggregation on Server: Once
¢.,; together with distribution statistics ({u, G}Zf’t, {m, a}i!fy) of
all ¢; € C are received by the server, the model aggregation is
conducted to obtain the new meta-model ¢ for the next training
iteration. Fig. 2 shows that simply averaging the parameters of
the uploaded models could result in a global model with highly
biased classification due to intersubject variability. Existing
optimization methods [8], [12], [14] cannot generate a well-
generalized global model (shown in Section V-B1) since they
are not specifically designed for unseen clients.

To address the issue, we conduct a series of preliminary
experiments by setting various rules on modifying or freezing
different components of the neural network during model
aggregation. Based on the performance of the aggregated
global model under various strategies, we empirically find that
the distribution statistics of BN play an essential role in model
generalization by calculating the detection performances of
individual subjects. The performances show that the quality
of the global model can be easily affected by the subjects’
biosignal data with unique temporal patterns. In this article,
the distribution statistics (i.e., mean and variance) of BN are
defined as nontrainable BN parameters. Therefore, instead of
being averaged at server [8] or preserved at local [14], these
nontrainable BN parameters should be carefully aggregated in
each iteration to reduce the negative impact on the generaliza-
tion of the global model.

We first propose a novel similarity measurement to calculate
the domain similarity between two clients based on cosine
similarity. The mean and variance of each BN layer from every
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client’s query set are utilized in the similarity calculation as
follows:

Scos(cis Cj) = Z

I €Lpy

”’C,’,l . ”’Cj,l
i Tty 11

O'C,',l ° U({,‘,l

©)

e illlloc.l

where Ly, is the set of BN used in all layers. ., ; and (o
represent the vectors of mean and variance of all channels
on the certain layer’s BN of {u, a}?{ ¥, respectively. We then
construct the similarity matrix D with the size of |[C| x |C|
where Dj; represents the domain similarity between the client
¢i and cj. The clustering algorithm DBSCAN [30] is then
invoked to find the outliers O (i.e., the subjects with unique
biosignal morphological characteristics) and the main cluster
X of clients based on D.

In contrast to the conventional model aggregation strategy
by averaging each uploaded model’s parameters, for nontrain-
able BN parameters (i.e., mean and variance of BN), we first
filter out the outlier clients in O. For the clients in X, we find
the central point of their mean and variance of BN. The central
point is defined as follows:

1
7.6y =) (o)l

(10)
ieX X

Next, we sort the clients in X based on the distance between
each client’s distribution statistics and the central point
{i, o} in ascending order, and obtain the sorted list L. The
momentum-based model aggregation strategy on nontrainable
BN parameters is conducted for each client ¢; € L in order as
follows:

p=0=y) (A=pu+yrd)+y- uld

o=>0-y) (I=p)o+yeP)+y.-ad¥ 11)

where y is the momentum parameter and the later client’s
distribution statistics weigh higher. The trainable parameters of
the model of all clients in C would be aggregated by averaging
the corresponding parameter as follows:

1
bu=) %
ieC

(12)

In the end, the meta-model ¢ would be obtained on the server
by integrating the trainable and nontrainable BN parameters.

Algorithm 1 illustrates the process of the proposed meta-
federated training. The proposed meta-federated training starts
at the server, where all clients are selected at the beginning of
each round (line 4). Once the meta-model ¢ is distributed and
received by the client, the client would perform local meta-
learning in parallel. For each client, it first formulates the
support set and the query set with local data (line 15), and then
conducts the cross-subject learning process. The inner update
is conducted on the support set (line 16) and the outer update
is conducted on the query set (line 17). The generated ¢,
along with the mean and variance of BN statistics would be
finally uploaded to the server for model aggregation (line 18).
Once the models of all clients are collected, the server starts
to construct the affinity matrix with the proposed similarity
measurement defined in (9) over all models of selected clients
in Cy (lines 6-8). Next, the set X of clients in each cluster
and the set O of outlier clients are obtained by applying the
DBSCAN algorithm on the affinity matrix (line 9). The mean
and variance of BN with momentum-based aggregation would
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Algorithm 1: Meta-Federated Training

Given ¢: deep model initial parameters.

Given R: the number of total rounds.

Given C: the set of clients participated in training.
1 RunServer(¢, R, C):

2 forr=1,2,...,Rdo

3 for each client c; € C in parallel do

4 | ¢c; < RunClient(¢)

5 end

6 for each (cj,cj) € C x C do

7 | Djj < Scos(ci.cj) by Eqn. (9)

8 end

9 X, 0 < DBSCAN(D)

10 1,0 < by Eqn. (10) & (11)

| gu = Yiee 7%

12 ¢ < {¢pwr, 1, o} #integrating trainable and non-trainable BN
parameters

13 end

14 RunClient(¢):

15 Formulate support set rg‘. and query set rgi, O; < &
16 9c,- < by Eqn. 3) & (4)

17 ¢¢; < by Eqn. (5) & (8)

spt

18 Upload ¢¢;, {1, 0}¢; &

sAm,ole

then be obtained as nontrainable BN parameters (line 10). The
trainable model parameters would be aggregated by averaging
the parameter (line 11). In the end, the new meta-model ¢
could be obtained by integrating trainable and nontrainable
BN parameters (line 12).

The intuition of the strategy is to reduce the negative
impact caused by outlier training clients on the global model
generalization. Our observations show that good nontrain-
able BN parameters could greatly affect the global model’s
generalization. The proposed strategy helps to alleviate the
domain shifting by putting less weight on the training clients
classified as outliers during model aggregation on nontrainable
BN parameters.

C. Subject-Specific Model Personalization

The next essential step is to personalize the meta-model ¢
to adapt to the testing subject ¢’s biosignal data domain and
obtain the subject-specific detection model. Fine-tuning the
global model with local data is an effective and practical way
to perform model personalization [10]. In our scenarios, to
perform model personalization, the testing subject c is required
to formulate the personalizing set t7, which contains a limited
number of biosignal data segments with all available targeting
classes. The simple fine-tuning process starts with calculating
the loss on the data-label pairs in 77 as follows:

Erf(ﬁbg(mil)) = > ﬁ(fwm—w(x)vy)

72| (13)
et

where m indicates the current fine-tuning step and q&f(o) is
the received global model ¢*. The loss function can be cross-
entropy loss on the data-label pairs in 7/ for the classification
task. One or multiple steps of update with gradient can be

conducted as follows:
¢f(m) — ¢g(m—1) _ Olvd)pl(m—l)ﬁrcp (¢g(m—l)>

where o is the learning rate in the fine-tuning process.
However, as introduced in Section III, the intrasubject vari-
ability greatly hinders performance improvement of the model

(14)
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personalized by the local fine-tuning. To address the issues,
we propose an adaptive model personalization mechanism.
The core tenet of the proposed mechanism is to adaptively
set distribution statistics of BN and the learning rate of local
fine-tuning.

We first calculate the cosine similarity Scog(¢p*, d)f ) between
the distribution statistics of the meta-model and local model
as follows:

NORIEDS

leLpy

R - ﬂ¢g<1>
g e g I

Opx - 0
é P

15)

llog=llllo pol

where ¢>€(]) is the local model obtained by conducting one-
step local fine-tuning on 7. To set the distribution statistics
of BN for the targeting client, we set the rule as follows:

Scos (¢*» ¢f) < Slower

where Sjower 1S the preset similarity hurdle. If the condition
in (16) is stratified, the mean and variance of ¢* would be
integrated into those of ¢¥ D with a portion ratio € as follows:

(16)

By = (1= €) - g + € )

U¢*=(1—€)-U¢* —|—€~(7¢1?(1) (17

where both mean and variance would be frozen during local
fine-tuning. Otherwise, the mean and variance of the global
model would be updated in a general manner during fine-
tuning. To set the learning rate of local fine-tuning, we further
calculate the first-step loss Cng (¢*) over t¥. We then set the
rule as follows:

Lp (¢*) > Lupper

where Lypper is the upper bound of the loss. If the condition
in (19) is stratified, the learning rate of the local fine-tuning
would be modified as follows:

(18)

B=a-n (19)

where B is the new learning rate and n is a preset value.
Otherwise, the learning rate 8 would keep the same as the
original learning rate o. With ¢f . ¢*, the local fine-tuning
with the new BN statistics and learning rate can be conducted
as follows:

B = gD — BV e L (#2770)

where m is the fine-tuning steps.

The intuition of the mechanism is to alleviate the negative
impact of intrasubject variability on the performance of the
model personalized by local fine-tuning. Different from the
simple fine-tuning strategy, the two main factors (i.e., BN
parameters affecting domain adaptation and learning rate
affecting model personalization speed) are adaptively set based
on the similarity and loss between the global and local model
tailored to the subject-specific data.

(20)

V. EXPERIMENTS
A. Experimental Setup

1) Dataset and Data Preparation: To evaluate the effec-
tiveness of the proposed method, we utilize three datasets with
various types of biosignal data as different health monitoring
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applications. The datasets utilized in the experiments are
shown as follows:

AAEL: The first application is VAs detection over the AAEL
dataset [26], which is one of the largest IEGMs datasets
utilized by implantable device manufacturers to evaluate their
algorithms. The data preprocessing scheme is: 1) We utilize
IEGM recordings from the RVA-Bi lead over 95 subjects
and resample them to 250 Hz; 2) We divide the resampled
recordings into episodes following the annotation on the time
ticks. The episodes labeled with VT or ventricular fibrillation
(VF) are defined as VA episodes while the episodes with other
labels are defined as non-VA episodes; and 3) We segment
each episode into 2-s segments.

LTAFDB: The second application is AF detection over the
LTAFDB [27], which records the cardiac rhythm by ECG. The
data preprocessing scheme is: 1) We utilize ECG recordings of
the lead I over 84 subjects with the sampling rate at 128 Hz.
We apply a band-pass FIR filter with a pass-band frequency
of 0.5 Hz and a stop-band frequency of 50 Hz with an order
of 5 to remove the noise; 2) We divide the recordings into
episodes in the same manner as AAEL. There are 7358 AF
and 46 347 non-AF episodes; 3) We segment each episode into
10-s segments.

HAR-UCI: The third application is human activities recog-
nition (HAR) over the HAR-UCI dataset [31]. There are six
activities (i.e., walking, upstairs, downstairs, sitting, standing,
and laying) recorded by a smartphone over 30 subjects with
a sampling rate of 50 Hz. Each sample contains 9-channel
signals, including triaxial acceleration, body acceleration, and
angular velocity. There are 30 episodes (signal episodes) of
each type of action over 30 subjects (i.e., six episodes with
six action for each subject). The signal has already been
preprocessed by applying noise filters and then segmented into
2.56-s segments.

2) Evaluated Methods and Metrics: We compare PMFed
against the methods falling under three categories: 1) FL algo-
rithms that train a global model robust to non-IID local data;
2) existing SOTA meta FL algorithms that train a global model
generalized to non-IID data; and 3) existing FL. methods that
utilize BN to overcome domain shifting. For (1), we implement
FedAvg-FT [11] and FedProx [8]. For (2), we implement
FedReptile [13], FedMeta [32], and Per-FedAvg [12]. For
(3), we implement two SOTA methods, FedBN [14] and
SiloBN [15]. For our method, we evaluate the performances
of PMFed and conduct ablation studies on each component
of the PMFed. We implement PMFed-Meta as an ablation
study for local meta-learning mechanism where PMFed-Meta
conducts local model training with one data set instead of
setting a support set and query set in meta-learning. We further
implement PMFed-MA as an ablation study for the proposed
momentum-based model aggregation strategy where PMFed-
MA aggregates the global model parameters by following the
manner of FedAvg. We also implement fine-tuned PMFed
(PMFed-FT) as an ablation study for the adaptive model
personalization mechanism where PMFed-FT personalizes the
global model with the simple fine-tuning strategy instead of
the proposed adaptive model personalization.

We invoke metrics F1 score (F1) accuracy (ACC)
to comprehensively evaluate methods. F1 is defined as
F1 = 2 x [(Precision x Recall)/(Precision + Recall)] where
Precision = [TP/(TP + FP)] and Recall = [TP/(TP + FN)].
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Fig. 6. 10T platform for performance evaluation.

In addition to the detection performances over segments, the
detection performances over episodes are reported since the
prediction over a single segment cannot sufficiently determine
the health condition of the subject in real-world application
scenarios. In VA and AF detection, a VA or AF episode would
be determined if there are 4 consecutive VA or AF predictions
on the input segments. Otherwise, the episode would be
determined as non-VA or non-AF. In HAR, the episode would
be determined by the greatest number of segments with certain
labels. We further evaluate the effect of intersubject variability
by comparing the performances achieved by PMFed and
other baseline FL. methods, and the intrasubject variability by
comparing the performances achieved by PMFed, the simple
fine-tuning approach, and the global model by PMFed.

3) Implementation Details: The performances of FL meth-
ods are evaluated on the platform with a MacBook Pro as
server and Raspberry Pi 3Bs as clients with PyTorch (1.12.0)
shown in Fig. 6. The server is a MacBook Pro 2020. The
client devices are Raspberry Pi 3Bs. We further deploy the
evaluated CNNs on STM32F469NI discovery kit [33] to
evaluate practical performances of inference. The board is
equipped with 2-MB flash and 324-KB SRAM.

The CNNs designed in [4], [34], and [35] for VA detection,
AF detection, HAR are utilized for all evaluated methods.
We invoke those networks with necessary modifications (e.g.,
change filter size and reduce the number of convolutional
layers) to fit the input dimensions and limited hardware
recourses. For each task, we randomly split subjects by 8:2 for
training and testing. We perform 10-time Monte Carlo splitting
on subjects of each dataset. The detection performances are
reported based on the average performance of all 10 splits.

In the federated training of PMFed, only the subjects from
the training set would be utilized for the global training of all
methods. We construct the support set t° and the query set 74
for each training subject in each round. We randomly pick 5,
20, and 5 segments for 7° and 5, 40, and 5 segments for t¥ of
each targeting class in VA, AF, and HAR tasks, respectively.
The momentum parameter y is set at 0.3, 0.2, and 0.1, and the
maximal training rounds R is set at 500, 1000, and 500 in VA,
AF, and HAR tasks. In testing, the subjects from testing set
would be considered as the unseen clients since all of these
subjects’ data would not be utilized during the training stage
of FL. For each testing subject, we extract a small portion
of segments to construct the personalizing set, which is used
to fine-tune the model for personalization. We randomly pick
5, 20 and 5 segments for 7° of each targeting class in VA,
AF, and HAR tasks, respectively. The rest segments as festing
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TABLE I
DETECTION PERFORMANCES OVER SEGMENTS OF THREE TASKS

VA AF HAR

F1 ACC F1 ACC Macro-F1  ACC
FedAvg [9] 88.02 87.74 73,51 87.33 90.29 90.29
FedAvg-FT [11] 89.03 89.28 7551 90.81 92.05 92.56
FedProx [8] 89.15 89.36  75.77 90.93 92.89 92.91
FedMeta [32] 7443 81.01 52.07 6220 54.60 58.71
FedReptile [13] 88.60 88.69 7535 90.49 91.92 92.81
Per-FedAvg [12] 88.83 88.93 72.68 88.05 91.87 92.74
FedBN [14] 87.51 87.79 71.68 87.40 92.04 92.09
SiloBN [15] 87.53 87.81 73.52 88.39 91.99 92.02
PMFed-Meta 89.04 90.63 79.29 9241 93.10 92.98
PMFed-MA 91.22 92.15 79.87 93.12 93.02 92.72
PMFed-FT 91.29 9264 7873 9241 93.51 93.29
PMFed 93.07 94.07 8190 94.75 93.59 93.39

TABLE II

DETECTION PERFORMANCES OVER EPISODES OF THREE TASKS

VA AF HAR

Fl1 ACC Fl1 ACC  Macro-F1 ~ ACC
FedAvg [9] 89.37 8746 72.65 86.02 89.44 90.23
FedAvg-FT [11] 91.47 8825 7459 88.82 92.01 93.61
FedProx [8] 91.47 8825 7452 8881 92.29 93.89
FedMeta [32] 7296 79.41 5537 6722 63.84 72.50
FedReptile [13] 91.84 88.37 7434 88.07 92.59 94.17
Per-FedAvg [12] 91.88 88.37 70.95 84.90 92.31 93.89
FedBN [14] 92.62 88.38 73.09 8594 92.87 94.44
SiloBN [15] 92.62 8838 7274 85.84 92.87 94.44
PMFed-Meta 85.56 87.86 80.19 92.74 91.90 93.33
PMFed-MA 90.51 9037 80.30 92.13 93.15 93.28
PMFed-FT 93.20 9231 78.72 9224 93.10 94.44
PMFed 9552 9389 8034 93.04 93.47 94.72

set of the testing subject would be utilized to evaluate the
detection method. All methods except FedAvg would fine-tune
the global model using the personalizing set of each testing
subject with the step of 5.

B. Experimental Results

1) Detection Performances: VA Detection: As shown in
Table I, FedAvg-FT improves its F1 score by 1.01% and
accuracy by 1.54% when compared with the performances
of FedAvg. It indicates that fine-tuning the global with local
data could further improve the detection performance. As for
SOTA meta-federated algorithms FedReptile and Per-FedAvg,
they achieve relatively similar performances compared with
FedAvg-FT. It indicates that the SOTA meta-FL methods
cannot effectively adapt to each testing subject due to inter-
and intra-subject variability. The performances of FedBN
and SiloBN cannot exceed FedAvg-FT in terms of F1 and
accuracy. It further indicates that the intrasubject variability
would degrade the performance of the personalized model.
As for our method PMFed, it achieves the best performance
among all methods, with the highest F1 score of 93.07%
and accuracy of 94.07%. The accuracy achieved by PMFed
outperforms FedProx, Per-FedAvg, and FedBN by 4.7%, 5.1%,
and 6.3%, respectively. Table II illustrates detection perfor-
mances on VA episodes. Compared with FedAvg, FedAvg-FT
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achieves a 2.1% increase in F1 score from a baseline of
89.37% and a 0.79% increase in accuracy from a baseline of
87.46%. The meta-learning approaches, FedReptile and Per-
FedAvg, achieve relatively similar performances in terms of
two metrics when compared with FedAvg-FT. As for PMFed,
it again achieves the best performance on two metrics. It
has the highest detection accuracy (93.89%), and the highest
F1 score (95.52%). It indicates that our method could alleviate
the intra- and inter-subject variability problems by generating
a well-generalized model initialization and adaptively fine-
tuning the model. As for the ablation study, PMFed-FT
achieves the second-best metrics among all methods for VA
detection on both segments and episodes. It indicates that the
local meta-learning and momentum-based model aggregation
strategy could effectively improve the generalization of the
global model by overcoming the intersubject variability even
with simple fine-tuning. The performances of PMFed-Meta
and PMFed-MA further demonstrate the importance of the
local meta-learning and momentum-based model aggregation
strategy to the global model quality.

AF Detection: As shown in Table I, the simple fine-tuning
strategy helps FedAvg-FT to improve its accuracy by 2%
and F1 score by 3.48% when compared with FedAvg. As
for meta-FL algorithms, FedReptile and Per-FedAvg do not
give out better detection performances than FedAvg-FT and
FedProx. FedMeta achieves the worst detection performances
among all evaluated methods since the method is sensitive to
inter- and intra-subject variable biosignal data and therefore
cannot generate a well-generalized model. The performances
show that our proposed PMFed could effectively improve the
model generalization. Our proposed method PMFed achieves
the highest accuracy (94.75%) and F1 score (81.90%), which
improve by 6.70% and 9.22% when compared with SOTA
meta-FL method Per-FedAvg. As shown in Table II, PMFed
improves by 9.39% in F1 score and 8.74% in accuracy over
episodes when compared with Per-FedAvg. It shows that
the proposed adaptive model personalization could further
improve detection performances by overcoming the intrasub-
ject variability.

HAR Detection: Note that the data quantity of the HAR-
UCI dataset is evenly spanned over each subject. Therefore,
the main purpose of the experiment is to evaluate the general-
ization of the global model. Tables I and II show the detection
performances in terms of macro-F1 (i.e., the averaged Fl
on each action) and accuracy over segments and episodes.
As shown in Table II, FedBN and SiloBN outperform SOTA
meta-FL. methods with only the feature distribution skew
problem. It again indicates that the generalization of model
initialization is critical in subject-specific detection. PMFed
achieves the best performances with 93.59% in macro-F1 and
93.39% in accuracy on segments, and 93.47% macro-F1 and
94.72% accuracy on episodes. The performances show that
PMFed could generate the model initialization with better
generalization when compared with SOTA methods. PMFed
slightly outperforms SOTA methods in HAR in terms of
detection performance metrics. This is because data from the
HAR dataset is evenly distributed among subjects in terms
of quantity and morphological characteristics such that the
inter- and intra-subject variability is relatively lower than the
other two tasks. The purpose of setting the experiment is to
validate that our method is capable of maintaining comparable
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Fig. 7. Box plots of detection accuracy of individual testing subject’s personalized model of FL methods over three health monitoring tasks. (a) Box plot

(VA). (b) Box plot (AF). (c) Box plot (HAR).

performance even under conditions characterized by low-
variability biosignal data.

2) Individual ~ Performances: To demonstrate  the
performance improvement on individuals, Fig. 7 illustrates
the distribution of detection accuracy of individual testing
subjects from the same split across all evaluated methods
over three tasks. As shown in the figure, SOTA methods yield
a substantial variance in detection accuracy across testing
subjects for all three tasks. In contrast, PMFed ensures a
markedly smaller range of detection accuracy variance among
test subjects. The distribution of individual detection accuracy
achieved by PMFed has a narrower interquartile range and a
narrower whisker range when compared with the other SOTA
methods. To be more specific, in Fig. 7(a) which presents
the VA detection, the detection accuracy for testing subjects
fluctuates between 18% to 100% with FedProx, 19% to 100%
with Per-FedAvg, and 34% to 100% with FedBN. On the
other hand, PMFed consistently achieves an accuracy range
of 77% to 100%. Likewise, in the AF detection shown in
Fig. 7(b), the detection accuracy for testing subjects varies
from 70% to 100% in FedProx, 44% to 100% in Per-FedAvg,
and 66% to 100% in FedBN, while PMFed consistently
attains an accuracy range from 96% to 100%. As for the
HAR depicted in Fig. 7(c), the median accuracy achieved
by PMFed is higher than the other SOTA methods and the
interquartile range of PMFed is narrower when compared with
other methods. Although PMFed achieves an accuracy range
from 88% to 100% as FedBN represented by whiskers, it still
outperforms FedProx which scores between 66% and 100%
and Per-FedAvg which scores between 67% to 100%. It reveals
that our proposed PMFed can effectively personalize the deep
model for all testing subjects by overcoming the domain
shifting problem during model personalization. Our method
not only maintains consistent performance but also enables
minority subjects to achieve superior detection accuracy.

As shown in Fig. 7(b), the box plot generated by PMFed-FT
is markedly distinct, exhibiting a significantly longer interquar-
tile range and a lower minimum, compared to the three
boxes produced by PMFed, PMFed-Meta, and PMFed-MA.
Given that PMFed-FT represents an ablation study focused on
Subject-Specific Model Personalization, this disparity suggests
that the personalized approach can markedly enhance detection
accuracy for individual subjects. It also underscores the impor-
tance of the full PMFed system which effectively personalizes
the global model to address intrasubject variability, which is
crucial for boosting individual detection performance.

30% TEFC+BN BBN 5 FC+Conv 8 MA BN

ﬁ** —J 48
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Fig. 8. Distribution of the delta accuracy of individual subjects under four
strategies when compared to the general aggregation strategy.

As shown in Fig.7(c), a feature skew issue persists due to
intersubject variability, as evidenced by the differing median
lines in the box plots of each method. PMFed-MA exhibits
the lowest median line, demonstrating that the Momentum-
based Model Aggregation strategy effectively counteracts the
adverse effects of aggregating client models trained on skewed
features. Through the application of the strategy, PMFed
achieves the highest median (approaching 100%), signifying
a substantial proportion of subjects reaching near-perfect
detection accuracy.

In summary, the key benefit of using the full PMFed
is that it could optimize the FL process to obtain a well-
generalized global model to overcome the feature distribution
skew problem caused by intersubject variability, and optimize
the fine-tuning process to overcome the overfitting problem
caused by intrasubject variability, respectively.

3) Impact of Different Components: In preliminary exper-
iments detailed in Section IV-B2, we assessed the influence
of various neural network components on model aggregation
by implementing four distinct strategies: 1) averaging both
fully connected and BN layers (FC+BN); 2) averaging solely
BN layers (BN); 3) averaging FC and convolutional layers
(FC+Conv); and 4) applying momentum-based aggregation to
BN layers (MA BN). Fig. 8 shows the resulting distributions
of delta accuracy of individual subjects across all three datasets
over the general aggregation strategy. Fig. 8 underscores the
pivotal role of BN layers in determining the quality of the
global models. It also indicates that simple average aggregation
of BN layer parameters may not suffice for achieving a well-
generalized global model.
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Fig. 9.
accuracy (AF). (c) Personalization accuracy (HAR).

4) Evaluation of Generalization and Personalization: To
further demonstrate the effectiveness of the proposed meta-
federated training and adaptive model personalization, we
present the accuracy curves versus update steps of the global
models personalized on subject-specific data for all FL. meth-
ods in Fig. 9. The 5-step gradient descent is applied to
personalize each global model using the personalizing set of
the testing subjects. The curves of PMFed shown in Fig. 9(a)
and (b) indicate that the proposed adaptive personalization
mechanism could enable the global model to be with a better
starting point by adaptively replacing the BN statistics. Based
on a better starting point, the model personalized by PMFed
could achieve the best detection performance in terms of
accuracy when compared with SOTA methods.

As for the ablation study, as shown in Fig. 9, the global
model trained with PMFed-FT could always gain a higher
improvement than the SOTA methods. It indicates that the
local meta-learning and momentum-based model aggregation
strategy could improve the generalization of the global model
by overcoming the intersubject variability. As for PMFed-MA
and PMFed-Meta, the global model trained with these methods
could also gain a higher or similar improvement than the
SOTA methods. It indicates that the proposed adaptive model
personalization mechanism could alleviate the intrasubject
variability issue in model personalization.

5) Performance Comparison for Inter- and Intra-Subject
Variability: For intersubject variability, as introduced in
Section III-A, biosignals with the same label may exhibit
varied morphological characteristics among different subjects.
Therefore, we demonstrate the detection sensitivity achieved
by PMFed and other SOTA methods on the same type of event
or disease (VA, AF, Walking) across different subjects for all
three datasets. Owing to this variability, SOTA methods per-
form inconsistently across different subjects. For example, as
shown in Fig. 10(a), FedProx achieves nearly 100% detection
sensitivity for VA on Subjects 184, 185, and 216. However,
for Subject 329, FedProx’s detection sensitivity can drop
to below 25%. Similar disparities in detection performance
are observed for all SOTA methods in detecting AF and
Walking events across the ECG and HAR datasets. These
outcomes underscore the significant impact of intersubject
variability on the detection models. Conversely, as illustrated
in Fig. 10, PMFed enables the deep model to consistently per-
form well across different subjects by overcoming intersubject
variability. This suggests that the proposed optimizations can

Accuracy trends of FL methods during personalization over three health monitoring tasks. (a) Personalization accuracy (VA). (b) Personalization
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Fig. 10. Performance comparison of intersubject variability by individual

detection sensitivity with PMFed and SOTA methods. (a) Individual sensitivity
for VA detection. (b) Individual sensitivity for AF detection. (c) Individual
sensitivity for HAR detection.

effectively enhance the generalization of the global model and
mitigate the adverse effects of intersubject variability.

For intrasubject variability, as introduced in Section III-B,
biosignals may exhibit varied temporal patterns within the
same subject. This type of variability can significantly
impede performance enhancement through fine-tuning. To
elucidate this variability, we demonstrate the detection accu-
racy achieved by PMFed, PMFed-FT, and PMFed-Global (the
global model trained using PMFed) on individual subjects
from all three datasets. Due to this variability, not all global
models benefit from detection improvement through fine-
tuning with subject-specific data. For instance, as evidenced by
the performance of PMFed-FT and PMFed-Global in Fig. 11,
global models fine-tuned on data from Subject 74 (for AF
detection), Subject 326 (for VA detection), and Subject 16 (for
Walking detection) exhibit accuracy degradation. These results
highlight the significant impact that varied temporal patterns
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Fig. 11. Performance comparison of intrasubject variability by indi-
vidual detection accuracy with PMFed, PMFed-Global, and PMFed-FT.
(a) Individual accuracy for VA detection. (b) Individual accuracy for AF
detection. (c) Individual accuracy for HAR detection.

of biosignals can have on the personalization (fine-tuning)
process. Conversely, as depicted in Fig. 11, PMFed allows
the global model to avoid drifting too far from the learned
representations during personalization, achieving an accuracy
improvement for nearly all subjects. This suggests that the
proposed optimizations can effectively address the overfitting
issue caused by intrasubject variability.

6) Practical Performances: We further evaluate the practi-
cal performances of FL. methods on the developed framework.

Training Latency: Fig. 12(a) presents the latency (i.e., the
total federated training time) of all evaluated methods. The
latency is reported based on the mechanism that halts the
federated training when the training accuracy is no longer
increasing and the moving average (period of 16) keeps stable
(standard variance less than 0.1) for 10 rounds.

In the VA detection task shown in Fig. 12(a), our method
reduces training latency by 51.0% and 54.3% in comparison
to FedProx from method category (1) and Per-FedAvg from
method category (2) defined in Section V-A2, respectively.
When compared with FedBN, our method demonstrates a
training latency that is comparable. This is because SOTA
methods in category (3) are primarily designed to expedite
convergence over non-IID data through optimizations on BN.
This underlines the critical role that BN layer parameters play
in model convergence during training.

As for AF detection shown in Fig. 12(a), our method
significantly reduces training latency by 55.0%, 56.2%, and
44.4% when compared to FedProx from category (1), Per-
FedAvg from category (2), and FedBN from category (3),
respectively.
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Fig. 12.  Practical performances of FL methods in terms of federated

training latency, network traffic, and energy consumption over three tasks.
(a) Training latency of federated training. (b) Network traffic of federated
training. (c) Energy consumption of federated training.

Regarding the HAR task, our method achieves a training
latency that is comparable with SOTA methods, as the con-
vergence rate is similar across these methods. This is due to
the even distribution of data from the HAR dataset among
subjects, both in terms of quantity and morphological charac-
teristics. As a result, the inter- and intra-subject variability is
relatively lower than in the other two tasks. The purpose of
setting the experiment is to validate that our method is capable
of maintaining comparable performance even under conditions
characterized by low-variability biosignal data.

Network Traffic: As shown in Fig. 12(b), PMFed achieves
low-network traffic. PMFed again achieves the lowest network
traffic in AF detection. PMFed reduces network traffic by
60.7%, 59.8%, and 51.9% when compared with FedProx
in category (1), Per-FedAvg in category (2), and FedBN
in category (3), respectively. As for VA detection, PMFed
could reduce the network traffic by 44.5% and 46.3% when
compared with FedProx and Per-FedAvg. When compared
with FedBN, our method demonstrates comparable network
traffic. This again indicates the critical role that BN layer
parameters play in model convergence. As for the HAR task,
all methods except FedMeta achieve comparable network
traffic as the dataset is with low-intersubject variability.

Energy Consumption: As shown in Fig. 12(c), in AF
detection, PMFed achieves the second lowest energy con-
sumption. PMFed reduces energy consumption by 50.8%,
54.0%, and 37.5% when compared with FedProx in category
(1), Per-FedAvg in category (2), and FedBN in category (3),
respectively. As for VA detection, PMFed could reduce energy
consumption by 42.1% and 47.2% when compared with
FedProx and Per-FedAvg. When compared with FedBN, our
method achieves a comparable energy consumption. This again
indicates the critical role that BN layer parameters play in
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methods. (a) VA detection. (b) AF detection. (c) HAR.

TABLE III
INFERENCE PERFORMANCES OF CNNS ON THREE TASKS

Task Inference Latency Flash Occupation Work-in Memory
CNN-VA 9.50 ms 40.75 KB 5.24 KB
CNN-AF 64.53 ms 299.59 KB 24.87 KB
CNN-HAR 37.57 ms 284.70 KB 13.82 KB

model convergence. The energy consumption is reported based
on the setting that the evaluated FL reaches full convergence.
Specifically, in the context of HAR dataset, the uniform
distribution of data episodes per class across subjects negates
significant data quantity skew issues. This uniformity means
that the advantages of the proposed PMFed, particularly its
enhanced convergence speed observed in IEGM and ECG
datasets with data quantity skewness, are not as pronounced in
the HAR dataset. Consequently, the convergence rates of the
methods evaluated on the HAR dataset are relatively uniform,
leading to comparable energy consumption levels across all
methods.

Energy and Accuracy Tradeoff: Fig. 13 illustrates the
relationship between the normalized energy consumption of
the edge device and the detection accuracy obtained by
PMFed and SOTA methods across three datasets. This fig-
ure demonstrates that PMFed requires a much less amount
of energy to achieve improved detection performance on
datasets with high skewness, like the IEGM and ECG
datasets, when compared to SOTA methods. Conversely,
for the HAR dataset, achieving higher accuracy necessitates
relatively similar energy consumption for all methods. This
pattern underscores the impact of dataset characteristics on
the efficiency of FL models, highlighting how inherent dataset
variability influences both energy demands and accuracy
outcomes.

Inference Performances on MCU: Table III shows inference
latency, flash occupation, and work-in memory overhead when
executing inference on the STM32F469NI board. The practical
performances on board indicate that the deep models can
be properly deployed on the resource-constrained platform
to conduct real-time and on-device health monitoring. Our
FL approach is based on a computing framework where
MCU handles data sensing and on-device inference, while the
Raspberry Pi manages FL and model personalization. This
configuration aligns with health monitoring contexts, where
local devices like wearables and implants typically connect
through an edge device (e.g., a smartphone or hub). In our
framework, deep models are trained and fine-tuned on the
edge device, such as a Raspberry Pi, to circumvent the lim-
ited computing power and memory of MCU-based monitors.
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This design efficiently supports the intensive computational
demands of training and personalizing models, making it
a practical solution for enhancing the capabilities of health
monitoring systems.

In future work, we aim to delve into on-device training
to enable FL directly on MCUs. While there are prece-
dents in this area, existing solutions still fall short of
system requirements, placing a heavy workload on the highly
resource-constrained MCUs. Developing efficient TinyML-
based training methods for MCU-level devices presents a
compelling direction.

VI. CONCLUSION

In this article, we propose a PMFed framework for IoT-
enabled health monitoring. PMFed aims to address inter-
and intra-subject variability issues in health monitoring on
biosignals by obtaining a well-generalized global model and
properly personalizing the model. Experimental results show
that PMFed outperforms SOTA FL methods in terms of
various detection metrics while significantly reducing total
training time and communication overhead in real-world health
monitoring tasks.
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