Detecting Hardware Trojans using Model Guided Symbolic
Execution

Ruochen Dai
ruochendai@ufl.edu
University of Florida
Gainesville, FL, USA

ABSTRACT

We present an automated approach for detecting two types of Hard-
ware Trojans (HTs) in hardware designs. Malicious adversaries
often hide HTs under rare triggering conditions such as timing-
based or input-based conditions to avoid their detection by state-of-
the-art analysis techniques. Our Trojan detection method employs
fuzzing and static analysis to generate models of suspicious hard-
ware elements that are used as oracles to guide symbolic execution.
Experimental evaluation on diverse hardware designs demonstrates
significant speed-ups compared to existing approaches, achieving
on average a 445X speed-up for timing-based HTs and on average
27X speed-up for input-dependent HTs.

CCS CONCEPTS

« Security and privacy — Formal security models.

KEYWORDS

Hardware Trojan, Symbolic Execution, Fuzzing, Static Analysis

ACM Reference Format:

Ruochen Dai and Tuba Yavuz. 2024. Detecting Hardware Trojans using
Model Guided Symbolic Execution. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Globalization of the Integrated Circuit supply chain and the role of
Third-party Intellectual Property in SoC development opened up
possibilities for various attacks in the hardware domain. One type
of attack is injecting malicious logic, known as Hardware Trojans
(HTs), into the hardware designs. The HT is generally designed to
be activated on a rare-condition. Once the condition gets satisfied,
the payload causes malfunctioning of the design, such as Denial of
Service, Secret Leakage, Privilege Escalation, and so on.
Hardware fuzzing [5, 8, 9] has recently become popular in ana-
lyzing hardware designs. Static analysis is a well-known technique
and is often used for data-flow analysis for hardware. The challenge
with HTs is that the location where they are implanted as well as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Tuba Yavuz
tuba@ece.ufl.edu
University of Florida
Gainesville, FL, USA

Inputs Inputs

Distance

Suspicious Signal for
9 Timing-Based
(Input-Based)

Figure 1: Exploration of symbolic execution tree for a)
Timing-based Trojans, b) Input-based Trojans. Black filled
circles represent states whose locations covered with fuzzing,
red rounded rectangles denote the states with suspicious sig-
nal updates, red filled circles represent states violating the
correctness property, the covered area shows states that will
be prioritized during forward (a) or backward (b) symbolic
execution, c) Data-flow graph, d) Control-flow graph.

the triggering logic are not known so it is difficult to use fuzzing
and static analysis directly to detect HTs.

In this paper, we focus on the automated detection of two types
of HTs: timing-based and input-dependent, where the former type
of HTs get activated after a number of clock cycles and the latter
type of HTs get triggered after a specific sequence of inputs. Our
approach uses a combination of fuzzing, static analysis, and sym-
bolic execution to scale the analysis. Specifically, we use fuzzing
and static analysis as oracles that guide symbolic execution into
suspicious parts of the design, which allows symbolic execution
to scale while providing a precise analysis. We have evaluated our
approach on a set of benchmarks from OpenCores and Trusthub.
Results show that our approach for detecting timing-based HTs is
very efficient, especially for those with large trigger depth. Also,
our approach for detecting input-based HTs improves over naive
symbolic execution and fuzzing.

In short, the contributions of this paper are:

e An oracle guided symbolic execution based approach for
detecting timing-based and input-dependent HTs and ex-
ploring the effectiveness of fuzzing and static analysis in
model extraction.

o Extending the data-flow dependency analysis of SVF tool
with control-flow analysis and introducing a dependency
metric that is effective for identifying suspicious signals,

e Implementation of the proposed approach in a tool, called
OruGuiTas?! 2 using state-of-the-art analysis tools AFL, SVF,
and KLEE.

!Means caterpillars in Spanish.
Zhttps://github.com/RuochenDai78/OruGuiTas.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

e Evaluation of OruGuiTas in comparison to state-of-the-art
analysis techniques based on fuzzing, symbolic execution,
and model checking.

2 RELATED WORK AND BACKGROUND

Hardware Trojan detection. Various heuristics on how often Tro-
jans get activated have been used to detect Trojans. These heuristic-
based approaches include identification of unused circuits [4], sus-
picious signals [11], suspicious wires [10], and dedicated triggers
[12]. Formal verification approaches to Trojan detection require
either functional specifications [15] or security relevant specifica-
tions [7]. Self-referencing techniques [6], which eliminate the need
for a golden chip, leverage various physical characteristics of the
circuits to detect Trojans during post-silicon analysis. HWDCT [3]
focuses on only don’t-care transition triggered Trojans. Recently,
fuzzing [8, 9] has been used to analyze hardware designs. While [9]
works on a software representation of the hardware, TheHuzz [8]
simulates the hardware design while guiding fuzzing with a variety
of coverage information.

Symbolic Execution. Symbolic execution is a program analysis
technique that can potentially achieve high coverage of the system
under analysis. It labels inputs as symbolic and typically interprets
the instructions of an intermediate language, such as the LLVM IR,
so that expressions that involve symbolic values are manipulated ac-
cording to the semantics of the instructions. We have implemented
our approach on top of the KLEE symbolic execution engine [2].

American Fuzzy Lop. American Fuzzy Lop (AFL) is a mutational
fuzzer that employs instrumentation in the target program to gen-
erate a control-flow based coverage map [1]. AFL uses genetic algo-
rithms to mutate user-provided inputs using byte-level operations.
These mutations are guided by coverage information obtained from
running the instrumented program on the generated inputs. The
interesting mutants are saved and mutated again and the process
continues with the newly generated inputs.

Static Value-Flow (SVF). SVF is a tool that enables scalable and
precise inter-procedural data-flow and control-flow analysis for C
programs by leveraging recent advances in sparse analysis [16].
SVF is implemented on top of the LLVM IR . It provides two data
structures: 1) The Sparse Value Flow Graph (SVFG) in which the
nodes represent the LLVM IR instructions and the edges represent
data-flow dependencies between those, and 2) Inter-procedural
Control-Flow Graph (ICFG) in which the nodes also represent the
LLVM IR instructions and the edges represent control-flow depen-
dencies such as branching and function calls.

3 APPROACH
3.1 Threat Model

We assume that the Trojan may be inserted into the hardware design
by a rogue designer or by a third-party intellectual property (3PIP)
vendor. For both types of Trojans, we assume that once activated
the payload violates a functional property of the design. While we
assume that in the case of input-based Trojans the attacker needs to
have access to the circuit at run-time to deliver the triggering input
sequence, for timing-based Trojans the attacker does not need to
have an active participation to trigger it.

Ruochen Dai and Tuba Yavuz

Algorithm 1: GenerateOracleModel: Generate suspi-
cious instructions as an oracle for Trojan detection.

Input: P: HW Design, mode: {Fuzzing,Static,FuzzingStatic}, t ype: {Timing,
Input}

Output: Oracle Model
om «— 0: > Set of Instructions;
if mode = Fuzzing or mode = FuzzingStatic then

‘ om « Locs(P) \ FuzzingCov(P)
end
if mode = Static or mode = FuzzingStatic then
if type is Timing then

dfMD2I « SVFExtended(P, DF, max);
‘ cfMD2I « SVFExtended(P, CF, max);

[T ST N RN O

end
else

o
2 o

dfMD2I « SVFExtended(P, DF, min);
cfMD2I « SVFExtended(P, CF, min);

-
5

end

e
IS

om «—om U {si|ss¢€
dfMD2I N cfMD2I A si is a store instruction in P accessing ss};

15 end

16 return om;

3.2 Overall workflow

Our approach takes as input a hardware design specified in Verilog
HDL and one or more functional correctness properties specified in
SystemVerilog Assertions (SVAs). We first translate the hardware
designs into their C++ implementations using Verilator [18], and
their C++ representations are then combined with separate test-
benches to generate either executable binary for fuzzing or LLVM
bitcode for symbolic execution and static analysis.

We use fuzzing as an oracle for both the timing-based and input-
dependent based HTS. We hypothesize that code that could be
covered by fuzzing are easier to reach. So, we identify code locations
that are difficult to reach by filtering out those that could be reached
with fuzzing. We also use static analysis to identify suspicious
code locations for both types of HTs. However, how we identify
the suspicious signals for each type of Trojan differs slightly. For
timing-based HTs, suspicious instructions define values of signals
with maximum distance to some input signal(s) both in terms of
data-flow and control-flow dependencies. For input-based HTs, on
the other hand, suspicious instructions define values of signals
with minimum distance to some input signal(s) both in terms of
data-flow and control-flow dependencies.

Figure 1 summarizes our Trojan detection approach. To detect
timing-based HTs, OruGuiTas first performs one-clock cycle ap-
proximate symbolic execution, where both the input signals and
the internal signals get symbolized. This starts the execution from
arbitrary states possibly including the unreachable states. The suc-
cessors of these states according to one-clock cycle symbolic exe-
cution are explored by prioritizing the states that are difficult to
reach and those that define suspicious signals. Then forward exe-
cution with concretized input values is used to search for violation
of the properties. To detect input-dependent Trojans, OruGuiTas
performs backward symbolic execution starting from the states that
violate the correctness properties until it reaches the reset state.
For both types of Trojans, OruGuiTas explores the candidate states
by prioritizing the difficult to reach states as suggested by static
analysis (as shown by c) and d) in Figure 1) and fuzzing.

Detecting Hardware Trojans using Model Guided Symbolic Execution

Table 1: Benchmark Descriptions of Timing-based Trojan
and Input-based Trojan.

Conference’17, July 2017, Washington, DC, USA

Algorithm 2: DetectTimingBasedHT: Oracle Guided
Symbolic Execution for Timing-based Trojan Detection.

Benchmark l Description

Time-based Trojan
Arbiter 1? Four level, round-robin arbiter, trigger flips the output gnt0
UART ! 8-bit UART, trigger flips the first bit of the received data

IMA_ADPCM “? | Audio compression algorithm, trigger flips the last bit of step index
AES-T2500 3 128-bit AES algorithm, trigger flips the first bit of encrypted key
RISC16F84 12 RISC microcontroller, trigger flips the first bit of RAM write data
AE18_core 1 AE18 8-bit Microprocessor, trigger flips data write back logic

Input-dependent Trojan

RS232-T600 *
RS232-T700 3
RS232-T900 3 Trigger: 8’hAA, 8’h55, 8’h22, 8'hFF. Payload: blocks transmission.
RS232-T901 3 Trigger: 8’hAA, 8’h00, 8’h55, 8’ hFF. Payload: blocks transmission.

Trigger: 8'hAA, 8’'h55, 8'h22 , 8'hFF. Payload: sticks xmit_doneH at 1.
Trigger: 8’hAA, 8'h00, 8’h55, 8'hFF. Payload: sticks xmit_doneH at 0.

! The timing-based Trojan has been generated by modifying the original design
according to the counter-based trigger mechanism from AES-T2500.

2 Benchmark from OpenCores[14].
% Input-dependent benchmark from Trust-Hub[17].

3.3 Static Analysis Extensions

Since Verilator uses a specific implementation of hardware design
signals using a struct data type, we can identify the specific hard-
ware signals in the SVFG/ICFG by matching the index that cor-
responds to the specific field representing the signal in the struct
type with the index in the GetElementPtr instructions. Next, on the
SVFG we find all the paths starting from the load instructions of
the input signals to the store instructions accessing other signals
and compute a metric called Minimum Distance to Inputs (MD2I) to
quantify the data-flow dependency between a signal and the input
signals, excluding the clock and reset signals. MD2I corresponds
to the length of the shortest path. We also extended SVF to extract
the control-flow dependencies from the ICFG and the LLVM IR. In
essence, we initiate the search from the store instructions for the
internal signal and identify branch instructions that control these
instructions, as well as those that control the 1oad instructions that
have a path to these instructions in accordance with the ICFG.
Timing-based Trojans exploit timing behavior variations of a
design to disrupt its normal operation. For instance, a counter-based
timing Trojan counts the number of clock cycles since reset. When
the counter reaches a specific value, the Trojan becomes activated.

3.4 Timing-based Trojan Detection

Figure 1 depicts our approach for timing-based Trojans at a high-
level and Algorithm 2 provides the technical details. Our approach
can leverage individual oracles, Fuzzing and Static, or combine
them into a hybrid one, StaticFuzzing. The oracle generates some
information that helps the symbolic execution steps in prioritizing
paths that are likely to detect the Trojan. Specifically, as shown in
Algorithm 1, we get the code covered during the fuzzing campaign
and compute the code that is not covered (line 3). For the static
oracle, we compute the signals with the maximum MD2I in terms
of data-flow (line 7) and those with the maximum MD?2I in terms of
the control-flow (line 8) under the assumption that such signals may
get used in the Trojan trigger. If there are no signals with a certain
type of dependence, e.g., not found, then SVFGExtended returns all
the signals. Then we get the intersection of such signals and find
the store instructions that access them. So, om denotes the oracle

Input: P: HW Design, Spec: Specifications, mode:
{Fuzzing,Static,FuzzingStatic}, : Timeout

Output: Detected Timing-based Trojan (if any)

om « GenerateOracleModel(P, mode, Timing);

Let I denote inputs of P;

Let S denote registers and wires in P;

Let state denote initial state of P, where I and S marked symbolic;

succs «— SymExForOneClockCycle(state);

Active «— {s’ | s’ =s[(I,S) « Solve(s.PC)] A s € succs A s.pc €

om};

while Active # (0 and © not reached do

8 cur « prioritizeAndChooseNext(Active,om);

9 succ « SymExForOneClockCycle(cur);

10 if CheckViolation(succ, Spec) then

Y N O CHY

N

1 ‘ return true > Trojan Found;
12 end

13 Active «— Active U {succ} \ {cur};

14 end

15 return false > No Trojan Found;

=

model and includes the locations of instructions to prioritize during
symbolic execution.

Once the oracle model, om, gets generated, in Algorithm 2, the
next step labels both the inputs and the registers as symbolic to
start the symbolic execution from an arbitrary state rather than
the reset state, which makes the analysis approximate. Performing
one clock-cycle symbolic execution (line 5) yields a set of successor
states, which get filtered (line 6) based on whether the program
counter (pc) refers to a Trojan relevant code location, om. For those
that are filtered, the path constraint, PC, is used to derive concrete
inputs using the SMT solver as the focused forward analysis work
on these states while using concrete inputs. So, our approach per-
forms full symbolic execution for one clock cycle and then explores
these states for multiple clock cycles until either the specification
violation is found or the timeout is reached. In the focused forward
step (lines 7-14), paths that execute Trojan relevant code locations
are prioritized (line 8).

3.5 Input-dependent Trojan Detection

Input-dependent Trojans are designed to be triggered by specific
inputs to the system, and may be designed to remain dormant until
the desired input pattern is detected.

Figure 1 depicts our approach for detecting input-dependent
Trojans at a high-level and Algorithm 3 provides the details. It
first generates the oracle model (Line 3) by executing Algorithm
1, which uses the minimum distance to inputs when identifying
suspicious code elements using static analysis. Then Algorithm 3
obtains the initial state is (Line 3) and subsequently performs one
clock-cycle symbolic execution from a state where both the registers
and the inputs are marked symbolic (Lines 5 and 6). The generated
states are filtered to include only states in which the specification
fails (Line 7). It uses repeated forward symbolic execution and
chaining states backward to simulate backward symbolic execution.
Performing backward symbolic execution from these error states
may yield states that match the initial state of the hardware, and,
hence, leading to a conclusion that the input-dependent Trojan is
detected (Lines 10-12), or would lead to new states to work on them
backward (Lines 15-17).

Conference’17, July 2017, Washington, DC, USA

Algorithm 3: DetectInputBasedHT: Backward Symbolic
Execution for Input-dependent Trojan Detection.

Input: P: HW Design, Spec: Specifications, 7: Timeout
Output: Detected Timing-based Trojan (if any)
is: initial state, om: set of instructions;
om « GenerateOracleModel (P, mode, Input);
is « ResetDesign(P);
Let S denote registers and wires in P;
Let state denote initial state of P, where I and S marked symbolic;
suces «— SymExForOneClockCycle(state);
Active « {succ | succ € succs A —Spec holds in succ};
while Active # 0 and t not reached do
cur « prioritizeAndChooseNext (Active,om);
if cur.PC holds in is then
‘ return true
end
succs « SymExForOneClockCycle(state);
for each succ € succs do
if cur.PC holds in succ then
> succ acts as a predecessor of cur;

Active «— Active U {succ}
end
end
20 Active < Active \ {cur}
21 end
22 return false

e ® N A G R W N e

o
= e

> "Trojan Found";

= N T
%5 ahR e

> "No Trojan Found";

Table 2: Comparison of different oracle modes (F=Fuzzing-
guided, S=static analysis-guided, FS=Fuzzing+Static Analysis-
guided) for Timing Trojan detection with OruGuiTas, time-

out=6 hours, trigger depth=21°.

Benchmark AFL Static SymEx time (min) Best Total
time (min) | time (min) F S FS time (min)

Arbiter 0.217 1.49 0.661 0.635 0.533 0.878 (F)

UART 0.233 0.97 0.475 0.465 0.367 0.708 (F)

IMA_ADPCM 0.483 1.32 0.507 0.506 0.480 0.99 (F)
AES-T2500 1.767 28.69 216.47 | 212.94 | 180.89 | 211.347 (FS)

RISC16F84 9.65 7.44 2.75 2.94 2.46 10.38 (S)

AE18_core 19.45 18.12 2.26 2.08 2.01 20.2 (S)

A naive approach to detecting input-dependent Trojans is fully
forward symbolic execution, as shown in Section 4.2, starting the
symbolic exploration of input-based Trojans from the error state
provides better performance compared to the naive approach, which
faces the path explosion problem

4 EVALUATION

4.1 Timing-based Trojan Detection

Impact of Oracles. We ran OruGuiTas for each benchmark with
three possible oracle modes as mentioned in Algorithm 2. We com-
puted Fuzzing-guided only (F), Static-guided only (S), and Fuzzing+
Static-guided (FS) in OruGuiTas using AFL time + F time, Static time
+ S time, and AFL time + Static time + FS time, respectively. We set
the Trojan trigger depth to 216 (the value of the counter when the
Trojan gets activated), and the result is shown in Table 2. The Best
Total Time column refers to the minimum time among the different
oracle modes.

Fuzzing-guided only performs the best for Arbiter, UART, and
IMA_ADPCM, Static-guided performs the best for RISC16F84 and

Ruochen Dai and Tuba Yavuz

Table 3: Comparison of different oracle modes (F=Fuzzing-
guided, S=static analysis-guided, FS=Fuzzing+Static Analysis-
uided) for Input-dependent Trojan detection.

AFL Static SymEx time (min) | Best Total
Benchmark
time (min) | time (min) F S FS time (min)
RS232-T600 0.26 0.53 1.51 1.38 0.86 1.65 (FS)
RS232-T700 0.23 0.53 1.73 | 1.46 0.87 1.63 (FS)
RS232-T900 0.29 0.54 1.68 | 1.34 1.04 1.87 (FS)
RS232-T901 0.25 0.56 1.67 | 1.70 0.97 1.78 (FS)

AE18_core, and Fuzzing+Static-guided performs the best for AES-
T2500. We also find that considering the symbolic execution time
only (Columns 4-6), using both oracles has an advantage over us-
ing a single oracle as Fuzzing+Static-guided search can achieve an
average speed up of 1.14 and 1.13, and a maximum speed up of
1.29 and 1.26, compared to Fuzzing-guided only and Static-guided
only, respectively. We think that the knowledge of suspicious sig-
nals improves the performance as the design complexity increases.
However, the overhead of static analysis may make fuzzing more
advantageous due to its lower analysis overhead for smaller designs.

Comparison with other Approaches. We first attempted to com-
pare OruGuiTas to naive forward symbolic execution. However,
the naive approach timed out at a trigger depth of 28 for simple
designs like the arbiter, and at 2° for more intricate designs like
AES, all within a 24-hour period.

As shown in Figure 2, we compare the Best Total analysis time
of our approach with two tools: EBMC [13], and HW-Fuzzing [9],
for varying Trojan trigger depth ranging from 2% to 216, The time
it takes for OruGuiTas to detect the Trojans is not sensitive to
the trigger depth due to using a one-clock cycle full symbolic ex-
ecution during the approximate analysis as the focused forward
analysis uses concrete inputs. Also, while the oracle times depend
on the design and code size they do not depend on the trigger
depth. However, for EBMC and Hw-Fuzz, total analysis time grows
exponentially as the trigger depth increases.

Specifically, for EBMC, it can be very efficient when the design
complexity and the trigger depth are both small, like Arbiter, UART,
and IMA_ADPCM. But when dealing with large designs, like AES,
it quickly runs out of memory even for a small trigger depth of
28, For Hw-Fuzzing, it can also detect specification violations very
fast when the trigger depth is small and does not depend much on
design complexity, however, when the trigger depth is larger than
214, it would quickly timeout. So, our approach performs much
better than EBMC and Hw-Fuzz when the trigger depth is larger
than 214 clock cycles, and achieves an average speedup of 445 times
compared to both techniques.

4.2 Input-dependent Trojan Detection

Impact of Oracles. Similar to timing-based Trojan detection ora-
cle modes, OruGuiTas analyze each benchmark in three different
oracle configurations, as delineated in Algorithm 1. We evaluated
Fuzzing-guided (F), Static-guided (S), and Combined Fuzzing and
Static-guided (FS) configurations in OruGuiTas, quantified by AFL
+ F time, Static + S time, and AFL + Static + FS time, respectively. As
shown in Table 3, the Best Total Time column captures the optimal
timing across various oracle modes. Our analysis indicates that

Detecting Hardware Trojans using Model Guided Symbolic Execution

T T T T T T T T T
E . 22 E
/
£ / : (]
g
=) /. E //
£ ERRC o
g E —
< N £
g 1071]
3 E
= E r /
3 w - 1
A N £ Pl
103 =]
L L L L = L L L L L L
29 ol 13 g15 g7 23 5 o7 29 gl 13 g15 17
Trigger depth (Arbiter) Trigger depth (UART)
T T T T T T T T T T T T T T
uzz E| 10° £ E|
g —e— OruGuiTas
g / £
: /]
Fit]
s
g E| 4
<
E
=]
2 4
L I | I | L L | | | | d
27 29 gl 13 15 17 23 25 27 29 il 13 15 g7
Trigger depth (IMA) Trigger depth (AES)
T T T T T T T T T T T T T T
—e— Hw-Fuzz 4 10° [~ HwFum E
—— MC —=— EBMC
= —e— OruGuiTas —e— OruGuiTas
E ERRtES 4
£ £
& 1 [
2 10| i
= E
E] £
=] [
= 100 = E|
< =
3 b]
. 3 b]
pe

P T E Y P
Trigger depth (16F84) Trigger depth (AE18)

Figure 2: Best Total analysis time of EBMC, HW-Fuzz, and

OruGuiTas v.s. Trigger depth, Timeout is 12 hours, Memory

out of bound is 16GB.

R4
0,
N

using both oracles is advantageous (lines 4-6), as the combined ap-
proach achieves an average and maximum speedup of 1.10 and 1.16
against F-only, and 1.19 and 1.27 against S-only, respectively. We at-
tribute this to the richer information pool derived from dual oracles,
enabling more effective prioritization in symbolic execution.

Comparison with naive symbolic execution. Table 4 shows the
results of input-dependent Trojan detection using naive forward
and backward symbolic execution approaches. It’s clear that naive
backward analysis performs much better than naive forward analy-
sis in terms of detection time. However, OruGuiTas performs better
than the naive approaches. Specifically, oracle-guided backward
analysis achieves up to 36X and 5.6X and on average 27X and 5.2
X speedup for compared to naive forward and naive backward
symbolic execution, respectively.

Comparison with other Approaches. As also shown in Table 4, we
compare the backward analysis time of our approach with HW-
Fuzz on different Trojan designs listed in Table 1. We excluded
EBMC from this table as it generated false positives with a counter-
example length of one for all the benchmarks in this category. It
is clear that OruGuiTas outperforms HW-Fuzz with a maximum
speedup of 2.5X and an average speedup of 2.2X.

4.3 Discussion

OruGuiTas achieves a larger speedup for Timing-based HTs com-
pared to that achieved for Input-based HTs. This is because hard-
ware fuzzing, which is the next best performing approach in our

217

Conference’17, July 2017, Washington, DC, USA

Table 4: Results on Input-dependent Trojan Detection time
with pure backward symbolic execution (BSymEx), forward
symbolic execution (FSymEx), HW-Fuzz, and OruGuiTas.

FSymEx BSymEx HW-Fuzz | OruGuiTas
Benchmark . X . X X . . .
time(min) | time(min) | time(min) | time(min)
RS232-T600 48.67 8.21 4.17 1.62
RS232-T700 58.56 9.08 3.42 1.63
RS232-T900 40.81 9.45 3.88 1.87
RS232-T901 41.21 9.14 3.92 1.78

evaluation, is more effective for detecting Input-based HTs then
Timing-based HTs, which depends on an internal signal that gets
updated independent of the inputs. OruGuiTas, on the other hand,
handles both input dependency and less covered design elements.

5 CONCLUSION

We present oracle guided symbolic execution techniques for the
detection of timing-based and input-dependent HTs and show that
our approach improves upon hardware fuzzing and bounded model
checking with zero false positives.

ACKNOWLEDGMENTS
This project has been partially funded by NSF Award 2019283.

REFERENCES

[1] American fuzzy lop. [n. d.]. "http://lcamtuf.coredump.cx/afl/".

[2] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In 8th USENIX OSDI, San Diego, California, USA. 209-224.

[3] Ruochen Dai and Tuba Yavuz. 2022. A Symbolic Approach to Detecting Hardware
Trojans Triggered by Don’t Care Transitions. ACM Trans. Des. Autom. Electron.
Syst. (aug 2022). https://doi.org/10.1145/3558392

[4] Hicks Matthew et al. 2010. Overcoming an Untrusted Computing Base: Detecting
and Removing Malicious Hardware Automatically. In IEEE Symposium on S&P.

[5] Hoang M Le et al. 2019. Detection of hardware trojans in SystemC HLS designs
via coverage-guided fuzzing. In Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE.

[6] Liu Yu et al. 2014. Hardware Trojan Detection through Golden Chip-Free Sta-
tistical Side-Channel Fingerprinting. In Proceedings of the 51st Annual Design
Automation Conference (San Francisco, CA, USA) (DAC ’14).

[7] Rajendran Jeyavijayan et al. 2015. Detecting malicious modifications of data in
third-party intellectual property cores. In Design Automation Conference (DAC).

[8] Rahul Kande et al. 2022. TheHuzz: Instruction Fuzzing of Processors Using

Golden-Reference Models for Finding Software-Exploitable Vulnerabilities. In

31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August

10-12, 2022. 3219-3236.

Trippel Timothy et al. 2022. Fuzzing hardware like software. In 31st USENIX

Security Symposium. 3237-3254.

Waksman Adam et al. 2013. FANCI: Identification of Stealthy Malicious Logic

Using Boolean Functional Analysis. In Proceedings of the 2013 ACM SIGSAC

Conference on Computer and Communications Security (Berlin, Germany) (CCS

’13). 697-708.

Xuehui Zhang et al. 2011. Case study: Detecting hardware Trojans in third-party

digital IP cores. In Proceedings of the 2011 IEEE HOST, San Diego, California, USA.

67-70.

Zhang Jie et al. 2015. VeriTrust: Verification for Hardware Trust. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 34, 7 (2015), 1148

1161.

Rajdeep Mukherjee, Daniel Kroening, and Tom Melham. 2015. Hardware verifica-

tion using software analyzers. In 2015 IEEE Computer Society Annual Symposium

on VLSI IEEE, 7-12.

OpenCores. [n.d.]. https://opencores.org/.

Michael Rathmair, Florian Schupfer, and Christian Krieg. 2014. Applied formal

methods for hardware Trojan detection. In 2014 IEEE International Symposium

on Circuits and Systems (ISCAS).

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in

LLVM. In Proceedings of the 25th international conference on compiler construction.

TrustHub. [n. d.]. https://www.trust-hub.org/#/home.

Verilator. [n. d.]. https://www.veripool.org/verilator/.

—
)

(10]

(11]

[12]

"http://lcamtuf.coredump.cx/afl/"
https://doi.org/10.1145/3558392
https://opencores.org/
https://www.trust-hub.org/#/home
https://www.veripool.org/verilator/

	Abstract
	1 INTRODUCTION
	2 Related Work and Background
	3 APPROACH
	3.1 Threat Model
	3.2 Overall workflow
	3.3 Static Analysis Extensions
	3.4 Timing-based Trojan Detection
	3.5 Input-dependent Trojan Detection

	4 EVALUATION
	4.1 Timing-based Trojan Detection
	4.2 Input-dependent Trojan Detection
	4.3 Discussion

	5 CONCLUSION
	Acknowledgments
	References

