DTjRTL: A Configurable Framework for Automated Hardware
Trojan Insertion at RTL

Ruochen Dai

Zhaoxiang Liu

Orlando Arias

ruochendai@ufl.edu zxliu@ksu.edu orlando_arias@uml.edu
University of Florida Kansas State University University of Massachusetts Lowell
Gainesville, FL, USA Manhattan, KS, USA Lowell, MA, USA

Xiaolong Guo
guoxiaolong@ksu.edu
Kansas State University
Manhattan, KS, USA

ABSTRACT

Shifts in the IC supply chain have necessitated outsourcing design
or fabrication to third-party vendors, introducing various hardware
security issues, notably Hardware Trojans (HTs) as a prominent
risk. The research in detecting and preventing HTs faces challenges
due to the lack of standardized benchmarks and measurements.
This paper introduces a framework to automatically generate dy-
namic functional HTs in a configurable and systematical manner at
Register Transfer Level (RTL). The objective is not to produce HTs
that are difficult to activate but to systematically create a diverse
set of HT designs. This approach serves dual purposes: it aids the
research community in testing their detection frameworks and fa-
cilitates buggy design benchmark creation for competitive exercises
between blue and red teams. Our framework accepts RTL designs
and configuration parameters, automating the generation of HT-
inserted designs at RTL. We present an evaluation of the generated
HT designs focusing on hardware cost overhead and post-synthesis
survivability by verifying HT presence at both RT and gate levels.
Results indicate that HTs employing only combinational logic are
easier to optimize away but result in lower overhead compared to
HTs that incorporate additional sequential logic.

CCS CONCEPTS

« Security and privacy — Malicious design modifications.

KEYWORDS

Hardware security, Hardware Trojan, Automated Benchmarking,
RT-Level Security

ACM Reference Format:

Ruochen Dai, Zhaoxiang Liu, Orlando Arias, Xiaolong Guo, and Tuba Yavuz.
2024. DTJRTL: A Configurable Framework for Automated Hardware Trojan
Insertion at RTL. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Tuba Yavuz
tuba@ece.ufl.edu
University of Florida
Gainesville, FL, USA

Configuration Parameters: Design:
md, m, d, sig[], 4T, pyT RT-Level IP

/ HWDCT!

AST Level Static Analysis
Identify module depth,
control/data flow depth

P DCT based Trojan Template
List of feasible | | .. Ve
locati ,,/‘ T—

Trojan Construction from :__/,,
configuration parameters

fffffffffffffffffffff {

‘ ‘ - Input-based Trojan Template

Timing-based Trojan Template

Trojan Template

o 11 :

‘ Design with Trojan inserted ‘

Figure 1: Overall workflow of DTjRTL.

1 INTRODUCTION

The supply chain for integrated circuits (IC) is experiencing a piv-
otal shift from a traditionally vertically integrated model to a hori-
zontally oriented one which involves multiple collaborative com-
panies at different stages of the IC production process. Although
this shift provides economic and logistical benefits, it also opens
up numerous security vulnerabilities, with hardware Trojans stand-
ing out as a significant concern. Recent years have seen numerous
research efforts [2, 5, 16] aimed at detecting hardware Trojans,
yet the challenge remains in selecting appropriate benchmarks for
validating these detection methodologies.

Standardized benchmarks serve as a crucial baseline for evaluat-
ing the effectiveness of HT detection methods. A common strategy
[16, 19] includes utilizing static benchmarks from the TrustHub
platform [17], which comprises 106 HT-infected benchmark cir-
cuits. Notably, these 106 hardware Trojans are derived from only
7 distinct designs. This contribution aids in standardizing HT de-
tection tests but faces limitations due to its static nature, where
Trojan locations and triggers are predetermined. This specificity
may lead to detection methods being overly tailored to these bench-
marks rather than being applicable to a broader range of hardware

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

Table 1: Objective of each Configuration Parameter.

Param. | Objective

md Module depth, determine candidate modules to insert
the HT

m AST analysis method, either structural control-flow
or signal-dependent control-/data- flow analysis

d control/data flow distance, determine the location
of HT

sig[] trigger signal set, determine the set of signal used to
construct trigger

HT trigger type, either combinational, sequential, or
template HT (DCT, Tim, Inp based)

pyT payload type, determine HT functionality, either
AND, OR, or XOR operation

Trojans. Additionally, the suite’s inability to quickly adapt to new
Trojan types poses a further limitation. In instances where existing
benchmarks do not cover a particular Trojan type, researchers are
compelled to create specific Trojans [5], raising concerns about the
benchmarks’ quality. Authors in [11] further show that only 3 out
of 83 benchmark designs from TrustHub can be considered as ac-
tual hardware Trojans while the others are proven to be ineffective,
which shows the challenges in developing realistic HTs and the
importance of automated and parametric HT generation that can
allow users apply various criteria to the candidate HTs.

Recently, numerous studies [1, 3, 4, 6, 10, 10, 15, 21] have aimed
at automating the generation of benchmark suites, with a signif-
icant focus on inserting HTs at the gate-level [1, 3, 4, 10, 15, 21].
Those approaches introduce two main issues: Firstly, gate-level
HT insertion, relying on structural characteristics or Sandia Con-
trollability/Observability Analysis Program values to place HTs at
rare-activated nodes, uses controllability and observability scores
to gauge the difficulty of manipulating each node. However, this
method’s reliance on gate-level semantics complicates its applica-
tion to RTL HT insertion, especially for diverse HT templates, thus
undermining efforts to systematically introduce HTs. Furthermore,
the rise of Al-based HT detection frameworks [19] underscores
the growing demand for a substantial collection of HT-embedded
designs for training, accentuating the necessity for HT-inserted
designs at the RTL.

To establish a more standardized and systematic benchmark
suite at RTL, this paper introduces a framework, DTjRTL, for the
automated and configurable insertion of dynamic functional HTs at
RTL. This framework enables users to insert various HTs into their
hardware designs, allowing the selection of either combinational
or sequential HT triggers, as well as the choice of payload location
and function (AND, OR, XOR). DTjRTL also permits the insertion
of template-based HTs, currently supporting three types: Input,
Timing, and Don’t Care Transition-based templates. Figure 1 out-
lines the comprehensive process of DTjRTL, which processes RTL
hardware designs alongside configuration parameters to produce
designs inserted with HTs. The framework leverages static analysis
to identify module depth and control/data flow depth, informing
the payload location selection. Subsequently, it generates potential
HT instances based on user-defined parameters, synthesizes them
to gate-level representations, optionally validates HT synthesis
survivability, and evaluates the hardware cost overhead. The main
contributions of this paper are:

Ruochen Dai, Zhaoxiang Liu, Orlando Arias, Xiaolong Guo, and Tuba Yavuz

o The first effort to automate and generate dynamic functional
HTs in a configurable and systematic way at RTL.

e Implementation of proposed approach in an automated tool,
DTjJRTL!, which enables the scalability of HT insertion.

e Evaluation of the automatically generated HT designsin
terms of hardware cost overhead and synthesis survivability.

2 BACKGROUND AND RELATED WORK

2.1 Threat Model

DTjRTL focuses on the insertion of Trojans in the RTL for studying
prevention and mitigation techniques. As such, we follow the model
where a Trojan may be inserted into the hardware design by a
third-party intellectual property vendor. We also assume that the
synthesis tool is trustworthy:.

2.2 Trojan Insertion

Hardware Trojan can be inserted at RT- [1, 6, 10, 22], gate- [1, 3, 4,
10, 15, 21], or transistor- level [10]. The pre-synthesis HT insertion
in [1] is applicable to combinational logic only. For the HT inser-
tion at RT-Level, [22] utilizes unused circuit identification (UCI)
[8] techniques to generate hard to trigger HTs that can evade ex-
isting detection techniques. They rely on a specific coding style
and trigger input selection. Additionally, signal controllability is
examined from the attacker’s perspective . [6] propose a set of
RTL HT benchmarks injected in a RISC-based pipelined micro-
processor core, lacking configurability and automation. Cruz et.al.
[4] firstly proposed a tool flow for inserting custom dynamic HTs
with validated payload an trigger conditions in gate-level designs
by identifying rare internal nodes through functional simulation.
However, functional simulation can provide only an estimation
of the switching activity of the internal nodes, and its accuracy is
closely related to the number and quality of test patterns applied to
the design inputs. Thus [21] improves [4] by using a highly config-
urable generation platform based on transition probability modeled
by geometric distribution to identify the rarely activated nodes.
Authors in [3] propose an automated HT insertion framework
using a greedy approach and SCOAP [7] reduction method that
can survive from both circuit structural feature-based and SCOAP-
based detection methods at gate-level. Taint [10] targets FPGA
designs and automatically inserts HT at either RTL, gate-level, or
post-map netlist by using a multiplexer to connect original and HT
payloads with the activation circuit, which is defined by author and
not configurable. [15] utilizes Reinforcement Learning as a means
to identify rare nodes and automate the HT insertion process to
eliminate the inherent human biases at gate-level netlist.

3 APPROACH
3.1 Overall workflow

Figure 1 illustrates the comprehensive process of DTjRTL, accepting
a RTL hardware design in Verilog or SystemVerilog alongside a con-
figuration parameter set, to automatically generate a design with
HT integration with their synthesis survivability and hardware cost
overhead. Algorithm 1 delineates the four pivotal steps. Initially, line
2 obtains the DepthSet, encompassing module depth, structural and

!https://github.com/RuochenDai78/DTjRTL

DTjRTL: A Configurable Framework for Automated Hardware Trojan Insertion at RTL

signal-dependent control/data-flow depth, and (LHS, RHS) signal
pairs across various depths, through HDL parsing into an Abstract
Syntax Tree (AST) utilizing Verilator [18]. Subsequently, line 3 em-
ploys the configuration parameters C and DepthSet to formulate
the HT inserted design T_rtl and an assertion map AssertionMap
at the RTL, with each parameter’s elaborate clarification presented
in Table 1, where the first three parameters (md, m, d) determine
the location of the Trojan, and the remaining three parameters
(sig[],tjT, pyT) set the structure of the Trojan. Line 4 proceeds
to synthesize the original design P into gate-level representation,
which will be used for synthesis survivability analysis (lines 7-11)
and for calculating the hardware cost overhead (OH) (line 21). Our
framework generates assertions based on the payload logic to sup-
port the synthesis survivability, which is an optional aspect of our
framework. If it is chosen, SS == True, the validation is performed
based on whether a test bench TB is provided or not. If it is pro-
vided, functional simulation is used. Otherwise, we use fuzzing,
e.g., [16], for validation. Both the RTL and gate-level versions of
the HT are validated. If both valid_rtl and valid_gate are affirmed,
indicating HT’s synthesis survival, the HT is deemed valid (line
16). If synthesis survivability is not chosen, each candidate HT is
deemed valid. Subsequently, OH is calculated based on gate count,
and HTs with OH below threshold 7 are included in the return set
(line 21). Finally, HTs that are deemed valid and with low overhead
w.r.t. 7 are returned.

3.2 Structural Control-Flow Analysis

Structural Control-Flow Analysis (SCFA) delves into the structural
features of a system, highlighting loops, branches, and execution
paths. It assesses the system to generate a detailed enumeration of
assignments, each paired with a distinct Structural Control-Flow
depth (SCFd). This SCFd value quantifies the depth of each as-
signment within the system’s control-flow hierarchy, providing a
nuanced understanding of its structural context.

Listing 1 provides an illustration, wherein SCFA identifies all
assignments within various code segments. The assignment to
A_is_Max at line 6 represents a continuous assignment outside any
branches, assigning its SCFd as 0. Conversely, the assignment to
Result at line 10 is situated within an if branch (Line 9), hence its
SCFd is 1. Regarding the assignments to Result at lines 12 and 13,
as they are inside a nested branch, their SCFds are evaluated as 2.

Listing 1: A simple design in Verilog to demonstrate Struc-
tural control-flow analysis.

module scfa_demo(A, B, Result);
input [1:0] A, B;
output reg Result;

wire A_is_Max;
assign A_is_Max = &(A & 2'b11);

[B S R N O

always @(A or B) begin
9 if (A > B) begin

10 Result = 1;

11 end else begin

12 if (A_is_Max) Result = 1;
13 else Result = 0;

14 end

15 end

16 endmodule

Conference’17, July 2017, Washington, DC, USA

Algorithm 1: RTL Dynamic Trojan Insertion.

Input: P: HW Design, C: Configuration parameter, 7:
Threshold, SS: Boolean, TB : Test Bench
Output: Set of (T: Trojan inserted HW design, OH: Trojan
design overhead)

1 T« 0;

2 DepthSet «— ASTAnalyzer(P,C);

3 (T_rtl, AssertionMap) «—

TjConstructGenAssertion(C, DepthSet);

4 orig_gate < Synthesize(P);

5 for each T _rtl; € T rtl do

6 T_gate; «— Synthesize(T_rtl;);

7 if SS = true then

8 A « AssertionMap|[T_rtl;];

9 (T’ _rtl;, T’ _gate;) «
AddAssertion(T_rtl;, T_gate;, A);

10 if TB # 1 then

(valid_rtl;, valid_gate;) «—
FuncSim(T’ _rtl;, T’ _gate;);

11

12 end

13 else

(valid_rtl;, valid_gate;) «—
Fuzz(T’ _rtl;, T’ _gate;);

14

15 end

16 valid; « (valid_rtl; and valid_gate;);
17 end

18 else

19 ‘ valid; <« true

20 end

21 overhead; < OverheadCalc(orig_gate, T_gate;);
22 T «— T U{(T_rtl;, overhead;,valid;)};

23 end

24 return {(¢,0) | (t,0,0) €T A 0<T A v=true}

3.3 Signal-dependent Data/Control-flow
Analysis
Signal-dependent Data/Control-flow Analysis (SD_D/CFA) exam-
ines signal dependencies across modules. We evaluate how signals
are driven by the input, i.e. the correlation between the input stimu-
lus with the other signals. The correlation can be calculated through
the information flow tracking (IFT) technique. To perform IFT, we
first build the directed graph G = (V, E; U E;) on AST with [12].
Here, V denotes the set of hardware-declared signals, E; captures
the control logic connection such as If and Case Statement, while
E; represents various assignment types including blocking and non-
blocking assignments. SD_DFA calculates the paths between signals
on graph (V, E;) and SD_CFA considers the paths on graph (V, E).
Taking Listing 2 as an example, we conduct SD_CFA on signal
top_ret, whose shortest control depth is 2 including conditions
A > Band inter. The SD_DFA on signal A_is_Max has data flow
depth 2 with path top_A — a_inter - A — A_is_Max.

Conference’17, July 2017, Washington, DC, USA

Ruochen Dai, Zhaoxiang Liu, Orlando Arias, Xiaolong Guo, and Tuba Yavuz

Table 2: Comparison of number of potential Trojan insertion locations between structural and signal-dependent AST analysis.
st = structural, sd = signal-dependent, cfa = control-flow analysis, dfa = data-flow analysis.

of Troj locations at d

Design m Total Insertion Time (s) Source
0 1 2 3 4 5 7 8 9 total
st_cfa 179 195 24 7 - - - - - 405 1.47
AES sd_cfa 3 97 143 5 - - - - 248 1.35 OpenCores [14]
sd_dfa - 81 94 30 11 12 6 5 1 248 1.43
st_cfa 15 29 26 5 - - - - - 75 0.51
RS232 sd_cfa - 35 55 4 - - - - - 94 0.54 TrustHub [17]
sd_dfa - 37 53 4 - - - - - 94 0.54

Listing 2: Example to demonstrate Signal-dependent
Data/Control-flow Analysis.

module top(top_A, top_B, top_ret);
input [1:0] top_A,top_B;

output [1:0] wire top_ret;

wire inter;

wire [1:0] a_inter;

scfa_demo scfa_demo_i(
.A(a_inter),

.B(top_B),

.Result(inter)

);

assign top_ret = inter ? 2'b11:2'b00 ;
assign a_inter=top_A + 2'b1;
endmodule

0 N O UTR W=

=
SO IR SN IN)

3.4 Trigger type of Trojan

As indicated by the configuration parameter ¢ 7T in Table 1, DTjRTL
facilitates the insertion of both combinational, sequential, and tem-
plate HTs.

Combinational Trojans. These are triggered by a distinct combi-
nation of signals meeting a specific criterion, directly affecting the
embedded logic gates and interconnects. Their activation is con-
tingent on the simultaneous presence of certain input conditions,
independent of previous signal sequences.

Sequential Trojans. These rely on a series of events or states
encountered by the design overtime for activation. This dependency
on sequential conditions and state history renders them stealthier
and more difficult to detect, as their activation may mimic regular
operational patterns, remaining undetected until executing their
intended malicious functions.

Trojan Template. To address the challenge of integrating new
Trojan configurations, DTJRTL introduces a mechanism that en-
ables users to incorporate custom Trojan structures. In this study,
we demonstrate this capability by integrating three distinct types
of Trojan templates: Don’t Care Transition (DCT)-based, Timing-
based, and Input-based Trojans.

1) DCT-based Trojan Template. This template leverages the un-
used or don’t care conditions within a Finite State Machine in the
design as triggers for Trojan activation. The insertion of such HT
involves the use of HWDCT [5] for preprocessing the design to
identify these DCTs.

2) Timing-based Trojan Template. This approach enables the em-
bedding of HT that are activated by distinct timing events or sce-
narios, including the execution sequence timing of operations. An
example of such utilization involves activating the HT after a pre-
determined number of encryption processes within AES core.

3) Input-based Trojan Template. This template is designed to in-
sert HT that become active when a particular user-specified input
or internal signal attains a predetermined significant value. For in-
stance, within a 128-bit AES encryption core, the Trojan is activated
if key == 128"h0123_4567_89ab_cdef_0000_0000_0000_0000.

4 EVALUATION

To illustrate the capabilities of DTjRTL, AES [14] and RS232 [17]
cores were tested on a system powered by an Intel CPU E5-2698 v3
@ 2.30GHz. DTJRTL accepts RTL HDL coded in Verilog/SystemVer-
ilog, outputting Trojan-inserted RTL code along with hardware cost
overhead and synthesis survivability. We use open-source synthesis
tool YOSYS [20] to synthesize RTL design, and collect total number
of gates as the metric for HT Evaluation. HT validation is conducted
via functional simulation using a testbench template that instan-
tiates both the original and HT-embedded designs, incorporating
assertions from AssertionMap as described in Algorithm 1. This
process is compatible with both the open-source Icarus Verilog [9]
and the commercial Modelsim [13] simulators. Additionally, users
may use coverage-guided simulation as outlined in HW-Fuzz [16].

4.1 Effect of AST analysis method m and depth d

The AST analysis can be categorized into structural (st) or signal-
dependent (sd) approaches, focusing solely on identifying potential
Trojan locations rather than defining the Trojan’s structure. Hence,
our comparison is limited to the quantity of feasible Trojan insertion
points in terms of method m and control (cfa) and data (dfa) flow
analysis depth d.

Table 2 outlines the disparities in the potential Trojan insertion
locations identified by both methodologies across varying depths
(d), showcasing a pronounced variance. The aggregate count of
Trojan locations differs between st and sd for distinct benchmarks,
a variation attributable to their unique processing approaches: st
initiates with the identification of md, followed by checking each
module within md for branch information, whereas sd assesses
depth relative to input ports, taking into account the design’s hier-
archy. For cfa and dfa, although the total Trojan location count
remains uniform, the number of identified locations at individual
depths differs, highlighting the distinction between cfa and dfa.

4.2 Hardware cost overhead evaluation

In this section, we focus on the AES core, specifically the key_schedule
module, to illustrate the hardware cost overhead. This choice is
motivated by the presence of don’t-care transitions within the
key_schedule module of AES, identifiable both before and after
synthesis, as documented by HWDCT. To specifically target the

DTjRTL: A Configurable Framework for Automated Hardware Trojan Insertion at RTL

Conference’17, July 2017, Washington, DC, USA

107

1 g 10 F E
. . . e 1 & i]
g T 0 18
< oL 19 [° < 100 F 3
E 107] é [° g [e . ° Bl
L] 1 > ° ° F 1
I TR B P . : ©
5 s o§° % SPC TS 4 8 I |
B % L) 1 o £ o - . 9 0L B
S o.o. X ¢ e ® g F 0 . b P 8 E] s H E
o 1 .) [] v . -
: oo * ¢ - . L o g Poe ., ‘. i
T o107l p oo 4 8 -1k %ee % 1 r ° ° . 1
IR 1 T o E: 0 oo
g S 1 F o 1 £ otk e eee o0 oo
1 [. L] ° r ° 1
® | - o - - o X ° ° *
| | | | o™ S \s y o N t I I | 1
o0 WY Y
1 2 3 4 W e e AND OR XOR

(a) Trigger signal set (sig[]) size v.s. overhead

(b) Trigger type (t]T) size v.s. overhead

(c) Payload type (pyT) size v.s. overhead

Figure 2: Comparing the hardware cost overhead with sig[], tjT, and pyT for AES design, Figure 2a, 2b, and 2c use the
configuration parameter C = {md = 1, m = scf, d = 0, tjT = comb, pyT = XOR},C = {md =1, m = scf, d = 0, pyT = xor}, and
C={md=1, m=scf, d=0,sig[] = sbox_data_i, tjT = seq} respectively. Gray dots denote the cell increase rate for each Trojan
instance, black, red, and green dots indicate the group’s minimum, maximum, and average rate, respectively.

key_schedule module, the configuration parameter C is set to md =
1, m =st_cfa, d = 0. Under this configuration, DTjRTL is able to
generate 12 potential Trojan locations for key_schedule.

4.2.1 Effect of trigger signal set (sig[]) size. Figure 2a shows the
hardware cost overhead of a list of Trojans-inserted design gener-
ated with configuration parameter md = 1, m = structural control-
flow analysis, d = 0, tjT = combinational, pyT = OR, and the size of
trigger signal set sig[] ranges from 1 to 4. The minimum average
overhead rate exhibits an increase with the increasing sig[] size,
attributed to the escalating number of gates required to connect
trigger signals as sig[] size expands. Conversely, the maximum
overhead rate does not undergo a substantial rise, since the addi-
tional gates introduced by the Trojan are relatively minor compared
to the overall gate count in the hardware design. Therefore, it is
concluded that the hardware cost overhead for the inserted
Trojan increases as the size of sig[] increases.

4.2.2 Effect of trigger type t jT. For Trojans employing varied trig-
ger types, the configuration parameter C exhibits significant differ-
ences. For instance, the size of sig[] must be specified for a combi-
national trigger, while the content of sig[] is crucial for a sequential
trigger. This variability complicates establishing a standard base-
line for comparing the impact of trigger types. Therefore, we adopt
a generalized approach to assess trigger type effects, opting for
the simplest and most rational configuration parameters to create
Trojan-embedded designs. Concretely, we set the size of sig[] to 1
for combinational Trojans, select an 8-bit signal for sequential and
input-based template Trojans, and a 4-bit counter for timing-based
template Trojans. According to Figure 2b, combinational and input-
based template triggers incur lower overheads across maximum,
minimum, and average measures, primarily because these triggers
solely rely on logic gate cells, unlike other triggers that incorporate
both logic gates and sequential elements like flip-flops. Addition-
ally, template-based Trojans exhibit a more compact distribution of
Trojan instances within a group compared to non-template Trojans.
This compactness is attributed to the fixed nature of trigger struc-
tures in template-based implementations, where only the payload

location varies, unlike non-template Trojans that may select differ-
ent signals for trigger construction randomly. Consequently, it is
deduced that HTs involving sequential logic generally incur
higher overheads than those based on combinational logic,
and the variance in overhead for template-based HTs is less
than that of non-template HTs.

4.2.3 Effect of payload type pyT. As indicated in Table 1, users
have the option to designate the functional payload type as either
AND, OR, or XOR, with the outcomes depicted in Figure 2c. The
configuration parameters md, m, d are maintained as outlined in
Section 4.2.1, setting sig[] to sbox_data_i, an 8-bit input to the sbox,
tjT to sequential, and pyT for AND, OR, and XOR. Trojan gets
activated after observing a specific sequence of the sbox_data_i.
The findings reveal minor variations among the Trojan instances
across these three categories. Nonetheless, there is no substantial
disparity in the maximum, minimum, and average hardware cost
overhead among these groups. This is attributed to the overhead
calculation based on the gate count, where altering the payload type
changes the gate type but not the quantity of gates. Consequently, it
is determined that the hardware cost overhead induced by the
inserted Trojan is minimally affected by the payload type.

4.3 Trojan validation

In this section, Trojan validation is conducted by verifying the
detectability of inserted Trojans both before and after synthesis
through functional simulation, with the exception of DCT-based
template Trojans, which are validated using HWDCT [5].

As shown in Table 3, all inserted Trojan designs are identifiable at
the RTL. However, Trojans based on seq, templ_tim, and templ_dct
exhibit a higher survival rate compared to those based on comb and
templ_inp. This disparity is attributed to the former group incor-
porating sequential elements, such as flip-flops or latches, which
possess internal states. These components’ inherent complexity
renders them less susceptible to synthesis optimizations due to their
reliance on event sequences that synthesis tools might not readily
predict or observe. Furthermore, synthesis tools primarily aim to
enhance timing and minimize logic footprint, making sequential

Conference’17, July 2017, Washington, DC, USA

Table 3: Trojan validation for different trigger types
for key schedule module inside AES. tjT=trigger type,
T_inst=Generated Trojan instance, T_rt/=Trojan validated at
RTL, T_gate=Trojan validated at gate level.

tjT #of T inst | #of T_rtl | # of T_gate | survival rate
comb 12 7 0.58
seq 12 11 0.92
templ_inp 12 12 5 0.42
templ_tim 12 11 0.92
templ_dct 12 11 0.92

logic, essential for control flow and state preservation, less prone
to optimization. Conversely, Trojan structures reliant on combina-
tional logic, like those based on comb and templ_inp, face more
direct optimization, allowing synthesis tools to more efficiently
eliminate redundant or non-essential pathways.

4.4 Comparison with Trojan-inserted RS§232
from TrustHub

Figure 3 illustrates the maximum, minimum, and average hardware
cost overhead for six sets of designs, featuring one from TrustHub
and five generated by DTJjRTL, encompassing all possible (md, d)
combinations as indicated on the X-axis. The grey numerals above
the blue line indicate the number of Trojan instances per cate-
gory, revealing that TrustHub provides 14 unique Trojan-embedded
RS232 versions. Upon examination, these are further categorized
into four groups based on the trigger mechanisms described in this
work: sequential, combinational, input, and timing-based. Conse-
quently, we generated Trojans of the aforementioned types, culmi-
nating in 300 unique Trojan instances. This figure corresponds to
the 75 potential Trojan locations identified (as shown in Table 2),
multiplied by the four types of triggers, yielding a total of 75*4=300
Trojan instances, aligning with our observations. The findings indi-
cate that Trojan designs generated by DTjRTL exhibit lower
maximum, minimum, and average hardware cost overhead
compared to those from TrustHub. This variance may result
from variations in payload disparity or the specific HDL code used
to define the trigger mechanisms.

5 CONCLUSION

This paper introduces an automated framework for inserting dy-
namic functional hardware Trojans at RTL, aiming to create a more
standardized and systematic RTL benchmark suite. Our evaluation
indicates that HTs based solely on combinational logic tend to
incur lower overhead but also have a reduced likelihood of surviv-
ability compared to HTs incorporating sequential elements. Addi-
tionally, a comparison between Trojan-embedded RS232 designs
from TrustHub and those generated by DTJjRTL revealed that our
generated HTs exhibit lower overhead. Future work will focus on
expanding DTJRTL to include multi-Trojan insertion and to evaluate
the controllability and observability of the generated HTs.

ACKNOWLEDGMENTS

This project has been partially funded by NSF Awards 2019283,
2312982, and 2019310.

REFERENCES

[1] Sarah Amir et al. 2018. Development and evaluation of hardware obfuscation
benchmarks. Journal of Hardware and Systems Security 2 (2018), 142-161.

Ruochen Dai, Zhaoxiang Liu, Orlando Arias, Xiaolong Guo, and Tuba Yavuz

T
200 | 14 —— Overhead range

150 |- -

104
16 60 100

Hardware cost overhead (%)

50 ° -
ol
| | | | | |
Y Y 0 PAY BiA P
o & % & ¥ &
o @@ @ @@ & @

Source of Trojan-inserted design
Figure 3: Comparing the Trojan-inserted RS232 design from
TrustHub and DTjRTL-generated, all data are compiled with
configuration parameter C = {m = scf, pyT = xor}. For all
six groups, red dots indicate average overhead, grey number
above blue line indicates # of Trojan instances in each group.

[2

Swarup Bhunia et al. 2014. Hardware Trojan attacks: Threat analysis and coun-

termeasures. Proc. IEEE 102, 8 (2014), 1229-1247.

[3] Chi-Wei Chen et al. 2022. A Hardware Trojan Insertion Framework against
Gate-Level Netlist Structural Feature-based and SCOAP-based Detection. In 2022
IEEE 65th International Midwest Symposium on Circuits and Systems. IEEE, 1-5.

[4] Jonathan Cruz, Yuanwen Huang, Prabhat Mishra, and Swarup Bhunia. 2018. An
automated configurable Trojan insertion framework for dynamic trust bench-
marks. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1598-1603.

[5] Ruochen Dai and Tuba Yavuz. 2022. A Symbolic Approach to Detecting Hardware
Trojans Triggered by Don’t Care Transitions. ACM Trans. Des. Autom. Electron.
Syst. (aug 2022). https://doi.org/10.1145/3558392

[6] Aleksa Damljanovic, Annachiara Ruospo, Ernesto Sanchez, and Giovanni
Squillero. 2021. A benchmark suite of RT-level hardware trojans for pipelined
microprocessor cores. In 2021 24th International Symposium on Design and Diag-
nostics of Electronic Circuits & Systems (DDECS). IEEE, 51-56.

[7] Lawrence H Goldstein and Evelyn L Thigpen. 1980. SCOAP: Sandia controllabili-
ty/observability analysis program. In Proceedings of the 17th Design Automation
Conference. 190-196.

[8] Matthew Hicks, Murph Finnicum, Samuel T King, Milo MK Martin, and
Jonathan M Smith. 2010. Overcoming an untrusted computing base: Detect-
ing and removing malicious hardware automatically. In 2010 IEEE Symposium on
Security and Privacy. IEEE, 159-172.

[9] Icarus Verilog. 2002. https://github.com/steveicarus/iverilog.

[10] Vinayaka Jyothi, Prashanth Krishnamurthy, Farshad Khorrami, and Ramesh Karri.

2017. Taint: Tool for automated insertion of trojans. In 2017 IEEE International

Conference on Computer Design (ICCD). IEEE, 545-548.

Christian Krieg. 2023. Reflections on Trusting TrustHUB. In 2023 IEEE/ACM

International Conference on Computer Aided Design (ICCAD). IEEE, 1-9.

[12] Zhaoxiang Liu et al. 2022. Inter-IP malicious modification detection through

static information flow tracking. In 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 600-603.

ModelSim. 2021. https://eda.sw.siemens.com/en-US/ic/modelsim/.

] OpenCores. [n.d.]. https://opencores.org/.

] Amin Sarihi, Ahmad Patooghy, Peter Jamieson, and Abdel-Hameed A Badawy.
2022. Hardware trojan insertion using reinforcement learning. In Proceedings of
the Great Lakes Symposium on VLSI 2022. 139-142.

[16] Timothy Trippel et al. 2022. Fuzzing hardware like software. In 31st USENIX
Security Symposium (USENIX Security 22). 3237-3254.

[17] TrustHub. [n.d.]. https://www.trust-hub.org/#/home.

[18] Verilator. [n.d.]. https://www.veripool.org/verilator/.

[19] Rozhin Yasaei et al. 2022. Hardware trojan detection using graph neural networks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(2022).

[20] YOSYS. 2013. https://github.com/YosysHQ/yosys.

[21] Shichao Yu, Weigiang Liu, and Maire O’Neill. 2019. An improved automatic
hardware trojan generation platform. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 302-307.

[22] Jie Zhang and Qiang Xu. 2013. On hardware trojan design and implementation at

register-transfer level. In 2013 IEEE international symposium on hardware-oriented

security and trust (HOST). IEEE, 107-112.

[11

[
L

https://doi.org/10.1145/3558392
https://github.com/steveicarus/iverilog
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://opencores.org/
https://www.trust-hub.org/#/home
https://www.veripool.org/verilator/
https://github.com/YosysHQ/yosys

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Threat Model
	2.2 Trojan Insertion

	3 Approach
	3.1 Overall workflow
	3.2 Structural Control-Flow Analysis
	3.3 Signal-dependent Data/Control-flow Analysis
	3.4 Trigger type of Trojan

	4 Evaluation
	4.1 Effect of AST analysis method m and depth d
	4.2 Hardware cost overhead evaluation
	4.3 Trojan validation
	4.4 Comparison with Trojan-inserted RS232 from TrustHub

	5 Conclusion
	Acknowledgments
	References

