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Abstract
Weestablish universality for the largest singular values of products of randommatrices
with right unitarily invariant distributions, in a regime where the number of matrix fac-
tors and size of the matrices tend to infinity simultaneously. The behavior of the largest
log singular values coincides with the large N limit of Dyson Brownian motion with
a characteristic drift vector consisting of equally spaced coordinates, which matches
the large N limit of the largest log singular values of Brownian motion on GL(N ,C).
Our method utilizes the formalism of multivariate Bessel generating functions, also
known as spherical transforms, to obtain and analyze combinatorial expressions for
observables of these processes.

Mathematics Subject Classification 15B52 · 60B20 · 33D52

1 Introduction

Suppose X(1), X(2), . . . is a sequence of N × N independent random matrices, and
let

Y (M) := X(M) · · · X(1).

As a natural model for systems exhibiting progressive scattering, the study of random
matrix products hasmotivations fromavariety of contexts including chaotic dynamical
systems [19, 23], deep neural network [30, 32, 53], and wireless communications [56].
If the matrices X(m) are complex and nonsingular, as in this paper, the discrete time
(in M) stochastic process {Y (M)}M∈Z>0 is a random walk on GL(N ,C).
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In this paper, we establish universality of the largest singular values of Y (M) in the
limit as the number ofmatrix factorsM andmatrix size N tend to infinitywithM ≍ N .
We focus on random complex matrices X(m) which are right unitarily invariant, i.e.
the distribution of X(m)U matches the distribution of X(m) for any matrix U in the
unitary group U(N ). Under assumptions imposing weak concentration of the support
in R>0 and nonvanishing of the average (over m) variance of the empirical measures
of X(m), we show that the fluctuations of the largest singular values match those of
the N → ∞ limit of Brownian motion Y(N )(t) on GL(N ,C).

The approach used in this work is rooted in tools and ideas from integrable probabil-
ity (summarized in Sect. 1.5). This departs from previous local universality results for
random matrices, such as for Wigner matrices (e.g. [21, 57]), which typically employ
non-integrable methods.

1.1 Brownianmotion onGL(N,C) and Dyson Brownianmotion

We introduce Brownian motion on GL(N ,C) and describe the N → ∞ limit of its
singular values. Let! denote the Laplace-Beltrami operator onGL(N ,C)with respect
to the metric induced by the Hilbert-Schmidt inner product

⟨X , Y ⟩ := Tr(XY ∗)

on the Lie algebra gl(N ,C).

Definition 1.1 Brownian motion on GL(N ,C) is a diffusion on GL(N ,C) with
infinitesimal generator given by 1

2! where Y(N )(0) is the identity.

Equivalently (see [40, §2.1]), Y(N )(t) is the GL(N ,C)-valued stochastic process
{Y(N )(t)}t≥0 satisfying the Stratonovich equation

dY(N )(t) = Y(N )(t) ◦ dW (N )(t), Y(N )(0) = 1N

where 1N ∈ GL(N ,C) is the identity and

W (N )(t) :=
∑

b∈β

Wb(t)b

is additive Brownian motion on gl(N ,C). In the notation above, β is any orthonormal
basis of gl(N ,C) as a real vector space with respect to the Hilbert–Schmidt inner
product and {Wb}b∈β is a family of independent standard real Brownian motions.

The large N limit of Y(N )(t), in the sense of *-distribution, is the free multiplicative
Brownian motion [40]. Additional aspects of the N → ∞ limit are known, including
global fluctuations [17] and the limit of the Brown measure (a candidate for the limit
of the eigenvalue empirical distribution). In this paper, we consider the N → ∞ limit
of the singular values of Y(N )(t).

Let ξ (N )(t) = (ξ
(N )
1 (t) ≥ · · · ≥ ξ

(N )
N (t)) denote the logarithms of the squared

singular values of Y(N )(t). It is a remarkable fact (see [37, Corollary 3.3], [14], and
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Extremal singular values... 951

[34]) that the evolution of ξ (N )(t/4) coincides with that of Dyson Brownian motion
with drift:

Theorem 1.2 ( [37, Corollary 3.3]) The process ξ (N )(t/4) evolves as Brownian motion
on RN with drift

(
N − 1
2

,
N − 3
2

, . . . ,
−N + 3

2
,
−N + 1

2

)
,

started at the origin, and conditioned to remain in the set {x = (x1, . . . , xN ) : x1 ≥
· · · ≥ xN }.

The original statement from [37] was in terms of the singular values of Y(N )(t).
We note that [37] also provided analogous descriptions for Brownian motions on
symmetric spacesG/K whereG is a complex semi-simple non-compact connectedLie
group with finite center and K is a maximal compact subgroup. In this framework, the
drift vector is the sum of the associated positive roots, where our setting1 corresponds
to Type A.

From the identification with Dyson Brownian motion with drift, the process ξ (N )(t)
admits determinantal spacetime correlation functions with exact formulas for the cor-
relation kernel. In [39], the N → ∞ limit of ξ (N )(t) was studied via these kernels,
where it was shown to exhibit number variance saturation. In this paper, we prove
a stronger form of convergence using machinery from [16]. To describe the limiting
object, we require the notion of a line ensemble.While the formal definition is deferred
to Definition 3.1, we may simply view line ensembles as an indexed (possibly infinite)
sequence of random paths (ηi (t))i∈% .

Theorem 1.3 There exists a limiting infinite line ensemble (in the sense of [16], see
Definition 3.1)

ξ(t) := (ξ1(t), ξ2(t), . . .) = lim
N→∞

ξ (N )(
t
4
) − Nt

2
− log N

where the convergence holds in the following sense. For any T > 0 and any positive

integer k, the random continuous function
(

ξ
(N )
1 ( t4 ) − Nt

2 − log N , . . . , ξ
(N )
k ( t4 ) −

Nt
2 − log N

)
converges to (ξ1(t), . . . , ξk(t)) as N → ∞ in the weak-* topology of

probability measures on C([ 1T , T ])k

In view of Theorem 1.3, the limiting process ξ(t)may be interpreted as aZ≥1-tuple
of non-intersecting Brownian motions with drift where the i th Brownian motion (from
the top) has drift −i + 1

2 . The joint Laplace transform and correlation kernel of ξ(t)
can be explicitly computed, and are given in Theorem 3.2.

1 Since GL(N ,C) does not have a finite center, Theorem 1.2 follows from the application of this framework
to SL(N ,C)/SU(N ) and viewing GL(N ,C)/U(N ) as SL(N ,C)/SU(N ) × R>0.
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952 A. Ahn

Fig. 1 Samples of ξ (N )( t4 ) where N = 50, with 0 ≤ t ≤ 0.25 (left) and 0 ≤ t ≤ 10 (right)

1.2 Main result

We establish the asymptotic notation used throughout this paper. Given sequences
AN , BN we write AN = O(BN ) if there exists a constant C > 0 such that |AN | ≤
C |BN | for N sufficiently large. We write AN ≪ BN or AN = o(BN ) if AN/BN → 0
as N → ∞. We write AN ≍ BN if there exist constants C1,C2 > 0 such that
C1|BN | ≤ |AN | ≤ C2|BN | for N sufficiently large.

Our main result is that the largest log squared singular values of random matrix
products Y (N )(M) in the limit N ,M → ∞ with N ≍ M converges to the infinite line
ensemble {ξ(t)}t>0 in finite dimensional distribution, under mild assumptions. Given
an N × N matrix X , let

|X |2 := X∗X

and tr (X) = 1
N Tr(X) = 1

N

∑N
i=1 Xii denote the normalized trace.

Theorem 1.4 Suppose X (N )(1), X (N )(2), . . . are random complex N × N matrices
with right unitarily invariant distributions and denote by

y(N )
1 (M) ≥ · · · ≥ y(N )

N (M)

the squared singular values of X (N )(M) · · · X (N )(1). Assume that

(i) there exists C > 0 such that

1 − P
(
all squared singular values of X (N )(m) are contained in [C−1,C]

)
= o(1/N )

(1.1)

uniformly over m = 1, 2, . . ., and
(ii) there exists a continuous γ : R>0 → R>0 such that limt↘0 γ (t) = 0 and

1
N

⌊t N⌋∑

m=1

tr (|X (N )(m)|4) − tr (|X (N )(m)|2)2
tr (|X (N )(m)|2)2 → γ (t) (1.2)

in probability as N → ∞, for each t > 0.
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Extremal singular values... 953

Then for each positive integer h, the process (in time t)

log y(N )
j (⌊t N⌋) −

⌊t N⌋∑

m=1

log
(
tr |X (N )(m)|2

)
− log N , j = 1, . . . , h

converges in finite dimensional distributions to the top h paths ξ1(γ (t)), . . . , ξh(γ (t))
of ξ(γ (t)).

The key assumptions, besides unitary invariance, are given by (1.1) and (1.2).
Condition (1.1) ensures that the largest singular values are sufficiently unlikely to
escape to infinity. While this assumption may be relaxed, it is clear that there must be
some control over the behavior of the largest singular values. For example, consider
unitarily invariant random matrices X (N )(1), . . . , X (N )(M − 1), X (N )(M)+ λNuuT

where u is a uniformly random vector from the sphere inCN . For 1 ≤ j ≤ M , suppose
X (N )( j) has singular values between a, b > 0 fixed and let λN ≫ (b/a)N . In other
words, the first M−1matrices are well-behaved, but the M th matrix is a well-behaved
matrix perturbed by a large rank-one spike. It can be shown that the largest singular
value of

X (N )(1) · · · X (N )(M − 1)
(
X (N )(M)+ λNuuT

)

will escape to infinity faster than the second largest, so that our theorem can no longer
hold in this setting. Thus, even if a single matrix factor violates Condition (1.1), albeit
severely, the conclusion of the theorem no longer holds.

Note that Condition (1.1) also demands that the smallest singular values do not
approach 0. However, we expect our condition can be relaxed to include possibly
singularmatrices, i.e. replace [C−1,C]with [0,C], as long aswe require that a nonzero
fraction of the singular values are contained in [C−1,C] in the limit. To admit singular
matrices, an additional condition of this type is vital to avoid multiplying by zero
matrices, or matrices close to the zero matrix.

Condition (1.2) ensures that the time parameter of the process converges to a non-
trivial deterministic limit, where the individual summand

1
N

tr (|X (N )(m)|4) − tr (|X (N )(m)|2)2
tr (|X (N )(m)|2)2

is the increment of time that the matrix factor X (N )(m) contributes.
An immediate corollary for the case where the matrix factors are i.i.d. is given

below.

Corollary 1.5 Suppose X (N )(1), X (N )(2), . . . is an i.i.d. sequence of random complex
N × N matrices with right unitarily invariant distributions and denote by

y(N )
1 (M) ≥ · · · ≥ y(N )

N (M)
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954 A. Ahn

the squared singular values of X (N )(M) · · · X (N )(1). Suppose X (N )(1), X (N )(2), . . .
satisfy (1.1), and

tr (|X (N )(m)|2) and
tr (|X (N )(m)|4) − tr (|X (N )(m)|2)2

tr (|X (N )(m)|2)2

converge in probability as N → ∞, where the latter has a positive limit a. For each
positive integer h, the process (in time t)

log y(N )
j (⌊t N⌋) −

⌊t N⌋∑

m=1

log
(
tr |X (N )(m)|2

)
− log N , j = 1, . . . , h

converges in finite dimensional distributions to the top h paths ξ1(at), . . . , ξh(at) of
ξ(at)

Prior to this work, convergence of the largest log singular values to ξ(t)was known
for products of Ginibre and truncated unitary matrices [1, 3, 45]. Recall that a complex
Ginibre matrix is a rectangular matrix of i.i.d. standard complex Gaussian entries, and
a truncated unitary matrix is a rectangular submatrix of a Haar distributed unitary
matrix. The distribution of the former is parametrized by the matrix dimensions and
the latter is parametrized by the matrix dimensions and the size of the ambient Haar
unitary matrix.

For products of square Ginibre matrices, the convergence of the largest log singular
values to ξ(t) for fixed time was shown by [1, 2, 45], with generalizations to products
of rectangular Ginibre matrices indicated in [45]. Extensions to joint time convergence
and for products of truncated unitarymatriceswere established in [3]. The accessibility
of these examples are due to determinantal and related structures available in those
cases [3, 5, 6, 13, 42]. In our setting, this structure is not available in general, thus we
appeal to alternative methods which we detail later.

To illustrate the relation between Theorem 1.4 and these previously established
results, we briefly review the case for products of Ginibre matrices. This is simpler
to state than analogous results for truncated unitary products as it involves fewer
parameters (see [3, Theorem 1.7] for details).

Given a sequence of positive integers {Ni := Ni (N )}i≥0 depending on N , where
N0 = N and Ni ≥ N , let

X (N )(m) = ((G(N )(m))∗(G(N )(m))1/2

where G(N )(m) is an Nm × N complex Ginibre matrix (m ≥ 1), and consider the
associated process {Y (N )(M)}M∈Z≥0 of matrix products. Under mild conditions on the
parameters {Nm(N )}m∈Z≥0 (see [45, Theorem 3.4])2 which correspond to condition
(1.2) in Theorem 1.4, the largest log singular values of Y (N )(M) converge to those

2 The setup from [45] was in terms of an equivalent, more elegant setup where X (N )(m) is a rectangular
Nm × Nm−1 complex Ginibre, see [3, Appendix A] for details on this equivalence. We stick to products of
square matrices to remain consistent with the setting of this paper.
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Extremal singular values... 955

of ξ(t) under an appropriate time change and translation, in the regime M ≍ N .
Theorem 1.4 does not imply this result in general because the singular values of
X (N )(m) can get arbitrarily close to 0 if Nm/N approaches 1, violating (1.1). If we
include the additional hypothesis that

lim inf
N→∞

inf
i≥1

Ni (N )

N
> 1, (1.3)

i.e. the ratios Ni/N remain separated from 1, then the result for products of Ginibre
matrices now follows from Theorem 1.4.

Although Theorem 1.4 requires the additional assumption (1.3) to reach the full
strength of previous results on Ginibre products, the methods in this paper can recover
these previous results (without (1.3)) by the integrability of Ginibre and truncated uni-
tary matrices. However, further development is required to deal with general matrices
with some singular values approaching 0.

1.3 Discussion

Theorem 1.4 appears closely related to the functional central limit theorem for
GL(N ,C). Much like Donsker’s invariance theorem for random walks on R, a ran-
dom walk on a connected Lie group G converges to an appropriate diffusion when
the increments approach the identity and the number of steps is properly rescaled
[55]. Indeed, making right unitary symmetry and mean zero (of log of the increments)
assumptions, random walks on GL(N ,C) converge to Y(N ) with time parametrization
dictated by the increments of the original random walk. However, a key distinction
which separates Theorem 1.4 from the GL(N ,C) functional limit theorem, besides the
fact that N → ∞ in the former, is that the increments are not approaching the identity.
The connection with Y(N ) is even more striking when comparing to previous results
on global limit shapes [33, 47, 48] and fluctuations [28] of products of right unitarily
invariant random matrices, where the behavior was shown to be non-universal and
independent of the relative growth between N and M .

The connection between Y(N ) and products of random matrices in our regime was
hypothesized in [7], based on the main result of that work which established that the
drifts of log singular values matched the drifts of the log singular values of Y(N ). Our
results bolsters this hypothesis by demonstrating this connection holds at the level of
fluctuations, not just in terms of the large time behavior of the processes.

This paper focuses on the regime N ,M → ∞ where N ≍ M . However, for
products of Ginibre matrices, the regimes N ≫ M and N ≪ M are also known [1, 2,
45]. For N ≪ M , the so-called picket fence statistics appear, where the i th largest log
singular value concentrates near −i + 1

2 after suitable rescaling. For N ≫ M , GUE
statistics appear. Thus the process ξ(t)may also be viewed as an interpolating process
between these two regimes. The appearance of the picket fence statistics is directly
related to separation of the curves in ξ(t) as t → ∞ according the drift sequence
− 1

2 ,− 3
2 ,− 5

2 , . . .. The appearance of GUE statistics corresponds to forgetting the
drift as t → 0.

123



956 A. Ahn

In view of this description for Ginibre matrices, Theorem 1.4 suggests (though does
not directly imply) that for N ≪ M , the log squared singular values of the random
walk Y (N )(M) converge to the picket fence. This can be recast into a statement about
universality of Lyapunov exponents, by interpreting the limit N ≪ M as taking limits
M → ∞ and N → ∞ in that order. More precisely, Oseledets’ multiplicative ergodic
theorem [52] asserts the existence of Lyapunov exponents

λ
(N )
i = lim

M→∞
1
2M

log y(N )
i (M), 1 ≤ i ≤ N

for fixed N . While these Lyapunov exponents are not universal, we expect that under
general assumptions as N → ∞ the largest Lyapunov exponents should converge
to picket fence statistics upon properly rescaling and translating. Results of this type
were established for products of truncated unitary and Ginibre matrices in [7].

Likewise, Theorem 1.4 also suggests that for N ≫ M , the largest singular values
of Y (N )(M) should converge to GUE statistics given by the Airy point process. In
the extreme case where the number of matrix factors M is fixed and N → ∞, the
global limit shape can be understood in terms of free probability [58]. However, local
statistics are far less understood, though significant progress [20, 36] has been made
in the form of regularity and local law results at the edge. The belief is that the Airy
point process should appear as long as the empirical distribution of the matrix factors
are suitably regular, and that the regularity can be relaxed as the number of matrix
factors M increases. A similar phenomenon was confirmed for local statistics of sums
of random Hermitian matrices [4].

1.4 Further directions

A natural question is whether the large N limit of the statistics of Y(N )(t) appear for
products of random matrices beyond the edge. Returning to the case of products of
complex Ginibre matrices, it is known [2] that the bulk statistics in the regime M ≍ N
continue to the match that of Y(N )(t), suggesting that this universality holds in the
bulk. It is worth noting that for products of square Ginibre matrices, there is a hard
edge which is absent for Y(N )(t).

Let us remarkon several relatedmodelswhichdonot exhibit right unitary symmetry.
For products of complexWishart matrices (matrices with centered, variance 1/n, i.i.d.
random variables not necessarily Gaussian), we conjecture that the large N limit of
Y(N )(t) statistics continue to appear at the edge and bulk as well. In another direction,
one can consider other symmetry classes, such as products of real matrices with right
orthogonal invariance or of quaternionic matrices with right symplectic invariance.
Natural examples are products of real Ginibre matrices and truncated Haar orthogonal
matrices for the former, and products of quaternionic Ginibre matrices and truncated
Haar symplecticmatrices for the latter. Thesemodels, and one-parameter deformations
of these models in the Dyson index β in the spirit of β-ensembles, were considered
in [3] where tightness results were obtained at the edge in the regime M ≍ N . While
convergence results beyond β = 2 are unavailable, we expect N → ∞ limits of
β-deformations of Y(N )(t) to appear, where for β = 1 and 4 this should be the
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Extremal singular values... 957

corresponding diffusion on GL(N ,R) and GL(N ,H). respectively (where H is the
skew field of real quaternions).

Although convergence results for products of right orthogonally invariant realmatri-
ces are not available, there is a similar model which may be accessible via existing
methods. The eigenvalues of XT

M · · · XT
1 AX1 · · · XM where X1, . . . , XM are realGini-

bre matrices and A is some real antisymmetric matrix are determinantal [22, 41],
structure which arises from the orthogonal Harish-Chandra-Itzykson-Zuber integral.
The behavior of the eigenvalues in the regime M ≍ N have not been studied, though
it may be accessible by analysis of correlation kernels. It would be interesting to see
what behavior arises in this regime.

There is also recent progress on singular numbers of products of p-adic matrices
[59] which exhibit some parallels to our setting. In particular, there is a universality
phenomenon where objects corresponding to Lyapunov exponents converge in the
large N limit to a geometric progression. It is possible that there may be analogues of
our result in this setting.

1.5 Method

Themethods in this paper rely on an analogue of theMellin transform for distributions
of right unitarily invariant matrices. Given a random X in GL(N ,C), define

(X (z) = E
[∫

U(N )
|UX∗XU−1|z dU

]
, z ∈ CN

abusing notation by using the random X as a subscript of (, where

|Y |z := (det Y )zN
N−1∏

j=1

(
det Y j× j

)z j−z j+1−1

is a generalization of the power function for positive definition matrices; Y j× j is the
j × j top left corner submatrix of Y which itself is positive definite by Sylvester’s
criterion. The expectation satisfies the factorization property

(XY (z) = (X (z)(Y (z)

where X , Y are independent random right unitarily invariant complex N×N matrices.
These ideas, and their additive analogue, have been used to compute exact density
formulas for a variety of matrix ensembles as in [24, 43, 44, 60] under a common
framework.

The integral within the expectation of (X (z) is known as the Gelfand-Naı̆mark
integral. It can be explicitly evaluated [26]
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958 A. Ahn

∫

U(N )
|U diag(x1, . . . , xN )U−1|z dU = !(ρN )

det xzij
!(z)!(x)

,

!(u1, . . . , uN ) =
∏

1≤i< j≤N

(ui − u j )

andmay be viewed as amultiplicative analogue of theHarish-Chandra-Itzykson-Zuber
integral [31, 35]. The right hand side is a (normalized) multivariate Bessel function, a
continuous analogue of a Schur function. This connection with symmetric functions
yields a collection of tools for the study of right unitarily invariant random matrix
products. In particular, we can act on the spherical transforms by certain operators
diagonalized by the multivariate Bessel functions to obtain observables for singular
values of matrix products. Similar ideas were used to study other random processes
with connections to symmetric functions, including polymers [8], measures arising
from representation theory [10–12], theβ-Jacobi corners process fromβ-ensembles [9,
29], and manymore. This idea was used by [28] to study global fluctuations of random
matrix products, where the spherical transform was referred to as the multivariate
Bessel generating function, as we will in the body of this paper due to methodological
connections with their work.

Our method relies on the extraction of joint observables for singular values of
Y (N )(m) via the appropriate family of operators. The observables and corresponding
operators used in [28] are not amenable for the analysis of edge statistics in our
setting. Thus, we consider a family of operators suitable for our regime corresponding
to observables which give the joint Laplace transform of the log singular values of
Y (N )(M) (over varying M). This leads to considerable differences from the analyses
of [28]. Our observables allow us to access the edge in a similar manner as the method
of high moments in [54] probed the edge for Wigner matrices. In short, joint Laplace
transforms of the singular values are dominated by the largest singular values in our
limit. Using exact formulas, these observables have expressions in terms of large
combinatorial sums which can be asymptotically identified with expressions which
correspond to the large N limit of observables of Y(N )(t).

1.6 Organization

The remainder of this paper is organized as follows. In Sect. 2 we introduce the main
tools to access the observables of singular values of random matrix products: the
multivariate Bessel generating function and associated operators. Section3 introduces
the formalism of line ensembles and is devoted to proving Theorem 1.3, along with
auxiliary results for later parts of the paper. Section4 introduces the S-transform and
the ψ function of a measure on R>0, and similarly proves auxiliary results for later
parts of the paper. Section5 obtains asymptotics of multivariate Bessel functions,
bootstrapping off of a result of [28], a key input for the asymptotics of the joint
Laplace transforms that we want to compute. Finally, Sect. 6 proves the main result
Theorem 1.4, containing the core asymptotic analysis of this paper.

123



Extremal singular values... 959

2 Joint Laplace transforms andmultivariate Bessel functions

In this section, we introduce the multivariate Bessel generating function, also known
as the spherical transform, which are expectations of random matrices over the mul-
tivariate Bessel function, see e.g. [25] and references therein. The multivariate Bessel
generating functions cohere well with matrix products, a fact which furnishes us with
expressions for observables of squared singular values of random matrix products.

Definition 2.1 The multivariate Bessel function indexed by a = (a1 ≥ · · · ≥ aN ) ∈
RN is the function

Ba(z) =
det

[
ezi a j

]N
i, j=1

!(z)

which is holomorphic for z ∈ CN , where

!(z) =
∏

1≤i< j≤N

(zi − z j ).

Definition 2.2 Let X be a random matrix in GL(N ,C) with right unitarily invariant
distribution, Denote by x = (x1, . . . , xN ) the squared singular values of X . The
multivariate Bessel generating function of X is defined by

(X (z1, . . . , zN ) = E
[Blog x(z1, . . . , zN )

Blog x(ρN )

]
,

where ρN := (N − 1, N − 2, . . . , 0), given that this expectation exists in a neighbor-
hood of (N − 1, N − 2, . . . , 0).

The normalized multivariate Bessel function within the expectation is the zonal
spherical function for the Gelfand pair GL(N ,C),U(N ) [46, Chapter VII]. If X is a
scalar (i.e. N = 1), then the multivariate Bessel generating function reduces to

(X (z) = E[|X |2z]

which is the Mellin transform for the distribution of |X |2. Thus, for general N the
function (X is an extension of the Mellin transform for positive definite matrices
X∗X . Moreover, we can define a generalized power function on N × N positive
definite matrices Y :

|Y |z := (det Y )zN
N−1∏

j=1

(
det Y j× j

)z j−z j+1−1

where Y j× j is the j× j top left corner submatrix of Y . Indeed, by Sylvester’s criterion,
the determinants are positive, thus the complex exponentials are well-defined. Then
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960 A. Ahn

Blog x(z)
Blog x(ρN )

= !(ρN )
det[xzij ]Ni, j=1

!(z)!(x)
=
∫

U(N )
|U diag(x)U−1|z dU

where the integral is over the normalized (with volume 1) Haar measure on U(N ). The
latter integral is known as the Gelfand–Naı̆mark integral [26]. From this perspective,
the multivariate Bessel functions are unitarily invariant (under the conjugation action)
generalized power functions on positive definite matrices.

Just as products of independent random variables factor under the Mellin trans-
form, the multivariate Bessel generating functions satisfy the following factorization
property:

Lemma 2.3 If X and Y are independent N × N random matrices with right unitarily
invariant distributions, then

(XY = (X · (Y .

Proof If X and Y have deterministic squared singular values x ∈ RN
>0 and y ∈ RN

>0
respectively, then this follows from the identity

Blog x(z)
Blog x(ρN )

Blog y(z)
Blog x(ρN )

= E
[ Blogw(z)
Blogw(ρN )

]

for zonal spherical functions, wherew are the squared singular values of XY , see [46,
Chapter VII]. The general case follows from taking mixtures of the aforementioned
case. ⊓⊔

Wecan iterateLemma2.3. Let X(1), X(2), . . . be independent N×N right-unitarily
invariant complex random matrices. Given that the multivariate Bessel generating
functions (X(m) (m ≥ 1) exist, the product Y (M) := X(M) · · · X(1) has multivariate
Bessel generating function

M∏

m=1

(X(m)(z1, . . . , zN ).

Given c ∈ C, define

Dc := D(N )
c :=

N∑

i=1

⎛

⎝
∏

j ̸=i

c + zi − z j
zi − z j

⎞

⎠ Tc,zi

where Tc,zi f (z1, . . . , zN ) = f (z1, . . . , zi + c, . . . , zN ). With these definitions in
place, we claim that

DcBlog x(z1, . . . , zN ) =
(

N∑

i=1

xci

)

Blog x(z1, . . . , zN ). (2.1)
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To see why this eigenrelation holds, observe that

!(z)Tc,zi !(z)−1 =
∏

j ̸=i

zi − z j
c + zi − z j

so that

DcBlog x(z1, . . . , zN )

=
N∑

i=1

⎛

⎝
∏

j ̸=i

c + zi − z j
zi − z j

⎞

⎠ Tc,zi
det[xz jk ]Nj,k=1

!(z)

= 1
!(z)

N∑

i=1

⎡

⎣

⎛

⎝
∏

j ̸=i

c + zi − z j
zi − z j

⎞

⎠!(z)Tc,zi !(z)−1

⎤

⎦ Tc,zi det[x
z j
k ]Nj,k=1

= 1
!(z)

N∑

i=1

Tc,zi
∑

σ∈SN

(−1)σ
N∏

j=1

x
z j
σ ( j)

=
(

N∑

i=1

xci

)
1

!(z)
det[xz jk ]Nj,k=1 =

(
N∑

i=1

xci

)

Blog x(z1, . . . , zN )

whereSN is the symmetric group of order N and (−1)σ is the sign of the permutation
σ .

Proposition 2.4 Let X(1), X(2), . . .be independent nonsingular N×N randommatri-
ces with right unitarily invariant distributions and multivariate Bessel generating
functionsϕ1,ϕ2, . . . respectively. Assume that themultivariate Bessel generating func-
tions are analytic on CN . Fix real numbers c1, . . . , ck > 0 and integers M1 ≥ · · · ≥
Mk > Mk+1 = 0. Suppose y(M) ∈ RN

>0 is the vector of squared singular values of
Y (M) = X(M) · · · X(1). Then

E

⎡

⎣
k∏

i=1

N∑

j=1

y j (Mi )
ci

⎤

⎦

= Dc1

M1∏

m1=M2+1

ϕm1(z1 . . . , zN ) · · ·Dck

Mk∏

mk=Mk+1+1

ϕmk (z1, . . . , zN )

∣∣∣∣∣∣
z=ρN

where the Dc operators act on everything to their right.

With Theorem 1.2, we can compute the multivariate Bessel generating function for
Brownian motion on GL(N ,C) using the following general result:

Proposition 2.5 Suppose that η(t) is the vector of N non-intersecting Brownian
motions with drift µ = (µ1 ≥ · · · ≥ µN ) and η(0) = 0. If

η(t)+ a := (η1(t)+ a, . . . , ηN (t)+ a)
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for some a ∈ R, then

E
[
Bη(t)+a(z)
Bη(t)+a(µ)

]
=

N∏

i=1

e
t
2 (zi+ a

t )
2

e
t
2 (µi+ a

t )
2 .

Recall our notation (ξ
(N )
1 ≥ · · · ≥ ξ

(N )
N ) for the log squared singular values of

Brownian motion Y(N )(t) on GL(N ,C). Using our description from Theorem 1.2 for
this process as Dyson Brownian motion with drift, Propositions 2.4 and 2.5 imply

Corollary 2.6 Given c1, . . . , ck > 0 and t1 > · · · > tk > tk+1 = 0, we have

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j

(
ti
4

)
− Nti

2

)
⎤

⎦

= Dc1

N∏

i=1

e
1
2 (t1−t2)(zi−N+ 1

2 )
2

e
1
2 (t1−t2)

(
−i+ 1

2

)2 · · ·Dck

N∏

i=1

e
1
2 (tk−tk+1)

(
zi−N+ 1

2

)2

e
1
2 (tk−tk+1)

(
−i+ 1

2

)2

∣∣∣∣∣∣∣
z=ρN

(2.2)

where the Dc operators act on everything to their right. The right hand side can be
expressed as a multiple contour intergral:

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ j

(
ti
4

)
− Nti

2

)
⎤

⎦

= 1
(2π i)k

∮
· · ·

∮ ∏

1≤i< j≤k

(zi − z j )(zi + ci − z j − c j )
(zi − z j − c j )(zi + ci − z j )

k∏

i=1

e
ti
2

(
zi+ci− 1

2

)2

e
ti
2

(
zi− 1

2

)2
.(zi + ci + N ).(zi )
.(zi + ci ).(zi + N )

dzi
ci

(2.3)

where the zi contour is positively oriented around 0,−1, . . . ,−N + 1 for 1 ≤ i ≤ k
and the z j contour contains zi + ci and zi − c j for each 1 ≤ i < j ≤ k.

Remark 1 The contour integral formula (2.3) can be viewed as a special case of [4,
Propositions 2.8 and 2.9] and is closely related to the formula [3, Theorem B.2] for
observables of Schur processes. These ideas go further back to the work of [8] where
Macdonald processes, generalizations of the Schur processes [51], were introduced
to study directed polymers. In this work, a family of contour integral formulas for
observables of Macdonald processes were used to access these polymer models.

We now provide the proofs of these results.
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Proof of Proposition 2.4 We show that

E

⎡

⎣

⎛

⎝
k∏

i=1

N∑

j=1

y j (Mi )
ci

⎞

⎠ Blog y(M1)(z1, . . . , zN )
Blog y(M1)(ρN )

⎤

⎦

= Dc1

M1∏

m1=M2+1

ϕm1(z1, . . . , zN ) · · ·Dck

Mk∏

mk=Mk+1+1

ϕmk (z1, . . . , zN )

(2.4)

by induction on k. The result follows from evaluating the expression above at z = ρN .
Indeed, (2.1) and Lemma 2.3 imply that

E

⎡

⎣

⎛

⎝
N∑

j=1

y j (M)c

⎞

⎠ Blog y(M)(z1, . . . , zN )
Blog y(M)(ρN )

⎤

⎦ = Dc

M∏

m=1

ϕm(z1, . . . , zN )

which is the k = 1 base step in the induction. Next, suppose we know that

E

⎡

⎣

⎛

⎝
k∏

i=2

N∑

j=1

y j (Mi )
ci

⎞

⎠ Blog y(M2)(z1, . . . , zN )
Blog y(M2)(ρN )

⎤

⎦

= Dc2

M2∏

m2=M3+1

ϕm2(z1, . . . , zN ) · · ·Dck

Mk∏

mk=Mk+1+1

ϕmk (z1, . . . , zN )

(2.5)

which is equivalent to assuming the induction hypothesis for k − 1. Multiply both
sides by

M1∏

m1=M2+1

ϕm1(z1, . . . , zN )

and applyDc1 . Then the right hand side of (2.5) becomes the right hand side of (2.4).
The left hand side of (2.5) becomes

Dc1

M1∏

m1=M2+1

ϕm1(z1, . . . , zN ) · E

⎡

⎣

⎛

⎝
k∏

i=2

N∑

j=1

y j (Mi )
ci

⎞

⎠ Blog y(M2)(z1, . . . , zN )
Blog y(M2)(ρN )

⎤

⎦

= E

⎡

⎣

⎛

⎝
k∏

i=2

N∑

j=1

y j (Mi )
ci

⎞

⎠Dc1
Blog y(M2)(z1, . . . , zN )

Blog y(M2)(ρN )

M1∏

m1=M2+1

ϕm1(z1, . . . , zN )

⎤

⎦

(2.6)
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964 A. Ahn

which we want to match with the left hand side of (2.4). Observe that

Blog y(M2)(z1, . . . , zN )

Blog y(M2)(ρN )

M1∏

m1=M2+1

ϕm1(z1, . . . , zN ) = E
[
Blog y(M1)(z1, . . . , zN )

Blog y(M1)(ρN )

∣∣∣∣∣ y(M2)

]

by Lemma 2.3. In words, the left hand side is the multivariate Bessel generating
function for the matrix product X(M1)X(M1 − 1) · · · X(M2 + 1)Y (M2) = Y (M1)

where we condition Y (M2) to have squared singular values given by y(M2). Using
the identity above, (2.6) becomes

E

⎡

⎣

⎛

⎝
k∏

i=2

N∑

j=1

y j (Mi )
ci

⎞

⎠Dc1E
[ Blog y(M1)(z1, . . . , zN )

Blog y(M1)(ρN )

∣∣∣∣ y(M2)

]⎤

⎦

= E

⎡

⎣

⎛

⎝
k∏

i=2

N∑

j=1

y j (Mi )
ci

⎞

⎠E

⎡

⎣
N∑

j=1

y j (M1)
c1 Blog y(M1)(z1, . . . , zN )

Blog y(M1)(ρN )

∣∣∣∣ y(M2)

⎤

⎦

⎤

⎦

by commuting Dc1 with the conditional expectation. Thus we obtain the right hand
side of (2.4) by consolidating the expectations. ⊓⊔

Proof of Proposition 2.5 We prove the statement for a = 0, the general case follows
from the identity

Bη+a(z1, . . . , zN ) =
(

N∏

i=1

eazi
)

Bη(z1, . . . , zN ).

The density at time t of N Brownian bridges starting at a (at time t = 0), ending at b
(at time T ), and conditioned to never intersect is given by

1

N ! det
[
pT (ai , b j )

]N
i, j=1

det
[
pt (ai , η j )

]N
i, j=1 det

[
pT−t (ηi , b j )

]N
i, j=1 ,

pt (x, y) =
e− (x−y)2

2t
√
2π t

which expands out to

1

(2π t(1 − t
T ))N/2

⎛

⎝
N∏

i=1

e−
a2i
2t +

a2i
2T − b2i

2(T−t)+
b2i
2T e−

Tη2i
2t(T−t)

⎞

⎠
det

[
e
ai η j
t

]N

i, j=1
det

[
e
bi η j
T−t

]N

i, j=1

N ! det
[
e
ai b j
T

]N

i, j=1

supported on η ∈ RN , by e.g. [38]. Here, the density is on the unordered positions of
the Brownian motions. Take ai = ε(N − i) and bi = Tµi . Then the density becomes
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1

N !
(
2π t

(
1 − t

T

))N/2

(
N∏

i=1

e− ε2(T−t)(N−i)2
2tT − tTµ2i

2(T−t) e− Tη2i
2t(T−t)

)

det
[
e
Tµi η j
T−t

]N

i, j=1

∏

1≤i< j≤N

e
εηi
t − e

εη j
t

eεµi − eεµ j

where we use the Vandermonde determinant identity

!(z) =
∏

1≤i< j≤N

(zi − z j ) = det
[
zN− j
i

]

1≤i, j≤N
.

Sending ε → 0, then T → ∞, we obtain

1
N !(2π t)N/2

(
N∏

i=1

e− tµ2i
2 − η2i

2t

)

det
[
eµiη j

]N
i, j=1

!(η/t)
!(µ)

.

This is the time t marginal density for Brownian motion on RN starting at 0 with drift
vector µ, more specifically this density corresponds to the unordered coordinates of
this Brownian motion (so the density corresponds to a measure on RN rather than on
the Weyl chamber {x1 ≥ · · · ≥ xN }). We have

Bη(z)
Bη(µ)

=
det

[
eziη j

]N
i, j=1

!(z)
!(µ)

det [eµiη j ]Ni, j=1

.

Then

E
[
Bη(t)(z)
Bη(t)(µ)

]
= 1

N !(2π t)N/2

(
N∏

i=1

e− tµ2i
2

)∫

RN
det

[
eziη j

]N
i, j=1

!(η/t)
!(z)

N∏

i=1

e− η2i
2t dη

= 1
N !(2π t)N/2

(
N∏

i=1

e− tµ2i
2

)
1

!(z)

∫

RN
det

[
eziη j

]N
i, j=1 det

[(ηi

t

)N− j
e− η2i

2t

]N

i, j=1
dη

By Andréief’s identity, we obtain

E
[
Bη(t)(z)
Bη(t)(µ)

]
= 1

(2π t)N/2

(
N∏

i=1

e− tµ2i
2

)
1

!(z)
det

[∫

R

( x
t

)N− j
exzi−

x2
2t dx

]N

i, j=1

= 1
(2π)N/2

(
N∏

i=1

e
t(z2i −µ2i )

2

)
1

!(z)
det

[
MN− j (zi )

]N
i, j=1

(2.7)
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where

Mn(z) :=
∫

R

( x
t

)n
e− (x−t z)2

2t
dx√
t
=

√
t
∫

R
xne− t(x−z)2

2 dx .

We claim that Mn(z) is a degree n polynomial in z with leading coefficient
√
2π . We

proceed by induction on n. Clearly, M0(z) =
√
2π . Observe that

Mn(0) =
√
t
∫

R
xne−

t x2
2 dx =

√
t
∫

R
(x − z)ne−

t(x−z)2
2 dx =

√
t

n∑

k=0

(
n
k

)
(−z)n−kMk(z).

Rearranging, we get

Mn(z) = t−1/2Mn(0) −
n−1∑

k=0

(
n
k

)
(−z)n−kMk(z)

By our induction hypothesis, we have

Mn(z) = −
(
n−1∑

k=0

(
n
k

)
(−1)n−k

)
√
2π zn + lower degree terms

Thus the top degree term is
√
2π zn , completing the induction. Applying row opera-

tions, we have

det[MN− j (zi )]Ni, j=1 = (2π)N/2!(z).

Plugging this into (2.7) completes the proof. ⊓⊔

Proof of Corollary 2.6 Set

(t (z1, . . . , zN ) := E
[Bξ (N )( t4 )− Nt

2
(z1, . . . , zN )

Bξ (N )( t4 )− Nt
2
(ρN )

]

.

The joint distribution of ξ (N )( tk4 ) − Ntk
2 , . . . , ξ (N )( t14 ) − Nt1

2 is given by the joint
distribution of the log squared singular values of

X(N ,k)(tk),

X(N ,k−1)(tk−1 − tk)X(N ,k)(tk),
...

X(N ,1)(t1 − t2) · · ·X(N ,k−1)(tk−1 − tk)X(N ,k)(tk),
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where X(N ,1)(t), . . . ,X(N ,k)(t) are independent copies of e− Nt
4 Y(N )( t4 ). Then Propo-

sition 2.4 implies

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j (

ti
4 )−

Nti
2

)⎤

⎦ = Dc1(t1−t2 (z1, . . . , zN ) · · ·Dck(tk−tk+1(z1, . . . , zN )
∣∣
z=ρN

.

We compute (t . By Theorem 1.2, ξ (N )( t4 ) − Nt
2 evolves as

η(t) −
(
N − 1

2

)
t

where η(s) is N non-intersecting Brownian motions with drift ρN = (N − 1, N −
2, . . . , 0), started at the origin. Proposition 2.5 implies

(t (z1, . . . , zN ) = E

⎡

⎣
B

η(N )(t)−
(
N− 1

2

)
t
(z1, . . . , zN )

B
η(N )(t)−

(
N− 1

2

)
t
(ρN )

⎤

⎦

=
N∏

i=1

e
t
2

(
zi−N+ 1

2

)2

e
t
2

(
−i+ 1

2

)2 .

Thus we have shown (2.2).
We now show (2.3).We first claim that if f1(z), . . . , fk(z) are entire functions, then

(recalling Dc acts on everything to its right in an expression)

Dc1

(
N∏

i=1

f1(zi )

)

· · ·Dck

(
N∏

i=1

fk(zi )

)

=
(

N∏

i=1

f1(zi ) · · · fk(zi )
)

× 1
(2π i)k

∮
· · ·

∮ ∏

1≤i< j≤k

(wi − w j )(wi + ci − w j − c j )
(wi − w j − c j )(wi + ci − w j )

k∏

i=1

(
k∏

ℓ=i

fℓ(wi + ci )
fℓ(wi )

)⎛

⎝
N∏

j=1

wi + ci − z j
wi − z j

⎞

⎠ dwi

ci

where the wi contour is positively oriented around z1, . . . , zN for 1 ≤ i ≤ k and the
w j contour contains wi + ci and wi − c j for 1 ≤ i < j ≤ k. This can be proved
by induction on k using the residue theorem and the definition of Dc, see e.g. [3,
Appendix B].

If we set

fℓ(z) = e
(tℓ−tℓ+1)

(
z−N+ 1

2

)2
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for ℓ = 1, . . . , k, and apply (2.2), we obtain

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j

(
ti
4

)
− Nti

2

)⎤

⎦ = 1
(2π i)k

∮
· · ·

∮ ∏

1≤i< j≤k

(wi − w j )(wi + ci − w j − c j )

(wi − w j − c j )(wi + ci − w j )

×
k∏

i=1

⎛

⎝
k∏

ℓ=i

e
(tℓ−tℓ+1)

2 (wi+ci−N+ 1
2 )

2

e
(tℓ−tℓ+1)

2 (wi−N+ 1
2 )

2

⎞

⎠

⎛

⎝
N∏

j=1

wi + ci − N + j
wi − N + j

⎞

⎠ dwi
ci

.

Observe that

N∏

j=1

w + ci − N + j
w − N + j

= .(wi + ci + 1).(wi − N + 1)
.(wi + ci − N + 1).(wi + 1)

.

By changing variables wi = zi + N − 1 and consolidating the product over ℓ, (2.3)
follows. ⊓⊔

3 Limiting line ensemble

The purpose of this section is to introduce line ensembles introduced in [16] and
prove the existence of the limiting line ensemble ξ(t) and the convergence result
Theorem 1.3. We prove auxiliary lemmas on the way to the proof of Theorem 1.3 for
later usage.

Definition 3.1 Let % ⊂ Z and 1 ⊂ R be intervals. Consider the topological space
C(% × 1) with the topology of uniform convergence on compact subsets of % × 1.
Wemay viewC(%×1) as the space1×C(1) of sequences (ηi (t))i∈% of continuous
functions on1 by the identification η(i, t) = ηi (t) for η ∈ C(%×1). A line ensemble
(on 1) is a probability measure on C(% ×1)with respect to the Borel σ -algebra. For
us, the set % will always be {1, . . . , k} for some k or Z>0. An infinite line ensemble
will then be a line ensemble with % = Z>0. A line ensemble η is non-intersecting if
ηi (t) > η j (t) for all i < j and t ∈ 1 almost surely.

Theorem 1.3 claims the existence of an infinite line ensemble {ξ(t)}t>0 which is the
limit of {ξ (N )( t4 )− Nt

2 − log N }t>0. The following theorem gives explicit expressions
for certain observables of ξ(t).
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Theorem 3.2 We have:

(i) For c1, . . . , ck > 0,

E

⎡

⎣
k∏

i=1

∞∑

j=1

eci ξ j (ti )

⎤

⎦ =
∫

dz1
2π ic1

· · ·
∫

dzk
2π ick

⎛

⎝
∏

1≤i< j≤k

(zi − z j )(zi + ci − z j − c j )
(zi + ci − z j )(zi − z j − c j )

⎞

⎠

(3.1)

×
k∏

i=1

e
ti
2

(
zi+ci− 1

2

)2

e
ti
2

(
zi− 1

2

)2
.(zi )

.(zi + ci )

where the zi contour is an infinite contour positively oriented around
0,−1,−2, . . . which starts at −∞ − iϵ and ends at −∞ + iϵ for 1 ≤ i ≤ k,
and the z j contour encloses zi + ci and zi − c j whenever 1 ≤ i < j ≤ k.

(ii) The spacetime correlation kernel for ξ(t) is given by

ρk(t1, x1; . . . ; tk, xk) = det
[
K (ti , xi ; t j , x j )

]
1≤i, j≤k

where

K (s, x; t, y) = − 1√
2π(t − s)

e− (x−y)2
2(t−s) 1[t > s]

+
∫

dz
2π i

∫ c+i∞

c−i∞

dw
2π i

e
tw2
2 −yw

e
sz2
2 −xz

1
w − z

.
(
z + 1

2

)

.
(
w + 1

2

) . (3.2)

and the z contour is an infinite contour positively orientedaround− 1
2 ,− 3

2 ,− 5
2 , . . .

which starts at −∞ − iϵ and ends at −∞ + iϵ.

Remark 2 The explicit expression for the correlation function will not be used directly
in this paper, we only use the fact that it is determinantal.

The remainder of this section is devoted to the proofs of Theorems 1.3 and 3.2.
Our first step is to show the convergence of joint Laplace transforms and correlation
functions.

Proposition 3.3 Fix t1 ≥ · · · ≥ tk > 0. Suppose τ1(N ) ≥ · · · ≥ τk(N ) > 0 such that
ti := limN→∞ τi (N ) for 1 ≤ i ≤ k.

(i) For any c1, . . . , ck > 0,

lim
N→∞

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j

(
τi (N )
4

)
− Nτi (N )

2 −log N
)
⎤

⎦

=
∫

dz1
2π ic1

· · ·
∫

dzk
2π ick

⎛

⎝
∏

1≤i< j≤k

(zi − z j )(zi + ci − z j − c j )
(zi + ci − z j )(zi − z j − c j )

⎞

⎠
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k∏

i=1

e
ti
2 (zi+ci− 1

2 )
2

e
ti
2

(
zi− 1

2

)2
.(zi )

.(zi + ci )

where c1, . . . , ck > 0, the zi contour is an infinite contour positively oriented
around 0,−1,−2, . . .which starts at−∞−iϵ and ends at−∞+iϵ for 1 ≤ i ≤ k,
and the z j contour encloses zi + ci and zi − c j whenever 1 ≤ i < j ≤ k.

(ii) Let ρ(N )
k (τ1, x1; . . . , τk, xk) denote the kth space-time correlation function of

(
ξ
(N )
1

(τ

4

)
− Nτ

2
− log N , . . . , ξ

(N )
N

(τ

4

)
− Nτ

2
− log N

)

τ≥0
.

Then

lim
N→∞

ρ
(N )
k (τ1(N ), x1; . . . , τk(N ), xk) = det

[
K (ti , xi ; t j , x j )

]
1≤i, j≤k

where K (s, x; t, y) is given by (3.2).

Proof of Proposition 3.3 Let c1, . . . , ck > 0. By Corollary 2.6, we have

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ j (

τi (N )
4 )− Nτi (N )

2 −log N
)
⎤

⎦ =
(

k∏

i=1

N−ci

)

×
∮

dz1
2π ic1

· · ·
∮

dzk
2π ick

⎛

⎝
∏

1≤i< j≤k

(zi − z j )(zi + ci − z j − c j )
(zi − z j − c j )(zi + ci − z j )

⎞

⎠

k∏

i=1

e
τi (N )
2

(
zi+ci− 1

2

)2

e
τi (N )
2

(
zi− 1

2

)2
.(zi + ci + N ).(zi )
.(zi + ci ).(zi + N )

where the zi contour is positively oriented around 0,−1, . . . ,−N + 1 for 1 ≤ i ≤ k
and the z j contour contains zi + ci and zi − c j for 1 ≤ i < j ≤ k. From Stirling’s
formula [50, p141] (see also [3, Lemma 6.6]) for the Gamma function, we have

.(zi + ci + N )

.(zi + N )
= (zi + ci + N )zi+ci+N− 1

2

(zi + N )zi+N− 1
2

e−ci (1+ O(1/N )) = Nci (1+ O(1/N ))

which holds uniformly on compact subsets of the zi contour. Combining this with the
decay of the integrand for Re z ≪ 0 but Re z > −N − 1 and | Im z| bounded away
from 0, we obtain the desired expression
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∫
dz1
2π ic1

· · ·
∫

dzk
2π ick

⎛

⎝
∏

1≤i< j≤k

(zi − z j )(zi + ci − z j − c j )
(zi + ci − z j )(zi − z j − c j )

⎞

⎠
k∏

i=1

e
ti
2

(
zi+ci− 1

2

)2

e
ti
2

(
zi− 1

2

)2
.(zi )

.(zi + ci )

in the limit as N → ∞. Note that the decay of the exponential terms at infinity along
the contour is clear. To see the decay of the gamma quotient, we may use the reflection
formula for the Gamma function

.(z).(1 − z) = π

sin(π z)
.

Recalling Theorem 1.2, we can explicitly write down the spacetime correlation
kernel for {ξ (N )( t4 ) − Nt

2 }t>0 by [38] (see also [18, Proposition 4.1]). It is given by

KN (s, x; t, y) = − 1√
2π(t − s)

e− (x−y)2
2(t−s) 1[t > s] +

∮

γ

dz
2π i

∫

.c

dw
2π i

e
tw2
2 −yw

e
sz2
2 −xz

1
w − z

N∏

i=1

w + i − 1
2

z + i − 1
2

where γ is a simple closed curve positively oriented around {−i + 1
2 }Ni=1 and .c :

τ 7→ c + iτ, τ ∈ R such that γ and .c are disjoint. Thus

ρ
(N )
k (τ1, x1; . . . ; τk, xk) = det

[
KN (τi , xi + log N ; τ j , x j + log N )

]k
i, j=1 .

We can write

KN (s, x + log N ; t, y + log N ) = − 1√
2π(t − s)

e− (x−y)2
2(t−s) 1[t > s]

+
∮

γ

dz
2π i

∫

.c

dw
2π i

e
tw2
2 −yw

e
sz2
2 −xz

N z−w

w − z

.
(
w + N + 1

2

)

.
(
z + N + 1

2

)
.
(
z + 1

2

)

.
(
w + 1

2

) .

From Stirling’s formula for the Gamma function as before, we find

.
(
w + N + 1

2

)

.
(
z + N + 1

2

) =
(
w + N + 1

2

)w+N

(
z + N + 1

2

)z+N ez−w(1+ O(1/N )) = Nw−z(1+ O(1/N )).

Thus, we have

lim
N→∞

KN (s, x + log N ; t, y + log N )

= − 1√
2π(t − s)

e− (x−y)2
2(t−s) 1[t > s] +

∫
dz
2π i

∫

.c

dw
2π i

e
tw2
2 −yw

e
sz2
2 −xz

1
w − z

.
(
z + 1

2

)

.
(
w + 1

2

)
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where the z contour is an infinite contour positively oriented around− 1
2 ,− 3

2 ,− 5
2 , . . .,

starting at −∞ − iϵ and ending at −∞+ iϵ. For full rigor, we must control the tail of
the z-contour for Re z ≪ 0. This is managed by the reflection formula for the gamma

function and the e− sz2
2 term, as before. ⊓⊔

The next two lemmas are the key to proving Theorems 1.3 and 3.2. They are stated
in a manner convenient for later usage. The first lemma establishes the existence of a
limiting process.

Lemma 3.4 There exists a process {ξ(t) := (ξ1(t), ξ2(t), . . .)}t>0 with joint Laplace
transform given by (3.1) and spacetime correlation kernel given by (3.2).

The next lemma links convergence of Laplace transformswith convergence in finite
dimensional distributions.

Lemma 3.5 Fix t1 ≥ · · · ≥ tk > 0. Let τ1(N ) ≥ · · · ≥ τk(N ) > 0 such that
ti := limN→∞ τi (N ) for 1 ≤ i ≤ k. Suppose

{
(y(N )

1 (τ ) ≥ · · · ≥ y(N )
N (τ )

}

τ>0
is a

random RN -valued process such that there exists ε > 0 (which may vary with k)
satisfying

lim
N→∞

E

⎡

⎣
k∏

i=1

N∑

j=1

eci y
(N )
j (τi (N ))

⎤

⎦ = E

⎡

⎣
k∏

i=1

∞∑

j=1

eci ξ j (ti )

⎤

⎦ (3.3)

for 0 < c1, . . . , ck ≤ ε. Then

lim
N→∞

P
(
y j (τi (N )) ≤ ai, j : 1 ≤ i ≤ k, 1 ≤ j ≤ h

)
= P

(
ξ j (ti ) ≤ ai, j : 1 ≤ i ≤ k, 1 ≤ j ≤ h

)

for any real numbers ai, j (1 ≤ i ≤ k, 1 ≤ j ≤ h) and any positive integer k.

Proof of Lemmas 3.4 and 3.5 The argument below closely follows the ideas from [54,
Section 5] and [49, Section 4.1.3] to show that the convergence of Laplace transforms
of the correlation functions implies the desired convergence in finite dimensional
distributions. Let ρ(N )

k (τ1, x1; . . . ; τk, xk) denote the space-time correlation function
for the process

(
y(N )
1 (τ ), . . . , y(N )

k (τ )
)
.

Our assumption (3.3) implies the existence of the limits

lim
N→∞

∫

Rk
ec1x1+···+ck xkρ

(N )
k (τ1(N ), x1; . . . ; τk(N ), xk)dx1 · · · dxk (3.4)

for 0 < c1, . . . , ck < ε where the limit is given by a finite linear combination of the
right hand side of (3.1). We want to show that this limit is given by some limiting
measure ρk(t1, x1; . . . ; tk, xk). For this, define the measure
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ϱ
(N )
k (x1, . . . , xk)dx1 · · · dxk := eθx1+···+θxkρ

(N )
k (τ1(N ), x1; . . . ; τk(N ), xk)dx1 · · · dxk

where θ = ε/2. The existence and form of the limits (3.4) implies the weak con-
vergence of ϱ

(N )
k to some limiting finite measure ϱk as measures on Rk . Define ρk

by

ρk(t1, x1; . . . ; tk, xk)dx1 · · · dxk := e−θx1−···−θxkϱk(x1, . . . , xk)dx1 · · · dxk

where we note the suppression of the dependence on the τ ’s and t’s in the notation for
ϱ
(N )
k and ϱk . Thus

ρ
(N )
k (τ1(N ), x1; . . . ; τk(N ), xk)dx1 · · · dxk → ρk(t1, x1; . . . ; tk, xk)dx1 · · · dxk

weakly on Rk . By Proposition 3.3, this convergence holds in particular for y(N )(τ ) =
ξ (N )( τ

4 ) − Nτ
2 − log N so that

ρk(t1, x1; . . . , tk, xk) = det
[
K (ti , xi ; t j , x j )

]
1≤i, j≤k

where K (s, x; t, y) is given by (3.2).
The weak convergence of the correlation functions implies that the joint moments

of random variables of the form

Y(N )
τi (N )(S) := |{ j : y(N )

j (τi (N )) ∈ S}|, S ⊂ [c,∞), 1 ≤ i ≤ k, c > 0

converge to corresponding joint moments of some limiting random variables

Yti (S), S ⊂ [c,∞), 1 ≤ i ≤ k, c > 0.

Since the limit ρk is determinantal, the joint moments of the Yti (S) do not grow
faster than factorials so that the convergence of joint moments implies convergence in
distribution. Therefore the probabilities

P
(
y(N )
j (τi (N )) ≤ ai, j : 1 ≤ i ≤ k, 1 ≤ j ≤ h

)

converge as N → ∞ as they can be expressed as a finite linear combination of
probabilities of the form

P
(
Y(N )

τ1(N )(S1,1) = n1,1, . . .Y(N )
τ1(N )(S1,r1) = n1,r1 , . . . ,Y

(N )
τk (N )(Sk,1)

= nk,1, . . . ,Y(N )
τk (N )(Sk,rk ) = nk,rk

)
,

where the sets Si,r are among (ai,1,∞), (ai,2, ai,1], . . . , (ai,h, ai,h−1]. This proves the
existence of the limit (in finite dimensional distributions) process {(ξ1, ξ2, . . .)}t>0,
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974 A. Ahn

where the Laplace transform and spacetime correlation kernel are necessarily given
by (3.1) and (3.2). Thus Lemmas 3.4 and 3.5 follow. ⊓⊔

Proof of Theorem 1.3 and Theorem 3.2 We want to upgrade the convergence in finite
dimensional distributions of

(
ξ
(N )
1

( t
4

)
− Nt

2 − log N , . . . , ξ
(N )
N

( t
4

)
− Nt

2 − log N
)

implied by Proposition 3.3 and Lemma 3.5 to the stronger notion of convergence of
line ensembles for Theorem 1.3. Themachinery for this is supplied by [16, Proposition
3.6]. We can argue as in [16, Proposition 3.12] to check that our line ensembles satisfy
the hypotheses of [16, Proposition 3.6], using the determinantal structure of the line
ensembles from Proposition 3.3. The statements in [16] are for line ensembles on
[−T , T ], so minor modifications in the statement of hypotheses need to be made to
obtain the convergence of our line ensembles on [ 1T , T ]. Theorem 3.2 follows from
Lemmas 3.4 and 3.5. ⊓⊔

4 The S-transform andÃ

Given a probability measure µ onR≥0, we can define itsψ-function and S-transform.
The former is a generating function for the moments of µ and the latter plays the
role of the log characteristic function from classical probability in the context of free
probability, where the multiplicative free convolution corresponds to summation of
independent random variables, see e.g. [15, 58]. We collect several properties of these
functions for the analysis in subsequent sections.

Definition 4.1 Given a probability measure µ supported in R≥0, let

ψµ(z) :=
∫

zx
1 − zx

dµ(x), z ∈ C \ suppµ.

Definition 4.2 Let M denote the set of compactly supported Borel probability mea-
sures on R>0, in particular inf suppµ > 0 for µ ∈ M. We view M as a topological
space under the weak topology. Given a closed interval I ⊂ R>0, letMI ⊂ M denote
the subset of probability measures supported in I , which is compact under the weak
topology.

Assume that µ ∈ M. Then ψµ is analytic on (C ∪ {∞})\J where J is some
bounded interval in R>0 which contains {x−1 : x ∈ suppµ}. Moreover,

ψ ′
µ(z) =

∫
x

(1 − zx)2
dµ(x) (4.1)

which is positive for z ≤ 0. Thus there exists a meromorphic inverse ψ−1
µ defined in

a neighborhood of [−1, 0] and mapping to the Riemann sphere with a simple pole at
−1 and a zero at 0.
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Definition 4.3 The S-transform of µ ∈ M is given by

Sµ(u) :=
1+ u
u

ψ−1
µ (u).

In view of the discussion above, forµ compactly supported inR>0, the S-transform
is defined in a neighborhood of [−1, 0].

Proposition 4.4 Fix a compact subset I ⊂ R>0. Then there exists a neighborhood
U ⊂ C of [−1, 0] such that for all µ ∈ MI

(i) ψ−1
µ (z) is well-defined, injective, meromorphic function on U with a unique

pole at −1 and zero at 0;
(ii) Sµ(z) is holomorphic with no zeros on U, and
(iii) the map µ 7→ Sµ on MI is continuous where the topology of the images are

with respect to uniform convergence on compact subsets of U.

Proof Items (i) and (iii) follow from [15, Proposition 3.3]. Given thatψ−1
µ has a simple

pole at −1 and a zero at 0, (ii) follows from the definition of Sµ. ⊓⊔

Here are additional properties of the S-transform which follow from [15, Proposi-
tion 3.1]:

Proposition 4.5 (i) S′
µ(u) ≤ 0 for u ∈ [−1, 0].

(ii) Sµ(u) > 0 for u ∈ [−1, 0].
(iii) Sµ(u) = Sµ(u).

We record a lemma which evaluates the S-transform and its first and second deriva-
tives at 0.

Lemma 4.6 Suppose µ ∈ M. Let

κ1(µ) :=
∫

x dµ(x), κ2(µ) :=
∫

x2 dµ(x) −
(∫

x dµ(x)
)2

denote the mean and variance of µ respectively. Then

Sµ(0) =
1

κ1(µ)
, S′

µ(0) = − κ2(µ)

κ1(µ)3
,

S′′
µ(0) = 4

(∫
x2 dµ(x)

)2
(∫

x dµ(x)
)5 − 2

∫
x3 dµ(x)

(∫
x dµ(x)

)4 − 2

∫
x2 dµ(x)

(∫
x dµ(x)

)3 .

Proof From the expansion

ψµ(z) = z
∫

x dµ(x)+ z2
∫

x2 dµ(x)+ z3
∫

x3 dµ(x)+ O(|z|4), |z| → 0,
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976 A. Ahn

we get

ψ−1
µ (u) = u

1∫
x dµ(x)

− u2
∫
x2 dµ(x)

(∫
x dµ(x)

)3

+u3
(

2

∫
x2 dµ(x)

(∫
x dµ(x)

)5 −
∫
x3 dµ(x)

(∫
x dµ(x)

)4

)

+ O(|u|4), |u| → 0

so that

Sµ(u) =
1∫

x dµ(x)
+
(

1∫
x dµ(x)

−
∫
x2 dµ(x)

(∫
x dµ(x)

)3

)

u

+
(

2

(∫
x2 dµ(x)

)2
(∫

x dµ(x)
)5 −

∫
x3 dµ(x)

(∫
x dµ(x)

)4 −
∫
x2 dµ(x)

(∫
x dµ(x)

)3

)

u2 + O(|u|3)

as |u| → 0. The result follows. ⊓⊔

We conclude this section with a lemma on ratios of Cauchy determinants involving
the ψ-function, for later use.

Lemma 4.7 Fix a compact subset I ⊂ R>0 and a positive integer k. Then there
exists a neighborhood U ⊂ C of [−1, 0] such that for all µ ∈ MI and
u1, . . . , uk, v1, . . . , vk ∈ U, the bound

C−1 <

∣∣∣∣∣∣∣∣∣

det
(

1
ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1

1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

∣∣∣∣∣∣∣∣∣

< C

(4.2)

holds for some constant C > 0 independent of µ ∈ MI . Moreover,

det
(

1
ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1

1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

= 1+ O
(
max
1≤i≤k

|ui − vi |2
)

(4.3)

uniformly over µ ∈ MI , u1, . . . , uk, v1, . . . , vk ∈ U.

Remark 3 From Proposition 4.4, ψ ′
µ(ψ

−1
µ (u)) is nonzero for u in a neighborhood U

of [−1, 0] and positive on [−1, 0]. Therefore, the square root is well-defined, where
we take the standard branch for u ∈ [−1, 0] and extend by continuity on U .

Proof of Lemma 4.7 Our starting point is a proof of the case k = 1, restated in the
following claim:
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Claim 4.8 Fix a compact subset I ⊂ R>0. Then there exists a neighborhood U ⊂ C
of [−1, 0] such that for all µ ∈ MI and u, v ∈ U, we have

C−1 <
1

ψ−1
µ (u) − ψ−1

µ (v)

u − v
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

< C (4.4)

for some constant C independent of µ ∈ MI . Moreover,

1

ψ−1
µ (u) − ψ−1

µ (v)

u − v
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

= 1+ O(|u − v|2) (4.5)

uniformly over µ ∈ MI and u, v ∈ U.

Proof of Claim 4.8 Choose U ⊃ [−1, 0] so that ψ−1
µ is meromorphic, with a unique

pole at−1 and zero at 0, on its closure for everyµ ∈ MI ,where existence is guaranteed
by Proposition 4.4. Observe that

C(u, v) := 1

ψ−1
µ (u) − ψ−1

µ (v)

u − v
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

and its reciprocal have no poles of codimension 1 and are thus holomorphic on cl(U )2

by Riemann’s second extension theorem [27, Theorem 7.1.2], as in [28, Proof of
Lemma 3.5]. Therefore C(u, v) is bounded and does not vanish on U . This implies
(4.4) where the uniformity of C follows from the compactness ofMI and cl(U ), and
the continuity of C(u, v) as a function of µ, u, and v.

It remains to show (4.5). Assume without loss of generality that I = [a−1, a] for
some a > 1. Fix δ > 0 small and let Wδ := {w ∈ U : |w + 1| ≥ δ}.

We start by showing (4.5) for u, v ∈ Wδ . Assuming u, v ∈ Wδ , since

ψ−1
µ (u) − ψ−1

µ (v) = 1

ψ ′
µ(ψ

−1
µ (v))

(u − v) − 1
2

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))3

(u − v)2 + O(|u − v|3)

we have

1

ψ−1
µ (u) − ψ−1

µ (v)

u − v
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

=

√
ψ ′
µ(ψ

−1
µ (v))

√
ψ ′
µ(ψ

−1
µ (u))

1

1 − 1
2

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))2

(u − v)+ O(|u − v|2)

=

√
ψ ′
µ(ψ

−1
µ (v))

√
ψ ′
µ(ψ

−1
µ (u))

(

1+ 1
2

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))2

(u − v)+ O(|u − v|2)
)

.
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Since

logψ ′
µ(ψ

−1
µ (u)) = logψ ′

µ(ψ
−1
µ (v))+

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))2

(u − v)+ O(|u − v|2),

we have
√

ψ ′
µ(ψ

−1
µ (v))

√
ψ ′
µ(ψ

−1
µ (u))

= exp
(
1
2
logψ ′

µ(ψ
−1
µ (v)) − 1

2
logψ ′

µ(ψ
−1
µ (u))

)

= exp

(

−1
2

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))2

(u − v)+ O(|u − v|2)
)

= 1 − 1
2

ψ ′′
µ(ψ

−1
µ (v))

ψ ′
µ(ψ

−1
µ (v))2

(u − v)+ O(|u − v|2).

Combining these estimates proves (4.5) holds for u, v ∈ Wδ .
To complete the proof, we show that (4.5) hold for u, v ∈ {w ∈ U : |w| ≥ δ} =

−(Wδ + 1). For δ sufficiently small, Wδ and −(Wδ + 1) cover U . This is sufficient
since the estimate (4.5) holds trivially if u, v are separated. We prove this by reduction
to the case for Wδ . We may write

1

ψ−1
µ (u) − ψ−1

µ (v)

u − v
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

= 1

ψ−1
ν (̃u) − ψ−1

ν (̃v)

ũ − ṽ
√

ψ ′
ν(ψ

−1
ν (̃u))ψ ′

ν(ψ
−1
ν (̃v))

where ũ = −(u+1), ṽ = −(v+1), and let ν denote the Borel probability measure on
R>0 determined by ν([c1, c2]) = µ([c−1

2 , c−1
1 ]) for any 0 < c1 ≤ c2 < ∞. Indeed,

observe

ψν(z) = −ψµ(z−1) − 1

ψ−1
ν (w) = ψ−1

µ (−(w + 1))−1

ψ ′
ν(z) =

1
z2

ψ ′
µ(z

−1)

ψ ′
ν(ψ

−1
ν (w)) = ψ−1

µ (−(w + 1))2ψ ′
µ(ψ

−1
µ (−(w + 1))).

Since ν ∈ MI (recall I = [a−1, a]), this completes the proof. ⊓⊔
By the Cauchy determinant formula, which states

det
(

1
ai − b j

)

1≤i, j≤k
=

∏
1≤i< j≤k(ai − a j )(b j − bi )

∏k
i, j=1(ai − b j )

,
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we have

det
(

1
ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1

1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

=
k∏

i=1

ui − vi

ψ−1
µ (ui ) − ψ−1

µ (vi )

1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

×
∏

1≤i< j≤k

ui − v j

ψ−1
µ (ui ) − ψ−1

µ (v j )

vi − u j

ψ−1
µ (vi ) − ψ−1

µ (u j )

ψ−1
µ (ui ) − ψ−1

µ (u j )

ui − u j

ψ−1
µ (vi ) − ψ−1

µ (v j )

vi − v j
.

Setting

C(u, v) := u − v

ψ−1
µ (u) − ψ−1

µ (v)

1
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

,

we obtain

det
(

1
ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1

1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

=
k∏

i=1

C(ui , vi )
∏

1≤i< j≤k

C(ui , v j )C(vi , u j )

C(ui , u j )C(vi , v j )
.

Then Claim 4.8 implies the bound (4.2).
For the estimate (4.3), first note that

C(ui , vi ) = 1+ O(|ui − vi |2)

by Claim 4.8, and

C(ui , v j )C(vi , u j )

C(ui , u j )C(vi , v j )
= 1+ O

(
max(|ui − vi |2, |u j − v j |2)

)
,

which can be seen by Taylor expanding in ui near vi and u j near v j . ⊓⊔

123



980 A. Ahn

5 Asymptotics of multivariate Bessel functions

Given v1, . . . , vk ∈ {N − 1, N − 2, . . . , 0}, define

B(N )
µ (u1, . . . , uk; v1, . . . , vk) :=

Ba(u1, . . . , uk, N − 1, . . . , v̂1, . . . , v̂k, . . . , 0)
Ba(N − 1, . . . , 0)

where µ := 1
N

∑N
i=1 δeai and the hat notation means that v1, . . . , vk are omitted from

N −1, N −2, . . . , 0. In other words, the multivariate Bessel function in the numerator
takes as input ρN with v1, . . . , vk replaced by u1, . . . , uk . In this section, we obtain
asymptotics for these normalizedmultivariate Bessel functions in preparation for prov-
ing Theorem 1.4. We note that the asymptotics from this section are refinements of
those from [28, Theorem 3.4]. Moreover, we obtain our asymptotics by bootstrapping
off the latter.

Definition 5.1 Define

Hµ(u) := −(u + 1) log Sµ(u) −
∫

log
(
(u + 1)Sµ(u)−1 − ux

)
dµ(x)

where the logarithms are given by the standard branch.

Observe that

Hµ(u) = −(u + 1) log(u + 1)+ u log u − u logψ−1
µ (u) −

∫
log(1 − xψ−1

µ (u))dµ(x).

Using the fact that

−u −
∫ xψ−1

µ (u)

1 − xψ−1
µ (u)

dµ(x) = u − ψµ(ψ
−1
µ (u)) = 0,

we have

H ′
µ(u) = − log(u + 1)+ log u − logψ−1

µ (u) = − log Sµ(u) (5.1)

and

H ′′
µ(u) = −

S′
µ(u)

Sµ(u)
. (5.2)

Definition 5.2 LetRN denote the subset ofMI consisting of probability measures of
the form

1
N

N∑

i=1

δxi
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where x1, . . . , xN ∈ I .

Theorem 5.3 Fix a closed interval I ⊂ R>0. There exists an open neighborhood U of
[−1, 0] such that

Bµ(N (u1 + 1), . . . , N (uk + 1); N (v1 + 1), . . . , N (vk + 1))

=
det

(
1

ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1
⎡

⎣ 1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

√
Sµ(vi )eNHµ(ui )

√
Sµ(ui )eNHµ(vi )

(1+ o(|ui − vi |))

⎤

⎦

as N → ∞, uniformly over µ ∈ MI ∩ RN , u1, . . . , uk ∈ U, and v1, . . . , vk ∈
1
N Z ∩ [−1, 0].
Remark 4 To translate between our notation and that of [28], our Hµ corresponds to
their 9̃ρN and our ψµ corresponds to their Mρ̃N .

Remark 5 We note the peculiarity in Theorem 5.3 that the uniformity µ ∈ MI ∩RN

is over a set varying with N .

Proof of Theorem 5.3 Our starting point is [28, Theorem 3.4] which states that there is
some neighborhood U of [−1, 0] such that

B(N )
µ (N (u1 + 1), . . . , N (uk + 1); N (v1 + 1), . . . , N (vk + 1))

=
det

(
1

ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1
⎡

⎣ 1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

√
Sµ(vi )eNHµ(ui )

√
Sµ(ui )eNHµ(vi )

(1+ o(1))

⎤

⎦

as N → ∞, uniformly for u1, . . . , uk, v1, . . . , vk ∈ U and µ ∈ MI ∩ RN . We
note that the original statement of [28, Theorem 3.4] is in the regime where µ = µN
converges weakly to a measure inMI as N → ∞, but the proof also implies uniform
asymptotics for µ ∈ MI ∩ RN . Thus, it remains to improve the relative o(1) error.

Define

B
(N )
µ (u1, . . . , uk; v1, . . . , vk)

=
det

(
1

ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

k∏

i=1

⎡

⎣ 1
√

ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

√
Sµ(vi )eNHµ(ui )

√
Sµ(ui )eNHµ(vi )

⎤

⎦
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982 A. Ahn

for u1, . . . , uk, v1, . . . , vk ∈ U . Then for ε > 0 sufficiently small,

B(N )
µ (N (u1 + 1), . . . , N (uk + 1); N (v1 + 1), . . . , N (vk + 1))

= B(N )
µ (u1, . . . , uk; v1, . . . , vk)(1+ o(1)) (5.3)

as N → ∞, uniformly over u1, . . . , uk ∈ Uε, and v1, . . . , vk ∈ 1
N Z∩ [−1, 0], where

Uε denotes the ε-neighborhood of [−1, 0].
By Lemma 4.7, the quotient of Cauchy determinants in the definition of B(N )

µ

is bounded and bounded away from 0 for u1, . . . , uk, v1, . . . , vk ∈ Uε, for ε > 0
sufficiently small. Similarly, since (see Proposition 4.4 and Proposition 4.5 (ii))

ψ ′
µ(ψ

−1
µ (0)) = ψ ′

µ(0) ̸= 0 and Sµ(0) ̸= 0,

we have

1
√

ψ ′
µ(ψ

−1
µ (u))ψ ′

µ(ψ
−1
µ (v))

√
Sµ(v)√
Sµ(u)

is bounded and bounded away from 0 for u1, . . . , uk, v1, . . . , vk ∈ Uε, given that ε is
sufficiently small. For each integer k ≥ 1, define

F (N )
k (u1, . . . , uk; v1, . . . , vk)

:= log

(
B(N )
µ (N (u1 + 1), . . . , N (uk + 1); N (v1 + 1), . . . , N (vk + 1))

B(N )
µ (N (u1 + 1), . . . , N (uk−1 + 1); N (v1 + 1), . . . , N (vk−1 + 1))

)

F(N )
k (u1, . . . , uk; v1, . . . , vk)

:= log

(
B(N )

µ (Nu1, . . . , Nuk; Nv1, . . . , Nvk)

B(N )
µ (Nu1, . . . , Nuk−1; Nv1, . . . , Nvk−1)

)

where in the case k = 1, we take the denominator in the logarithm to be 1. Then F (N )
k

and F(N )
k are analytic for u1, . . . , uk ∈ Uε, where v1, . . . , vk ∈ 1

N Z∩ [−1, 0] and N is

sufficiently large. Moreover, we have the convergence F (N )
k − F(N )

k → 0 as N → ∞
on this region by definition and the convergence (5.3). Furthermore, F (N )

k and F(N )
k

vanish whenever uk = vk .
Then

G(N )
i (u1, . . . , ui ; v1, . . . , vi )

:= 1
ui − vi

F (N )
i (u1, . . . , ui ; v1, . . . , vi ) − 1

ui − vi
F(N )
i (u1, . . . , ui ; v1, . . . , vi )
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Extremal singular values... 983

is analytic for u1, . . . , ui ∈ Uε, where v1, . . . , vi ∈ 1
N Z∩[−1, 0] and N is sufficiently

large. Since F (N )
i − F(N )

i → 0, we have

G(N )
i (u1, . . . , ui ; v1, . . . , vi ) = o(1)

uniformly for u1, . . . , ui ∈ ∂U2ε/3 and v1, . . . , vi ∈ 1
N Z∩[−1, 0], since the restriction

of u1, . . . , ui to the boundary of U2ε/3 keeps 1/(ui − vi ) bounded.
By Cauchy integral formula,

G(N )
i (u1, . . . , ui ; v1, . . . , vi )

= 1
(2π i)i

∮

∂U2ε/3

· · ·
∮

∂U2ε/3

G(w1, . . . , wi ; v1, . . . , vi )
(w1 − u1) · · · (wi − ui )

dw1 · · · dwi = o(1)

uniformly for u1, . . . , ui ∈ Uε/2 and v1, . . . , vi ∈ 1
N Z ∩ [−1, 0]. Therefore,

B(N )
µ (N (u1 + 1), . . . , N (uk + 1); N (v1 + 1), . . . , N (vk + 1))

= exp

(
k∑

i=1

F (N )
i (u1, . . . , ui ; v1, . . . , vi )

)

= exp

(
k∑

i=1

(
F(N )
i (u1, . . . , ui ; v1, . . . , vi )+ o(|ui − vi |)

))

= B(N )
µ (u1, . . . , uk; v1, . . . , vk)(1+ o(max

i
|ui − vi |))

as N → ∞, uniformly for u1, . . . , uk ∈ Uε/2 and v1, . . . , vk ∈ 1
N Z ∩ [−1, 0]. This

completes the proof of Theorem 5.3. ⊓⊔

6 Proof of Theorem 1.4

In this section, we prove our main result Theorem 1.4. Throughout this section, we fix
some notation. Given a sequence X (N )(1), X (N )(2), . . ., denote by µ(m)

N the empirical
distribution of the squared singular values of X (N )(m). Given a compactly supported
probability measure µ, let κ1(µ) and κ2(µ) denote the mean (first cumulant) and
variance (second cumulant) of µ respectively.

The key step is to establish the following intermediate result.

Theorem 6.1 Suppose that X (N )(1), X (N )(2), . . . have deterministic squared singular
values, all contained in a fixed compact interval I ⊂ R>0, and that the hypotheses of
Theorem 1.4 (i.e. conditions (1.1) and (1.2)) are satisfied. Let

y(N )
1 (M) ≥ · · · ≥ y(N )

N (M)
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984 A. Ahn

denote the squared singular values of X (N )(M) · · · X (N )(1). Then for any t1 ≥ · · · ≥
tk > 0 and c1, . . . , ck > 0 such that c1 + · · · + ck ∈ (0, 1), we have

E

⎡

⎣
k∏

i=1

N∑

j=1

eci log y
(N )
j (⌊ti N⌋)

⎤

⎦ =
(

k∏

i=1

eciEN (⌊ti N⌋)
)

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j ( 14VN (⌊ti N⌋))− N

2 VN (⌊ti N⌋)
)
⎤

⎦ (1+ o(1))

as N → ∞, where

EN (M) :=
M∑

m=1

log κ1(µ
(m)
N ), and VN (M) := 1

N

M∑

m=1

κ2(µ
(m)
N )

κ1(µ
(m)
N )2

.

This convergence holds uniformly over sequences X (N )
1 , X (N )

2 , . . . satisfying (1.1) and
(1.2) such that the squared singular values of X (N )(m) lie in I for every 1 ≤ i ≤ M1.

The proof of Theorem 6.1 combines the asymptotics from the previous sections
and our formalism of multivariate Bessel functions. Note that Theorem 6.1 makes
the assumption that the matrices have non-random singular values. The proof of The-
orem 1.4 proceeds straightforwardly from Theorem 6.1 by bootstrapping from the
deterministic case, see Sect. 6.2.

6.1 Proof of Theorem 6.1

Let Mi := Mi (N ) := ⌊ti N⌋ for 1 ≤ i ≤ k and Mk+1 := 0. Let x(m) =
(x (m)

1 , . . . , x (m)
N ) denote the squared singular values of X (N )(m). By Proposition 2.4,

E

⎡

⎣
k∏

i=1

N∑

j=1

eci log y
(N )
j (Mi )

⎤

⎦

= D(N )
c1

M1∏

m1=M2+1

Blog x(m1)(z1, . . . , zN )
Blog x(m1)(ρN )

· · ·D(N )
ck

Mk∏

mk=Mk+1+1

Blog x(mk )(z1, . . . , zN )
Blog x(mk )(ρN )

∣∣∣∣∣∣
z=ρN

.

Recall our convention that Dc = D(N )
c acts on everything to its right (see Sect. 2).

Expanding out the Dc terms, we obtain

E

⎡

⎣
k∏

i=1

N∑

j=1

eci log y
(N )
j (Mi )

⎤

⎦

=
N∑

i1,...,ik=1

⎛

⎝
∏

j1 ̸=i1

c1 + zi1 − z j1
zi1 − z j1

⎞

⎠ Tc1,zi1

M1∏

m1=M2+1

Blog x(m1)(z1, . . . , zN )
Blog x(m1)(ρN )
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· · ·

⎛

⎝
∏

jk ̸=ik

ck + zik − z jk
zik − z jk

⎞

⎠ Tck ,zik

Mk∏

mk=Mk+1+1

Blog x(mk )(z1, . . . , zN )
Blog x(mk )(ρN )

∣∣∣∣∣∣
z=ρN

.

The products over jℓ ̸= iℓ are understood to range over 1 ≤ jℓ ≤ N (for 1 ≤ ℓ ≤ k).
LikeDc, the shift operators Tc,zi act on everything to their right. If the Tc,zi is contained
between parentheses, its action is confined within those parentheses.

Since Tc f g = (Tc f )(Tcg), we get

E

⎡

⎣
k∏

i=1

N∑

j=1

eci log y
(N )
j (Mi )

⎤

⎦ =
N∑

i1,...,ik=1

σi1,...,ik

where

σi1,...,ik =
k∏

ℓ=1

⎛

⎝Tc1,zi1 · · · Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎠

×

⎛

⎝
Mℓ∏

mℓ=Mℓ+1+1

Tc1,zi1 · · · Tcℓ,ziℓ
Blog x(mℓ)(z1, . . . , zN )

Blog x(mℓ)(ρN )

∣∣∣∣
z=ρN

⎞

⎠ .

Set

τi1,...,ik :=

⎛

⎝
k∏

i=1

eciEN (Mi )

⎞

⎠

⎛

⎝
∏

j1 ̸=i1

c1 + zi1 − z j1
zi1 − z j1

⎞

⎠Tc1,zi1

⎛

⎜⎜⎝
N∏

a1=1

exp
[
!1

(
za1 − N + 1

2

)2]

exp
[
!1

(
−a1 + 1

2

)2]

⎞

⎟⎟⎠

× · · · ×

⎛

⎝
∏

jk ̸=ik

ck + zik − z jk
zik − z jk

⎞

⎠Tck ,zik

⎛

⎜⎜⎝
N∏

ak=1

exp
[
!k

(
zak − N + 1

2

)2]

exp
[
!k

(
−ak + 1

2

)2]

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
z=ρN

=

⎛

⎝
k∏

i=1

eciEN (Mi )

⎞

⎠Dc1

⎛

⎜⎜⎝
N∏

a1=1

exp
[
!1

(
za1 − N + 1

2

)2]

exp
[
!1

(
−a1 + 1

2

)2]

⎞

⎟⎟⎠ · · ·

Dck

⎛

⎜⎜⎝
N∏

ak=1

exp
[
!k

(
zak − N + 1

2

)2]

exp
[
!k

(
−ak + 1

2

)2]

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
z=ρN

where

!ℓ :=
1
2N

Mℓ∑

m=Mℓ+1+1

κ2(µ
(m)
N )

κ1(µ
(m)
N )2

= 1
2
(VN (Mℓ) − VN (Mℓ+1)) , 1 ≤ ℓ ≤ k.
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The equality following the definition of τi1,...,ik follows from the definition for Dc, as
in the calculation (though in reverse) at the start of this proof.

We prove that

σi1,...,ik = τi1,...,ik (1+ o(1)) (6.1)

as N → ∞, uniformly over 1 ≤ i1, . . . , ik ≤ N 1/3. Furthermore, we prove that if N
is sufficiently large then

σi1,...,ik > 0, (6.2)

τi1,...,ik > 0, (6.3)

for 1 ≤ i1, . . . , ik ≤ N , and there exists c > 0 such that

σi1,...,ik ≤ σ1,...,1e−cN1/3
, (6.4)

τi1,...,ik ≤ σ1,...,1e−cN1/3
(6.5)

for 1 ≤ i1, . . . , ik ≤ N such that i j > N 1/3 for some 1 ≤ j ≤ k. Indeed, Theorem 6.1
would follow because

E

⎡

⎣
k∏

i=1

N∑

j=1

eci log y
(N )
j (Mi )

⎤

⎦ =
N∑

i1,...,ik=1

σi1,...,ik = (1+ o(1))
N∑

i1,...,ik=1

τi1,...,ik

= (1+ o(1))

(
k∏

i=1

eciEN (Mi )

)

Dc1

⎛

⎝
N∏

a1=1

exp
[
!1

(
za1 − N + 1

2

)2]

exp
[
!1

(
−a1 + 1

2

)2]

⎞

⎠

· · ·Dck

⎛

⎝
N∏

ak=1

exp
[
!k

(
zak − N + 1

2

)2]

exp
[
!k

(
−ak + 1

2

)2]

⎞

⎠

∣∣∣∣∣∣
z=ρN

= (1+ o(1))

(
k∏

i=1

eciEN (Mi )

)

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j

(
1
4VN (Mi )

)
− N

2 VN (Mi )
)
⎤

⎦ .

The second equality comes from (6.1) applied to the terms with i1, . . . , ik ≤ N 1/3,
and the remaining terms are tail terms which can be replaced by (6.2)–(6.5). The third
equality follows from the definition of τi1,...,ik and the definition of Dc. The fourth
equality uses Corollary 2.6.

Therefore, our goal is to prove (6.1)–(6.5). For this, we rely on the following claims:

Claim 6.2 For any 1 ≤ i1, . . . , iℓ ≤ N, we have

Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

j ̸=iℓ

cℓ + ziℓ − z j
ziℓ − z j

∣∣∣∣∣∣
z=ρN

> 0 (6.6)
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Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

j ̸=iℓ

cℓ + ziℓ − z j
ziℓ − z j

∣∣∣∣∣∣
z=ρN

≤ C Tc1,z1 · · ·Tcℓ−1,z1

∏

j ̸=1

cℓ + z1 − z j
z1 − z j

∣∣∣∣∣∣
z=ρN

(6.7)

for some constant C > 1 uniform in the i1, . . . , iℓ but depending on c1, . . . , cℓ > 0
satisfying c1 + · · · + cℓ < 1.

Claim 6.3 Let µN = 1
N

∑N
i=1 δxi and x = (x1, . . . , xN ). Then

Tc1,zi1 · · · Tcℓ,ziℓ
Blog x(z1, . . . , zN )

Blog x(ρN )

∣∣∣∣
z=ρN

=
ℓ∏

j=1

exp

⎛

⎝−c j log SµN

(
− i j

N

)
− c j (c j + 1)

2N

S′
µN

(
− i j

N

)

SµN

(
− i j

N

)

⎞

⎠ (1+ o(N−1))

(6.8)

as N → ∞, uniformly over µN ∈ MI ∩ RN and i1, . . . , iℓ ∈ 1
N Z ∩ [0, 1]. In

particular, if i1, . . . , iℓ ≤ N 1/3, then

Tc1,zi1 · · · Tcℓ,ziℓ
Blog x(z1, . . . , zN )

Blog x(ρN )

∣∣∣∣
z=ρN

=
ℓ∏

j=1

κ1(µN )
c j exp

[
1
N

κ2(µN )

κ1(µN )2

(
−c j i j +

c j (c j + 1)
2

)]
(1+ o(N−1)). (6.9)

Before providing the proofs of Claims 6.2 and 6.3, we explain how (6.1)-(6.5)
follow from the claims. We can rewrite

τi1,...,ik =
(

k∏

i=1

eciEN (Mi )

)
k∏

ℓ=1

⎛

⎝Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎠

×
Mℓ∏

mℓ=Mℓ+1+1

⎛

⎜⎜⎜⎝
Tc1,zi1 · · ·Tcℓ,ziℓ

N∏

a=1

exp
[

1
2N

κ2(µ
(mℓ)

N )

κ1(µ
(mℓ)

N )2

(
za − N + 1

2

)2
]

exp
[

1
2N

κ2(µ
(mℓ)

N )

κ1(µ
(mℓ)

N )2

(
−a + 1

2

)2
]

∣∣∣∣∣∣∣∣
z=ρN

⎞

⎟⎟⎟⎠

=
k∏

ℓ=1

⎛

⎝Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎠

×

⎛

⎝
Mℓ∏

mℓ=Mℓ+1+1

ℓ∏

j=1

κ1(µ
(mℓ)
N )c j exp

[
1
N

κ2(µ
(mℓ)
N )

κ1(µ
(mℓ)
N )2

(
−c j i j +

c j (c j + 1)
2

)]⎞

⎠

Then (6.9) and the definition of σi1,...,ik immediately imply (6.1). The positivity state-
ments (6.2) and (6.3) also follow from (6.6) and (6.8).
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We must still prove (6.4) and (6.5). To prove (6.5), let us rewrite τi1,...,ik as
⎡

⎣
k∏

ℓ=1

⎛

⎝Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎠

⎤

⎦

⎡

⎣
k∏

ℓ=1

Mℓ∏

mℓ=Mℓ+1+1

ℓ∏

j=1

κ1

(
µ
(mℓ)
N

)c j
⎤

⎦

× exp

⎡

⎢⎣
k∑

j=1

⎛

⎜⎝
1
N

Mj∑

m=1

κ2

(
µ
(m)
N

)

κ1

(
µ
(m)
N

)2

⎞

⎟⎠
(

−c j i j +
c j (c j + 1)

2

)
⎤

⎥⎦

where we swap the sum over ℓ and the sum over j in the summation inside the
exponential and recall that Mk+1 = 0. We see that the last line in the expression above
for τi1,...,ik is strictly decreasing in each of i1, . . . , ik , and the decay is exponential.

Moreover, by (1.2), each of the terms 1
N

∑Mj
m=1

κ2

(
µ
(m)
N

)

κ1

(
µ
(m)
N

)2 is converging as N → ∞ to

some positive value. Thus if N is sufficiently large, then there exists c > 0 such that

τi1,...,ik ≤ τ1,...,1e−cN1/3

for 1 ≤ i1, . . . , ik ≤ N such that i j > N 1/3 for some 1 ≤ j ≤ k. Note that we use
Claim 6.2 to compare the first line of the latest expression for τi1,...,ik with that of the
special case of τ1,...,1. By (6.1), we obtain (6.5).

To prove (6.4), observe that by Claim 6.3,

σi1,...,ik =
k∏

ℓ=1

⎛

⎜⎝Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎟⎠

×

⎛

⎜⎜⎝

Mℓ∏

mℓ=Mℓ+1+1

ℓ∏

j=1

exp

⎡

⎢⎢⎣−c j log S
µ
(mℓ)

N

(
− i j

N

)
− c j (c j + 1)

2N

S′
µ
(mℓ)

N

(
− i j

N

)

S
µ
(mℓ)

N

(
− i j

N

)

⎤

⎥⎥⎦

⎞

⎟⎟⎠ (1+ o(1))

=
k∏

ℓ=1

⎛

⎜⎝Tc1,zi1 · · ·Tcℓ−1,ziℓ−1

∏

jℓ ̸=iℓ

cℓ + ziℓ − z jℓ
ziℓ − z jℓ

∣∣∣∣∣∣
z=ρN

⎞

⎟⎠

×

⎛

⎜⎜⎝
ℓ∏

j=1

exp

⎡

⎢⎢⎣

Mℓ∑

m=1

⎛

⎜⎜⎝−c j log Sµ(m)
N

(
− i j

N

)
− c j (c j + 1)

2N

S′
µ
(m)
N

(
− i j

N

)

S
µ
(m)
N

(
− i j

N

)

⎞

⎟⎟⎠

⎤

⎥⎥⎦

⎞

⎟⎟⎠ (1+ o(1))

as N → ∞, uniformly over 1 ≤ i1, . . . , ik ≤ N . It suffices to show that
Mℓ∑

m=1

⎛

⎜⎜⎝−c j log Sµ(m)
N

(
− i

N

)
− c j (c j + 1)

2N

S′
µ
(m)
N

(
− i

N

)

S
µ
(m)
N

(
− i

N

)

⎞

⎟⎟⎠

≤ −CN1/3 · 1[N1/3 < i ≤ N ] +
Mℓ∑

m=1

⎛

⎜⎜⎝−c j log Sµ(m)
N

(
− 1

N

)
− c j (c j + 1)

2N

S′
µ
(m)
N

(
− 1

N

)

S
µ
(m)
N

(
− 1

N

)

⎞

⎟⎟⎠

(6.10)

123



Extremal singular values... 989

for 1 ≤ i ≤ N . Indeed, by Claim 6.2, we may disregard the first line in the expression
for σi1,...,ik above, and focus on comparing the terms inside the exponential.

We can make a further reduction. The continuity of µ 7→ Sµ onMI , via Proposi-
tion 4.4, and the compactness of MI implies that

d
du

log Sµ(u) =
S′
µ(u)

Sµ(u)

is bounded, uniformly over u ∈ [−1, 0] and µ ∈ MI . Thus

− 1
2N

Mℓ∑

m=1

S′
µ
(m)
N

(
− i

N

)

S
µ
(m)
N

(
− i

N

)

is bounded, uniformly over 1 ≤ i ≤ N and in N . We see then that to prove (6.10)
(and therefore prove (6.4)), it is enough to show that

−
Mℓ∑

m=1

c j log Sµ(m)
N

(
− i

N

)
≤ −CN 1/3 · 1[N 1/3 < i ≤ N ] −

Mℓ∑

m=1

c j log Sµ(m)
N

(
− 1

N

)

(6.11)

for 1 ≤ i ≤ N .
We know that − log Sµ(u) is an increasing function on [−1, 0] with

− d
du

log Sµ(u)
∣∣∣∣
u=0

= −
S′
µ(0)

Sµ(0)
= κ2(µ)

κ1(µ)2

where we use Lemma 4.6. Condition (1.2) then implies

−
Mℓ∑

m=1

d
du

log S
µ
(m)
N
(u)

∣∣∣∣
u=0

=
Mℓ∑

m=1

κ2(µ
(m)
N )

κ1(µ
(m)
N )2

= Nγ (tℓ)(1+ o(1)) (6.12)

as N → ∞, where we recall γ (tℓ) > 0. Arguing as we did earlier using the compact-
ness ofMI and the continuity of µ 7→ Sµ, we can show that

−
Mℓ∑

m=1

d2

du2
log S

µ
(m)
N
(u)

∣∣∣∣
u=0

= O(N ). (6.13)

Then for N sufficiently large

−
Mℓ∑

m=1

log S
µ
(m)
N

(
− i

N

)
≤ −

Mℓ∑

m=1

log S
µ
(m)
N

(
− 1

N

)
for 1 ≤ i ≤ N ,
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−
Mℓ∑

m=1

log S
µ
(m)
N

(
− i

N

)
≤ −

Mℓ∑

m=1

log S
µ
(m)
N

(
− 1

N

)
− CN 1/3 for N 1/3 < i ≤ N

for some constant C > 0 (since Mℓ ≍ N ). The latter follows from expanding the
function of − i

N around − 1
N . In this expansion, the behavior is dominated by the

linear term, due to the bound (6.13), and since the derivative is positive and of order
N by (6.12), we can glean the sign −CN 1/3. These inequalities prove (6.11) and
therefore (6.4).

Having justified that Claims 6.2 and 6.3 imply (6.1)-(6.5), it remains to prove these
claims.

Proof of Claim 6.2 To work with our expression, it will be convenient to account for
the repetition of variables zi among our operators Tc1,zi1 , . . . , Tcℓ−1,ziℓ−1

with distin-
guished tracking of repetitions of ziℓ . Thuswe introduce the following. Let i

′
1, . . . , i

′
r−1

be the distinct elements of {i1, . . . , iℓ−1} \ {iℓ} and set i ′r = iℓ. Define

c′
1 :=

∑

1≤a<r :
ia=i ′1

ca, . . . , c′
r :=

∑

1≤a<r :
ia=i ′r

ca,

where we note that c′
1, . . . , c

′
r−1 > 0, but c′

r > 0 if and only if i ′r = iℓ is among
i1, . . . , iℓ−1, i.e. iℓ ∈ {i1, . . . , iℓ−1}. Then

Tc1,zi1 · · · Tcℓ−1,ziℓ−1

∏

j ̸=iℓ

cℓ + ziℓ − z j
ziℓ − z j

= Tc′
1,zi ′1

· · · Tc′
r ,zi ′r

∏

j ̸=i ′r

cℓ + zi ′r − z j
zi ′r − z j

=
(
r−1∏

a=1

(zi ′r − zi ′a )(cℓ + c′
r + zi ′r − c′

a − zi ′a )

(cℓ + c′
r + zi ′r − zi ′a )(zi ′r − c′

a − zi ′a )

)⎛

⎝
∏

j ̸=i ′r

cℓ + c′
r + zi ′r − z j
zi ′r − z j

⎞

⎠ .

Since 0 < c1 + · · · + cℓ < 1, upon evaluating at z = ρN = (N − 1, N − 2, . . . , 0),
we see that the expression above is positive. This proves (6.6). Furthermore, we have
a bound

r−1∏

a=1

(zi ′r − zi ′a )(cℓ + c′
r + zi ′r − c′

a − zi ′a )

(cℓ + c′
r + zi ′r − zi ′a )(zi ′r − c′

a − zi ′a )

∣∣∣∣∣
z=ρN

≤ C

where we may make C uniform over 1 ≤ i1, . . . , iℓ ≤ N by virtue of 0 < c1 + · · · +
cℓ < 1 and the positivity of c1, . . . , cℓ. Thus

Tc1,zi1 · · · Tcℓ−1,ziℓ−1

∏

j ̸=iℓ

cℓ + ziℓ − z j
ziℓ − z j

≤ C
∏

j ̸=i ′r

cℓ + c′
r + zi ′r − z j
zi ′r − z j

∣∣∣∣∣∣
z=ρN

.
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Next, observe that

∏

j ̸=i

cℓ + c′
r + zi − z j
zi − z j

∣∣∣∣∣∣
z=ρN

=
∏

j ̸=i

cℓ + c′
r + j − i
j − i

≤
∏

j ̸=1

cℓ + c′
r + j − 1
j − 1

≤
∏

j ̸=1

c1 + · · · + cℓ + j − 1
j − 1

= Tc1,z1 · · · Tcℓ−1,z1

∏

j ̸=1

cℓ + z1 − z j
z1 − z j

∣∣∣∣∣∣
z=ρN

where the third line uses the fact that cℓ + c′
r ≤ c1 + · · · + cℓ, recalling that products

are restricted over 1 ≤ j ≤ N . Combining these inequalities, the claim follows. ⊓⊔

Proof of Claim 6.3 Applying Theorem 5.3 with u j = 1
N (N − i j + c j ) and v j =

1
N (N − i j ), so that |ui − vi | = O(1/N ), we have

Tc1,zi1 · · ·Tcℓ,ziℓ
Blog x(z1, . . . , zN )

Blog x(ρN )

∣∣∣∣∣
z=ρN

= BµN (N − i1 + c1, . . . , N − iℓ + cℓ; N − i1, . . . , N − iℓ)

=
det

(
1

ψ−1
µ (ui )−ψ−1

µ (v j )

)

1≤i, j≤k

det
(

1
ui−v j

)

1≤i, j≤k

ℓ∏

j=1

⎡

⎢⎢⎢⎣
1

√
ψ ′
µ(ψ

−1
µ (ui ))ψ ′

µ(ψ
−1
µ (vi ))

√
SµN

(−i j
N

)
e
NHµN

(−i j+c j
N

)

√
SµN

(−i j+c j
N

)
e
NHµN

(−i j
N

) (1+ o(N−1))

⎤

⎥⎥⎥⎦

uniformly over µN ∈ MI ∩ RN and i1, . . . , iℓ ∈ 1
N Z ∩ [0, 1]. Applying (4.3) from

Lemma 4.7, we may drop the Cauchy determinant and the terms expressed via ψµ so
that

Tc1,zi1 · · · Tcℓ,ziℓ
Blog x(z1, . . . , zN )

Blog x(ρN )

∣∣∣∣
z=ρN

=
ℓ∏

j=1

√
SµN

(−i j
N

)
e
NHµN

(−i j+c j
N

)

√
SµN

(−i j+c j
N

)
e
NHµN

(−i j
N

) (1+ o(N−1))
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=
ℓ∏

j=1

exp

⎛

⎝−c j log SµN

(
− i j

N

)
− c j (c j + 1)

2N

S′
µN

(
− i j

N

)

SµN

(
− i j

N

)

⎞

⎠ (1+ o(N−1)).

uniformly over µN ∈ MI ∩ RN and i1, . . . , iℓ ∈ 1
N Z ∩ [0, 1]. Note that the final

equality follows from the estimates

N
(
Hµ

( u+c
N

)
− Hµ

( u
N

) )
= cH ′

µ

( u
N

)
+ c2

2N
H ′′
µ

( u
N

)
+ O(N−2)

√
SµN

( u
N

)

√
SµN

( u+c
N

) = exp
(
1
2

(
log SµN

( u
N

)
− log SµN

( u+c
N

)))

= exp

(

− c
2N

S′
µN

( u
N

)

SµN

( u
N

) + O(N−2)

)

which hold for fixed c > 0, uniformly over u ∈ [−1, 0] and µ ∈ MI as N → ∞,
and from expressing H ′

µ and H ′′
µ in terms of the S-transform as in (5.1) and (5.2). This

proves (6.8).
If |u| ≤ N 1/3, then

− c log Sµ
( u
N

)
− c(c + 1)

2N

S′
µ

( u
N

)

Sµ
( u
N

)

= −c log Sµ(0) − 1
N

S′
µ(0)

Sµ(0)

(
u + c(c + 1)

2

)
+ O(N−4/3)

= c log κ1(µ)+
1
N

κ2(µ)

κ1(µ)2

(
u + c(c + 1)

2

)
+ O(N−4/3)

uniformly in u and µ ∈ MI , where the second equality uses the evaluations of Sµ(0)
and S′

µ(0) from Lemma 4.6. This proves (6.9). ⊓⊔

6.2 Proof of Theorem 1.4

Let

EN (M) :=
M∑

m=1

log κ1(µ
(m)
N ) and VN (M) := 1

N

M∑

m=1

κ2(µ
(m)
N )

κ1(µ
(m)
N )2

as in Theorem 6.1. In contrast with the setting of Theorem 6.1, EN (M) and VN (M)

are not deterministic in general.
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Fix t1 ≥ · · · ≥ tk > 0. Our goal is to show that for any positive integers k and h,

lim
N→∞

P
(
log y(N )

j (⌊ti N⌋) − EN (⌊ti N⌋) − log N ≤ ai, j : 1 ≤ i ≤ k, 1 ≤ j ≤ h
)

= P(ξ j (γ (ti )) ≤ ai, j : 1 ≤ i ≤ k, 1 ≤ j ≤ h)
(6.14)

for every ai, j ∈ R such that ai,1 ≥ · · · ≥ ai,h .
We may assume that there exists a compact interval I ⊂ R>0 such that

suppµN (m) ⊂ I , for all 1 ≤ m ≤ ⌊t1N⌋ and N ≥ 1. (6.15)

We show why this reduction is valid. Indeed, by (1.1)

1 − P (suppµN (m) ⊂ I ) = o(1/N )

uniformly over m = 1, 2, . . .. Then if IN is the event that suppµN (m) ⊂ I for every
1 ≤ m ≤ ⌊t1N⌋, we have

1 − P (IN ) ≤ ⌊t1N⌋ · o(1/N ) = o(1).

Thus, to prove (6.14), we may assume without loss of generality that P(IN ) = 1 and
that the complement of IN is empty, which is the desired reduction.

We make one more reduction. By (1.2), we have that

εi,N := VN (⌊ti N⌋) − γ (ti ) → 0

in probability as N → ∞. Thus there exists a sequence of events ĨN and a sequence
aN > 0 such that

|εi,N | ≤ aN

on ĨN , and P(ĨN ) → 1 and aN → 0 as N → ∞. Therefore, we may assume without
loss of generality that P(ĨN ) = 1.

Let

XN :=
{
x (N )
j (m) : 1 ≤ m ≤ M1, 1 ≤ j ≤ N

}

denote the collection of squared singular values of X (N )(1), . . . , X (N )(M1). We have
XN ⊂ I from (6.15). Under the assumption P(ĨN ) = 1, we have

VN (⌊ti N⌋) = γ (ti )+ o(1) (6.16)

as N → ∞ for 1 ≤ i ≤ k, where the o(1) is uniform over all realization of XN .
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Suppose c1, . . . , ck > 0 such that c1 + · · · + ck < 1. Then

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
log y(N )

j (⌊ti N⌋)−EN (⌊ti N⌋)−log N
)
∣∣∣∣∣∣
XN

⎤

⎦

= E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
ξ
(N )
j ( 14VN (⌊ti N⌋))− N

2 VN (⌊ti N⌋)−log N
)
∣∣∣∣∣∣
XN

⎤

⎦ (1+ o(1))

= E

⎡

⎣
k∏

i=1

∞∑

j=1

eci ξ j (VN (⌊ti N⌋))

∣∣∣∣∣∣
XN

⎤

⎦ (1+ o(1))

= E

⎡

⎣
k∏

i=1

∞∑

j=1

eci ξ j (γ (ti ))

⎤

⎦ (1+ o(1))

as N → ∞, uniformly over all realizations of XN . The first equality follows from
Theorem 6.1, using the uniformity statement in that theorem along with fact that
XN ⊂ I . The second equality uses Proposition 3.3 and Lemma 3.4. The third equality
follows from (6.16). Taking an overall expectation then yields

lim
N→∞

E

⎡

⎣
k∏

i=1

N∑

j=1

e
ci
(
log y(N )

j (⌊ti N⌋)−EN (⌊ti N⌋)−log N
)
⎤

⎦ = E

⎡

⎣
k∏

i=1

∞∑

j=1

eci ξ j (γ (ti ))

⎤

⎦

(6.17)

where the uniformity of the o(1) error permits the commutation of the limit with the
expectation. The result now follows from Lemma 3.5.
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