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Abstract

We establish universality for the largest singular values of products of random matrices
with right unitarily invariant distributions, in a regime where the number of matrix fac-
tors and size of the matrices tend to infinity simultaneously. The behavior of the largest
log singular values coincides with the large N limit of Dyson Brownian motion with
a characteristic drift vector consisting of equally spaced coordinates, which matches
the large N limit of the largest log singular values of Brownian motion on GL(N, C).
Our method utilizes the formalism of multivariate Bessel generating functions, also
known as spherical transforms, to obtain and analyze combinatorial expressions for
observables of these processes.

Mathematics Subject Classification 15B52 - 60B20 - 33D52

1 Introduction

Suppose X (1), X(2), ... is a sequence of N x N independent random matrices, and
let

YM) :=XM)---X(1).

As a natural model for systems exhibiting progressive scattering, the study of random
matrix products has motivations from a variety of contexts including chaotic dynamical
systems [19, 23], deep neural network [30, 32, 53], and wireless communications [56].
If the matrices X (m) are complex and nonsingular, as in this paper, the discrete time
(in M) stochastic process {Y (M)} yez., is a random walk on GL(N, C).
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In this paper, we establish universality of the largest singular values of Y (M) in the
limit as the number of matrix factors M and matrix size N tend to infinity with M =< N.
We focus on random complex matrices X (m) which are right unitarily invariant, i.e.
the distribution of X (m)U matches the distribution of X () for any matrix U in the
unitary group U(N). Under assumptions imposing weak concentration of the support
in R. o and nonvanishing of the average (over m) variance of the empirical measures
of X (m), we show that the fluctuations of the largest singular values match those of
the N — oo limit of Brownian motion Y™ (¢) on GL(N, C).

The approach used in this work is rooted in tools and ideas from integrable probabil-
ity (summarized in Sect. 1.5). This departs from previous local universality results for
random matrices, such as for Wigner matrices (e.g. [21, 57]), which typically employ
non-integrable methods.

1.1 Brownian motion on GL(N, C) and Dyson Brownian motion

We introduce Brownian motion on GL(N, C) and describe the N — oo limit of its
singular values. Let A denote the Laplace-Beltrami operator on GL(N, C) with respect
to the metric induced by the Hilbert-Schmidt inner product

(X,Y) :=Tr(XY")

on the Lie algebra gl(N, C).

Definition 1.1 Brownian motion on GL(N,C) is a diffusion on GL(N, C) with
infinitesimal generator given by %A where YV (0) is the identity.

Equivalently (see [40, §2.1]), YM(¢) is the GL(N, C)-valued stochastic process
(Y (t)}s>0 satisfying the Stratonovich equation

YN =YD odWw™M @), YN =1y
where 1y € GL(N, C) is the identity and

WM (1) = Z Wy (1)b

bep

is additive Brownian motion on gl(N, C). In the notation above, g is any orthonormal
basis of gl(N, C) as a real vector space with respect to the Hilbert—Schmidt inner
product and {Wp,},¢p is a family of independent standard real Brownian motions.

The large N limit of Y& (1), in the sense of *-distribution, is the free multiplicative
Brownian motion [40]. Additional aspects of the N — oo limit are known, including
global fluctuations [17] and the limit of the Brown measure (a candidate for the limit
of the eigenvalue empirical distribution). In this paper, we consider the N — oo limit
of the singular values of YN (1).

Let E(N ) (1) = (EI(N) t) = .- > él(vN) (t)) denote the logarithms of the squared
singular values of YN (t). It is a remarkable fact (see [37, Corollary 3.3], [14], and
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Extremal singular values... 951

[34]) that the evolution of E(N ) (t/4) coincides with that of Dyson Brownian motion
with drift:

Theorem 1.2 ([37, Corollary 3.3]) The process & ™) (t/4) evolves as Brownian motion
on RN with drift

N—-—1 N-3 —N+3 —-N+1
2 b 2 9y 2 9 2 b
started at the origin, and conditioned to remain in the set {x = (x1,...,XyN) : X1 >

oz ).

The original statement from [37] was in terms of the singular values of YN (p).
We note that [37] also provided analogous descriptions for Brownian motions on
symmetric spaces G /K where G is acomplex semi-simple non-compact connected Lie
group with finite center and K is a maximal compact subgroup. In this framework, the
drift vector is the sum of the associated positive roots, where our setting! corresponds
to Type A.

From the identification with Dyson Brownian motion with drift, the process E(N (1)
admits determinantal spacetime correlation functions with exact formulas for the cor-
relation kernel. In [39], the N — oo limit of & N )(t) was studied via these kernels,
where it was shown to exhibit number variance saturation. In this paper, we prove
a stronger form of convergence using machinery from [16]. To describe the limiting
object, we require the notion of a line ensemble. While the formal definition is deferred
to Definition 3.1, we may simply view line ensembles as an indexed (possibly infinite)
sequence of random paths (1; (f))icx.

Theorem 1.3 There exists a limiting infinite line ensemble (in the sense of [16], see
Definition 3.1)

N
E0 = @0, 00, = lm V)~ S —logN

where the convergence holds in the following sense. For any T > 0 and any positive

integer k, the random continuous function (é‘l(N)(ﬁ) — % —logN, ..., E;N)(f—t) —

% — log N) converges to (£1(t), ..., &()) as N — oo in the weak-* topology of
probability measures on C([%, Tk

In view of Theorem 1.3, the limiting process & () may be interpreted as a Z>-tuple
of non-intersecting Brownian motions with drift where the ith Brownian motion (from
the top) has drift —i + % The joint Laplace transform and correlation kernel of &(¢)
can be explicitly computed, and are given in Theorem 3.2.

I Since GL(N, C) does not have a finite center, Theorem 1.2 follows from the application of this framework
to SL(N, C)/SU(N) and viewing GL(N, C)/U(N) as SL(N, C)/SU(N) x R. .
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Fig.1 Samples of’;'(N)(i) where N = 50, with 0 <7 < 0.25 (left) and 0 < ¢ < 10 (right)

1.2 Main result

We establish the asymptotic notation used throughout this paper. Given sequences
Apn, By we write Ay = O(By) if there exists a constant C > 0 such that |[Ay]| <
C|By/| for N sufficiently large. We write Ay << By or Ay = o(By) if Ay/By — 0
as N — oo. We write Ay < By if there exist constants Ci, C» > 0 such that
C1|By| < |An| < C2|By| for N sufficiently large.

Our main result is that the largest log squared singular values of random matrix
products ¥ Y) (M) in the limit N, M — oo with N =< M converges to the infinite line
ensemble {&(¢)};~0 in finite dimensional distribution, under mild assumptions. Given
an N x N matrix X, let

X% = X*X
and tr (X) = % Tr(X) = % Z,N: 1 Xi; denote the normalized trace.

Theorem 1.4 Suppose XM 1), xXMN(2), ... are random complex N x N matrices
with right unitarily invariant distributions and denote by

N N
YV ==y V)

the squared singular values of XN (M) - - - XN (1). Assume that
(i) there exists C > 0 such that

1-P (all squared singular values ofX(N) (m) are contained in [C_l, C]) =o0(1/N)

(1.1)
uniformly overm = 1,2, ..., and
(ii) there exists a continuous y : R.o — R such that limy o y (t) = 0 and
[tN]
Ly w@x®enh —w(XDmP? |, (12)
N tr (X0 (m)2)2 '

in probability as N — oo, for each t > 0.
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Then for each positive integer h, the process (in time t)

[N
logy™ (INJ) = 3 log (tr |X<N>(m)|2) “logN, j=1,....h

m=1

converges in finite dimensional distributions to the top h paths &1 (y (t)), ..., & (y (1))
of §(y (1)).

The key assumptions, besides unitary invariance, are given by (1.1) and (1.2).
Condition (1.1) ensures that the largest singular values are sufficiently unlikely to
escape to infinity. While this assumption may be relaxed, it is clear that there must be
some control over the behavior of the largest singular values. For example, consider
unitarily invariant random matrices XV (1), .. ., XM —=1), XN(M) + ayuu”
where u is a uniformly random vector from the sphere in CV. For 1 < j < M, suppose
XM J) has singular values between a, b > 0 fixed and let Ay > (b/a)N . In other
words, the first M — 1 matrices are well-behaved, but the M th matrix is a well-behaved
matrix perturbed by a large rank-one spike. It can be shown that the largest singular
value of

XMy xM = 1y (X(N)(M) n )\NuuT)

will escape to infinity faster than the second largest, so that our theorem can no longer
hold in this setting. Thus, even if a single matrix factor violates Condition (1.1), albeit
severely, the conclusion of the theorem no longer holds.

Note that Condition (1.1) also demands that the smallest singular values do not
approach 0. However, we expect our condition can be relaxed to include possibly
singular matrices, i.e. replace [C —1 Clwith[0, C],as long as we require that a nonzero
fraction of the singular values are contained in [C !, C] in the limit. To admit singular
matrices, an additional condition of this type is vital to avoid multiplying by zero
matrices, or matrices close to the zero matrix.

Condition (1.2) ensures that the time parameter of the process converges to a non-
trivial deterministic limit, where the individual summand

1w (XM —a (XN m)*)?
N tr (IX® (m)[2)2

is the increment of time that the matrix factor X ™) (m) contributes.
An immediate corollary for the case where the matrix factors are i.i.d. is given
below.

Corollary 1.5 Suppose XN (1), XN (2), ... is an i.i.d. sequence of random complex
N x N matrices with right unitarily invariant distributions and denote by

N N
YWy ==y
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the squared singular values of X™N) (M) --- XN (1). Suppose XN (1), XN (2), ...
satisfy (1.1), and

tr (IXMm) Y — tr (1 XN) (m)[?)?

(N) 2
tr (|1XY(m)|°) and tr (XM (m)|2)?

converge in probability as N — 0o, where the latter has a positive limit a. For each
positive integer h, the process (in time t)

1N
logy™ (INJ) = 3 log (tr |X(N)(m)|2> “logN, j=1,....h

m=1

converges in finite dimensional distributions to the top h paths & (at), ..., &, (at) of

&(ar)

Prior to this work, convergence of the largest log singular values to & (f) was known
for products of Ginibre and truncated unitary matrices [1, 3, 45]. Recall that a complex
Ginibre matrix is a rectangular matrix of i.i.d. standard complex Gaussian entries, and
a truncated unitary matrix is a rectangular submatrix of a Haar distributed unitary
matrix. The distribution of the former is parametrized by the matrix dimensions and
the latter is parametrized by the matrix dimensions and the size of the ambient Haar
unitary matrix.

For products of square Ginibre matrices, the convergence of the largest log singular
values to &(¢) for fixed time was shown by [1, 2, 45], with generalizations to products
of rectangular Ginibre matrices indicated in [45]. Extensions to joint time convergence
and for products of truncated unitary matrices were established in [3]. The accessibility
of these examples are due to determinantal and related structures available in those
cases [3, 5, 6, 13, 42]. In our setting, this structure is not available in general, thus we
appeal to alternative methods which we detail later.

To illustrate the relation between Theorem 1.4 and these previously established
results, we briefly review the case for products of Ginibre matrices. This is simpler
to state than analogous results for truncated unitary products as it involves fewer
parameters (see [3, Theorem 1.7] for details).

Given a sequence of positive integers {N; := N;(N)}i>o depending on N, where
Nog =N and N; > N, let

XM (m) = (G m)*(GN (m))1/?

where G™)(m) is an N, x N complex Ginibre matrix (2 > 1), and consider the
associated process (YN (M)} MeZ, Of matrix products. Under mild conditions on the
parameters {Ny, (N)}mez., (see [45, Theorem 3.4])? which correspond to condition
(1.2) in Theorem 1.4, the largest log singular values of ¥ ™) (M) converge to those

2 The setup from [45] was in terms of an equivalent, more elegant setup where X M (m) is a rectangular
N X Np—1 complex Ginibre, see [3, Appendix A] for details on this equivalence. We stick to products of
square matrices to remain consistent with the setting of this paper.
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of &(¢) under an appropriate time change and translation, in the regime M =< N.
Theorem 1.4 does not imply this result in general because the singular values of
XM (m) can get arbitrarily close to 0 if N,,/N approaches 1, violating (1.1). If we
include the additional hypothesis that

lim inf inf VLY

N—oo i>1

> 1, (1.3)

i.e. the ratios N;/N remain separated from 1, then the result for products of Ginibre
matrices now follows from Theorem 1.4.

Although Theorem 1.4 requires the additional assumption (1.3) to reach the full
strength of previous results on Ginibre products, the methods in this paper can recover
these previous results (without (1.3)) by the integrability of Ginibre and truncated uni-
tary matrices. However, further development is required to deal with general matrices
with some singular values approaching 0.

1.3 Discussion

Theorem 1.4 appears closely related to the functional central limit theorem for
GL(N, C). Much like Donsker’s invariance theorem for random walks on R, a ran-
dom walk on a connected Lie group G converges to an appropriate diffusion when
the increments approach the identity and the number of steps is properly rescaled
[55]. Indeed, making right unitary symmetry and mean zero (of log of the increments)
assumptions, random walks on GL(/, C) converge to Y) with time parametrization
dictated by the increments of the original random walk. However, a key distinction
which separates Theorem 1.4 from the GL(N, C) functional limit theorem, besides the
fact that N — oo in the former, is that the increments are not approaching the identity.
The connection with YV is even more striking when comparing to previous results
on global limit shapes [33, 47, 48] and fluctuations [28] of products of right unitarily
invariant random matrices, where the behavior was shown to be non-universal and
independent of the relative growth between N and M.

The connection between Y®) and products of random matrices in our regime was
hypothesized in [7], based on the main result of that work which established that the
drifts of log singular values matched the drifts of the log singular values of Y. Our
results bolsters this hypothesis by demonstrating this connection holds at the level of
fluctuations, not just in terms of the large time behavior of the processes.

This paper focuses on the regime N, M — oo where N =< M. However, for
products of Ginibre matrices, the regimes N > M and N <« M are also known [1, 2,
45]. For N <« M, the so-called picket fence statistics appear, where the ith largest log
singular value concentrates near —i + % after suitable rescaling. For N > M, GUE
statistics appear. Thus the process & (f) may also be viewed as an interpolating process
between these two regimes. The appearance of the picket fence statistics is directly
related to separation of the curves in &(¢) as t — oo according the drift sequence
—%, —%, —%, .... The appearance of GUE statistics corresponds to forgetting the
driftas t — 0.
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In view of this description for Ginibre matrices, Theorem 1.4 suggests (though does
not directly imply) that for N < M, the log squared singular values of the random
walk Y ™) (M) converge to the picket fence. This can be recast into a statement about
universality of Lyapunov exponents, by interpreting the limit N < M as taking limits
M — ooand N — oo in that order. More precisely, Oseledets’ multiplicative ergodic
theorem [52] asserts the existence of Lyapunov exponents

1
WV = W}gnoomlogyi(N)(M), 1<i<N
for fixed N. While these Lyapunov exponents are not universal, we expect that under
general assumptions as N — oo the largest Lyapunov exponents should converge
to picket fence statistics upon properly rescaling and translating. Results of this type
were established for products of truncated unitary and Ginibre matrices in [7].

Likewise, Theorem 1.4 also suggests that for N > M, the largest singular values
of Y™ (M) should converge to GUE statistics given by the Airy point process. In
the extreme case where the number of matrix factors M is fixed and N — oo, the
global limit shape can be understood in terms of free probability [58]. However, local
statistics are far less understood, though significant progress [20, 36] has been made
in the form of regularity and local law results at the edge. The belief is that the Airy
point process should appear as long as the empirical distribution of the matrix factors
are suitably regular, and that the regularity can be relaxed as the number of matrix
factors M increases. A similar phenomenon was confirmed for local statistics of sums
of random Hermitian matrices [4].

1.4 Further directions

A natural question is whether the large N limit of the statistics of Y?V)(¢) appear for
products of random matrices beyond the edge. Returning to the case of products of
complex Ginibre matrices, it is known [2] that the bulk statistics in the regime M =< N
continue to the match that of YV)(¢), suggesting that this universality holds in the
bulk. It is worth noting that for products of square Ginibre matrices, there is a hard
edge which is absent for YY) ().

Letus remark on several related models which do not exhibit right unitary symmetry.
For products of complex Wishart matrices (matrices with centered, variance 1/n, i.i.d.
random variables not necessarily Gaussian), we conjecture that the large N limit of
YM)(¢) statistics continue to appear at the edge and bulk as well. In another direction,
one can consider other symmetry classes, such as products of real matrices with right
orthogonal invariance or of quaternionic matrices with right symplectic invariance.
Natural examples are products of real Ginibre matrices and truncated Haar orthogonal
matrices for the former, and products of quaternionic Ginibre matrices and truncated
Haar symplectic matrices for the latter. These models, and one-parameter deformations
of these models in the Dyson index f in the spirit of B-ensembles, were considered
in [3] where tightness results were obtained at the edge in the regime M < N. While
convergence results beyond f = 2 are unavailable, we expect N — oo limits of
B-deformations of YV () to appear, where for § = 1 and 4 this should be the
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corresponding diffusion on GL(N, R) and GL(N, H). respectively (where H is the
skew field of real quaternions).

Although convergence results for products of right orthogonally invariant real matri-
ces are not available, there is a similar model which may be accessible via existing
methods. The eigenvalues ofX,{,, .- XlTAXl --- Xy where X1, ..., Xy arereal Gini-
bre matrices and A is some real antisymmetric matrix are determinantal [22, 41],
structure which arises from the orthogonal Harish-Chandra-Itzykson-Zuber integral.
The behavior of the eigenvalues in the regime M < N have not been studied, though
it may be accessible by analysis of correlation kernels. It would be interesting to see
what behavior arises in this regime.

There is also recent progress on singular numbers of products of p-adic matrices
[59] which exhibit some parallels to our setting. In particular, there is a universality
phenomenon where objects corresponding to Lyapunov exponents converge in the
large N limit to a geometric progression. It is possible that there may be analogues of
our result in this setting.

1.5 Method

The methods in this paper rely on an analogue of the Mellin transform for distributions
of right unitarily invariant matrices. Given a random X in GL(N, C), define

Ox(z)=F U |UX*XU_1|"'dU:| , zecCN
U(N)

abusing notation by using the random X as a subscript of ®, where

N—-1
Y[ = (det V)™ [T (det ;)™ =+
j=1

is a generalization of the power function for positive definition matrices; Y ; is the
J x j top left corner submatrix of ¥ which itself is positive definite by Sylvester’s
criterion. The expectation satisfies the factorization property

Pxy(z) = Px(z2)Py(z)

where X, Y are independent random right unitarily invariant complex N x N matrices.
These ideas, and their additive analogue, have been used to compute exact density
formulas for a variety of matrix ensembles as in [24, 43, 44, 60] under a common
framework.

The integral within the expectation of ®x(z) is known as the Gelfand-Naimark
integral. It can be explicitly evaluated [26]

@ Springer



958 A.Ahn

/ U diag( U U = () —
iag(xy, ..., xy =A(pN)————,
U(N) A(z)A(x)
A(uy,...,uny) = l_[ (; —uj)
1<i<j<N

and may be viewed as a multiplicative analogue of the Harish-Chandra-Itzykson-Zuber
integral [31, 35]. The right hand side is a (normalized) multivariate Bessel function, a
continuous analogue of a Schur function. This connection with symmetric functions
yields a collection of tools for the study of right unitarily invariant random matrix
products. In particular, we can act on the spherical transforms by certain operators
diagonalized by the multivariate Bessel functions to obtain observables for singular
values of matrix products. Similar ideas were used to study other random processes
with connections to symmetric functions, including polymers [8], measures arising
from representation theory [ 10—12], the 8-Jacobi corners process from S-ensembles [9,
29], and many more. This idea was used by [28] to study global fluctuations of random
matrix products, where the spherical transform was referred to as the multivariate
Bessel generating function, as we will in the body of this paper due to methodological
connections with their work.

Our method relies on the extraction of joint observables for singular values of
Y ™) (m) via the appropriate family of operators. The observables and corresponding
operators used in [28] are not amenable for the analysis of edge statistics in our
setting. Thus, we consider a family of operators suitable for our regime corresponding
to observables which give the joint Laplace transform of the log singular values of
Y ™) (M) (over varying M). This leads to considerable differences from the analyses
of [28]. Our observables allow us to access the edge in a similar manner as the method
of high moments in [54] probed the edge for Wigner matrices. In short, joint Laplace
transforms of the singular values are dominated by the largest singular values in our
limit. Using exact formulas, these observables have expressions in terms of large
combinatorial sums which can be asymptotically identified with expressions which
correspond to the large N limit of observables of YW )(1).

1.6 Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce the main
tools to access the observables of singular values of random matrix products: the
multivariate Bessel generating function and associated operators. Section 3 introduces
the formalism of line ensembles and is devoted to proving Theorem 1.3, along with
auxiliary results for later parts of the paper. Section4 introduces the S-transform and
the ¢ function of a measure on R ¢, and similarly proves auxiliary results for later
parts of the paper. Section5 obtains asymptotics of multivariate Bessel functions,
bootstrapping off of a result of [28], a key input for the asymptotics of the joint
Laplace transforms that we want to compute. Finally, Sect. 6 proves the main result
Theorem 1.4, containing the core asymptotic analysis of this paper.
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2 Joint Laplace transforms and multivariate Bessel functions

In this section, we introduce the multivariate Bessel generating function, also known
as the spherical transform, which are expectations of random matrices over the mul-
tivariate Bessel function, see e.g. [25] and references therein. The multivariate Bessel
generating functions cohere well with matrix products, a fact which furnishes us with
expressions for observables of squared singular values of random matrix products.

Definition 2.1 The multivariate Bessel function indexed by a = (a; > --- > ay) €
RY is the function

det [e51%]"

B ij=1
Ba(z) = AZ)

which is holomorphic for z € CV, where

AR = [] @-zp-

I<i<j<N

Definition 2.2 Let X be a random matrix in GL(N, C) with right unitarily invariant
distribution, Denote by x = (x,...,xy) the squared singular values of X. The
multivariate Bessel generating function of X is defined by

ooy = [ 20

Blog x(oN)

where py == (N — 1, N —2,...,0), given that this expectation exists in a neighbor-
hoodof (N —1,N —2,...,0).

The normalized multivariate Bessel function within the expectation is the zonal
spherical function for the Gelfand pair GL(N, C), U(N) [46, Chapter VII]. If X is a
scalar (i.e. N = 1), then the multivariate Bessel generating function reduces to

dx(z) = E[|X[*]

which is the Mellin transform for the distribution of |X|2. Thus, for general N the
function ®x is an extension of the Mellin transform for positive definite matrices
X*X. Moreover, we can define a generalized power function on N x N positive
definite matrices Y

N-—1
|Y|? := (det Y)™V ]_[ (det Y,-X,-)Z-f*?“'*‘
j=1

where Y ; isthe j x j top left corner submatrix of Y. Indeed, by Sylvester’s criterion,
the determinants are positive, thus the complex exponentials are well-defined. Then
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960 A.Ahn

Blogx(l) _ det[x;i]z(\,ljzl

Bogx (o)~ PV A @AM

= / \U diag(x)U ' dU
U(N)

where the integral is over the normalized (with volume 1) Haar measure on U(N). The
latter integral is known as the Gelfand—Naimark integral [26]. From this perspective,
the multivariate Bessel functions are unitarily invariant (under the conjugation action)
generalized power functions on positive definite matrices.

Just as products of independent random variables factor under the Mellin trans-
form, the multivariate Bessel generating functions satisfy the following factorization
property:

Lemma 2.3 If X and Y are independent N x N random matrices with right unitarily
invariant distributions, then

Oyy = Oy - dy.

Proof If X and Y have deterministic squared singular values x € Rfo and y € Ri’o
respectively, then this follows from the identity

Blogx(z) Blogy(z) E|: Blogw(z) :|

Blogx (oN) Blogx (on) - Blog w(ON)

for zonal spherical functions, where w are the squared singular values of XY, see [46,
Chapter VII]. The general case follows from taking mixtures of the aforementioned
case. O

We caniterate Lemma2.3.Let X (1), X(2), ...beindependent N x N right-unitarily
invariant complex random matrices. Given that the multivariate Bessel generating
functions @ x(,,y (m > 1) exist, the product Y (M) := X (M) - - - X (1) has multivariate
Bessel generating function

M
l_[ Dx(m)(21s -5 2N)-

m=1

Given ¢ € C, define

N al c+zi —zj
D, := D! ):=Z 1_[— ez

i \ja T
where 7., f(z1,...,2nv) = f(z1,...,2i + ¢, ..., zn). With these definitions in
place, we claim that
N
DCBIng(Zlv S, ZN) = <Zx;) Blogx(Zlv <2 ZN)- (2.1)
i=1
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To see why this eigenrelation holds, observe that

_ i —Zj
AT AR =] —
i4i c+zi —27j

so that

DCBIng(Zla <5 ZN)

.
ﬁ: 1—[ ctii—zj |, detlx/ 17—y
< ST A

o1 \ gz T

1 c+zi —zj -1 ZjIN
= m ' 1_[ — | A@) T, A®R) T, det[xk]]j,kzl

. y
=EZ ca D (=D Hxa(n

i=1 UEGN

N
<;xlc) A( )det[xk ]jk 1 — (ZX )Blogx(Z],...,ZN)

i=1

where Gy is the symmetric group of order N and (—1)? is the sign of the permutation
o.

Proposition 2.4 Let X (1), X(2), ... beindependent nonsingular N x N random matri-
ces with right unitarily invariant distributions and multivariate Bessel generating
functions @1, @2, ... respectively. Assume that the multivariate Bessel generating func-
tions are analytic on CN. Fix real numbers cy, . ..,cp > 0 and integers My > --- >
My > My41 = 0. Suppose y(M) € RQ’O is the vector of squared singular values of
Y(M)=X(M)---X(1). Then

k N
[1> v

i=1j=1

M My
= D, 1_[ Om(1...,2n) - Dy 1_[ O (215 .-, 2ZN)
mi=M>+1 mp=Mp41+1

Z=pN
where the D, operators act on everything to their right.

With Theorem 1.2, we can compute the multivariate Bessel generating function for
Brownian motion on GL(N, C) using the following general result:

Proposition 2.5 Suppose that 3(t) is the vector of N non-intersecting Brownian
motions with drift @ = (u1 > --- > un) and n(0) = 0. If

n(t)+a:= @) +a,...,nn@) +a)
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for some a € R, then

t

N L(, 1 a)2

E [M} _rpeet
B’l(t)Jra(IL) Pl e%(uiJr%)z

Recall our notation (& 1(N ) > 0> gz(vN )) for the log squared singular values of

Brownian motion Y (t) on GL(N, C). Using our description from Theorem 1.2 for
this process as Dyson Brownian motion with drift, Propositions 2.4 and 2.5 imply

Corollary 2.6 Givency,...,ck >0andt; > -+ >ty > ty+1 = 0, we have
| T3 (0-4)
i=1 j=I
N e%(l] —1)(zi—N+1)? N e%(tk_tkﬂ)(zi_N"'%)z
= D, -+ Dg, (2.2)

1 H—t | 2 1 f—t 21 2
i=1 2=\ —ity i=1 2=t~y

Z=pN

where the D, operators act on everything to their right. The right hand side can be
expressed as a multiple contour intergral:

k N i Ni;
| T3 (0)-%)
i=1j=1
k
! (zi —zj)(zi + ¢ —zj —¢))
=(2m’)’<7§”'?§ [1 Gi—z2j — ;)@ +ci— .)H (23)
l<i<j<k i —Zj JIZi i — 2 i
(e — 1)
Hrit) re g + N)T (@) dai
e%(ZI-%)Z F'(zi 4+ ¢l + N) ¢
where the z; contour is positively oriented around 0, —1, ..., =N + 1 for1 <i <k

and the zj contour contains z; + ¢; and z; — cj foreach 1 <i < j < k.

Remark 1 The contour integral formula (2.3) can be viewed as a special case of [4,
Propositions 2.8 and 2.9] and is closely related to the formula [3, Theorem B.2] for
observables of Schur processes. These ideas go further back to the work of [8] where
Macdonald processes, generalizations of the Schur processes [51], were introduced
to study directed polymers. In this work, a family of contour integral formulas for
observables of Macdonald processes were used to access these polymer models.

We now provide the proofs of these results.
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Proof of Proposition 2.4 'We show that

k N
E HZy'(M)ci Biog y o) (215 -+ -5 2N)
o Biog ymy) (oN)

i=1j=1
2.4
" e (2.4)
ZDcl l_[ ‘Pml(Z1»~--,ZN)"'Dck l_[ (Pmk(le-wZN)
mi=M>+1 mp=Mj41+1

by induction on k. The result follows from evaluating the expression above atz = py.
Indeed, (2.1) and Lemma 2.3 imply that

E ﬁ:y (M) Biog ymy (21, - - -, ZN) D ﬁ‘p @ )
j = 1o--y 2N
ot ! Biog yuy (o) szl "

which is the k = 1 base step in the induction. Next, suppose we know that

k N
E gy | By @ - 2n)
HZY}( i)

2 Biog y(M2) (ON)
2.5)
My My
=D, l_[ ®my (21, -5 ZN) - Dey l—[ Omy (21, -5 2N)
my=M3+1 mg=Mp+1+1

which is equivalent to assuming the induction hypothesis for k — 1. Multiply both
sides by

M,

1_[ ©m (21, ..., 2N)

mi=M>r+1

and apply D,,. Then the right hand side of (2.5) becomes the right hand side of (2.4).
The left hand side of (2.5) becomes

ul . ¢ Blogy(Mz) (z1,....2Nn)
Do [ emG o E| ([ w0e | =25 ™
my=Ma+1 i=2 j=1 log y(M2) \PN
L Biog y(m») (z1 w)
: 0, EER AR A
=E|([]2 0 | Do =22 ™ [T emGi....2w)
i=2 j=1 log y(M2) \PN mi=Mr+1

(2.6)
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which we want to match with the left hand side of (2.4). Observe that

M
Biog y(My) (@15 - - - ZN) . Biog y(mp) (@15 - - - ZN)
e [T emGi.on) =B =200 (M)
logy(Mz)(PN) my=My+1 logy(Ml)(PN)

by Lemma 2.3. In words, the left hand side is the multivariate Bessel generating
function for the matrix product X (M) X (M — 1)--- X(M> + 1)Y (M) = Y (M)
where we condition Y (M>) to have squared singular values given by y(M>). Using
the identity above, (2.6) becomes

kN Biog ymp) (21 ZN)
e[ (F155onr ) o] B
l_[ Z S “ Blog ymp) (ON)

y(M2)]

i=2 j=1

LY . al ¢ Blogymp (@1, ..., 2n)
=E | [[]D yim) | E| D yjmy)
j=1

y(M>)

i=2 j=1 Biog y(ay) (PN)

by commuting D,, with the conditional expectation. Thus we obtain the right hand
side of (2.4) by consolidating the expectations. O

Proof of Proposition 2.5 We prove the statement for a = 0, the general case follows
from the identity

N
Byia(zi, .- 2n) = (]‘[W) By(zi, ..., 2n).
i=1

The density at time ¢t of N Brownian bridges starting at & (at time r = 0), ending at b
(at time T'), and conditioned to never intersect is given by

1 N N
det [pi(ai, nj)]: . det[pr— (i, b)) .,
N!det [pT(al-,bj)]N [ ) ]t,,/—l [ T—t\Ii, Oj ]1,1_1

i, j=1
_ =2
e 2t

V2t

pl(-xv y) =

which expands out to

n. 1N bin: N
iy 2inlj
N2 o2 o 2 e\ detje | detfeTT
1 i i i i i =1 =1
- 1_[677+2772(T77)+ﬁ672t(7‘—t) L= L=
Qut(l— g)N/2 ab; 1N
Nldet|e™T

i=1
i,j=1

supported on § € RV, by e.g. [38]. Here, the density is on the unordered positions of
the Brownian motions. Take a; = ¢(N —1i) and b; = T ;. Then the density becomes
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1 Y iy IV
N3 1_[@ 2tT 2T-ne 2(T-0 | det | e T—¢
N! (2nt (l — —)) el i,j=1
en; enj
et —et
l_[ el — eSMj

1<i<j<N

where we use the Vandermonde determinant identity

A(z) = H (zi _Zl)_det[ j]lgi,jszv'

1<i<j<N

Sending ¢ — 0, then T — o0, we obtain

N 2 2
1 g N A/1)
- 2 2 | det|e®ii|. .
N!(Znt)N/2 (Ee ) € [e ]:,,/:l A(ﬂ)

This is the time 7 marginal density for Brownian motion on R" starting at 0 with drift
vector p, more specifically this density corresponds to the unordered coordinates of
this Brownian motion (so the density corresponds to a measure on RY rather than on
the Weyl chamber {x; > --- > xy}). We have

AN
By (2) _ det [ez'n]]i,jzl A(p)
By () A(2) det [eMi ”f]ff’jzl '

Then

2

N N 2
l—[e ;2> det[ Zrﬁj]szl AAO(]z/)t) He_% dn

i=1 i=1

0@ ] _
By (1) _N'(zm)N/2 .
N

_ -t zin 1N
= N'(2m)N/2 (He 2 ) 2@ Jar det [V ], _ det
n?

1

() eF] e

By Andréief’s identity, we obtain

N

B(t)(z)} 1 AN [/ X\N=T 2 }N
E i = — det _ XZi 7 d
[Br/(t)(ﬂ) e (L ) 3 e LG) e =i

| N2\ 1
= W Ue 2 A( )det[MN ](Zl)]lj 1

2.7)
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where

n (x— 2)2 d (chz)2
M, (2) :=/ (f) e~ —xzﬁf xMe” T dx.
R M NG R

We claim that M,,(z) is a degree n polynomial in z with leading coefficient /2. We
proceed by induction on n. Clearly, My(z) = ~/2m. Observe that

(x—2)?

txz t n
My (0) = \/Z/ xeT T dx = JE/ (=2 T dx=~1)] (Z)(—Z)"_kMk(z)-
R R k=0

Rearranging, we get

n—1
My (2) = t7"2M,(0) = ) (n>(_1)n_kMk(Z)

k=0 k

By our induction hypothesis, we have
n—1 n
My (z) = — (Z <k>(—1)"_k> ~2m7" + lower degree terms
k=0

Thus the top degree term is +/2w 7", completing the induction. Applying row opera-
tions, we have

detlMy— ;1Y ;=) = M)V A).
Plugging this into (2.7) completes the proof. O

Proof of Corollary 2.6 Set

B);,(N)(%)_%(Zl, ..., 2ZN)
Di(z1,...,zn) =E

By 1y (on)

The joint distribution of E(N)(%’() — %, e, §(N)(%) - % is given by the joint
distribution of the log squared singular values of

XM (),
XNE=D (g — )XV O (1),

XMD @ — 1) - XNV @y — )X N0 @),
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where XMV (1), ..., X0 (1) are independent copies of e’%Y(N)(ﬁ). Then Propo-
sition 2.4 implies

k N (N) _ N
]E|:l_[ Ze (E ( 2 )i| :Dclq)tlftz(zlv---vZN)"'IDckq)tkftk+|(Zlv~-~7ZN)}z:pN-

We compute ®;. By Theorem 1.2, & N )( ) — evolves as

() — (N —3)t

where 7(s) is N non-intersecting Brownian motions with drift py = (N — 1, N —
2,...,0), started at the origin. Proposition 2.5 implies

B,,(N)(,)_(N_%>t(11, C.,ZN)

D (z1,...,2n) =
Bﬂ(m(;)—(N—l)t(pN)

2

Thus we have shown (2.2).
We now show (2.3). We first claim that if fi(z), ..., fx(z) are entire functions, then
(recalling D, acts on everything to its right in an expression)

) ) e

i=1

f % l—[ —wj)(w,-—l—c,-—wj—cj)
(2771)" I<icj<x Wi T W) — Wi+ o —wy)
N
1—[ l—[fz(w,+cl l—[wi+6i—z,- dw;
Se(w;) izl w; —Zj Ci
where the w; contour is positively oriented around zp, ..., zy for I <i < k and the

w; contour contains w; + ¢; and w; — ¢; for 1 <7 < j < k. This can be proved
by induction on k using the residue theorem and the definition of D, see e.g. [3,
Appendix B].

If we set

(tz—fz+1)(Z—N+%)2

fe(x) =e
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for¢ =1, ..., k, and apply (2.2), we obtain

k N N () Ny s . W — s
a(e™(5)-%) | 1 (wi —wj)(w; +¢ —wj —cj)
]E|:1_[ Ze (./ (4) 2):|_(271i)k% % 1—[ (wi—wj—Cj)(wi+Ci—wj)

I<i<j<k

k ko Geter ) o A 132 N .
1_[ 1_[ e 23— Witci—N+3) 1_[ w;i +ci —N+j dwi’
, . wi—N+J ¢

Cog—tpyp) 1y2
t=i e 2 Wi=N+3) j=1

ﬁw—i—ci—N—i-j _ T(w; +¢ + DM(w; — N + 1)
W—N+J T(w; +¢i — N+ Dl(w; + 1)’

By changing variables w; = z; + N — 1 and consolidating the product over ¢, (2.3)
follows. O

3 Limiting line ensemble

The purpose of this section is to introduce line ensembles introduced in [16] and
prove the existence of the limiting line ensemble £(¢) and the convergence result
Theorem 1.3. We prove auxiliary lemmas on the way to the proof of Theorem 1.3 for
later usage.

Definition3.1 Let X C Z and A C R be intervals. Consider the topological space
C(X x A) with the topology of uniform convergence on compact subsets of ¥ x A.
We may view C (X x A) as the space A x C(A) of sequences (1; (t));ex of continuous
functions on A by the identification n(i, t) = n;(t) forn € C(X x A). A line ensemble
(on A) is a probability measure on C (X x A) with respect to the Borel o -algebra. For
us, the set X will always be {1, ..., k} for some k or Z~. An infinite line ensemble
will then be a line ensemble with ¥ = Z. . A line ensemble 5 is non-intersecting if
ni(t) > n;(t) foralli < jand € A almost surely.

Theorem 1.3 claims the existence of an infinite line ensemble {& (7)},~ which is the
limit of {& M) (zt't) — % —log N};~0. The following theorem gives explicit expressions
for certain observables of & (7).
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Theorem 3.2 We have:

(i) Forcy,...,cx >0,

k
Hie%;‘(n) _[ . / dzx I @i —2))@itei—zj—¢j)
2micy 2mick (zi +ci —

i=1 j=1 I<i<j<k )@ —zj = ¢))
3.1)
k ei(z,ﬁ—c, %)2 T'(z)
1= (o) TGt

where the z; contour is an infinite contour positively oriented around
0, —1, =2, ... which starts at —oo — i€ and ends at —oo0 + i€ for 1 <i <k,
and the zj contour encloses z; + ¢; and z; — cj whenever 1 <i < j < k.

(ii) The spacetime correlation kernel for &(t) is given by

ok (t1, X155ty xi) = det [K (4, x;3 tj,xj)]lii’jsk
where
K5, x50, ) —
S, X;t,y) = ————e 209 ][t >
O = o
2
e qu et 1 Tt
27n e 27 5P w—zF(uH-l)' (3-2)
e 2

andthe z contour is an infinite contour positively oriented around — % , — %
which starts at —oo — i€ and ends at —o0 + ie.

Remark 2 The explicit expression for the correlation function will not be used directly
in this paper, we only use the fact that it is determinantal.

The remainder of this section is devoted to the proofs of Theorems 1.3 and 3.2.
Our first step is to show the convergence of joint Laplace transforms and correlation
functions.

Proposition3.3 Fixt > --- >t > 0. Suppose t1(N) > --- > 1p(N) > 0 such that
ti i =limyoo Ti(N) forl <i <k.

(i) Foranycy,...,ck >0,
k N
(N)[(1;(N)\ Nt;(N)
i[5 2-0a)
N—o00

i=1j=1

_/ dzy / dzy 1—[ (zi —zj))@zi+ci—zj—cj)
) 2micy 2micy i + ¢ i) (zi j

l<ivjop G F e = 2@ =25 =€)
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1;

ez @itei— 2 I'(z;)

k
[ 4(a-d) TGite)

i=1

where c1,...,cr > 0, the z; contour is an infinite contour positively oriented
around 0, —1, =2, ... which starts at —oo —ie and ends at —oo+ie for 1 <i <k,
and the zj contour encloses z; + ¢; and z; — cj whenever 1 <i < j < k.

(ii) Let ,ok )(1'1, X1; ..., Tk, X ) denote the kth space-time correlation function of

(47 ()= 5 ol ()= 5 o)
Tz

Then
lim /)(N)(Zl(N) X135 ..o Ik(N) )Ck) = det [K (l Xiy li, X )] . .
N k ’ ’ ’ ’ Ly M B> 2] 1<i,j<k

where K (s, x; t, y) is given by (3.2).

Proof of Proposition 3.3 Letcy, ..., c; > 0. By Corollary 2.6, we have

. ﬁiec' (L0 Ny 10gN) _ (ﬁ N“'i)
i

i=1j=I

X% dzy f dzx l—[ (Zi_Z])(Zl+Cl_ _Cj)
2micy 2mick ; (zi —zj —cj)zi +ci —z5)

1<i<j<k

7; (N)

ﬁez&”’)F@+q+MNm
q(N)( 1)2 [(zi + )T (zi + N)

2

i=1

where the z; contour is positively oriented around 0, —1, ..., —N + 1for1 <i <k
and the z; contour contains z; + ¢; and z; — ¢; for 1 <i < j < k. From Stirling’s
formula [50, p141] (see also [3, Lemma 6.6]) for the Gamma function, we have

N\

PGt e+ N) _ (@te+N)aHarh=3

= e “‘(1+0({1/N))=N%(1+ O(1/N
F(Zi+N) (Zi+N)Zi+N_7 ( + (/ )) ( + (/ ))

which holds uniformly on compact subsets of the z; contour. Combining this with the
decay of the integrand for Rez < O but Rez > —N — 1 and | Im z| bounded away
from 0, we obtain the desired expression
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i=1 T2

2
/d21 / dzi l—[ (zi —zj)(@i +¢i —zj —cj) ﬁ62<z'+( ) I'(z;)
2rier ) 2w \ | o Gt a— 2@ =z =) ity Tata

in the limit as N — oo. Note that the decay of the exponential terms at infinity along
the contour is clear. To see the decay of the gamma quotient, we may use the reflection
formula for the Gamma function

-z =

sin(rz)”

Recalling Theorem 1.2, we can explicitly write down the spacetime correlation
kernel for {S(N)(ﬁ) — %}»0 by [38] (see also [18, Proposition 4.1]). It is given by

TR — U
5, X518, y) = — e W1t > s .
N V=T At =) i
wl N .
dw e 1 l—[ w+i—3
pc27ri :32 —Xxz UJ_ZZ 12+i—%

where y is a simple closed curve positively oriented around {—i + 2} L, and I
T+ ¢ +1ir, T € Rsuch that y and I', are disjoint. Thus

,o,EN)(rl,xl; ... Tk, X)) = det [KN(rl,x, +logN; tj, x; +10gN)]

i,j=1"
We can write
1 _a=»?
KN(s,x+logN;t,y+logN):—me 2<f*3)1[t>s]

+?§ dz/ dw "% W NW T (w+ N+ 3) T (z+3)
r

y 2mi Jr, 2mi 5 w—2 T (c+ N+ 1) T(w+ i)

From Stirling’s formula for the Gamma function as before, we find

Fw+N+3) (w+N+%)w+N

= e V(1 + O(1/N)) = N"*(1 4+ O(1/N)).
FEAN+h)  anel ™

Thus, we have

lim Ky(s,x +1logN;t,y+logN)
N—o00

1 _ =y dwez_ 1 F(Z-i—%)
= 20— J) 1t > 5] > 1
2 (t —5) 27t1 2711 o5z w—2zT ( i)
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where the z contour is an infinite contour positively oriented around — %, — %, — %, e

starting at —oo — ie and ending at —oo + ie. For full rigor, we must control the tail of
the z-contour for Re z < 0. This is managed by the reflection formula for the gamma

YZZ
function and the e~ "2 term, as before. O
The next two lemmas are the key to proving Theorems 1.3 and 3.2. They are stated

in a manner convenient for later usage. The first lemma establishes the existence of a
limiting process.

Lemma 3.4 There exists a process {E(t) := (§1(t), &Ex(1), .. .)}s>0 with joint Laplace
transform given by (3.1) and spacetime correlation kernel given by (3.2).

The next lemma links convergence of Laplace transforms with convergence in finite
dimensional distributions.

Lemma3.5 Fixt; > --- > tr > 0. Let 1y (N) > ---
ti == limy_o0 7i(N) for 1 < i < k. Suppose {(YEN)(‘L')

w(N) > 0 such that
(N) } .
L >
=yy'@]  isa

vV v

random RN -valued process such that there exists ¢ > 0 (which may vary with k)
satisfying

k

N M k oo
lim E Hzecini (i (N)) -k nzeq;/(zi) (3.3)

N—o0 . . . -
i=1j=1 i=1 j=1
for0 <cy,...,cy <e¢. Then

Jim P(y;((N) =aj:l<i<kl=j<h)=P(E@) <a;:1<i<kl<j=<h)
—00

for any real numbers a; j (1 <i <k, 1 < j < h) and any positive integer k.

Proof of Lemmas 3.4 and 3.5 The argument below closely follows the ideas from [54,
Section 5] and [49, Section 4.1.3] to show that the convergence of Laplace transforms
of the correlation functions implies the desired convergence in finite dimensional

distributions. Let p,iN) (1, x15 .. .5 Tk, xx) denote the space-time correlation function
for the process

(Vo.M o).

Our assumption (3.3) implies the existence of the limits

Jim [ e g @ (V). s e N) w)da dxe (34
R

for 0 < cy, ..., cx < & where the limit is given by a finite linear combination of the
right hand side of (3.1). We want to show that this limit is given by some limiting
measure pg(t1, X1; ...; tx, Xr). For this, define the measure
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N N
Q]E d(x1s oo xp)dxy - dixg = P51 +9xk,0;£ (@ (N, x1; . (N, xp)dxy - - - doxy

where 6 = ¢/2. The existence and form of the limits (3.4) implies the weak con-

vergence of Q](CN) to some limiting finite measure o as measures on R¥. Define pi

by

Ox1—---—0Oxk

Pi(tr, X135 ooty Xp)dxy -+ - dxg = e Ok(X1, ..., xp)dxy -+ - dxg

where we note the suppression of the dependence on the t’s and ¢’s in the notation for
Q,EN) and gi. Thus

pIEN)(tl(N)vxl; e (N xp)dxy - dxe = pe(ty, X155 bk, Xk)dxy - - dxg

weakly on R¥. By Proposition 3.3, this convergence holds in particular for y™) (r) =
§(N)(fT) — % —log N so that

Pkt X1s ...t xi) = det [K (6, xi: 1, xj)]lsi’jsk
where K (s, x; ¢, y) is given by (3.2).

The weak convergence of the correlation functions implies that the joint moments
of random variables of the form

Vo) =1y @y e S, Scleio0), 1<i<k, >0
converge to corresponding joint moments of some limiting random variables
Vi (S), S C [c, 00), l<i<k, ¢>0.
Since the limit p is determinantal, the joint moments of the ), (S) do not grow
faster than factorials so that the convergence of joint moments implies convergence in
distribution. Therefore the probabilities

]P’(yE.N)(‘L'i(N)) saj:l=siskl=j= h)

converge as N — oo as they can be expressed as a finite linear combination of
probabilities of the form

(N) (N) (N)
P(J}TI(N)(SLI) =ni,-- 'y'r](N)(Sl”l) =Nlryseees y‘rk(N)(Skvl)
N
= ite e YO S = nk,rk),

where the sets S;  are among (a; 1, 00), (a; 2, ai 1], . .., (@i n, ai —1]. This proves the
existence of the limit (in finite dimensional distributions) process {(£1, &, ...)}s=0,
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where the Laplace transform and spacetime correlation kernel are necessarily given
by (3.1) and (3.2). Thus Lemmas 3.4 and 3.5 follow. O

Proof of Theorem 1.3 and Theorem 3.2 We want to upgrade the convergence in finite
dimensional distributions of

(5™ () = ¥ —10g M. 6 (5) — % —10g )

implied by Proposition 3.3 and Lemma 3.5 to the stronger notion of convergence of
line ensembles for Theorem 1.3. The machinery for this is supplied by [ 16, Proposition
3.6]. We can argue as in [16, Proposition 3.12] to check that our line ensembles satisfy
the hypotheses of [16, Proposition 3.6], using the determinantal structure of the line
ensembles from Proposition 3.3. The statements in [16] are for line ensembles on
[T, T], so minor modifications in the statement of hypotheses need to be made to
obtain the convergence of our line ensembles on [%, T]. Theorem 3.2 follows from
Lemmas 3.4 and 3.5. O

4 The S-transform and y

Given a probability measure u on R, we can define its 1/ -function and S-transform.
The former is a generating function for the moments of p and the latter plays the
role of the log characteristic function from classical probability in the context of free
probability, where the multiplicative free convolution corresponds to summation of
independent random variables, see e.g. [15, 58]. We collect several properties of these
functions for the analysis in subsequent sections.

Definition 4.1 Given a probability measure x supported in Rx, let

Yu(2) :=/ 1 o du(x), z€C\supppu.
—2x

Definition 4.2 Let M denote the set of compactly supported Borel probability mea-
sures on R~ ¢, in particular inf supp u > 0 for © € M. We view M as a topological
space under the weak topology. Given a closed interval I C R, let M; C M denote
the subset of probability measures supported in 7, which is compact under the weak
topology.

Assume that @ € M. Then v, is analytic on (C U {oo})\J where J is some
bounded interval in R. o which contains {x ! : x € supp u}. Moreover,

Vi) = f —du) @1

(1 —zx)2
which is positive for z < 0. Thus there exists a meromorphic inverse ¥, ! defined in

a neighborhood of [—1, 0] and mapping to the Riemann sphere with a simple pole at
—1 and a zero at 0.
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Definition 4.3 The S-transform of © € M is given by

1
Sut0) = Ly ).

In view of the discussion above, for ;. compactly supported in R o, the S-transform
is defined in a neighborhood of [—1, 0].

Proposition 4.4 Fix a compact subset I C R-q. Then there exists a neighborhood
U c Cof [—1, 0] such that for all u € My

i —1 z) is well-defined, injective, meromorphic function on U with a unique
w 7] P q
pole at —1 and zero at 0;
(ii) S, (2) is holomorphic with no zeros on U, and
iii) the ma — S, on My is continuous where the topology of the images are
p 1 0 pology g
with respect to uniform convergence on compact subsets of U.

Proof Ttems (i) and (iii) follow from [15, Proposition 3.3]. Given that v " Thasa simple
pole at —1 and a zero at 0, (ii) follows from the definition of S,,. O

Here are additional properties of the S-transform which follow from [15, Proposi-
tion 3.1]:

Proposition 4.5 (i) S;L(u) <O0forue[-1,0].
(ii) S, (u) > 0 foru € [—1,0].
(iii) S, (u) = S, ().

We record a lemma which evaluates the S-transform and its first and second deriva-
tives at 0.

Lemma 4.6 Suppose u € M. Let

2
K1) = fde(X), K2 (p) = /x2dM(X) - </de(X)>

denote the mean and variance of | respectively. Then

1 / K2(p)
HO= G O o

(?duw)” | [xidpe) ) [xdpw)

S7(0) =4 .
: (fxdn@)  (fxdp)*  ([xduw)’

Proof From the expansion

(@) = Z/xdu(X) + zzfxzdw) + z3/x3dM(X) +O3zY.  Jzl =0,
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we get
S o [xPdu)
Vi ) ufxdu(x) ! (f xdu(x))’
2 3
o (2 [x dus) [x du(x)4> oG, -0
xdu@)  ([xdu)
so that
1 1 [ x%du(x)
S = _
1w (u) fxdu(x)+<fxd,u(x) (fxdu(x))3)u
+ (Z(fxzdl“x))2 _J¥dpe) o [xtdp) >u2+ O(ul)
(Jxdu)  ([xrdp)’  ([xduw)’
as |u| — 0. The result follows. O

We conclude this section with a lemma on ratios of Cauchy determinants involving
the ¥ -function, for later use.

Lemma 4.7 Fix a compact subset I C R.o and a positive integer k. Then there
exists a neighborhood U C C of [—1,0] such that for all n € M; and
ULy ey Uk, V], ...,V € U, the bound

det(wl( T ,)) k
C_l - o (U w (V) 1<i,j<k 1 -C

Got () Ly e e i i)

4.2)

holds for some constant C > 0 independent of u € Mj. Moreover,

det(v/*‘(uolw*‘(v')) k 1
f 1 w D <<k =140 (lmaxk lu; — vi|2)
— — <1<
det (s ) L W w0 @) sis
“4.3)
uniformly over u € My, uy, ..., ug, vy, ..., € U.

Remark 3 From Proposition 4.4, WL(‘/’,I !(u)) is nonzero for u in a neighborhood U
of [—1, 0] and positive on [—1, 0]. Therefore, the square root is well-defined, where
we take the standard branch for u € [—1, 0] and extend by continuity on U.

Proof of Lemma 4.7 Our starting point is a proof of the case k = 1, restated in the
following claim:
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Claim 4.8 Fix a compact subset I C R.q. Then there exists a neighborhood U C C
of [—1, 0] such that for all u € My and u, v € U, we have

—1 1 u—v

< —1 —1 —1
Vi @0 =9 Oy i v @)

<C 4.4)

for some constant C independent of u € Mj. Moreover,

1 u—v

_ _ =1+0(u—vf) 45
Vir 0 =i @) fyr e v o)

uniformly over w € Mjandu,v € U.

Proof of Claim 4.8 Choose U D [—1, 0] so that v/ ! is meromorphic, with a unique
pole at —1 and zero at 0, on its closure for every 1 € M, where existence is guaranteed
by Proposition 4.4. Observe that

1 u—v

Cu,v) = — —
Y ) — v (v) \/%@/,,;1 )], i ()

and its reciprocal have no poles of codimension 1 and are thus holomorphic on cl(U)?
by Riemann’s second extension theorem [27, Theorem 7.1.2], as in [28, Proof of
Lemma 3.5]. Therefore C(u, v) is bounded and does not vanish on U. This implies
(4.4) where the uniformity of C follows from the compactness of M; and cl(U), and
the continuity of C(u, v) as a function of u, u, and v.

It remains to show (4.5). Assume without loss of generality that I = [a~ !, a] for
somea > 1.Fix§ > Osmall and let Wy :={w € U : |w + 1] > §}.

We start by showing (4.5) for u, v € Ws. Assuming u, v € W;, since

1 A O))
w/:l(u)_wlzl(v):/i_l(u_ —*%(u—vf—l—O(lu—vP)
VLW () 2y, W ()
we have
1 u—v

Vi =9 ) Sy g @ o)

AR i
P ) - L ) 5
\/ml zwé(w;l(v))z(u v) + O(ju — v|%)
:W(HIW
v, @) 2y (i )2

(u—v)+ O0(u— v|2)) .
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Since

v ()

— O(lu — v,
B EAR

log ¥y, (Y, ' () = log ), (' (v)) +

we have

N,

1 1
—— = oxp (5 log (¥, (v)) =  log w;w;l(u)))
v, (Y ()

1y (v)
exp (i

290, (Y (v)
AU

29 (Y (v))?

(u—v>+0<|u—v|2)>

(u—v)+ O0(lu —v]).

Combining these estimates proves (4.5) holds for u, v € W;s.

To complete the proof, we show that (4.5) hold for u, v € {w € U : |w| > §} =
—(Ws + 1). For § sufficiently small, W5 and —(Ws + 1) cover U. This is sufficient
since the estimate (4.5) holds trivially if u, v are separated. We prove this by reduction
to the case for Ws. We may write

1 u—v
Vi 0 = Vi @) fyr i e v o)
1 u—v

= i~ 1
Vo @ =9 @ fy @y o)
where i = —(u+1),7 = —(v+ 1), and let v denote the Borel probability measure on

R. o determined by v([c], c2]) = ,u([c{l,cfl]) for any 0 < ¢; < ¢p < oo. Indeed,
observe

Yo(@) = =Yz~ — 1
vyt w) =y (—w+ 1)

1
¥ (2) = Z—zw;(z*)
Yy W) = v (= + DY, (0 (—(w + D).

Since v € M (recall I = [a™"', a]), this completes the proof. O

By the Cauchy determinant formula, which states

det !
€
a,-—bj

’

) . Hl§i<j§k(ai _a/)(b/ — bl)
lfi»jfk l_[{'c’jzl(aj _bj)
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we have

det <%) k
wu (ui)fwu (U_]) 1<i,j<k 1

det (L =W o v )

”i_”j>1§i,j§k

k

=l_[ u; — v; 1

Y ) = )y iy )

uj —vj Vi —uj
<[] : —

Vi Vi ) = ¥ ) Y ) = )
Yt — v ) v ) — v ()

u,-—uj U,'—Uj

Setting

u—v 1

Vi @0 =i )y i o)

C(u,v) :=

we obtain

det (ﬁ) k
Y Wi)—vu (vj) 1<i,j<k 1

det (7 U ) )

“i*”f)lsi,jsk

k
=HC(Mi,vi) 1—[ Clui, v;)C(v;, uj)
i=1

I<i<j<k Cui, uj)C(vi, vj)

Then Claim 4.8 implies the bound (4.2).
For the estimate (4.3), first note that

Clui, vi) = 1+ O(lu; — vi|*)
by Claim 4.8, and

C(ui, vj)C(vi, uj)
Clu;i, uj)C(vi, vj)

=140 (max(lui — v,'|2, luj — vj|2)> ,

which can be seen by Taylor expanding in u; near v; and u; near v;. O
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5 Asymptotics of multivariate Bessel functions

Given vy, ..., € {N —1,N —2,...,0}, define

Bay, ... ,u g, N—1,...,01,...,0%,...,0)
Ba(N —1,...,0)

N . .
BIS )(ul,...,uk,vl,...,vk) =

where i := % Zf\’: 1 ¢ and the hat notation means that vy, .. ., v; are omitted from
N—1,N-=2,...,0.Inother words, the multivariate Bessel function in the numerator
takes as input py with vy, ..., vr replaced by uq, ..., ux. In this section, we obtain
asymptotics for these normalized multivariate Bessel functions in preparation for prov-
ing Theorem 1.4. We note that the asymptotics from this section are refinements of
those from [28, Theorem 3.4]. Moreover, we obtain our asymptotics by bootstrapping
off the latter.

Definition 5.1 Define
Hy(u):=—@wu+1)log S, (u) — /log ((u + l)SM(u)—1 — ux) du(x)

where the logarithms are given by the standard branch.

Observe that
Hy () = —(u+ 1) log(u + 1) + ulogu — ulog ¥, (u) — f log(1 — x/;, L ()d ().

Using the fact that

)
—u—/—il;i—mwm=u—wﬂmfw»=a

1= xy ! ()
we have
H) (u) = —log(u + 1) + logu — log ¥, () = —log S, (u) (5.1
and
N )
Hj(u) = — Su@) (5.2)

Definition 5.2 Let R denote the subset of M consisting of probability measures of
the form

1 N
N2
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where x1, ..., xy € I.

Theorem 5.3 Fix a closed interval I C R~ . There exists an open neighborhood U of
[—1, 0] such that

By(Nwui+1),...,Nug+1); Nwr +1),..., N + 1))

det (ﬁ) k
Y ui)—y, (vj) 1<i,j<k 1_[
det( 1

uiivj)lsi,jsk i=1

! /S (e Hu i)
\/‘/’L(l/f/?‘ WV, (i (i) VS ()N

(I +o(u; —v;])

as N — oo, uniformly over . € My O RN, uy,...,ux € U, and vy, ..., v €
+ZN[-1,0].

Remark 4 To translate between our notation and that of [28], our H,, corresponds to
their W,,, and our v/, corresponds to their M, .

Remark 5 We note the peculiarity in Theorem 5.3 that the uniformity u € M; N RN
is over a set varying with N.

Proof of Theorem 5.3 Our starting point is [28, Theorem 3.4] which states that there is
some neighborhood U of [—1, 0] such that

BM(N@ui+ 1), ... N +1): Nwi +1,.... N+ 1)

det (%) k
Vi @)= ) ) g
= 1 1_[

det ( ) -
“i=vj )y <i,j<k =1

1 /S ue Hutw)
A . f ! \/S (M‘)ENH;t(Ui) (1+0(1))
SV i i ) /St

as N — oo, uniformly for uy, ..., ux,vi,..., v € U and p € M; NRN. We

note that the original statement of [28, Theorem 3.4] is in the regime where © = uy

converges weakly to a measure in M as N — 00, but the proof also implies uniform

asymptotics for 1 € M; N RYN. Thus, it remains to improve the relative o(1) error.
Define

N
%,(A Ny, . g vrs . vp)

det 1
) <Wl(“")“/’ﬂl<“f>)1si,jsk k [ 1 \/WeNH‘L(W)}
1 — — NN Hy (vi)
det () L= Ly o o) VSN
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foruy, ..., uk, v1,...,vr € U. Then for ¢ > 0 sufficiently small,

BM(N@i+1),....Nw+1):; Nw + 1,.... N+ 1)

=BV, ... o viL . v (1 + o) (5.3)
as N — oo, uniformly over uy, ..., u; € Ugs,and vy, ..., v € %Zﬂ[—l,O],where

U, denotes the e-neighborhood of [—1, 0].

By Lemma 4.7, the quotient of Cauchy determinants in the definition of %LN)
is bounded and bounded away from O for uy, ..., ur, vi,...,vx € Ug, fore > 0
sufficiently small. Similarly, since (see Proposition 4.4 and Proposition 4.5 (ii))

Yl (0) =9 (0)#0  and  S,(0) #0,

we have
! VS @)
\/ W W ), (U () V@)
is bounded and bounded away from O for uy, ..., uk, vy, ..., vx € Ug, given that ¢ is

sufficiently small. For each integer k > 1, define

Fk(N)(ul,...,uk;vl,...,vk)
::10< BM(N@wy +1), ..., N+ 1); N + 1), ..., N(og + 1)) )
BN+ 1), ..., N1 + D; Nwi + 1), ..., Nwi_1 + 1))

S,((N)(ul,...,uk;vl,...,vk)

| B (Nui, ..., Nug; Nvy, ..., Ng)
=10
B (Nuy, ..., Nug_1: Nvp, ..., Nug_1)

where in the case k = 1, we take the denominator in the logarithm to be 1. Then F, k(N)
and&,EN) are analytic foruy, ..., ux € Uy, where vy, ..., v; € %Zﬂ[—l, O]and N is
sufficiently large. Moreover, we have the convergence F, k(N) — S,((N ) 5 0as N — oo

on this region by definition and the convergence (5.3). Furthermore, F; k(N) and S,(CN)
vanish whenever u; = vi.

Then
N
gi( i, .. uis v, )
1 N 1 N
= —Fl( )(ulv"'5ui;vla"'avi)_—',Sl( )(ula'-'aui;v17'~-’vi)
Ui —0; i —V;
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is analytic foruy, ..., u; € Ug,where vy, ..., v; € %Zﬂ[—l, 0] and N is sufficiently
large. Since Fl.(N) - SEN) — 0, we have

N
Gy, . uis o, o) = o(1)

uniformly foruy, ..., u; € dUz¢/3and vy, ..., v; € %Zﬂ[—l, 0], since the restriction
of uy, ..., u; to the boundary of Uy,,3 keeps 1/(u; — v;) bounded.
By Cauchy integral formula,

Qi(N)(ul,...,ui;vl,...,vi)
1 Gwy, ..., w5V, ..., 0

- % (w1 Al D gy - dw; = o(1)
(27[1)1 AUz/3 AUz 3 (wl - Ml) t (wi - Mi)

uniformly for uy, ..., u; € Ugjp and vy, ..., v; € %Zﬂ [—1, 0]. Therefore,
BM (N +1).....N@ue+1): Nwi +1),.... N + 1)

k
= exp (ZFI.(N)(L{],...,u,-;vl,...,v,-)>

i=1

k
= exp (Z (SEN)(M,.-.,MZ-; vty ) +o(lup — Ui|)))

i=1

= ‘BLN)(Ml, ce Uk V1, e, V) (1 o(max u; — v;l))
l
as N — oo, uniformly for uy, ..., ux € Ugp and vy, ..., v € #Z N [—1, 0]. This
completes the proof of Theorem 5.3. O

6 Proof of Theorem 1.4

In this section, we prove our main result Theorem 1.4. Throughout this section, we fix
some notation. Given a sequence X ™) (1), X™)(2), . . ., denote by ,u;’,") the empirical
distribution of the squared singular values of X ™) (m). Given a compactly supported
probability measure u, let k() and x2(n) denote the mean (first cumulant) and
variance (second cumulant) of p respectively.

The key step is to establish the following intermediate result.

Theorem 6.1 Suppose that XM (1), XMN)(2), ... have deterministic squared singular
values, all contained in a fixed compact interval I C R, and that the hypotheses of
Theorem 1.4 (i.e. conditions (1.1) and (1.2)) are satisfied. Let

N N
YWy ==y
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denote the squared singular values of XN (M) --- XN (1). Then for any t; > --- >
tx >0andcy,...,cp > 0suchthatcy+ -+ cx € (0, 1), we have

k

N k
cilog Y™ (1N D) _ G EN(LiN])
B[] e ={[1e
i=1

i=1j=1

3o (6™ GV N )= FVw N D)

E

k
(1+o0(1))

i=l1 j=1

as N — oo, where

EN(M) := M1 (m) d V(M) := Ly —KZ(ME\T))
N ( ).—mZZI ogki(y ), an N ( )'—ﬁlgm(u(ﬁ))z'

This convergence holds uniformly over sequences X EN), X EN), ... satisfying (1.1) and
(1.2) such that the squared singular values of XN (m) lie in I for every 1 <i < M.

The proof of Theorem 6.1 combines the asymptotics from the previous sections
and our formalism of multivariate Bessel functions. Note that Theorem 6.1 makes
the assumption that the matrices have non-random singular values. The proof of The-
orem 1.4 proceeds straightforwardly from Theorem 6.1 by bootstrapping from the
deterministic case, see Sect.6.2.

6.1 Proof of Theorem 6.1

Let M; == M;(N) = [t;N] for 1 < i < k and My4+; := 0. Let x(m) =

(xfm), ey x/(\',")) denote the squared singular values of X (m). By Proposition 2.4,

i=1j=1

E {ﬁ ﬁ: ¢ logv‘,NNM,-)}
e <

M, My
B (Z1y -5 2N) B (1, .- 2N)
N ogx(my)\K1, s XN N log x (my) <1, s AN
_ Dﬁ]) | | -HD( ) | |

Blogx(ml)(PN) Ck mp=Mpi1+1 Blogx(mk)(pN)

my=My+1 Z=pN
Recall our convention that D, = DéN) acts on everything to its right (see Sect.?2).
Expanding out the D, terms, we obtain
k N ™
E Hzeci logy; ™" (M)
i=1j=1

N M,

c1+zi — 2 Biogx(m) (@1, -+ -5 2N)
= Y (=)L T
. iy

Zip —2j; my=Mo+1 Blogx(ml)(pN)
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My
| | Ck + Zik — Zji T Biog x(mg) @15 - -5 ZN)
CksZiy, | |
Ll -z B
ey Rk mi=Mes1+1 log x (my) (ON)

Z=pPN

The products over j, # iy are understood to range over 1 < j, < N (for 1 < ¢ < k).
Like D, the shift operators 7. ;, act on everything to their right. If the 7; , is contained
between parentheses, its action is confined within those parentheses.

Since 7. fg = (1. f)(7cg), we get

k N N
E l—[zec,-logy}N)<M,-> = Y o
= (10
i=1j=1 i1,y ir=1
where
k
Coe+ Zip — Zj
i ooy = Teray - Tora, |1 T —
=1 Jetie T
M,
% 1—[ T T Blogx(mg)(zla . 5 ZN)
Cl1,2iy clszi@ Bl ( )(pN)
me=Myy1+1 ogxime Z=pN
Set

2
1
k X N exp Al(Za]_N+§):|
. . c1+2zi, —zj
Ti].,“,ik = (l |eC'£N(M’)) ( | | K l_l - jl)/TCl, i

i=1 g T

2
_ 1
Ck + 2 — 2, T N eXP[Ak(Z‘”‘ N+2>:|
% l_[ — | T,

. . Z Z
Qi ke Tk

1 2

e 1y a0V
_ l—[ec; NMD) A D, l_[ .
AN S YTy

N exp |:Ak (zak — N+ %)2:|
De | []

ag=1 exp |:Ak <7ak + %>21|

I=pPN

where

I & ) 1
Ap = — T))z =3 WNWMp) —VN(Mey1)), 1=L=k.
N

m=M1+1 K1 (e
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The equality following the definition of ;. ;, follows from the definition for D,, as
in the calculation (though in reverse) at the start of this proof.
We prove that

Oi,.ip. = Tiy,.iy (L +0(1)) (6.1)
as N — oo, uniformly over 1 <i,...,ixy <N /3 Furthermore, we prove that if N
is sufficiently large then
Oit,.i > 0, (6.2)
Tiy,o.., ix =~ 07 (63)
for1 <iy,...,ir < N, and there exists ¢ > 0 such that
Gy <0116 N, (6.4)
Tiy,oiy <O, 16761\]1/3 (6.5)
forl <iy,...,ix < N suchthati; > N3 forsome 1 < Jj < k.Indeed, Theorem 6.1
would follow because
k N w N N
E[[I2 e ™ ™ = 3 oy _yu=0+00) Y 74
i=1j=1 i1,..,0g=1 i1yenny ir=1

[T

ai=1 €Xp [Al (—a1 + %)2]
N exp [Ak (Zak — N+ %)2]

ar=1 exp I:Ak (_ak + %)2]

k N exp|A zal—N—i—12
= (1+o0(1) (]‘[eCfENWﬂ) D, [ ! 2) ]

i=1

- Dg,

7Z=pN
=1+ o0(1)) (ﬁ eciSN(Mi)) E ﬁXN:eci(EJ(-N)(%VN(Mi))—%VN(M,-))

i=1

The second equality comes from (6.1) applied to the terms with iy, ..., i < N1/3,
and the remaining terms are tail terms which can be replaced by (6.2)—(6.5). The third
equality follows from the definition of 7;,, . ; and the definition of D.. The fourth
equality uses Corollary 2.6.

Therefore, our goal is to prove (6.1)—(6.5). For this, we rely on the following claims:

.....

Claim 6.2 Forany 1 <iy,...,ig < N, we have
ce+2zi, =z
TCleil "',TCZ—I-Zig_| 1_[ ﬁ >0 (6.6)
J#ig iy J =0y
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cgt+z21 -2z
SCTey g Tep .z ||
71— 2j
J#1 Z=pN

6.7)

Ce+2i, —3j
Tc‘l Zi "‘72'(71 i 1_[ - -
U i1 zi — 17

j#ie e

z=pN
for some constant C > 1 uniform in the iy, ..., iy but depending on cy,...,cp > 0

satisfying c;y +--- +cp < 1.

Claim6.3 Let uy = % Z,N=1 8y, and x = (x1, ..., xn). Then

Blogx(zlv .3 ZN)
Blogx(pN)

TcuZil o .ZZsZig

Z=pPN

= ﬁexp —cjlog S, (—%) - cj(csz+ D ?/LN E:If; (I+o(N"")
=1 uv \TN
(6.8)

as N — oo, uniformly over uy € MjpnN RN and iy,....i; € %Z N[0, 1]. In
particular, ifiy, ..., iy < N3 then

Blogx(zl, coey ZN)

TCl,zl'l o 'Tczz,zz'@

Blogx (oN) 2=pN
14
c k2 (1) . ocilcj+ 1) _
=H k1 (en) fexp[Nm( cm+%>](l+ow ). (6.9)

Before providing the proofs of Claims 6.2 and 6.3, we explain how (6.1)-(6.5)
follow from the claims. We can rewrite

k . .
E:5N<M> Cet i = Zje
e (1*,]’ C//lZl[l P
— i i Je
i=1 li— JeFie 2=pN
(my)
1 kluy ™) 1)2
N exp|: (”’4’))2 Zqg — N + 5)
Cl Ziy C@ i (m/()
_ 1 k2(uy 1\2
me= Mz+1+1 a_l P|: ol s (_a + j)
1 Z=pN
k
1—[ ( cetzip —2j
c1.zip " q 1:Zig_y . .
_ Zig = Zje
=1 Jz#te 2=pN

m 1 o) (el
( [ Moo [ 205 (o v 252) )
KN

me=Mgi1+1 j=1

Then (6.9) and the definition of o;, . ;, immediately imply (6.1). The positivity state-
ments (6.2) and (6.3) also follow from (6.6) and (6.8).
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We must still prove (6.4) and (6.5). To prove (6.5), let us rewrite 7;,,_; as

k k M, l
e +z2iy — 2 ¢
1_[ Tcl,zq '“7;@71-212,1 1_[ % l_[ 1_[ l_[Kl <M§\r/n/¢)> ]
=1 JeFie e Je i=py =1 my=M41+1 j=1
k M; K ( (m))
1 2\ o Ciei D
<o | | B | (e 5T
j=1 m=1 K1 (MN )

where we swap the sum over £ and the sum over j in the summation inside the
exponential and recall that M} ; = 0. We see that the last line in the expression above
i, 1 strictly decreasing in each of iy, ..., i, and the decay is exponential.

)

M; k2 . .
Moreover, by (1.2), each of the terms % Yomit K(/LT is converging as N — oo to
KN

some positive value. Thus if N is sufficiently large, then there exists ¢ > 0 such that

for 7;,

.....

N3
Tiy, ... ik =< 71,...,1€

for 1 <ijy,...,ix < N suchthati; > N1/3 for some 1 < j < k. Note that we use
Claim 6.2 to compare the first line of the latest expression for 7;, . ; with that of the

special case of 71 1. By (6.1), we obtain (6.5).
To prove (6.4), observe that by Claim 6.3,

k
Cetzip =2
Uil ..... iy = 1_[ Z'lazil “‘Z'K—]vzig,l l_[ ﬁ
=1 ST L
o
M, Y X (myp) ( N)
i citc;i+1) n
x 1_[ l_[ exp | —c; log SH(W) (*ﬁ) - 2]N - i (I +o(1))
me=Mgy1+1 j=1 N SM%"U <_W
k T . cy + Zip = Zj,
:H ClaZip T ECe-1:2i, l_[ Zi — 2
=1 JeFie e I Z=pN
/ ij
4 My . S <_W>
i; cilc;+1) n
x 1—[ exp Z —cj logSﬂ(m) (—ﬁ) - ZJN N T (1+0(1))
j=1 m=1 N S m <_W]
N
as N — oo, uniformly over 1 < iy, ..., i < N. It suffices to show that
s (=4
Ml . C](CJ+1) M;\r/n) N
—c:log S I
2| -eitos (m ( N) 2N i
m=1 N 8 uom (_N)
u S o (- )
4 (m) N
ci(ci +1
<—CN'3 AN <i < NI+ Y | —cjlog$ (m (,%)7 j(sz )y :
(6.10)
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for 1 <i < N.Indeed, by Claim 6.2, we may disregard the first line in the expression
for oy, ,....i, above, and focus on comparing the terms inside the exponential.

We can make a further reduction. The continuity of i — S, on M/, via Proposi-
tion 4.4, and the compactness of M implies that

S, (u)
Sy ()

d
au log S, (u) =
is bounded, uniformly over u € [—1, 0] and € M. Thus

| M Sl:(m) (—%)

N

2N m=1 S;/,X,") (_lﬁ)

is bounded, uniformly over 1 < i < N and in N. We see then that to prove (6.10)
(and therefore prove (6.4)), it is enough to show that

M, M,
— Y cjlog S (—%) = —CN'PAIN'P <i <N1= ) ¢jlog S (—%)
m=1

m=1
(6.11)
forl1 <i < N.
We know that —log S, () is an increasing function on [—1, 0] with
d S8.,.(0)
— L tog S, () _ 2B /cz(ll)2
du u=0 S (0) K1 ()
where we use Lemma 4.6. Condition (1.2) then implies
M, My (m)
d k2 (y )
=) logS )| =3 =" = Ny +o(1)  (6.12)
m=1 u N u=0 m=1 K1 (MN )

as N — oo, where we recall y (fy) > 0. Arguing as we did earlier using the compact-
ness of M and the continuity of u — S,, we can show that

M, 2

d
- Z_jl S5 logS,m@)| = ON). (6.13)

u=0

Then for N sufficiently large

M, My
_ZlogSM%n) (—#)f—ZIOgSM%,,) (—%) forl <i <N,
m=1

m=1
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M, My
— ZlogSﬂ;\y,ﬂ) (—lﬁ) < — Z logSM%n) (—%) —CN!/3 for N3 < <N
m=1

m=1

for some constant C > 0 (since My =< N). The latter follows from expanding the
function of —# around —%. In this expansion, the behavior is dominated by the
linear term, due to the bound (6.13), and since the derivative is positive and of order
N by (6.12), we can glean the sign —CN!/3. These inequalities prove (6.11) and
therefore (6.4).

Having justified that Claims 6.2 and 6.3 imply (6.1)-(6.5), it remains to prove these
claims.

Proof of Claim 6.2 To work with our expression, it will be convenient to account for

the repetition of variables z; among our operators T¢, z; ..., Te,_y.z;, , With distin-
guished tracking of repetitions of z;,. Thus we introduce the following. Leti{, ..., i, _,
be the distinct elements of {iy, ..., ig—1} \ {i¢} and set i] = i;. Define
’ ’.
d= Y o d= Y
1<a<r: 1<a<r:
iq=i} fq=i
where we note that ¢}, ...,c._; > 0, but ¢, > 0 if and only if i, = iy is among
i1y...,0ip—1,1.e.ig € {i1,...,ig—1}. Then
ce+zip — 2 ce+ 2 —2zj
Termr o Top s H—Z T, [t
2L 2Lig_y 2 — 7 1°2i] ANTA it — 7
j#ie e j#p T

-1

rl—[ (Zi;—Zi(/‘)(Cg-I—C;-I—Z,';—C;—Z,'(;) 1—[ Cg+c;+zi;—z,-
oy et ep +zip = zi) @i — ¢ — ziy) il Zip = Zj
Since 0 < ¢c; +---+c¢ < l,upon evaluatingatz = py = (N — 1, N —2,...,0),
we see that the expression above is positive. This proves (6.6). Furthermore, we have
a bound

r—1 / /
1—[ (zig — zig)(ce + ¢, +zip — ¢y — 2ir) -c
/ P . o — ! . -
ay (co otz — zi) (@i — ¢ — ziy) o
where we may make C uniform over 1 <iy,...,ip < N byvirtueof 0 <c; +---+

c¢ < 1 and the positivity of ¢1, ..., ¢¢. Thus

/
e+ 2i, — Zj cetc+zin —25
’TCIZ[_ ...’];‘1{—11' 1_[ i ]SCH r r J
i e Zi, — 2j Zir — 2
e J# " 2=pn
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Next, observe that

l—[C€+C;+Zi_Zj ch+6;+j—i

ki i —Zj o i J 1
/ ;o
<1—[ce+cr+] 1
- j—=1
J#l
Spetetist
T j—1
Jj#1
ce+21—2j
=Tz Top iz H—f

il AT

Z=pN

where the third line uses the fact that ¢, + ¢, < ¢j + - - - + ¢, recalling that products
are restricted over 1 < j < N. Combining these inequalities, the claim follows. O

Proof of Claim 6.3 Applying Theorem 5.3 with u; = %(N —ij+cj)and v; =
+(N —i;), so that [u; — v;| = O(1/N), we have

BlOgI(Z17-~-7ZN)

TCI!Z[' Tt Biog x (0n)

z=py
=Buy(N—iy+ct,....,N—ig+cg; N—iy,..., N —iy)

det (ﬁ)
Yo W)=V ) Sy <k

det (#)
Ui=vj)1<i,j<k

(1+o<N D))

li[ 1

Ui v it e [ o (ZR52 ) ()

uniformly over uy € Mj;nN RY¥ and iy, ..., ig € %Z N[0, 1]. Applying (4.3) from
Lemma 4.7, we may drop the Cauchy determinant and the terms expressed via ¥, so
that

Blogx(zla "-’ZN)
Blogx(pN)

72‘1,11'1 Tt Aoz

Z=pPN

X 7ij+<rj
Su (_lf)eNHMN< N )
N

i
. —ii+4c; NH, 7/)
=[S,y ( l./]\;rc./ )e uN( N

(1+o(N"h)
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)

i

|

cjle; + 1) San <_

¢
_ . AN -1
= | exp cjlog S, ( N) N S (_i_j) (1 +o(N")).
Jj=1 KN N
uniformly over uy € M; NRY and iy, ...,i; € %Z N [0, 1]. Note that the final
equality follows from the estimates
-2
N(H (555) = B (8)) = el (3) + 51 (3) + 00V

1
= exp ( log Sy (%) —log S,y (”Ni)))

¢ Sl//«N( )

= - O(N™2
exp( 2N S, + O( ))

which hold for fixed ¢ > 0, uniformly over u € [—1,0] and u € Mj; as N — oo,
and from expressing H / and H " in terms of the S-transform as in (5.1) and (5.2). This
proves (6.8).

If [u| < N'/3, then

cle+1)8, (%)

—clog S, (%) —

2N S (f)
= —clog5,(0) = EO; ( + C(C; D) 4 O(N3)
— clogi () + — Kz((u))2 <u 4 C(C;- 1)) + ONB)

uniformly in # and u € M/, where the second equality uses the evaluations of S, (0)
and S//,L (0) from Lemma 4.6. This proves (6.9). m]

6.2 Proof of Theorem 1.4

Let

- (m) I o o2y
EvM) =Y logir(ufy’)  and V(M) =~ Y =N
m=1 me1 K1(p ")

as in Theorem 6.1. In contrast with the setting of Theorem 6.1, Ex (M) and V(M)
are not deterministic in general.
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Fixt; > -+ >t > 0. Our goal is to show that for any positive integers k and £,

tim P (log y{™ (1:N)) = Ex (LGN ]) —log N <@y ;1 =i <k, 1<) <h)
N—oo J ’

=PEj(y(w) =aij:1<i<k 1=<j=<h)

(6.14)
for every a; j € Rsuchthata; 1 > --- > a; ;.
We may assume that there exists a compact interval / C R~ ¢ such that
supp un(m) C 1, foralll <m < [/N]and N > 1. (6.15)
We show why this reduction is valid. Indeed, by (1.1)
I — P (supp un(m) C I) = o(1/N)
uniformly over m = 1, 2, .... Then if Zy is the event that supp uy (m) C I for every

1 <m < [t N], we have
1 -P@@n) <|tiN]-0o(1/N) = o(l).
Thus, to prove (6.14), we may assume without loss of generality that P(Zy) = 1 and

that the complement of Zy is empty, which is the desired reduction.
We make one more reduction. By (1.2), we have that

ei,N =VNIEN]D —v(@) — 0

in probability as N — oo. Thus there exists a sequence of events Zy and a sequence
ay > 0 such that

lei,n| < an

on fN, and IP’(%N) — landay — 0as N — oo. Therefore, we may assume without
loss of generality that P(Zy) = 1.
Let

)(N;={x](.N)(m):1§m§M1,1§j§N}

denote the collection of squared singular values of X M), ..., XN (M;). We have
Xy C I from (6.15). Under the assumption P(Zy) = 1, we have

Vn(LtiN]) =y (&) + o(1) (6.16)
as N — oo for 1 <i < k, where the o(1) is uniform over all realization of Xy .
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Suppose c1, ..., cr > Osuchthatcy + -+ cx < 1. Then

k N
1 M (N D—=En (1N —~log N
B | [ (o mm-stimn-ionn)
i=1j=I

R (6 GV (N D) - E VLV )—log )
=E| [Tt Xy | (1+0(1)
| i=1j=1

k oo
—-F nzecifj(VN(LliNJ)) Xy | (1+0(1)
| i=1j=1

k oo
—F HZeCiEj(V(Ti)) (1 + o(1))

Li=1j=1

as N — oo, uniformly over all realizations of Xy. The first equality follows from
Theorem 6.1, using the uniformity statement in that theorem along with fact that
Xn C I.The second equality uses Proposition 3.3 and Lemma 3.4. The third equality
follows from (6.16). Taking an overall expectation then yields

k N (N) k oo
m E Hzeci(logy, (LN D—En (LN D—logN) | _ [ e

N—oo
i=1j=1 i=1j=1
6.17)

where the uniformity of the o(1) error permits the commutation of the limit with the
expectation. The result now follows from Lemma 3.5.
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